Sample records for wall invertase activity

  1. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.

    PubMed

    Jin, Ye; Ni, Di-An; Ruan, Yong-Ling

    2009-07-01

    Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.

  2. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  3. Cell wall invertase in tobacco crown gall cells : enzyme properties and regulation by auxin.

    PubMed

    Weil, M; Rausch, T

    1990-12-01

    The cell wall invertase from an Agrobacterium tumefaciens-transformed Nicotiana tabacum cell line (SR1-C58) was purified. The heterogeneously glycosylated enzyme has the following properties: M(r) 63,000, pH optimum at 4.7, K(m sucrose) 0.6 millimolar (at pH 4.7), pl 9.5. Enzyme activity is inhibited by micromolar concentrations of HgCl(2) but is insensitive to H(2)O(2), N-ethylmaleimide and dithiothreitol. Upon transfer of transformed cells from the stationary phase to fresh medium, a cycloheximide- and tunicamycin-sensitive de novo formation of cell wall invertase is demonstrated in the absence or presence of sucrose. While in an auxin mutant (lacking gene 1;SR1-3845) 1 micromolar 1-naphthaleneacetic acid led to a further increased activity, the wild-type transformed cell line (SR1-C58) responded with a decreased activity compared to the control. An analysis of cell wall invertase in and around tumors initiated with Agrobacterium tumefaciens (strain C58) on Nicotiana tabacum stem and Kalanchoë daigremontiana leaves revealed gradients of activity. The results indicate that the auxin-stimulated cell wall invertase is essential for the establishment of the tumor sink.

  4. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    PubMed

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  5. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response.

    PubMed

    Bonfig, Katharina B; Gabler, Andrea; Simon, Uwe K; Luschin-Ebengreuth, Nora; Hatz, Martina; Berger, Susanne; Muhammad, Naseem; Zeier, Jürgen; Sinha, Alok K; Roitsch, Thomas

    2010-11-01

    There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of carbohydrate partitioning and source-sink relations. Whereas studies have focused so far only on the transcriptional induction of invertase genes in response to pathogen infection, the role of post-translational regulation of invertase activity has been neglected and was the focus of the present study. Expression analyses revealed that the high mRNA level of one out of three proteinaceous invertase inhibitors in source leaves of Arabidopsis thaliana is strongly repressed upon infection by a virulent strain of Pseudomonas syringae pv. tomato DC3000. This repression is paralleled by a decrease in invertase inhibitor activity. The physiological role of this regulatory mechanism is revealed by the finding that in situ invertase activity was detectable only upon infection by P. syringae. In contrast, a high invertase activity could be measured in vitro in crude and cell wall extracts prepared from both infected and non-infected leaves. The discrepancy between the in situ and in vitro invertase activity of control leaves and the high in situ invertase activity in infected leaves can be explained by the pathogen-dependent repression of invertase inhibitor expression and a concomitant reduction in invertase inhibitor activity. The functional importance of the release of invertase from post-translational inhibition for the defense response was substantiated by the application of the competitive chemical invertase inhibitor acarbose. Post-translational inhibition of extracellular invertase activity by infiltration of acarbose in leaves was shown to increase the susceptibility to P. syringae. The impact of invertase inhibition on spatial and temporal dynamics of the repression of photosynthesis and promotion of bacterial growth during pathogen infection supports a role for extracellular invertase in plant defense. The acarbose-mediated increase in susceptibility was also detectable in sid2 and cpr6 mutants and resulted in slightly elevated levels of salicylic acid, demonstrating that the effect is independent of the salicylic acid-regulated defense pathway. These findings provide an explanation for high extractable invertase activity found in source leaves that is kept inhibited in situ by post-translational interaction between invertase and the invertase inhibitor proteins. Upon pathogen infection, the invertase activity is released by repression of invertase inhibitor expression, thus linking the local induction of sink strength to the plant defense response.

  6. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations of Rumex dentatus under copper stress.

    PubMed

    Xu, Zhong-Rui; Cai, Shen-Wen; Huang, Wu-Xing; Liu, Rong-Xiang; Xiong, Zhi-Ting

    2018-01-01

    Acid invertase activities in roots and young seeds of a metalliferous population (MP) of Rumex dentatus were previously observed to be significantly higher than those of a non-metalliferous population (NMP) under Cu stress. To date, no acid invertase gene has been cloned from R. dentatus. Here, we isolated four full-length cDNAs from the two populations of R. dentatus, presumably encoding cell wall (RdnCIN1 and RdmCIN1 from the NMP and MP, respectively) and vacuolar invertases (RdnVIN1 and RdmVIN1 from the NMP and MP, respectively). Unexpectedly, RdnCIN1 and RdmCIN1 most likely encode special defective invertases with highly attenuated sucrose-hydrolyzing capacity. The transcript levels of RdmCIN1 were significantly higher than those of RdnCIN1 in roots and young seeds under Cu stress, whereas under control conditions, the former was initially lower than the latter. Unexpected high correlations were observed between the transcript levels of RdnCIN1 and RdmCIN1 and the activity of cell wall invertase, even though RdnCIN1 and RdmCIN1 do not encode catalytically active invertases. Similarly, the transcript levels of RdmVIN1 in roots and young seeds were increased under Cu stress, whereas those of RdnVIN1 were decreased. The high correlations between the transcript levels of RdnVIN1 and RdmVIN1 and the activity of vacuolar invertase indicate that RdnVIN1 and RdmVIN1 might control distinct vacuolar invertase activities in the two populations. Moreover, a possible indirect role for acid invertases in Cu tolerance, mediated by generating a range of sugars used as nutrients and signaling molecules, is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.

  9. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  10. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    PubMed

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-05-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.

  12. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.

    PubMed

    Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye

    2017-11-09

    Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.

  13. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana.

    PubMed

    Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June

    2012-01-01

    Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.

  14. Molecular and Functional Characterization of Novel Fructosyltransferases and Invertases from Agave tequilana

    PubMed Central

    Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G.; Simpson, June

    2012-01-01

    Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants. PMID:22558253

  15. Comparative study of stability of soluble and cell wall invertase from Saccharomyces cerevisiae.

    PubMed

    Margetić, Aleksandra; Vujčić, Zoran

    2017-03-16

    Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8 M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22 hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.

  16. Targeting the AtCWIN1 Gene to Explore the Role of Invertases in Sucrose Transport in Roots and during Botrytis cinerea Infection

    PubMed Central

    Veillet, Florian; Gaillard, Cécile; Coutos-Thévenot, Pierre; La Camera, Sylvain

    2016-01-01

    Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infection with the necrotrophic fungus Botrytis cinerea. We showed that organs with different source/sink status displayed differential CWIN activities, depending on carbohydrate needs or availabilities in the surrounding environment, through a transcriptional and posttranslational regulation. Loss-of-function mutation of the Arabidopsis cell wall invertase 1 gene, AtCWIN1, showed that the corresponding protein was the main contributor to the apoplastic sucrose cleaving activity in both leaves and roots. The CWIN-deficient mutant cwin1-1 exhibited a reduced capacity to actively take up external sucrose in roots, indicating that this process is mainly dependent on the sucrolytic activity of AtCWIN1. Using T-DNA and CRISPR/Cas9 mutants impaired in hexose transport, we demonstrated that external sucrose is actively absorbed in the form of hexoses by a sugar/H+ symport system involving the coordinated activity of AtCWIN1 with several Sugar Transporter Proteins (STP) of the plasma membrane, i.e., STP1 and STP13. Part of external sucrose was imported without apoplastic cleavage into cwin1-1 seedling roots, highlighting an alternative AtCWIN1-independent pathway for the assimilation of external sucrose. Accordingly, we showed that several genes encoding sucrose transporters of the plasma membrane were expressed. We also detected transcript accumulation of vacuolar invertase (VIN)-encoding genes and high VIN activities. Upon infection, AtCWIN1 was responsible for all the Botrytis-induced apoplastic invertase activity. We detected a transcriptional activation of several AtSUC and AtVIN genes accompanied with an enhanced vacuolar invertase activity, suggesting that the AtCWIN1-independent pathway is efficient upon infection. In absence of AtCWIN1, we postulate that intracellular sucrose hydrolysis is sufficient to provide intracellular hexoses to maintain sugar homeostasis in host cells and to fuel plant defenses. Finally, we demonstrated that Botrytis cinerea possesses its own functional sucrolytic machinery and hexose uptake system, and does not rely on the host apoplastic invertases. PMID:28066461

  17. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed Central

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-01-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning. PMID:12223695

  18. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit.

    PubMed

    Zhang, Ning; Jiang, Jing; Yang, Yan-li; Wang, Zhi-he

    2015-10-01

    In this study, we produced tomato plants overexpressing an invertase inhibitor gene (Sly-INH) from tomato, using a simple and efficient transient transformation system. Compared with control plants, the expression of Sly-INH was highly upregulated in Sly-INH overexpressing plants, as indicated by real-time polymerase chain reaction (PCR). Physiological analysis revealed that Sly-INH inhibited the activity of cell wall invertase (CWIN), which increased sugar accumulation in tomato fruit. Furthermore, Sly-INH mediated sucrose metabolism by regulating CWIN activity. Our results suggest that invertase activity is potentially regulated by the Sly-INH inhibitor at the post-translational level, and they demonstrate that the transient transformation system is an effective method for determining the functions of genes in tomato.

  19. [Characteristics of extracellular invertase of Saccharomyces cerevisiae in Heterologous expression of the suc2 gene in Solarium Tuberosum plants].

    PubMed

    Deriabin, A N; Berdichevets, I N; Burakhanova, E A; Trunova, T I

    2014-01-01

    Some properties and activity of extracellular invertase in the Saccharomyces cerevisiae yeasts encoded by the suc2 gene in heterologous expression were described. It was shown that the target suc2 gene is actively expressed in the genome of the transformed potato plants and S. cerevisiae invertase synthesized by this gene is transported into the apoplast due to the signal peptide of the proteinase II inhibitor. This enzyme is present in the apoplast in a soluble form and absorbed into the cell wall.

  20. Sulla carnosa modulates root invertase activity in response to the inhibition of long-distance sucrose transport under magnesium deficiency.

    PubMed

    Farhat, N; Smaoui, A; Maurousset, L; Porcheron, B; Lemoine, R; Abdelly, C; Rabhi, M

    2016-11-01

    Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month. Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0.01 and 0.00 mM Mg. This decline was adversely associated with a significant increase of sucrose, fructose and mainly glucose in shoots of plants exposed to severe deficiency. By contrast, sugar contents were severely reduced in roots of these plants indicating an alteration of carbohydrate partitioning between shoots and roots of Mg-deficient plants. Cell wall invertase activity was highly enhanced in roots of Mg-deficient plants, while the vacuolar invertase activity was reduced at 0.00 mM Mg. This decrease of vacuolar invertase activity may indicate the sensibility of roots to Mg starvation resulting from sucrose transport inhibition. 14 CO 2 labeling experiments were in accordance with these findings showing an inhibition of sucrose transport from source leaves to sink tissues (roots) under Mg depletion. The obtained results confirm previous findings about Mg involvement in photosynthate loading into phloem and add new insights into mechanisms evolved by S. carnosa to cope with Mg shortage in particular the increase of the activity of cell wall invertase. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Purification and characterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley (Hordeum vulgare) elongating stem tissue

    NASA Technical Reports Server (NTRS)

    Karuppiah, N.; Vadlamudi, B.; Kaufman, P. B.

    1989-01-01

    Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (beta-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organo-mercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.

  2. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia.

    PubMed

    Deryabin, A N; Burakhanova, E A; Trunova, T I

    2015-01-01

    We studied the involvement of apoplastic sugars (glucose, fructose, and sucrose) and the cell-wall invertase (CWI) in the formation of the tolerance of cold-resistant potato plants (Solanum tuberosum L., cv Désirée) to hypothermia. The activity of CW1 and the content in the cell and the apoplast substrate (sucrose) and the reaction products of this enzyme (glucose and fructose) have a significant influence on the formation of the tolerance of cold-resistant potato plants to hypothermia.

  3. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.

    PubMed

    Samac, Deborah A; Bucciarelli, Bruna; Miller, Susan S; Yang, S Samuel; O'Rourke, Jamie A; Shin, Sanghyun; Vance, Carroll P

    2015-12-01

    Alfalfa (Medicago sativa L.) is a widely adapted perennial forage crop that has high biomass production potential. Enhanced cellulose content in alfalfa stems would increase the value of the crop as a bioenergy feedstock. We examined if increased expression of sucrose synthase (SUS; EC 2.4.1.13) would increase cellulose in stem cell walls. Alfalfa plants were transformed with a truncated alfalfa phosphoenolpyruvate carboxylase gene promoter (PEPC7-P4) fused to an alfalfa nodule-enhanced SUS cDNA (MsSUS1) or the β-glucuronidase (GUS) gene. Strong GUS expression was detected in xylem and phloem indicating that the PEPC7-P4 promoter was active in stem vascular tissue. In contrast to expectations, MsSUS1 transcript accumulation was reduced 75-90 % in alfalfa plants containing the PEPC7-P4::MsSUS1 transgene compared to controls. Enzyme assays indicated that SUS activity in stems of selected down-regulated transformants was reduced by greater than 95 % compared to the controls. Although SUS activity was detected in xylem and phloem of control plants by in situ enzyme assays, plants with the PEPC7-P4::MsSUS1 transgene lacked detectable SUS activity in post-elongation stem (PES) internodes and had very low SUS activity in elongating stem (ES) internodes. Loss of SUS protein in PES internodes of down-regulated lines was confirmed by immunoblots. Down-regulation of SUS expression and activity in stem tissue resulted in no obvious phenotype or significant change in cell wall sugar composition. However, alkaline/neutral (A/N) invertase activity increased in SUS down-regulated lines and high levels of acid invertase activity were observed. In situ enzyme assays of stem tissue showed localization of neutral invertase in vascular tissues of ES and PES internodes. These results suggest that invertases play a primary role in providing glucose for cellulose biosynthesis or compensate for the loss of SUS1 activity in stem vascular tissue.

  4. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit

    PubMed Central

    Li, Zhimiao; Palmer, William M.; Martin, Antony P.; Wang, Rongqing; Rainsford, Frederick; Jin, Ye; Patrick, John W.; Yang, Yuejian; Ruan, Yong-Ling

    2012-01-01

    Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway. PMID:22105847

  5. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit.

    PubMed

    Li, Zhimiao; Palmer, William M; Martin, Antony P; Wang, Rongqing; Rainsford, Frederick; Jin, Ye; Patrick, John W; Yang, Yuejian; Ruan, Yong-Ling

    2012-02-01

    Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway.

  6. [Export of an invertase by yeast cells (Candida utilis)].

    PubMed

    Alekseeva, O V; Sabirzianova, T A; Celiakh, I O; Kalebina, T S; Kulaev, I S

    2014-01-01

    Export and accumulation of various forms of invertase (EC 3.2.1.26) in the cell wall and culture liquid of the yeast Candida utilis was investigated. It was found that the high-molecular-weight CW-form of invertase is present in the cell wall. This form is not exported into the culture liquid, and it is by a third more glycosylated than the previously described exported S-form. It was shown that one of the two liquid forms of invertase exported into the culture-the glycosylated S-form--is retained in the cell wall, while the other one--the nonglycosylated F-form--was not detected in the cell wall. Based on these results, as well as data on the distribution dynamics of the enzyme in the culture liquid and in the cell wall during different growth stages of a yeast culture, we suggested that the nonglycosylated form was exported into the culture liquid via the zone of abnormal cell wall permeability and the glycosylated forms of this enzyme (both exported and nonexported) did not use this pathway (the degree of N-glycosylation is an important factor determining the final localization of the enzyme).

  7. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  8. Leaf carbohydrate metabolism during defense

    PubMed Central

    Essmann, Jutta; Bones, Philipp; Weis, Engelbert

    2008-01-01

    The significance of cell wall invertase (cwINV) for plant defense was investigated by comparing wild type (wt) tobacco Nicotiana tabacum L. Samsun NN (SNN) with plants with RNA interference-mediated repression of cwINV (SNN::cwINV) during the interaction with the oomycetic phytopathogen Phytophthora nicotianae. We have previously shown that the transgenic plants developed normally under standard growth conditions, but exhibited weaker defense reactions in infected source leaves and were less tolerant to the pathogen. Here, we show that repression of cwINV was not accompanied by any compensatory activities of intracellular sucrose-cleaving enzymes such as vacuolar and alkaline/neutral invertases or sucrose synthase (SUSY), neither in uninfected controls nor during infection. In wt source leaves vacuolar invertase did not respond to infection, and the activity of alkaline/neutral invertases increased only slightly. SUSY however, was distinctly stimulated, in parallel to enhanced cwINV. In SNN::cwINV SUSY-activation was largely repressed upon infection. SUSY may serve to allocate sucrose into callose deposition and other carbohydrate-consuming defense reactions. Its activity, however, seems to be directly affected by cwINV and the related reflux of carbohydrates from the apoplast into the mesophyll cells. PMID:19704530

  9. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum

    USDA-ARS?s Scientific Manuscript database

    Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...

  10. Use of yeast spores for microencapsulation of enzymes.

    PubMed

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  11. Cell wall invertase as a regulator in determining sequential development of endosperm and embryo through glucose signaling early in seed development.

    PubMed

    Wang, Lu; Liao, Shengjin; Ruan, Yong-Ling

    2013-01-01

    Seed development depends on coordination among embryo, endosperm and seed coat. Endosperm undergoes nuclear division soon after fertilization, whereas embryo remains quiescent for a while. Such a developmental sequence is of great importance for proper seed development. However, the underlying mechanism remains unclear. Recent results on the cellular domain- and stage-specific expression of invertase genes in cotton and Arabidopsis revealed that cell wall invertase may positively and specifically regulate nuclear division of endosperm after fertilization, thereby playing a role in determining the sequential development of endosperm and embryo, probably through glucose signaling.

  12. Genome-Wide Identification, 3D Modeling, Expression and Enzymatic Activity Analysis of Cell Wall Invertase Gene Family from Cassava (Manihot esculenta Crantz)

    PubMed Central

    Yao, Yuan; Geng, Meng-Ting; Wu, Xiao-Hui; Liu, Jiao; Li, Rui-Mei; Hu, Xin-Wen; Guo, Jian-Chun

    2014-01-01

    The cell wall invertases play a crucial role on the sucrose metabolism in plant source and sink organs. In this research, six cell wall invertase genes (MeCWINV1-6) were cloned from cassava. All the MeCWINVs contain a putative signal peptide with a predicted extracellular location. The overall predicted structures of the MeCWINV1-6 are similar to AtcwINV1. Their N-terminus domain forms a β-propeller module and three conserved sequence domains (NDPNG, RDP and WECP(V)D), in which the catalytic residues are situated in these domains; while the C-terminus domain consists of a β-sandwich module. The predicted structure of Pro residue from the WECPD (MeCWINV1, 2, 5, and 6), and Val residue from the WECVD (MeCWINV3 and 4) are different. The activity of MeCWINV1 and 3 were higher than other MeCWINVs in leaves and tubers, which suggested that sucrose was mainly catalyzed by the MeCWINV1 and 3 in the apoplastic space of cassava source and sink organs. The transcriptional levels of all the MeCWINVs and their enzymatic activity were lower in tubers than in leaves at all the stages during the cassava tuber development. It suggested that the major role of the MeCWINVs was on the regulation of carbon exportation from source leaves, and the ratio of sucrose to hexose in the apoplasts; the role of these enzymes on the sucrose unloading to tuber was weaker. PMID:24786092

  13. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz).

    PubMed

    Yao, Yuan; Geng, Meng-Ting; Wu, Xiao-Hui; Liu, Jiao; Li, Rui-Mei; Hu, Xin-Wen; Guo, Jian-Chun

    2014-04-28

    The cell wall invertases play a crucial role on the sucrose metabolism in plant source and sink organs. In this research, six cell wall invertase genes (MeCWINV1-6) were cloned from cassava. All the MeCWINVs contain a putative signal peptide with a predicted extracellular location. The overall predicted structures of the MeCWINV1-6 are similar to AtcwINV1. Their N-terminus domain forms a β-propeller module and three conserved sequence domains (NDPNG, RDP and WECP(V)D), in which the catalytic residues are situated in these domains; while the C-terminus domain consists of a β-sandwich module. The predicted structure of Pro residue from the WECPD (MeCWINV1, 2, 5, and 6), and Val residue from the WECVD (MeCWINV3 and 4) are different. The activity of MeCWINV1 and 3 were higher than other MeCWINVs in leaves and tubers, which suggested that sucrose was mainly catalyzed by the MeCWINV1 and 3 in the apoplastic space of cassava source and sink organs. The transcriptional levels of all the MeCWINVs and their enzymatic activity were lower in tubers than in leaves at all the stages during the cassava tuber development. It suggested that the major role of the MeCWINVs was on the regulation of carbon exportation from source leaves, and the ratio of sucrose to hexose in the apoplasts; the role of these enzymes on the sucrose unloading to tuber was weaker.

  14. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Großkinsky, Dominik K; Arias, Cintia L; Balibrea, María Encarnación; Bru, Roque; Fragner, Lena; Ghanem, Michel E; González, María de la Cruz; Hernández, Jose A; Martínez-Andújar, Cristina; van der Graaff, Eric; Weckwerth, Wolfram; Zellnig, Günther; Pérez-Alfocea, Francisco; Roitsch, Thomas

    2015-02-01

    Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth.

    PubMed

    Su, Tao; Wolf, Sebastian; Han, Mei; Zhao, Hongbo; Wei, Hongbin; Greiner, Steffen; Rausch, Thomas

    2016-01-01

    In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.

  16. Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements.

    PubMed

    Palmer, William M; Ru, Lei; Jin, Ye; Patrick, John W; Ruan, Yong-Ling

    2015-02-01

    Central to understanding fruit development is to elucidate the processes mediating a successful transition from pre-pollination ovaries to newly set fruit, a key step in establishing fruit yield potential. In tomato, cell wall invertase (CWIN) LIN5 and its inhibitor INH1 are essential for fruit growth. However, the molecular and cellular basis by which they exert their roles in ovary-to-fruit transition remains unknown. To address this issue, we conducted a study focusing on ovaries and fruitlets at 2 days before and 2 days after anthesis, respectively. In situ hybridization analyses revealed that LIN5 and INH1 exhibited a dispersed expression in ovaries compared with their phloem-specific expression in fruitlets. Remarkably, LIN5 and INH1 proteins were immunologically co-localized to cell walls of sieve elements (SEs) in ovaries immediately prior to anthesis and in young fruitlets, but were undetectable in provascular bundles of younger ovaries. A burst in CWIN activity occurred during ovary-to-fruit transition. Interestingly, the ovaries, but not the fruitlets, exhibited high expression of a defective invertase, SldeCWIN1, an ortholog of which is known to enhance inhibition of INH on CWIN activity in tobacco. Imaging of a fluorescent symplasmic tracer indicated an apoplasmic phloem unloading pathway operated in ovaries, contrary to the previously observed symplasmic unloading pathway in fruit pericarp. These new data indicate that (1) a phloem-specific patterning of the CWIN and INH mRNAs is induced during ovary-to-fruit transition, and (2) LIN5 protein functions specifically in walls of SEs and increases its activity during ovary-to-fruit transition, probably to facilitate phloem unloading and to generate a glucose signal positively regulating cell division, hence fruit set. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  17. Involvement of Abscisic Acid in the Coordinated Regulation of a Stress-Inducible Hexose Transporter (VvHT5) and a Cell Wall Invertase in Grapevine in Response to Biotrophic Fungal Infection[W

    PubMed Central

    Hayes, Matthew A.; Feechan, Angela; Dry, Ian B.

    2010-01-01

    Biotrophic fungal and oomycete pathogens alter carbohydrate metabolism in infected host tissues. Symptoms such as elevated soluble carbohydrate concentrations and increased invertase activity suggest that a pathogen-induced carbohydrate sink is established. To identify pathogen-induced regulators of carbohydrate sink strength, quantitative real-time polymerase chain reaction was used to measure transcript levels of invertase and hexose transporter genes in biotrophic pathogen-infected grapevine (Vitis vinifera) leaves. The hexose transporter VvHT5 was highly induced in coordination with the cell wall invertase gene VvcwINV by powdery and downy mildew infection. However, similar responses were also observed in response to wounding, suggesting that this is a generalized response to stress. Analysis of the VvHT5 promoter region indicated the presence of multiple abscisic acid (ABA) response elements, suggesting a role for ABA in the transition from source to sink under stress conditions. ABA treatment of grape leaves was found to reproduce the same gene-specific transcriptional changes as observed under biotic and abiotic stress conditions. Furthermore, the key regulatory ABA biosynthetic gene, VvNCED1, was activated under these same stress conditions. VvHT5 promoter::β-glucuronidase-directed expression in transgenic Arabidopsis (Arabidopsis thaliana) was activated by infection with powdery mildew and by ABA treatment, and the expression was closely associated with vascular tissue adjacent to infected regions. Unlike VvHT1 and VvHT3, which appear to be predominantly involved in hexose transport in developing leaves and berries, VvHT5 appears to have a specific role in enhancing sink strength under stress conditions, and this is controlled through ABA. Our data suggest a central role for ABA in the regulation of VvcwINV and VvHT5 expression during the transition from source to sink in response to infection by biotrophic pathogens. PMID:20348211

  18. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens.

    PubMed

    Wächter, Rebecca; Langhans, Markus; Aloni, Roni; Götz, Simone; Weilmünster, Anke; Koops, Ariane; Temguia, Leopoldine; Mistrik, Igor; Pavlovkin, Jan; Rascher, Uwe; Schwalm, Katja; Koch, Karen E; Ullrich, Cornelia I

    2003-11-01

    Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.

  19. Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality

    PubMed Central

    Teo, Gianni; Suzuki, Yasuo; Uratsu, Sandie L.; Lampinen, Bruce; Ormonde, Nichole; Hu, William K.; DeJong, Ted M.; Dandekar, Abhaya M.

    2006-01-01

    Sorbitol and sucrose are major products of photosynthesis distributed in apple trees (Malus domestica Borkh. cv. “Greensleeves”) that affect quality in fruit. Transgenic apple plants were silenced or up-regulated for sorbitol-6-phosphate dehydrogenase by using the CaMV35S promoter to define the role of sorbitol distribution in fruit development. Transgenic plants with suppressed sorbitol-6-phosphate dehydrogenase compensated by accumulating sucrose and starch in leaves, and morning and midday net carbon assimilation rates were significantly lower. The sorbitol to sucrose ratio in leaves was reduced by ≈90% and in phloem exudates by ≈75%. The fruit accumulated more glucose and less fructose, starch, and malic acid, with no overall differences in weight and firmness. Sorbitol dehydrogenase activity was reduced in silenced fruit, but activities of neutral invertase, vacuolar invertase, cell wall-bound invertase, fructose kinase, and hexokinase were unaffected. Analyses of transcript levels and activity of enzymes involved in carbohydrate metabolism throughout fruit development revealed significant differences in pathways related to sorbitol transport and breakdown. Together, these results suggest that sorbitol distribution plays a key role in fruit carbon metabolism and affects quality attributes such as sugar–acid balance and starch accumulation. PMID:17132742

  20. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit 1

    PubMed Central

    Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.

    1989-01-01

    Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import remains to be determined. PMID:16666942

  1. Vascularization, High-Volume Solution Flow, and Localized Roles for Enzymes of Sucrose Metabolism during Tumorigenesis by Agrobacterium tumefaciens1

    PubMed Central

    Wächter, Rebecca; Langhans, Markus; Aloni, Roni; Götz, Simone; Weilmünster, Anke; Koops, Ariane; Temguia, Leopoldine; Mistrik, Igor; Pavlovkin, Jan; Rascher, Uwe; Schwalm, Katja; Koch, Karen E.; Ullrich, Cornelia I.

    2003-01-01

    Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment. PMID:14526106

  2. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria.

    PubMed

    Kocal, Nurcan; Sonnewald, Uwe; Sonnewald, Sophia

    2008-11-01

    Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.

  3. Alkaline β-fructofuranosidases of tuberous roots: Possible physiological function.

    PubMed

    Ricardo, C P

    1974-12-01

    Alkaline invertase of roots of carrot (Daucus carota L.) did not hydrolyze raffinose while the acid invertase from the same tissue showed with this sugar ca. 60% of the activity found with sucrose. The activity of the two invertases was inhibited by fructose to a different extent, the K i value being ca. 4×10(-2) M and 3×10(-1)M, respectively, for the alkaline and the acid invertases from the roots of both carrot and turnip (Brassica rapa L.). It is proposed that fructose inhibition of acid invertase is of no physiological significance but that, in contrast, hexoses might regulate the activity of alkaline invertase.Comparing several species and cultivars, it was found that the content of reducing sugars and the activity of alkaline invertase of mature tuberous roots showed a positive correlation. This indicates that alkaline invertase may participate in the regulation of the hexose level of the cell, as was previously suggested for sugar-cane. A scheme is presented which proposes a way of participation of alkaline invertase in such a regulation, assuming that this enzyme is located in the cytoplasm and acid invertase is membrane-bound and mainly located at the cell surface.

  4. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  5. Evaluation of invertase (B-fructo furanosidase) activity in irradiated Mazafaty dates during storage

    NASA Astrophysics Data System (ADS)

    Zare, Z.; Sohrabpour, M.; Fazeli, T. Z.; Kohan, K. G.

    2002-10-01

    Invertase activity of irradiated and non-irradiated Mazafaty dates during four months storage time has been studied. There are large differences in invertase activity in different dates cultivars. The soft and good quality dates usually have higher activity compared to dry or semi-dry varieties. Irradiated dates with doses 1-5 kGy, which could be used for decontamination and disinfestations of dates with a dose rate of 1.87 Gy/s were used. The samples were stored in two temperatures of 5°C and 25°C for four months. The activity of invertase enzyme was analysed at different time intervals. Inactivation study of invertase (B-fructo furanosidase) activity showed that the invertase is sensitive to temperature, storage time and also inactivation of enzyme occurred in dose range of 10-50 kGy.

  6. Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition.

    PubMed

    Ricardo, C P; Sovia, D

    1974-03-01

    Sucrose storage in tuberous roots was not observed when the tissues had very high activities of acid invertase. High activities of the enzyme were always present in the roots at early stages of their development. In species where the activity of the enzyme decreased during root development, sucrose was stored. Thus, acid invertase was undetectable in mature roots of carrots (Daucus carota L.) where sucrose formed almost 80% of the dry matter. Conversely, radish (Raphanus sativus L.) and turnip (Brassica rapa L.) roots, in which the activity of the enzyme remained high until maturity, did not store appreciable amounts of sucrose (2% and 9%, respectively, of the dry matter in the mature roots), reducing sugars being the main reserve (more than 80% of the dry matter in mature turnips). The correlation between sucrose content and acid invertase activity was furthermore evident in both sucrose- and hexose-storing roots when the activity of this enzyme was affected by changes in the mineral nutrition. Deficiencies of nitrogen and sulphur reduced the activity of acid and alkaline invertases and led to increase in sucrose content and decrease in reducing sugars. However, the decline of alkaline invertase activity in tissues low in acid invertase had no clear effect on sugar content. Sodium chloride (10(-1)M) affected acid invertase and sugars in a manner similar to that of the two deficiencies, but had practically no effect on alkaline invertase. The changes in sugar content produced by the variations in mineral nutrition were small in hexose-storing roots in relation to those of sucrose-storing roots. It is possible that this result is related to the different levels of acid invertase in the two types of roots.

  7. Sugar - hormone crosstalk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize

    USDA-ARS?s Scientific Manuscript database

    The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...

  8. Differential expression of acid invertase genes in roots of metallicolous and non-metallicolous populations of Rumex japonicus under copper stress.

    PubMed

    Huang, Wu-Xing; Cao, Yi; Huang, Li-Juan; Ren, Cong; Xiong, Zhi-Ting

    2011-09-01

    Recent evidence indicates that during copper (Cu) stress, the roots of metallicolous plants manifest a higher activity of acid invertase enzymes, which are rate-limiting in sucrose catabolism, than non-metallicolous plants. To test whether the higher activity of acid invertases is the result of higher expression of acid invertase genes, we isolated partial cDNAs for acid invertases from two populations of Rumex japonicus (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, and designed primers to measure changes in transcript levels during Cu stress. We also determined the growth of the plants' roots, Cu accumulation, and acid invertase activities. The seedlings of R. japonicus were exposed to control or 20 μM Cu(2+) for 6d under hydroponic conditions. The transcript level and enzyme activity of acid invertases in metallicolous plants were both significantly higher than those in non-metallicolous plants when treated with 20 μM. Under Cu stress, the root length and root biomass of metallicolous plants were also significantly higher than those of non-metallicolous plants. The results suggested that under Cu stress, the expression of acid invertase genes in metallicolous plants of R. japonicus differed from those in non-metallicolous plants. Furthermore, the higher acid invertase activities of metallicolous plants under Cu stress could be due in part to elevated expression of acid invertase genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields.

    PubMed

    Taskin, Mesut; Esim, Nevzat; Genisel, Mucip; Ortucu, Serkan; Hasenekoglu, Ismet; Canli, Ozden; Erdal, Serkan

    2013-01-01

    The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.

  10. Physiological Aspects of Sugar Exchange between the Gametophyte and the Sporophyte of Polytrichum formosum

    PubMed Central

    Renault, Sylvie; Bonnemain, Jean Louis; Faye, Loïc; Gaudillere, Jean Pierre

    1992-01-01

    The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ. PMID:16653202

  11. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    PubMed

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  12. Molecular Basis of the Increase in Invertase Activity Elicited by Gravistimulation of Oat-Shoot Pulvini

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Kim, Donghern; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom) increase in invertase activity is elicited by gravistimulation in oatshoot pulvini starting within 3h after treatment. In order to analyze the regulation of invertase gene expression in this system, we examined the effect of gravistimulation on invertase mRNA induction. Total RNA and poly(A)(+)RNA, isolated from oat pulvini, and two oligonucleotide primers, corresponding to two conserved amino-acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the Polymerase Chain Reaction (PCR). A partial-length cDNA (550 base pairs) was obtained and characterized. There was a 52 % deduced amino-acid sequence homology to that of carrot beta-fructosi- dase and a 48 % homology to that of tomato invertase. Northern blot analysis showed that there was an obvious transient accumulation of invertase mRNA elicited by gravistimulation of oat pulvini. The mRNA was rapidly induced to a maximum level at 1h following gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher (five-fold) than that in the top half of the pulvinus tissue. The induction of invertase mRNA was consistent with the transient enhancement of invertase activity during the graviresponse of the pulvinus. These data indicate that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional and/or translational levels. Southern blot analysis showed that there were four genomic DNA fragments hybridized to the invertase cDNA. This suggests that an invertase gene family may exist in oat plants.

  13. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers.

    PubMed

    McKenzie, Marian J; Chen, Ronan K Y; Harris, John C; Ashworth, Matthew J; Brummell, David A

    2013-01-01

    Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS. © 2012 Blackwell Publishing Ltd.

  14. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana.

    PubMed

    Siemens, Johannes; González, Maria-Cruz; Wolf, Sebastian; Hofmann, Christina; Greiner, Steffen; DU, Yejie; Rausch, Thomas; Roitsch, Thomas; Ludwig-Müller, Jutta

    2011-04-01

    Clubroot disease of Brassicaceae is caused by an obligate biotrophic protist, Plasmodiophora brassicae. During root gall development, a strong sink for assimilates is developed. Among other genes involved in sucrose and starch synthesis and degradation, the increased expression of invertases has been observed in a microarray experiment, and invertase and invertase inhibitor expression was confirmed using promoter::GUS lines of Arabidopsis thaliana. A functional approach demonstrates that invertases are important for gall development. Different transgenic lines expressing an invertase inhibitor under the control of two root-specific promoters, Pyk10 and CrypticT80, which results in the reduction of invertase activity, showed clearly reduced clubroot symptoms in root tissue with highest promoter expression, whereas hypocotyl galls developed normally. These results present the first evidence that invertases are important factors during gall development, most probably in supplying sugars to the pathogen. In addition, root-specific repression of invertase activity could be used as a tool to reduce clubroot symptoms. © 2010 The Authors. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd.

  15. Age characteristics of changes in invertase activity of the mucous membrane of the small intestine

    NASA Technical Reports Server (NTRS)

    Rakhimov, K. R.; Aleksandrova, N. V.

    1980-01-01

    Rats of varying ages were subjected to stress from heat, cold, and hydrocortisone injection. Invertase activity in homogenates of small intestine mucous membranes was studied following sacrifice. Invertase activity was low in young animals, but increased sharply in 30 day old ones, remaining at a relatively constant level until old age. The study concludes that the stress hormone (corticosteroids, etc.) levels in the blood, which affects the formation of enteric enzyme levels and activities, and that age related peculiarities in invertase activity are a consequence of altered hormone status and epitheliocyte sensitivity.

  16. Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine1

    PubMed Central

    Uggla, Claes; Magel, Elisabeth; Moritz, Thomas; Sundberg, Björn

    2001-01-01

    In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development. PMID:11299382

  17. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.

    PubMed

    Uggla, C; Magel, E; Moritz, T; Sundberg, B

    2001-04-01

    In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.

  18. Characterization of the co-purified invertase and β-glucosidase of a multifunctional extract from Aspergillus terreus.

    PubMed

    Giraldo, Marielle Aleixo; Gonçalves, Heloísa Bressan; Furriel, Rosa Dos Prazeres Melo; Jorge, João Atílio; Guimarães, Luis Henrique Souza

    2014-05-01

    The filamentous fungus Aspergillus terreus secretes both invertase and β-glucosidase when grown under submerged fermentation containing rye flour as the carbon source. The aim of this study was to characterize the co-purified fraction, especially the invertase activity. An invertase and a β-glucosidase were co-purified by two chromatographic steps, and the isolated enzymatic fraction was 139-fold enriched in invertase activity. SDS-PAGE analysis of the co-purified enzymes suggests that the protein fraction with invertase activity was heterodimeric, with subunits of 47 and 27 kDa. Maximal invertase activity, which was determined by response surface methodology, occurred in pH and temperature ranges of 4.0-6.0 and 55-65 °C, respectively. The invertase in co-purified enzymes was stable for 1 h at pH 3.0-10.0 and maintained full activity for up to 1 h at 55 °C when diluted in water. Invertase activity was stimulated by 1 mM concentrations of Mn²⁺ (161 %), Co²⁺ (68 %) and Mg²⁺ (61 %) and was inhibited by Al³⁺, Ag⁺, Fe²⁺ and Fe³⁺. In addition to sucrose, the co-purified enzymes hydrolyzed cellobiose, inulin and raffinose, and the apparent affinities for sucrose and cellobiose were quite similar (K(M) = 22 mM). However, in the presence of Mn²⁺, the apparent affinity and V(max) for sucrose hydrolysis increased approximately 2- and 2.9-fold, respectively, while for cellobiose, a 2.6-fold increase in V(max) was observed, but the apparent affinity decreased 5.5-fold. Thus, it is possible to propose an application of this multifunctional extract containing both invertase and β-glucosidase to degrade plant biomass, thus increasing the concentration of monosaccharides obtained from sucrose and cellobiose.

  19. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice.

    PubMed

    Sun, Li; Yang, Dong-lei; Kong, Yu; Chen, Ying; Li, Xiao-Zun; Zeng, Long-Jun; Li, Qun; Wang, Er-Tao; He, Zu-Hua

    2014-02-01

    Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  20. Nectar Sugar Modulation and Cell Wall Invertases in the Nectaries of Day- and Night- Flowering Nicotiana.

    PubMed

    Tiedge, Kira; Lohaus, Gertrud

    2018-01-01

    Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco ( Nicotiana ) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar sugars remained stable for the complete flower opening period, which indicates that post-secretory modification is unlikely. On the basis of these results, we present an adapted model of the mechanisms underlying the secretion of nectar sugars in day- and night-flowering Nicotiana .

  1. Nectar Sugar Modulation and Cell Wall Invertases in the Nectaries of Day- and Night- Flowering Nicotiana

    PubMed Central

    Tiedge, Kira; Lohaus, Gertrud

    2018-01-01

    Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco (Nicotiana) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar sugars remained stable for the complete flower opening period, which indicates that post-secretory modification is unlikely. On the basis of these results, we present an adapted model of the mechanisms underlying the secretion of nectar sugars in day- and night-flowering Nicotiana. PMID:29868078

  2. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death1[OPEN

    PubMed Central

    2016-01-01

    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS. Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. PMID:27462084

  3. [Expression and characterization of a neutral Enterobacter cloacae GX-3 invertase].

    PubMed

    Zhao, Yingli; Wu, Qianqian; Zhang, Zhikai; Wang, Zilong; Wei, Yutuo; Huang, Ribo; Du, Liqin

    2015-04-04

    To characterize a neutral invertase from Enterobacter cloacae GX-3. By searching GenBank database, we found the genes encoding invertase from the same genus Enterobacter. These sequences were aligned and analyzed. Then, a gene encoding neutral invertase was amplified by PCR. The recombinant plasmid pQE-Einv was constructed. We purified the expressed protein Einv with nickel-nitrilotriacetic acid chromatography. At last, the characterics of the recombinant protein Einv were studied in detail. A gene encoding neutral invertase was discovered and cloned from E. cloacae GX-3. The recombinant enzyme Einv was characterized. Einv had an optimum pH of 6.5 and an optimum temperature of 40 degrees C. The results of sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and gel permeation chromatography ( GPC) showed that Einv was a homo-dimer protein. Einv retained 80% activity at sucrose concentrations up to 1170 mmol/L. But, Einv had no transglycosylation activity at high sucrose concentration. It could hydrolyze raffinose, 1-kestose, nystose, fructofuranosylnystose and stachyose. It is first reported that an invertase from Enterobacter cloacae is a beta-fructofuranosidase at neutral pH range. It only has hydrolysis activity without tranglycosylation activity. These characteristics indicate that the neutral invertase Einv has important applications in food industry.

  4. Molecular and functional characterization of an invertase secreted by Ashbya gossypii.

    PubMed

    Aguiar, Tatiana Q; Dinis, Cláudia; Magalhães, Frederico; Oliveira, Carla; Wiebe, Marilyn G; Penttilä, Merja; Domingues, Lucília

    2014-06-01

    The repertoire of hydrolytic enzymes natively secreted by the filamentous fungus Ashbya (Eremothecium) gossypii has been poorly explored. Here, an invertase secreted by this flavinogenic fungus was for the first time molecularly and functionally characterized. Invertase activity was detected in A. gossypii culture supernatants and cell-associated fractions. Extracellular invertase migrated in a native polyacrylamide gel as diffuse protein bands, indicating the occurrence of at least two invertase isoforms. Hydrolytic activity toward sucrose was approximately 10 times higher than toward raffinose. Inulin and levan were not hydrolyzed. Production of invertase by A. gossypii was repressed by the presence of glucose in the culture medium. The A. gossypii invertase was demonstrated to be encoded by the AFR529W (AgSUC2) gene, which is highly homologous to the Saccharomyces cerevisiae SUC2 (ScSUC2) gene. Agsuc2 null mutants were unable to hydrolyze sucrose, proving that invertase is encoded by a single gene in A. gossypii. This mutation was functionally complemented by the ScSUC2 and AgSUC2 genes, when expressed from a 2-μm-plasmid. The signal sequences of both AgSuc2p and ScSuc2p were able to direct the secretion of invertase into the culture medium in A. gossypii.

  5. Comparative study of invertases of Streptococcus mutans.

    PubMed

    Tanzer, J M; Brown, A T; McInerney, M F; Woodiel, F N

    1977-04-01

    Sucrase activity was studied in 13 strains of Streptococcus mutans representing the five Bratthall serotypes. Sucrose-adapted cells have sucrase activity in the 37,000 x g-soluble fraction of all strains. The enzyme was identified as invertase (beta-d-fructofuranoside fructohydrolase; EC 3.2.1.26) because it hydrolyzed the beta-fructofuranoside trisaccharide raffinose, giving fructose and melibiose as its products, and because it hydrolyzed the beta-fructofuranoside dissacharide sucrose, giving equimolar glucose and fructose as its products. Invertases of c and e strains exhibit two activity peaks by molecular exclusion chromatography with molecular weights of 45,000 to 50,000 and about 180,000; those of serotypes a, b, and d strains exhibit only a single component of 45,000 to 50,000 molecular weight. The electrophoretic mobility of invertases is different between the serotypes and the same within them. Inorganic orthophosphate (P(i)) has a weak positive effect on the V(max) of invertases of serotypes c and e cells but a strong positive effect on the invertases of serotype b cells; P(i) has a strong positive effect on the apparent K(m) of the invertases of serotype d cells, but has no effect on the V(max); P(i) has a strong positive effect on both the apparent K(m) and V(max) of the invertases of serotype a cells. Thus, the invertases were different between all of the serotypes but similar within the serotypes. These findings support the taxonomic schemes of Coykendall and of Bratthall. It was additionally noted that 37,000 x g-soluble fractions of only serotypes b and c but not serotypes a, d, and e cells have melibiase activity, and it could be deduced that serotype d cells lack an intact raffinose permease system.

  6. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.

    PubMed

    Veana, Fabiola; Fuentes-Garibay, José Antonio; Aguilar, Cristóbal Noé; Rodríguez-Herrera, Raúl; Guerrero-Olazarán, Martha; Viader-Salvadó, José María

    2014-09-01

    β-Fructofuranosidases or invertases (EC 3.2.1.26) are enzymes that are widely used in the food industry, where fructose is preferred over sucrose, because it is sweeter and does not crystallize easily. Since Aspergillus niger GH1, an xerophilic fungus from the Mexican semi-desert, has been reported to be an invertase producer, and because of the need for new enzymes with biotechnological applications, in this work, we describe the gene and amino acid sequence of the invertase from A. niger GH1, and the use of a synthetic gene to produce the enzyme in the methylotrophic yeast Pichia pastoris. In addition, the produced invertase was characterized biochemically. The sequence of the invertase gene had a length of 1770 bp without introns, encodes a protein of 589 amino acids, and presented an identity of 93% and 97% with invertases from Aspergillus kawachi IFO 4308 and A. niger B60, respectively. A 4.2 L culture with the constructed recombinant P. pastoris strain showed an extracellular and periplasmic invertase production at 72 h induction of 498 and 3776 invertase units (U), respectively, which corresponds to 1018 U/L of culture medium. The invertase produced had an optimum pH of 5.0, optimum temperature of 60 °C, and specific activity of 3389 U/mg protein, and after storage for 96 h at 4 °C showed 93.7% of its activity. This invertase could be suitable for producing inverted sugar used in the food industry. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. [Dynamics of aquic brown soil enzyme activities under no-tillage].

    PubMed

    Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2006-12-01

    This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.

  8. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood.

    PubMed

    Rende, Umut; Wang, Wei; Gandla, Madhavi Latha; Jönsson, Leif J; Niittylä, Totte

    2017-04-01

    Carbon for cellulose biosynthesis is derived from sucrose. Cellulose is synthesized from uridine 5'-diphosphoglucose (UDP-glucose), but the enzyme(s) responsible for the initial sucrose cleavage and the source of UDP-glucose for cellulose biosynthesis in developing wood have not been defined. We investigated the role of CYTOSOLIC INVERTASEs (CINs) during wood formation in hybrid aspen (Populus tremula × tremuloides) and characterized transgenic lines with reduced CIN activity during secondary cell wall biosynthesis. Suppression of CIN activity by 38-55% led to a 9-13% reduction in crystalline cellulose. The changes in cellulose were reflected in reduced diameter of acid-insoluble cellulose microfibrils and increased glucose release from wood upon enzymatic digestion of cellulose. Reduced CIN activity decreased the amount of the cellulose biosynthesis precursor UDP-glucose in developing wood, pointing to the likely cause of the cellulose phenotype. The findings suggest that CIN activity has an important role in the cellulose biosynthesis of trees, and indicate that cellulose biosynthesis in wood relies on a quantifiable UDP-glucose pool. The results also introduce a concept of altering cellulose microfibril properties by modifying substrate supply to cellulose biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Immobilization of invertase on chitosan and its application to honey treatment

    NASA Astrophysics Data System (ADS)

    Nam, Nguyen Xuan; Nghia, Ho Trung Trong; Vy, Le Thi Tuong; Oanh, Huynh Ngoc; Hien, Phan Phuoc

    2017-09-01

    The optimal conditions for immobilized enzyme invertase on chitosan were studied. Beside that, the aim of the present work was to find out if the processing with chitosan - invertase can affect some of the main honey quality paramenters - reductive sugar (RS), colour and antioxidant activity. RS content were analyzed by DNS method, colour parameters (L*, a*, b*) were established in the CIE system and antioxidant activity were analyzed by DPPH method. The results showed that the immobilized conditions were as follows: ratio chitosan/invertase 7/1 (w/w), invertase 0.8%, glutaraldehyde 4%, 50°C at 60 minutes, pH 4.5. After the treatments, there was significant (P<0.05) difference on RS (58.38% for melaleuca honey, 15.11% for dimocarpus longan honey) and colour (ΔE=3.84 for melaleuca honey and ΔE=2.76 for dimocarpus longan honey). Moreover, there was no significant (P<0.05) difference on antioxidant activity.

  10. Role of invertase activity in processing quality of potatoes: Effect of storage temperature and duration.

    PubMed

    Bandana; Sharma, Vineet; Singh, Brajesh; Raigond, Pinky; Kaushik, S K

    2016-03-01

    Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers.

  11. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress.

    PubMed

    Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen

    2014-06-01

    The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Metabolic Control of Tobacco Pollination by Sugars and Invertases1

    PubMed Central

    Goetz, Marc; Hirsche, Jörg; Bauerfeind, Martin Andreas; González, María-Cruz; Hyun, Tae Kyung; Eom, Seung Hee; Chriqui, Dominique; Engelke, Thomas; Großkinsky, Dominik K.; Roitsch, Thomas

    2017-01-01

    Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates. PMID:27923989

  13. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death.

    PubMed

    Liu, Yong-Hua; Offler, Christina E; Ruan, Yong-Ling

    2016-09-01

    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization.

    PubMed

    Liao, Xinggang; Fang, Weiguo; Lin, Liangcai; Lu, Hsiao-Ling; St Leger, Raymond J

    2013-01-01

    As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (ΔMrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ΔMrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.

  15. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    PubMed

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  16. Purification and characterization of a trehalase-invertase enzyme with dual activity from Candida utilis.

    PubMed

    Lahiri, Sagar; Basu, Arghya; Sengupta, Shinjinee; Banerjee, Shakri; Dutta, Trina; Soren, Dhananjay; Chattopadhyay, Krishnananda; Ghosh, Anil K

    2012-06-15

    Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals

    PubMed Central

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-01-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis. PMID:27083698

  18. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads.

    PubMed

    Awad, Ghada E A; Amer, Hassan; El-Gammal, Eman W; Helmy, Wafaa A; Esawy, Mona A; Elnashar, Magdy M M

    2013-04-02

    A sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of invertase by Lactobacillus brevis Mm-6 isolated from breast milk. First, a 2-level Plackett-Burman design was applied to screen the bioprocess parameters that significantly influence the invertase production. The second optimization step was performed using fractional factorial design in order to optimize the amounts of variables have the highest positive significant effect on the invertase production. A maximal enzyme activity of 1399U/ml was more than five folds the activity obtained using the basal medium. Invertase was immobilized onto grafted alginate beads to improve the enzyme's stability. Immobilization process increased the operational temperature from 30 to 60°C compared to the free enzyme. The reusability test proved the durability of the grafted alginate beads for 15 cycles with retention of 100% of the immobilized enzyme activity to be more convenient for industrial uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A unique invertase is important for sugar absorption of an obligate biotrophic pathogen during infection.

    PubMed

    Chang, Qing; Liu, Jie; Lin, Xiaohong; Hu, Shoujun; Yang, Yang; Li, Dan; Chen, Liyang; Huai, Baoyu; Huang, Lili; Voegele, Ralf T; Kang, Zhensheng

    2017-09-01

    An increased invertase activity in infected plant tissue has been observed in many plant-pathogen interactions. However, the origin of this increased invertase activity (plant and/or pathogen) is still under debate. In addition, the role of pathogen invertases in the infection process is also unclear. We identified and cloned a gene with homology to invertases from Puccinia striiformis f. sp. tritici (Pst). Transcript levels of PsINV were analyzed by quantitative reverse transcription PCR in both compatible and incompatible Pst-wheat interactions . Function of the gene product was confirmed by heterologous expression, and its function in Pst infection was analyzed by host-induced gene silencing (HIGS). Pst abundantly secretes invertase during its invasion attempts whether in a compatible or incompatible interaction with wheat. Further research into the different domains of this protein indicated that the rust-specific sequence contributes to a higher efficiency of sucrose hydrolysis. With PsINV silenced by HIGS during the infection process, growth of Pst is inhibited and conidial fructification incomplete. Finally, pathogenicity of Pst is impaired and spore yield significantly reduced. Our results clearly demonstrate that this Pst invertase plays a pivotal role in this plant-pathogen interaction probably by boosting sucrose hydrolysis to secure the pathogen's sugar absorption. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals.

    PubMed

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-05-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects

    USDA-ARS?s Scientific Manuscript database

    Sugar-end defect is a tuber quality disorder that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form da...

  2. Delayed ripening of banana fruit by salicylic acid.

    PubMed

    Srivastava; Dwivedi

    2000-09-08

    Salicylic acid treatment has been found to delay the ripening of banana fruits (Musa acuminata). Fruit softening, pulp:peel ratio, reducing sugar content, invertase and respiration rate have been found to decrease in salicylic acid treated fruits as compared with control ones. The activities of major cell wall degrading enzymes, viz. cellulase, polygalacturonase and xylanase were found to be decreased in presence of salicylic acid. The major enzymatic antioxidants namely, catalase and peroxidase, were also found to be decreased in presence of salicylic acid during banana fruit ripening.

  3. Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism.

    PubMed

    Nägele, Thomas; Henkel, Sebastian; Hörmiller, Imke; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael; Heyer, Arnd G

    2010-05-01

    A mathematical model representing metabolite interconversions in the central carbohydrate metabolism of Arabidopsis (Arabidopsis thaliana) was developed to simulate the diurnal dynamics of primary carbon metabolism in a photosynthetically active plant leaf. The model groups enzymatic steps of central carbohydrate metabolism into blocks of interconverting reactions that link easily measurable quantities like CO(2) exchange and quasi-steady-state levels of soluble sugars and starch. When metabolite levels that fluctuate over diurnal cycles are used as a basic condition for simulation, turnover rates for the interconverting reactions can be calculated that approximate measured metabolite dynamics and yield kinetic parameters of interconverting reactions. We used experimental data for Arabidopsis wild-type plants, accession Columbia, and a mutant defective in vacuolar invertase, AtbetaFruct4, as input data. Reducing invertase activity to mutant levels in the wild-type model led to a correct prediction of increased sucrose levels. However, additional changes were needed to correctly simulate levels of hexoses and sugar phosphates, indicating that invertase knockout causes subsequent changes in other enzymatic parameters. Reduction of invertase activity caused a decline in photosynthesis and export of reduced carbon to associated metabolic pathways and sink organs (e.g. roots), which is in agreement with the reported contribution of vacuolar invertase to sink strength. According to model parameters, there is a role for invertase in leaves, where futile cycling of sucrose appears to have a buffering effect on the pools of sucrose, hexoses, and sugar phosphates. Our data demonstrate that modeling complex metabolic pathways is a useful tool to study the significance of single enzyme activities in complex, nonintuitive networks.

  4. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    PubMed

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  5. Comparative evaluation of extracellular β-D-fructofuranosidase in submerged and solid-state fermentation produced by newly identified Bacillus subtilis strain.

    PubMed

    Lincoln, Lynette; More, Sunil S

    2018-04-17

    To screen and identify a potential extracellular β-D-fructofuranosidase or invertase producing bacterium from soil, and comparatively evaluate the enzyme biosynthesis under submerged and solid-state fermentation. Extracellular invertase producing bacteria were screened from soil. Identification of the potent bacterium was performed based on microscopic examinations and 16S rDNA molecular sequencing. Bacillus subtilis LYN12 invertase secretion was surplus with wheat bran humidified with molasses medium (70%), with elevated activity at 48 h and 37 °C under solid-state fermentation, whereas under submerged conditions increased activity was observed at 24 h and 45 °C in the molasses medium. The study revealed a simple fermentative medium for elevated production of extracellular invertase from a fast growing Bacillus strain. Bacterial invertases are scarce and limited reports are available. By far, this is the first report on the comparative analysis of optimization of extracellular invertase synthesis from Bacillus subtilis strain by submerged and solid-state fermentation. The use of agricultural residues increased yields resulting in development of a cost-effective and stable approach. Bacillus subtilis LYN12 invertase possesses excellent fermenting capability to utilize agro-industrial residues under submerged and solid-state conditions. This could be a beneficial candidate in food and beverage processing industries. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Movement of 14C-Labeled Assimilates into Kernels of Zea mays L

    PubMed Central

    Shannon, Jack C.; Dougherty, C. T.

    1972-01-01

    Invertases of the placento-chalazal and pedicel tissues are much more active than invertase from the pericarp of Zea mays L. kernels 12 to 40 days after pollination. Sucrose synthetase was not detected in the pedicel or placento-chalazal tissues. Sucrose content and percentage increased in the pedicel with advancing kernel age. Hexoses accounted for over half of the sugars extracted from the placento-chalazal tissues. These data are consistent with the hypothesis that sucrose translocated to the pedicel is hydrolyzed by acid invertase(s) prior to entry of sugar into the endosperm tissue. The placentochalazal tissue appears to be the primary site of sucrose inversion with the pedicel invertase contributing more or less to this process depending on kernel age. PMID:16657925

  7. Production and characterization of a novel yeast extracellular invertase activity towards improved dibenzothiophene biodesulfurization.

    PubMed

    Arez, Bruno F; Alves, Luís; Paixão, Susana M

    2014-11-01

    The main goal of this work was the production and characterization of a novel invertase activity from Zygosaccharomyces bailii strain Talf1 for further application to biodesulfurization (BDS) in order to expand the exploitable alternative carbon sources to renewable sucrose-rich feedstock. The maximum invertase activity (163 U ml(-1)) was achieved after 7 days of Z. bailii strain Talf1 cultivation at pH 5.5-6.0, 25 °C, and 150 rpm in Yeast Malt Broth with 25 % Jerusalem artichoke pulp as inducer substrate. The optimum pH and temperature for the crude enzyme activity were 5.5 and 50 °C, respectively, and moreover, high stability was observed at 30 °C for pH 5.5-6.5. The application of Talf1 crude invertase extract (1 %) to a BDS process by Gordonia alkanivorans strain 1B at 30 °C and pH 7.5 was carried out through a simultaneous saccharification and fermentation (SSF) approach in which 10 g l(-1) sucrose and 250 μM dibenzothiophene were used as sole carbon and sulfur sources, respectively. Growth and desulfurization profiles were evaluated and compared with those of BDS without invertase addition. Despite its lower stability at pH 7.5 (loss of activity within 24 h), Talf1 invertase was able to catalyze the full hydrolysis of 10 g l(-1) sucrose in culture medium into invert sugar, contributing to a faster uptake of the monosaccharides by strain 1B during BDS. In SSF approach, the desulfurizing bacterium increased its μmax from 0.035 to 0.070 h(-1) and attained a 2-hydroxybiphenyl productivity of 5.80 μM/h in about 3 days instead of 7 days, corresponding to an improvement of 2.6-fold in relation to the productivity obtained in BDS process without invertase addition.

  8. The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes.

    PubMed

    Wang, X Q; Li, L M; Yang, P P; Gong, C L

    2014-02-01

    In plants, hexokinase (HXK, EC 2.7.1.1) involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. In this study, we found that at Phase I of grape berry development, lower hexose (glucose or fructose) levels were concomitant with higher HXK activities and protein levels. After the onset of ripening, we demonstrated a drastic reduction in HXK activity and protein levels accompanied by a rising hexose level. Therefore, our results revealed that HXK activity and protein levels had an inverse relationship with the endogenous glucose or fructose levels during grape berry development. A 51 kDa HXK protein band was detected throughout grape berry development. In addition, HXK located in the vacuoles, cytoplasm, nucleus, proplastid, chloroplast, and mitochondrion of the berry flesh cells. During grape berry development, HXK transcriptional level changed slightly, while cell wall invertase (CWINV) and sucrose synthase (SuSy) expression was enhanced after véraison stage. Intriguingly, when sliced grape berries were incubated in different glucose solutions, CWINV and SuSy expression was repressed by glucose, and the intensity of repression depended on glucose concentration and incubation time. After sliced, grape berries were treated with different glucose analogs, CWINV and SuSy expression analyses revealed that phosphorylation of hexoses by hexokinase was an essential component in the glucose-dependent CWINV and SuSy expression. In the meantime, mannoheptulose, a specific inhibitor of hexokinase, blocked the repression induced by glucose on CWINV and SuSy expression. It suggested that HXK played a major role in regulating CWINV and SuSy expression during grape berry development.

  9. Kinetics study of invertase covalently linked to a new functional nanogel.

    PubMed

    Raj, Lok; Chauhan, Ghanshyam S; Azmi, Wamik; Ahn, J-H; Manuel, James

    2011-02-01

    Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of V(max), maximum reaction rate, (0.123 unit/mg), k(m), Michaelis constant (7.429 mol/L) and E(a), energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45°C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.; Großkinsky, Dominik K.; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C.; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity. PMID:25170099

  11. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    NASA Astrophysics Data System (ADS)

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-10-01

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.

  12. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

    PubMed

    Lin, Yuan; Liu, Jun; Liu, Xun; Ou, Yongbin; Li, Meng; Zhang, Huiling; Song, Botao; Xie, Conghua

    2013-12-01

    The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Effect of moisture content on the invertase activity of freeze-dried S. cerevisiae.

    PubMed

    Pitombo, R N; Spring, C; Passos, R F; Tonato, M; Vitolo, M

    1994-08-01

    The invertase activity of intact Saccharomyces cerevisiae submitted to freezing-thawing was affected by pH, the chemical nature of the buffer, and the freezing cooling rate (CR), leading in some cases to a complete invertase inactivation (acetate buffer, pH 4.0, CR = 0.5 degree C/min). Once established under adequate freezing conditions the invertase activity remained unchanged after freeze-drying. Nevertheless, in some cases the cell-growing capability after freeze-drying diminished around 70%, mainly if the frozen cell suspension was attained through freezing carried out at CR = 0.5 degree C/min. Water sorption isotherms of freeze-dried samples (freeze-dryer Edwards L-4KR; 30 degrees C and 0.1 mB) were determined at 10 and 25 degrees C. The monolayer moisture content (MMC) at each temperature (12.7 and 3.71 for 10 and 25 degrees C, respectively) was calculated from isotherms by applying BET and GAB models. Freeze-dried yeast with water activity (Aw) between 0 and 0.33 (about the MMC value) maintained at 25 degrees C for 235 days and at 89 degrees C for 15 min retained at least 85% of its original invertase activity (IA), whereas samples with Aw > MMC lost at least 60% of its IA. X ray diffraction showed that the freeze-dried cake before and after storage presented an amorphous structure.

  14. Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by-product.

    PubMed

    Mouelhi, Refka; Abidi, Ferid; Galai, Said; Marzouki, M Nejib

    2014-03-01

    The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent K(m) and V(max) for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month's storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.

  15. Kernel abortion in maize : I. Carbohydrate concentration patterns and Acid invertase activity of maize kernels induced to abort in vitro.

    PubMed

    Hanft, J M; Jones, R J

    1986-06-01

    Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.

  16. Sugar suppresses cell death caused by disruption of fumarylacetoacetate hydrolase in Arabidopsis.

    PubMed

    Zhi, Tiantian; Zhou, Zhou; Huang, Yi; Han, Chengyun; Liu, Yan; Zhu, Qi; Ren, Chunmei

    2016-09-01

    Sugar negatively regulates cell death resulting from the loss of fumarylacetoacetate hydrolase that catalyzes the last step in the Tyr degradation pathway in Arabidopsis . Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Previously, we first found that the Tyr degradation pathway plays an important role in plants. Mutation of the SSCD1 gene encoding FAH in Arabidopsis leads to spontaneous cell death under short-day conditions. In this study, we presented that the lethal phenotype of the short-day sensitive cell death1 (sscd1) seedlings was suppressed by sugars including sucrose, glucose, fructose, and maltose in a dose-dependent manner. Real-time quantitative PCR (RT-qPCR) analysis showed the expression of Tyr degradation pathway genes homogentisate dioxygenase and maleylacetoacetate isomerase, and sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G, was up-regulated in the sscd1 mutant, however, this up-regulation could be repressed by sugar. In addition, a high concentration of sugar attenuated cell death of Arabidopsis wild-type seedlings caused by treatment with exogenous succinylacetone, an abnormal metabolite resulting from the loss of FAH in the Tyr degradation pathway. These results indicated that (1) sugar could suppress cell death in sscd1, which might be because sugar supply enhances the resistance of Arabidopsis seedlings to toxic effects of succinylacetone and reduces the accumulation of Tyr degradation intermediates, resulting in suppression of cell death; and (2) sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G might be involved in the cell death in sscd1. Our work provides insights into the relationship between sugar and sscd1-mediated cell death, and contributes to elucidation of the regulation of cell death resulting from the loss of FAH in plants.

  17. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings.

    PubMed

    Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun

    2011-10-26

    Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.

  18. Investigation of yeast invertase immobilization onto cupric ion-chelated, porous, and biocompatible poly(hydroxyethyl methacrylate-n-vinyl imidazole) microspheres.

    PubMed

    Sari, Müfrettin Murat

    2011-04-01

    Cupric ion-chelated poly(hydroxyethyl methacrylate-n-vinyl imidazole) (poly(HEMA-VIM)) microspheres prepared by suspension polymerization were investigated as a specific adsorbent for immobilization of yeast invertase in a batch system. They were characterized by scanning electron microscopy, surface area, and pore size measurements. They have spherical shape and porous structure. The specific surface area of the p(HEMA-VIM) spheres was found to be 81.2 m²/g with a size range of 70-120 μm in diameter, and the swelling ratio was 86.9%. Then, Cu(II) ion chelated on the microspheres (546 μmol Cu(II)/g), and they were used in the invertase adsorption. Maximum invertase adsorption was 51.2 mg/g at pH 4.5. Cu(II) chelation increases the tendency from Freundlich-type to Langmuir-type adsorption model. The optimum activity for both free and adsorbed invertase was observed at pH 4.5. The optimum temperature for the poly(HEMA-VIM)/Cu(II)-invertase system was found to be at 55 °C, 10 °C higher than that of the free enzyme at 45 °C. V(max) values were determined as 342 and 304 U/mg enzyme, for free and adsorbed invertase, respectively. K(m) values were found to be same for free and adsorbed invertase (20 mM). Thermal and pH stability and reusability of invertase increased with immobilization.

  19. Efficient stabilization of Saccharomyces cerevisiae external invertase by immobilisation on modified beidellite nanoclays.

    PubMed

    Andjelković, Uroš; Milutinović-Nikolić, Aleksandra; Jović-Jovičić, Nataša; Banković, Predrag; Bajt, Teja; Mojović, Zorica; Vujčić, Zoran; Jovanović, Dušan

    2015-02-01

    The external invertase isoform 1 (EINV1) was immobilised on eight differently modified beidellite nanoclays. Modifications were composed of organo-modification with different amounts of surfactant - hexadecyl trimethylammonium cation (HDTMA), pillaring with Al/Fe containing polyhydroxy cations and acid modification of Na-enriched and pillared clays. The modified nanoclays were characterised by XRD, N2-physisorption, SEM and FT-IR spectroscopy. The amount of bound enzyme activity was significantly influenced by the modification of beidellite ranging from 50 to remarkable 2200U/g. Biochemical characterization was performed for five modified nanoclays showing the highest enzyme activity after invertase immobilisation. The investigation demonstrated that after immobilisation the structure and the catalytic properties of invertase were preserved, while Km values were slightly increased from 26 to 37mM. immobilisation significantly improved thermal and storage stability of EINV1. Results indicate that beidellite nanoclays obtained by low cost modifications can be applied as a suitable support for the immobilisation of invertase. The immobilizate can be efficiently engaged in sucrose hydrolysis in batch reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A soluble acid invertase is directed to the vacuole by a signal anchor mechanism.

    PubMed

    Rae, Anne L; Casu, Rosanne E; Perroux, Jai M; Jackson, Mark A; Grof, Christopher P L

    2011-06-15

    Enzyme activities in the vacuole have an important impact on the net concentration of sucrose. In sugarcane (Saccharum hybrid), immunolabelling demonstrated that a soluble acid invertase (β-fructofuranosidase; EC 3.2.1.26) is present in the vacuole of storage parenchyma cells during sucrose accumulation. Examination of sequences from sugarcane, barley and rice showed that the N-terminus of the invertase sequence contains a signal anchor and a tyrosine motif, characteristic of single-pass membrane proteins destined for lysosomal compartments. The N-terminal peptide from the barley invertase was shown to be capable of directing the green fluorescent protein to the vacuole in sugarcane cells. The results suggest that soluble acid invertase is sorted to the vacuole in a membrane-bound form. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Simple Practical Investigations Using Invertase.

    ERIC Educational Resources Information Center

    Asare-Brown, Emma; Bullock, Clive

    1988-01-01

    Describes three activities, substrate inhibition, product inhibition by fructose and glucose, and gel immobilization of invertase for use with undergraduate biochemistry classes. Discusses materials, methods, and results. Stresses the advantages of practical exercises in undergraduate classes. (CW)

  2. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  3. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  4. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania

    PubMed Central

    Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.

    2015-01-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714

  5. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania.

    PubMed

    Lyda, Todd A; Joshi, Manju B; Andersen, John F; Kelada, Andrew Y; Owings, Joshua P; Bates, Paul A; Dwyer, Dennis M

    2015-06-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts.

  6. Catalytic efficiency and thermostability improvement of Suc2 invertase through rational site-directed mutagenesis.

    PubMed

    Mohandesi, Nooshin; Haghbeen, Kamahldin; Ranaei, Omid; Arab, Seyed Shahriar; Hassani, Sorour

    2017-01-01

    Engineering of invertases has come to attention because of increasing demand for possible applications of invertases in various industrial processes. Due to the known physicochemical properties, invertases from micro-organisms such as Saccharomyces cerevisiae carrying SUC2 gene are considered as primary models. To improve thermostability and catalytic efficiency of SUC2 invertase (SInv), six influential residues with Relative Solvent Accessibility<5% were selected through multiple-sequence alignments, molecular modelling, structural and computational analyses. Consequently, SInv and 5 mutants including three mutants with single point substitution [Mut1=P152V, Mut2=S85V and Mut3=K153F)], one mutant with two points [Mut4=S305V-N463V] and one mutant with three points [Mut5=S85V-K153F-T271V] were developed via site-directed mutagenesis and produced using Pichia pastoris as the host. Physicochemical studies on these enzymes indicated that the selected amino acids which were located in the active site region mainly influenced catalytic efficiency. The best improvement belonged to Mut1 (54% increase in K cat /K m ) and Mut3 exhibited the worst effect (90% increase in K m ). These results suggest that Pro152 and Lys153 play key role in preparation of the right substrate lodging in the active site of SInv. The best thermostability improvement (16%) was observed for Mut4 in which two hydrophilic residues located on the loops, far from the active site, were replaced by Valines. These results suggest that tactful simultaneous substitution of influential hydrophilic residues in both active site region and peripheral loops with hydrophobic amino acids could result in more thermostable invertases with enhanced catalytic efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Altered invertase activities of symptomatic tissues on Beet severe curly top virus (BSCTV) infected Arabidopsis thaliana.

    PubMed

    Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan

    2013-09-01

    Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.

  8. Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations.

    PubMed

    Li, Min-Jing; Xiong, Zhi-Ting; Liu, Hui; Kuo, Yi-Ming; Tong, Lei

    2016-10-02

    Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.

  9. Light modulated activity of root alkaline/neutral invertase involves the interaction with 14-3-3 proteins.

    PubMed

    Gao, Jing; van Kleeff, Paula J M; Oecking, Claudia; Li, Ka Wan; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; de Boer, Albertus H

    2014-12-01

    Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580). We demonstrate that Ser547 at the extreme C-terminus of the AtCINV1 protein is a substrate of calcium-dependent kinases (CPK3 and 21) and that phosphorylation creates a high-affinity binding site for 14-3-3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14-3-3 proteins enhances its activity. The analysis of three quadruple 14-3-3 mutants generated from six T-DNA insertion mutants of the non-epsilon family shows both specificity as well as redundancy for this function of 14-3-3 proteins. The strong reduction in hexose levels in the roots of one 14-3-3 quadruple mutant plant is in line with the activating function of 14-3-3 proteins. The physiological relevance of this mechanism that affects A/N-invertase activity is underscored by the light-induced activation and is another example of the central role of 14-3-3 proteins in mediating dark/light signaling. The nature of the light-induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca(++) changes that activate calcium-dependent kinases, await further study. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Growth, sucrose synthase, and invertase activities of developing Phaseolus vulgaris L. fruits

    Treesearch

    Shi-Jean S. Sung; W.J. Sheih; D.R. Geiger; C.C. Black

    1994-01-01

    Activities of sucrose-cleaving enzymes, acid and neutral invertase and sucrose synthase, were measured in pods and seeds of developing snap bean (Phaseolus vulgaris L.) fruits, and compared with 14C-import, elongation and dry weight accumulation. The data supports the association of specific sucrose-cleaving enzymes with the specific processes that occur in the...

  11. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds.

    PubMed

    Gorim, Linda; Asch, Folkard

    2017-05-24

    Seed coating is a technology to improve germination and homogenize stand establishment. Although coating often results in lower germination rates, seeds that do germinate grow more vigorously and show strongly reduced respiratory losses during reserve mobilization. We hypothesize that the higher mobilization efficiency is due to a shift in the enzymatic cleavage of sucrose from invertase to sucrose synthase in the embryonic tissue caused by a reduced oxygen availability induced by oversaturation with water caused by the coating during early germination. We investigated the effect of coating on barley, rye, and wheat seed imbibition during the first 30 h after seeds were placed in moisture. We profiled oxygen in the embryos and measured sucrose and acid invertase levels as imbibition progressed. We found that seeds within coatings absorbed significantly more moisture than uncoated seeds. Coating resulted in near anoxic oxygen concentrations in the developing embryonic tissues in all three species. In barley, sucrose was not cleaved via the invertase pathway, despite the fact that invertase activity in coated seeds was increased. In rye and wheat, invertase activities were significantly lower in embryos from coated seeds without significantly changing the sugar composition.

  12. Seed Coating Increases Seed Moisture Uptake and Restricts Embryonic Oxygen Availability in Germinating Cereal Seeds

    PubMed Central

    Gorim, Linda; Asch, Folkard

    2017-01-01

    Seed coating is a technology to improve germination and homogenize stand establishment. Although coating often results in lower germination rates, seeds that do germinate grow more vigorously and show strongly reduced respiratory losses during reserve mobilization. We hypothesize that the higher mobilization efficiency is due to a shift in the enzymatic cleavage of sucrose from invertase to sucrose synthase in the embryonic tissue caused by a reduced oxygen availability induced by oversaturation with water caused by the coating during early germination. We investigated the effect of coating on barley, rye, and wheat seed imbibition during the first 30 h after seeds were placed in moisture. We profiled oxygen in the embryos and measured sucrose and acid invertase levels as imbibition progressed. We found that seeds within coatings absorbed significantly more moisture than uncoated seeds. Coating resulted in near anoxic oxygen concentrations in the developing embryonic tissues in all three species. In barley, sucrose was not cleaved via the invertase pathway, despite the fact that invertase activity in coated seeds was increased. In rye and wheat, invertase activities were significantly lower in embryos from coated seeds without significantly changing the sugar composition. PMID:28538658

  13. Changes in Labile Organic Carbon Fractions and Soil Enzyme Activities after Marshland Reclamation and Restoration in the Sanjiang Plain in Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Yanyu; Song, Changchun; Yang, Guisheng; Miao, Yuqing; Wang, Jiaoyue; Guo, Yuedong

    2012-09-01

    The extensive reclamation of marshland into cropland has tremendously impacted the ecological environment of the Sanjiang Plain in northeast China. To understand the impacts of marshland reclamation and restoration on soil properties, we investigated the labile organic carbon fractions and the soil enzyme activities in an undisturbed marshland, a cultivated marshland and three marshlands that had been restored for 3, 6 and 12 years. Soil samples collected from the different management systems at a depth of 0-20 cm in July 2009 were analyzed for soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily degradable organic carbon. In addition, the activities of the invertase, β-glucosidase, urease and acid phosphatase were determined. These enzymes are involved in C, N and P cycling, respectively. Long-term cultivation resulted in decreased SOC, DOC, MBC, microbial quotient and C (invertase, β-glucosidase) and N-transforming (urease) enzyme activities compared with undisturbed marshland. After marshland restoration, the MBC and DOC concentrations and the soil invertase, β-glucosidase and urease activities increased. Soil DOC and MBC concentrations are probably the main factors responsible for the different invertase, β-glucosidase and urease activities. In addition, marshland restoration caused a significant increase in the microbial quotient, which reflects enhanced efficiency of organic substrate use by microbial biomass. Our observations demonstrated that soil quality recovered following marshland restoration. DOC, MBC and invertase, β-glucosidase and urease activities were sensitive for discriminating soil ecosystems under the different types of land use. Thus, these parameters should be considered to be indicators for detecting changes in soil quality and environmental impacts in marshlands.

  14. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    PubMed Central

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  15. Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam.

    PubMed

    Cadena, Pabyton G; Wiggers, Frank N; Silva, Roberto A; Lima Filho, José L; Pimentel, Maria C B

    2011-01-01

    A new support, polyurethane rigid adhesive foam (PRAF), which can be used to cover internal surface of metallic tubes, was used to immobilize invertase for application in an enzymatic bioreactor. The kinetic parameters were: Km--46.5±1.9 mM (PRAF-invertase) and 61.2±0.1 mM (free enzyme) and Vmax 42.0±4.3 U/mg protein/min (PRAF-invertase) and 445.3±24.0 U/mg protein/min (free invertase). The PRAF-invertase derivative maintained 50.1% of initial activity (69.17 U/g support) for 8 months (4°C) and was not observed microbial contamination. The bioreactor showed the best production of inverted sugar syrup using up-flow rate (0.48 L/h) with average conversion of 10.64±1.5% h(-1) at feeding rate (D) of 104 h(-1). The operational inactivation rate constant (kopi) and half-life were 1.92×10(-4) min(-1) and 60 h (continue use). The PRAF spray support looks promising as a new alternative to produce immobilized derivatives on reactor surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage

    USDA-ARS?s Scientific Manuscript database

    Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose-phosphate synthase (SPS), soluble acid (SAI) and cell-wall invertase (CWI) are importan...

  17. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) plants were transformed with two constructs: (1) a truncated phosphoenolpyruvate carboxylase promoter isolated from alfalfa nodules (PEPC-4) fused to GUS; and (2) PEPC-4 fused with sucrose synthase (SUS) isolated from alfalfa nodules. Histochemical staining for GUS in st...

  18. Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize.

    PubMed

    Chourey, Prem S; Li, Qin-Bao; Cevallos-Cevallos, Juan

    2012-03-01

    The Mn1-encoded endosperm-specific cell wall invertase is a major determinant of sink strength of developing seeds through its control of both sink size, cell number and cell size, and sink activity via sucrose hydrolysis and release of hexoses essential for energy and signaling functions. Consequently, loss-of-function mutations of the gene lead to the mn1 seed phenotype that shows ∼70% reduction in seed mass at maturity and several pleiotropic changes. A comparative analysis of endosperm and embryo mass in the Mn1 and mn1 genotypes showed here significant reductions of both tissues in the mn1 starting with early stages of development. Clearly, embryo development was endosperm-dependent. To gain a mechanistic understanding of the changes, sugar levels were measured in both endosperm and embryo samples. Changes in the levels of all sugars tested, glc, fru, suc, and sorbitol, were mainly observed in the endosperm. Greatly reduced fru levels in the mutant led to RNA level expression analyses by q-PCR of several genes that encode sucrose and fructose metabolizing enzymes. The mn1 endosperm showed reductions in gene expression, ranging from ∼70% to 99% of the Mn1 samples, for both suc-starch and suc--energy pathways, suggesting an in vivo metabolic coordinated regulation due to the hexose-deficiency. Together, these data provide evidence of the Mn1-dependent interconnected network of several pathways as a possible basis for pleiotropic changes in seed development. Published by Elsevier Ireland Ltd.

  19. Carbohydrate metabolism of vegetative and reproductive sinks in the late-maturing peach cultivar 'Encore'

    Treesearch

    Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung

    1999-01-01

    Activities of NAD+-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) in ?Encore? peach (Prunus persica L.) fruits and developing shoot tips were assayed during the growing season to determine whether carbohydrate metabolizing enzymes could...

  20. Vacuolar invertase gene silencing in potato decreasing the frequency of sugar-end defects

    USDA-ARS?s Scientific Manuscript database

    Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one e...

  1. [Invertase Overproduction May Provide for Inulin Fermentation by Selection Strains of Saccharomyces cerevisiae].

    PubMed

    Naumov, G I; Naumova, E S

    2015-01-01

    In some recent publications, the ability of selection strains of Saccharomyces cerevisiae to ferment inulin was attributed to inulinase activity. The review summarizes the literature data indicating that overproduction of invertase, an enzyme common to S. cerevisiae, may be responsible for this phenomenon.

  2. The role of mitochondria in carbon catabolite repression in yeast.

    PubMed

    Haussmann, P; Zimmermann, F K

    1976-10-18

    The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains. The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both antibiotics had about the same effect as growth in the presence of KCN. The results showed that mitochondria are involved in carbon catabolite repression and they cause an increase in the degree of repression. These effects cannot be due to mere metabolic activities nor to factors made on the mitochondrial protein synthesizing machinery. This regulatory role of mitochondria is observed as long as an intact mitochondrial genome is maintained.

  3. Disruption of Brewers' yeast by hydrodynamic cavitation: Process variables and their influence on selective release.

    PubMed

    Balasundaram, B; Harrison, S T L

    2006-06-05

    Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation. Copyright 2006 Wiley Periodicals, Inc.

  4. Vascular cambial sucrose metabolism and growth in loblolly pine (Pinus taeda L.) in relation to transplanting stress

    Treesearch

    Shi-Jean S. Sung; Paul P. Kormanik; C.C. Black

    1993-01-01

    Sucrose synthase (SS) was the dominant enzyme of sucrose metabolism in both stem and root vascular cambial zone tissues of nursery-grown loblolly pine (Pinus taeda L.) seedlings.Acid invertase (AI) and neutral invertase (NI) activties were generally less than 10% of the SS activity in both tissues.In both cambial tissues, seasonal patterns of SS activity in stem and...

  5. Identification, biochemical characterization, and in-vivo expression of the intracellular invertase BfrA from the pathogenic parasite Leishmania major.

    PubMed

    Belaz, Sorya; Rattier, Thibault; Lafite, Pierre; Moreau, Philippe; Routier, Françoise H; Robert-Gangneux, Florence; Gangneux, Jean-Pierre; Daniellou, Richard

    2015-10-13

    The parasitic life cycle of Leishmania includes an extracellular promastigote stage that occurs in the gut of the insect vector. During that period, the sucrose metabolism and more specifically the first glycosidase of this pathway are essential for growth and survival of the parasite. We investigated the expression of the invertase BfrA in the promastigote and amastigote stages of three parasite species representative of the three various clinical forms and of various geographical areas, namely Leishmania major, L. donovani and L. braziliensis. Thereafter, we cloned, overexpressed and biochemically characterized this invertase BfrA from L. major, heterologously expressed in both Escherichia coli and L. tarentolae. For all species, expression levels of BfrA mRNA were correlated to the time of the culture and the parasitic stage (promastigotes > amastigotes). BfrA exhibited no activity when expressed as a glycoprotein in L. tarentolae but proved to be an invertase when not glycosylated, yet owing low sequence homology with other invertases from the same family. Our data suggest that BfrA is an original invertase that is located inside the parasite. It is expressed in both parasitic stages, though to a higher extent in promastigotes. This work provides new insight into the parasite sucrose metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Snowdrift game dynamics and facultative cheating in yeast.

    PubMed

    Gore, Jeff; Youk, Hyun; van Oudenaarden, Alexander

    2009-05-14

    The origin of cooperation is a central challenge to our understanding of evolution. The fact that microbial interactions can be manipulated in ways that animal interactions cannot has led to a growing interest in microbial models of cooperation and competition. For the budding yeast Saccharomyces cerevisiae to grow on sucrose, the disaccharide must first be hydrolysed by the enzyme invertase. This hydrolysis reaction is performed outside the cytoplasm in the periplasmic space between the plasma membrane and the cell wall. Here we demonstrate that the vast majority ( approximately 99 per cent) of the monosaccharides created by sucrose hydrolysis diffuse away before they can be imported into the cell, serving to make invertase production and secretion a cooperative behaviour. A mutant cheater strain that does not produce invertase is able to take advantage of and invade a population of wild-type cooperator cells. However, over a wide range of conditions, the wild-type cooperator can also invade a population of cheater cells. Therefore, we observe steady-state coexistence between the two strains in well-mixed culture resulting from the fact that rare strategies outperform common strategies-the defining features of what game theorists call the snowdrift game. A model of the cooperative interaction incorporating nonlinear benefits explains the origin of this coexistence. We are able to alter the outcome of the competition by varying either the cost of cooperation or the glucose concentration in the media. Finally, we note that glucose repression of invertase expression in wild-type cells produces a strategy that is optimal for the snowdrift game-wild-type cells cooperate only when competing against cheater cells.

  7. Sucrose metabolism and growth in transplanted loblolly pine seedlings

    Treesearch

    Shi-Jean S. Sung; C.C. Black; Paul P. Kormanik

    1993-01-01

    Loblolly pine (Pinus taeda L.) seedling height, root collar diameter, and the specific activities of three sucrose metabolizing enzymes, namely, sucrose synthase (SS), acid invertase, and neutral invertase, were measured to assess seedling responses to transplant stress. It was concluded that i) SS was the dominant enzyme for sucrose metabolism in...

  8. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations.

    PubMed

    Struyf, Nore; Laurent, Jitka; Lefevere, Bianca; Verspreet, Joran; Verstrepen, Kevin J; Courtin, Christophe M

    2017-03-01

    It is generally believed that maltose drives yeast-mediated bread dough fermentation. The relative importance of fructose and glucose, released from wheat fructan and sucrose by invertase, compared to maltose is, however, not documented. This is surprising given the preference of yeast for glucose and fructose over maltose. This study revealed that, after 2h fermentation of wheat flour dough, about 44% of the sugars consumed were generated by invertase-mediated degradation of fructan, raffinose and sucrose. The other 56% were generated by amylases. In whole meal dough, 70% of the sugars consumed were released by invertase activity. Invertase-mediated sugar release seems to be crucial during the first hour of fermentation, while amylase-mediated sugar release was predominant in the later stages of fermentation, which explains why higher amylolytic activity prolonged the productive fermentation time only. These results illustrate the importance of wheat fructan and sucrose content and their degradation for dough fermentations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846

  10. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane.

    PubMed

    Wang, Liming; Zheng, Yuexia; Ding, Shihui; Zhang, Qing; Chen, Youqiang; Zhang, Jisen

    2017-06-23

    Invertases (INVs) are key enzymes regulating sucrose metabolism and are here revealed to be involved in responses to environmental stress in plants. To date, individual members of the invertase gene family and their expression patterns are unknown in sugarcane due to its complex genome despite their significance in sucrose metabolism. In this study, based on comparative genomics, eleven cDNA and twelve DNA sequences belonging to 14 non-redundant members of the invertase gene family were successfully cloned from sugarcane. A comprehensive analysis of the invertase gene family was carried out, including gene structures, phylogenetic relationships, functional domains, conserved motifs of proteins. The results revealed that the 14 invertase members from sugarcane could be clustered into three subfamilies, including 6 neutral/alkaline invertases (ShN/AINVs), and 8 acid invertases (ShAINVs). Faster divergence occurred in acid INVs than in neutral/alkaline INVs after the split of sugarcane and sorghum. At least a one-time gene duplication event was observed to have occurred in the four groups of acid INVs, whereas ShN/AINV1 and ShN/AINV2 in the β8 lineage were revealed to be the most recently duplicated genes among their paralogous genes in the β group of N/AINVs. Furthermore, comprehensive expression analysis of these genes was performed in sugarcane seedlings subjected to five abiotic stresses (drought, low temperature, glucose, fructose, and sucrose) using Quantitative Real-time PCR. The results suggested a functional divergence of INVs and their potential role in response to the five different treatments. Enzymatic activity in sugarcane seedlings was detected under five abiotic stresses treatments, and showed that the activities of all INVs were significantly inhibited in response to five different abiotic stresses, and that the neutral/alkaline INVs played a more prominent role in abiotic stresses than the acid INVs. In this study, we determined the INV gene family members of sugarcane by PCR cloning using sorghum as a reference, providing the first study of the INV gene family in sugarcane. Combining existing INV gene data from 7 plants with a comparative approach including a series of comprehensive analyses to isolate and identify INV gene family members proved to be highly successful. Moreover, the expression levels of INV genes and the variation of enzymatic activities associated with drought, low temperature, glucose, fructose, and sucrose are reported in sugarcane for the first time. The results offered useful foundation and framework for future research for understanding the physiological roles of INVs for sucrose accumulation in sugarcane.

  11. Grape hexokinases are involved in the expression regulation of sucrose synthase- and cell wall invertase-encoding genes by glucose and ABA.

    PubMed

    Wang, Xiu-Qin; Zheng, Li-Li; Lin, Hao; Yu, Fei; Sun, Li-Hui; Li, Li-Mei

    2017-05-01

    Hexokinase (HXK, EC 2.7.1.1) is a multifunctional protein that both is involved in catalyzing the first step of glycolysis and plays an important role in sugar signaling. However, the supporting genetic evidence on hexokinases (CsHXKs) from grape (Vitis vinifera L. cv. Cabernet Sauvignon) berries has been lacking. Here, to investigate the role of CsHXK isoforms as glucose (Glc) and abscisic acid (ABA) sensors, we cloned two hexokinase isozymes, CsHXK1 and CsHXK2 with highly conserved genomic structure of nine exons and eight introns. We also found adenosine phosphate binding, substrate recognition and connection sites in their putative proteins. During grape berry development, the expression profiles of two CsHXK isoforms, sucrose synthases (SuSys) and cell wall invertase (CWINV) genes increased concomitantly with high levels of endogenous Glc and ABA. Furthermore, we showed that in wild type grape berry calli (WT), glucose repressed the expression levels of sucrose synthase (SuSy) and cell wall invertase (CWINV) genes, while ABA increased their expression levels. ABA could not only effectively improve the expression levels of SuSy and CWINV, but also block the repression induced by glucose on the expression of both genes. However, after silencing CsHXK1 or CsHXK2 in grape calli, SuSy and CWINV expression were enhanced, and the expressions of the two genes are insensitive in response to Glc treatment. Interestingly, exogenous ABA alone could not or less increase SuSy and CWINV expression in silencing CsHXK1 or CsHXK2 grape calli compared to WT. Meantime, ABA could not block the repression induced by glucose on the expression of SuSy and CWINV in CsHXK1 or CsHXK2 mutants. Therefore, Glc signal transduction depends on the regulation of CsHXK1 or CsHXK2. ABA signal was also disturbed by CsHXK1 or CsHXK2 silencing. The present results provide new insights into the regulatory role of Glc and ABA on the enzymes related to sugar metabolism in grape berry.

  12. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  13. DNA Inversion on Conjugative Plasmid pVT745

    PubMed Central

    Chen, Jinbiao; Leblanc, Donald J.; Galli, Dominique M.

    2002-01-01

    Plasmid pVT745 from Actinobacillus actinomycetemcomitans strain VT745 can be transferred to other A. actinomycetemcomitans strains at a frequency of 10−6. Screening of transconjugants revealed that the DNA of pDMG21A, a pVT745 derivative containing a kanamycin resistance gene, displayed a structural rearrangement after transfer. A 9-kb segment on the plasmid had switched orientation. The inversion was independent of RecA and required the activity of the pVT745-encoded site-specific recombinase. This recombinase, termed Inv, was highly homologous to invertases of the Din family. Two recombination sites of 22 bp, which are arranged in opposite orientation and which function as DNA crossover sequences, were identified on pVT745. One of the sites was located adjacent to the 5′ end of the invertase gene, inv. Inversion of the 9-kb segment on pVT745 derivatives has been observed in all A. actinomycetemcomitans strains tested except for the original host, VT745. This would suggest that a host factor that is either inactive or absent in VT745 is required for efficient recombination. Inactivation of the invertase in the donor strain resulted in a 1,000-fold increase in the number of transconjugants upon plasmid transfer. It is proposed that an activated invertase causes the immediate loss of the plasmid in most recipient cells after mating. No biological role has been associated with the invertase as of yet. PMID:12374826

  14. Cloning and expression of Saccharomyces cerevisiae SUC2 gene in yeast platform and characterization of recombinant enzyme biochemical properties.

    PubMed

    Mohandesi, Nooshin; Siadat, Seyed Omid Ranaei; Haghbeen, Kamahldin; Hesampour, Ardeshir

    2016-12-01

    Invertase (EC.3.2.1.26) catalyzes the hydrolysis of sucrose to an equimolar mixture of D-glucose and D-fructose which is of interest for various industrial applications. In this research, Saccharomyces cerevisiae invertase gene (SUC2) was optimized based on Pichia pastoris codon preference. The synthetic gene was introduced into the methylotrophic yeast Pichia pastoris under the control of the inducible AOX1 promoter. High level of the extracellular recombinant invertase (R-inv) production was achieved via methanol induction for 4 days and purified by His-Tag affinity chromatography which appeared to be a mixture of glycosylated proteins with various sizes of 85-95 kDa on SDS-PAGE. Deglycosylation of the proteins by Endo-H resulted in the proteins with average molecular weight of 60 kDa. The purified recombinant invertase biochemical properties and kinetic parameters determined a pH and temperature optimum at 4.8 and 60 °C, respectively, which in comparison with native S. cerevisiae invertase, thermal stability of recombinant invertase is highly increased in different heating treatment experiments. The purification of recombinant invertase resulted in an enzyme with specific activity of 178.56 U/mg with 3.83-fold of purification and the kinetic constants for enzyme were Km value of 19 mM and Vmax value of 300 μmol min -1  mg -1 With kinetic efficiency (Kcat/Km) of 13.15 s -1  mmol -1 it can be concluded that recombinant P. pastoris invertase can be more effective for industrial quality criteria. We conclude that recombinant P. pastoris enzyme with broad pH stability, substrate specificity and proper thermal stability can fulfil a series of predefined industrial quality criteria to be used in food, pharmaceutical and bio ethanol production industries.

  15. Games microbes play: The game theory behind cooperative sucrose metabolism in yeast

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    2010-03-01

    The origin of cooperation is a central challenge to our understanding of evolution. Microbial interactions can be manipulated in ways that animal interactions cannot, thus leading to growing interest in microbial models of cooperation and competition. In order for the budding yeast S. cerevisiae to grow on sucrose, the disaccharide must first be hydrolyzed by the enzyme invertase. This hydrolysis reaction is performed outside of the cytoplasm in the periplasmic space between the plasma membrane and the cell wall. Here we demonstrate that the vast majority (˜99%) of the monosaccharides created by sucrose hydrolysis diffuse away before they can be imported into the cell, thus making invertase production and secretion a cooperative behavior [1]. A mutant cheater strain that does not produce invertase is able to take advantage of and invade a population of wildtype cooperator cells. However, over a wide range of conditions, the wildtype cooperator can also invade a population of cheater cells. Therefore, we observe coexistence between the two strains in well-mixed culture at steady state resulting from the fact that rare strategies outperform common strategies---the defining features of what game theorists call the snowdrift game. A simple model of the cooperative interaction incorporating nonlinear benefits explains the origin of this coexistence. Glucose repression of invertase expression in wildtype cells produces a strategy which is optimal for the snowdrift game---wildtype cells cooperate only when competing against cheater cells. In disagreement with recent theory [2], we find that spatial structure always aids the evolution of cooperation in our experimental snowdrift game. [4pt] [1] Gore, J., Youk, H. & van Oudenaarden, A., Nature 459, 253 -- 256 (2009) [0pt] [2] Hauert, C. & Doebeli, M., Nature 428, 643 -- 646 (2004)

  16. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  17. [Morphophysiological monitoring of winter wheat at spring in connection with problem of global climate change].

    PubMed

    Klimov, S V; Burakhanova, E A; Dubinina, I M; Alieva, G P; Sal'nikova, E B; Trunova, T I

    2006-01-01

    Data on morphophysiological monitoring of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 grown in Hoagland and Arnon solution in a greenhouse and transferred to natural conditions in March-April 2004 with the mean daily temperature of 0.6 +/- 0.7 degrees C within the exposure period of 42 days are presented. Water content, dry weight of plants and their organs, frost hardiness of plants, degree of tissue damage by frost, CO2 metabolism (photosynthesis and respiration), concentrations of sugars in tissues and proportions between different sugar forms, and activities of soluble and insoluble acid and alkaline phosphatases were monitored. Monitoring was carried out for three experimental variants simulating different microclimatic conditions in spring: after snow melting (experiment I), under ice crust (experiment II), and under snow cover (experiment III). Plants in experiments III and II demonstrated a higher water content in tissues, lower frost hardiness, higher rates of biomass loss, lower concentration of sugars and lower di- to monosaccharide ratio in tissues, and higher total invertase activity, particularly, cell wall-associated acid invertase activity. The dark respiration rates at 0 degrees C did not significantly differ between experimental variants. The photosynthetic capacity at this measurement temperature was maintained in all experimental variants being most pronounced in experiment II with the most intense photoinhibition under natural conditions. Comparison of experiments III and II with experiment I is used to discuss the negative effect of changes in certain microclimatic variables associated with global warming and leading to plant extortion and death from frost in spring.

  18. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton.

    PubMed

    Wang, Lu; Ruan, Yong-Ling

    2012-10-01

    Despite substantial evidence on the essential roles of cell wall invertase (CWIN) in seed filling, it remains largely unknown how CWIN exerts its regulation early in seed development, a critical stage that sets yield potential. To fill this knowledge gap, we systematically examined the spatial and temporal expression patterns of a major CWIN gene, GhCWIN1, in cotton (Gossypium hirsutum) seeds from prefertilization to prestorage phase. GhCWIN1 messenger RNA was abundant at the innermost seed coat cell layer at 5 d after anthesis but became undetectable at 10 d after anthesis, at the onset of its differentiation into transfer cells characterized by wall ingrowths, suggesting that CWIN may negatively regulate transfer cell differentiation. Within the filial tissues, GhCWIN1 transcript was detected in endosperm cells undergoing nuclear division but not in those cells at the cellularization stage, with similar results observed in Arabidopsis (Arabidopsis thaliana) endosperm for CWIN, AtCWIN4. These findings indicate a function of CWIN in nuclear division but not cell wall biosynthesis in endosperm, contrasting to the role proposed for sucrose synthase (Sus). Further analyses revealed a preferential expression pattern of GhCWIN1 and AtCWIN4 in the provascular region of the torpedo embryos in cotton and Arabidopsis seed, respectively, indicating a role of CWIN in vascular initiation. Together, these novel findings provide insights into the roles of CWIN in regulating early seed development spatially and temporally. By comparing with previous studies on Sus expression and in conjunction with the expression of other related genes, we propose models of CWIN- and Sus-mediated regulation of early seed development.

  19. Aqueous two-phase (PEG4000/Na2SO4) extraction and characterization of an acid invertase from potato tuber (Solanum tuberosum).

    PubMed

    Yuzugullu, Yonca; Duman, Yonca Avcı

    2015-01-01

    Invertases are key metabolic enzymes that catalyze irreversible hydrolysis of sucrose into fructose and glucose. Plant invertases have essential roles in carbohydrate metabolism, plant development, and stress responses. To study their isolation and purification from potato, an attractive system useful for the separation of biological molecules, an aqueous two-phase system, was used. The influence of various system parameters such as type of phase-forming salts, polyethylene glycol (PEG) molecular mass, salt, and polymer concentration was investigated to obtain the highest recovery of enzyme. The PEG4000 (12.5%, w/w)/Na2SO4(15%, w/w) system was found to be ideal for partitioning invertase into the bottom salt-rich phase. The addition of 3% MnSO4 (w/w) at pH 5.0 increased the purity by 5.11-fold with the recovered activity of 197%. The Km and Vmax on sucrose were 3.95 mM and 0.143 U mL(-1) min(-1), respectively. Our data confirmed that the PEG4000/Na2SO4 aqueous two-phase system combined with the presence of MnSO4 offers a low-cost purification of invertase from readily available potato tuber in a single step. The biochemical characteristics of temperature and pH stability for potato invertase prepared from an ATPS make the enzyme a good candidate for its potential use in many research and industrial applications.

  20. Purification of alpha-glucosidae and invertase from bakers' yeast on modified polymeric supports.

    PubMed

    Lothe, R R; Purohit, S S; Shaikh, S S; Malshe, V C; Pandit, A B

    1999-01-01

    In the present work Amberlite XAD-16 and Indion NPA-1, Polystyrene Divinylbenzene macroreticular spherical resins, have been evaluated quantitatively as supports for the adsorption and isolation of the yeast proteins and the enzymes, invertase and alpha-glucosidase. Modification of these supports has been carried out by surface grafting using acrylate polymers to reduce the hydrophobicity and nonspecific adsorption of proteins. Good grafting efficiency, in excess of 90%, has been obtained using ultrasonic irradiation for the surface activation of polystyrene resins. XAD-16 has higher adsorption capacities for the total yeast proteins as well as for both the enzymes, alpha-glucosidase and invertase, than NPA-1 in its respective native and grafted form. Adsorption capacities of XAD-16 and NPA-1 in their respective native and grafted forms for alpha-glucosidase are higher than the capacities for invertase. Nonspecific adsorption of total proteins has been reduced considerably after the grafting of acrylate polymers on hydrophobic supports. At the same time selectivity for the adsorption of both the enzymes has been enhanced on grafted supports. The overall solid-liquid adsorption mass transfer coefficient values (Kla) estimated for adsorption of invertase on XAD are lower than those for alpha-glucosidase. Native and grafted resins could be regenerated and reused for adsorption of alpha-glucosidase for two regeneration cycles studied. Storage stability of invertase and alpha-glucosidase is the same on native and grafted form of XAD-16 and is more than the enzymes in the free form.

  1. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.

    PubMed

    Zhang, Luan; Pan, Yuxue; Lv, Wei; Xiong, Zhi-ting

    2014-06-01

    In the current study, we hypothesize that mine (metallicolous) populations of metallophytes form a trade-off between the roots and shoots when under copper (Cu) stress to adapt themselves to heavy metal contaminated habitats, and thus, differ from normal (non-metallicolous) populations in biomass allocation. To test the hypothesis, two populations of the metallophyte Kummerowia stipulacea, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), were treated with Cu(2+) in hydroponic conditions. The results showed that MP plants had higher root/shoot biomass allocation and more complicated root system architecture compared to those of the NMP plants when under Cu stress. The net photosynthetic capacity was more inhibited in the NMP plants than in the MP plants when under Cu stress. The sugar (sucrose and hexose) contents and acid invertase activities of MP plants were elevated while those in NMP plants were inhibited after Cu treatment. The neutral/alkaline invertase activities and sucrose synthase level showed no significant differences between the two populations when under Cu stress. The results showed that acid invertase played an important role in biomass allocation and that the physiological responses were beneficial for the high root/shoot biomass allocation, which were advantageous during adaptive evolution to Cu-enriched mine soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.

    PubMed

    Zhang, Li; Li, Xu-Hui; Gao, Zhen; Shen, Si; Liang, Xiao-Gui; Zhao, Xue; Lin, Shan; Zhou, Shun-Li

    2017-09-01

    Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Expression Patterns of Genes Involved in Sugar Metabolism and Accumulation during Apple Fruit Development

    PubMed Central

    Cheng, Lailiang

    2012-01-01

    Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983

  4. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.).

    PubMed

    Herman, Derek J; Knowles, Lisa O; Knowles, N Richard

    2017-03-01

    Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate ® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate ® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold storage of heat-stressed tubers.

  5. Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz).

    PubMed

    Yao, Yuan; Wu, Xiao-Hui; Geng, Meng-Ting; Li, Rui-Mei; Liu, Jiao; Hu, Xin-Wen; Guo, Jian-Chun

    2014-05-15

    Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.

  6. Functional characterization of a vacuolar invertase from Solanum lycopersicum: post-translational regulation by N-glycosylation and a proteinaceous inhibitor.

    PubMed

    Tauzin, Alexandra S; Sulzenbacher, Gerlind; Lafond, Mickael; Desseaux, Véronique; Reca, Ida Barbara; Perrier, Josette; Bellincampi, Daniela; Fourquet, Patrick; Lévêque, Christian; Giardina, Thierry

    2014-06-01

    Plant vacuolar invertases, which belong to family 32 of glycoside hydrolases (GH32), are key enzymes in sugar metabolism. They hydrolyse sucrose into glucose and fructose. The cDNA encoding a vacuolar invertase from Solanum lycopersicum (TIV-1) was cloned and heterologously expressed in Pichia pastoris. The functional role of four N-glycosylation sites in TIV-1 has been investigated by site-directed mutagenesis. Single mutations to Asp of residues Asn52, Asn119 and Asn184, as well as the triple mutant (Asn52, Asn119 and Asn184), lead to enzymes with reduced specific invertase activity and thermostability. Expression of the N516D mutant, as well as of the quadruple mutant (N52D, N119D, N184D and N516D) could not be detected, indicating that these mutations dramatically affected the folding of the protein. Our data indicate that N-glycosylation is important for TIV-1 activity and that glycosylation of N516 is crucial for recombinant enzyme stability. Using a functional genomics approach a new vacuolar invertase inhibitor of S. lycopersicum (SolyVIF) has been identified. SolyVIF cDNA was cloned and heterologously expressed in Escherichia coli. Specific interactions between SolyVIF and TIV-1 were investigated by an enzymatic approach and surface plasmon resonance (SPR). Finally, qRT-PCR analysis of TIV-1 and SolyVIF transcript levels showed a specific tissue and developmental expression. TIV-1 was mainly expressed in flowers and both genes were expressed in senescent leaves. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. The genetics of a putative social trait in natural populations of yeast

    PubMed Central

    Bozdag, G O; Greig, D

    2014-01-01

    The sharing of secreted invertase by yeast cells is a well-established laboratory model for cooperation, but the only evidence that such cooperation occurs in nature is that the SUC loci, which encode invertase, vary in number and functionality. Genotypes that do not produce invertase can act as ‘cheats’ in laboratory experiments, growing on the glucose that is released when invertase producers, or ‘cooperators’, digest sucrose. However, genetic variation for invertase production might instead be explained by adaptation of different populations to different local availabilities of sucrose, the substrate for invertase. Here we find that 110 wild yeast strains isolated from natural habitats, and all contained a single SUC locus and produced invertase; none were ‘cheats’. The only genetic variants we found were three strains isolated instead from sucrose-rich nectar, which produced higher levels of invertase from three additional SUC loci at their subtelomeres. We argue that the pattern of SUC gene variation is better explained by local adaptation than by social conflict. PMID:25169714

  8. [Effects of long-term fertilization on enzyme activities in black soil of Northeast China].

    PubMed

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Wang, Shou-Yu

    2008-03-01

    In this paper, black soil samples at the depths of 0-20 cm and 20-40 cm were collected from the Hailun Agricultural Ecology Station of Chinese Academy of Sciences to study the effects of long-term fertilization on their urease, invertase, phosphatase and catalase activities and total C and N contents. The results showed that long-term application of chemical fertilizers and organic manure increased the activities of urease, invertase and phosphatase in 0-20 cm and 20-40 cm soil layers in different degree, and the combined application of them increased the activities of the three enzymes significantly, with an increment of 43.6%-113.2%, 25.9%-79.5% and 14.7%-134.4% in 0-20 cm soil layer and 56.1%-127.2%, 14.5%-113.8% and 16.2%-207.2% in 20-40 cm soil layer, respectively. However, long-term application of chemical fertilizers without organic manure had little effects on catalase activity. The activities of urease, invertase and phosphatase decreased with increasing soil depth. Long-term application of N fertilizer increased urease activity, and P fertilization had obvious positive effect on phosphatase activity. Long-term fertilization also had obvious effects on the soil total C and N contents and C/N ratio.

  9. Effect of hypokinesia on invertase activity of the mucosa of the small intestine

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.

    1980-01-01

    The effect of prolonged hypokinesia on the enzyme activity of the middle portion of the small intestine was investigated. Eighty-four mongrel white male rats weighing 170-180 g were divided into two equal groups. The experimental group were maintained in single cages under 30 days of hypokinetic conditions and the control animals were maintained under ordinary laboratory conditions. It is concluded that rates of invertase formation and its inclusion in the composition if the cellular membrane, if judged by the enzyme activity studied in sections of the small intestine, are subject to phase changes in the course of prolonged hypokinesia.

  10. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.

    PubMed

    Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C

    2014-11-16

    Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.

  11. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP.

    PubMed

    Balk, P A; de Boer, A D

    1999-09-01

    Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515-520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (gammaTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the gammaTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and gammaTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells.

  12. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  13. Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds.

    PubMed

    Lara-Núñez, Aurora; Sánchez-Nieto, Sobeida; Luisa Anaya, Ana; Cruz-Ortega, Rocio

    2009-06-01

    The phytotoxic effect of allelochemicals is referred to as allelochemical stress and it is considered a biotic stress. Sicyos deppei G. Don (Cucurbitaceae) is an allelopathic weed that causes phytotoxicity in Lycopersicon esculentum, delaying seed germination and severely inhibiting radicle growth. This paper reports in in vitro conditions, the effects of the aqueous leachate of S. deppei-throughout tomato germination times-on (1) the dynamics of starch and sugars metabolism, (2) activity and expression of the cell wall enzymes involved in endosperm weakening that allows the protrusion of the radicle, and (3) whether abscisic acid (ABA) is involved in this altered metabolic processes. Results showed that S. deppei leachate on tomato seed germination mainly caused: (1) delay in starch degradation as well as in sucrose hydrolysis; (2) lower activity of sucrose phosphate synthase, cell wall invertase, and alpha-amylase; being sucrose phosphate synthase (SPS) gene expression down-regulated, and the last two up regulated; (3) also, lower activity of endo beta-mannanase, beta-1,3 glucanase, alpha-galactosidase, and exo-polygalacturonase with altered gene expression; and (4) higher content of ABA during all times of germination. The phytotoxic effect of S. deppei aqueous leachate is because of the sum of many metabolic processes affected during tomato seed germination that finally is evidenced by a strong inhibition of radicle growth.

  14. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    PubMed

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  15. [Effects of elevated ozone concentrations on enzyme activities and organic acids content in wheat rhizospheric soil.

    PubMed

    Yin, Wei Qin; Jing, Hao Qi; Wang, Ya Bo; Wei, Si Yu; Sun, Yue; Wang, Sheng Sen; Wang, Xuai Zhi

    2018-02-01

    The elevated concentration of tropospheric ozone (O 3 ) is an important global climate change driver, with adverse impacts on soil ecological environment and crop growth. In this study, a pot experiment was carried out in an open top chamber (OTC), to investigate the effects of elevated ozone concentration on soil enzyme activities (catalase, polyphenol oxidase, dehydrogenase and invertase), organic acids contents (oxalic acid, citric acid and malic acid) at different growth stages (tillering, jointing, heading and ripening stages) of wheat, and combined with the rhizospheric soil physicochemical properties and plant root characteristics to analyze the underlying reasons. The results showed that, elevated ozone concentration increased soil catalase, polyphenol oxidase, dehydrogenase and invertase activities at wheat ripening period to different degrees, with the effects on the activities of catalase and polyphenol oxidase being statistically significant. At the heading stage, activities of dehydrogenase and invertase were significantly increased by up to 76.7%. At the ripening stage, elevated ozone concentration significantly increased the content of citric acid and malic acid and redox potential (Eh) in rhizospheric soil, but reduced soil pH, electrical conductivity, total carbon and nitrogen. For root characteristics, elevated ozone concentrations significantly reduced the wheat root biomass, total root length and root surface area but increased the average root diameter.

  16. Effect of repeated applications of buprofezin and acephate on soil cellulases, amylase, and invertase.

    PubMed

    Raju, M Naga; Venkateswarlu, K

    2014-10-01

    The impact of repeated applications of buprofezin and acephate, at concentrations ranging from 0.25 to 1.0 kg ha(-1), on activities of cellulases, amylase, and invertase in unamended and nitrogen, phosphorous, and potassium (NPK) fertilizer-amended soil planted with cotton was studied. The nontarget effect of selected insecticides, when applied once, twice, or thrice on soil enzyme activities, was dose-dependent; the activities decreased with increasing concentrations of insecticides. However, there was a rapid decline in activities of enzymes after three repeated applications of insecticides in unamended or NPK-amended soil. Our data clearly suggest that insecticides must be applied judiciously in pest management in order to protect the enzymes largely implicated in soil fertility.

  17. Sucrose and invertases, a part of the plant defense response to the biotic stresses

    PubMed Central

    Tauzin, Alexandra S.; Giardina, Thierry

    2014-01-01

    Sucrose is the main form of assimilated carbon which is produced during photosynthesis and then transported from source to sink tissues via the phloem. This disaccharide is known to have important roles as signaling molecule and it is involved in many metabolic processes in plants. Essential for plant growth and development, sucrose is engaged in plant defense by activating plant immune responses against pathogens. During infection, pathogens reallocate the plant sugars for their own needs forcing the plants to modify their sugar content and triggering their defense responses. Among enzymes that hydrolyze sucrose and alter carbohydrate partitioning, invertases have been reported to be affected during plant-pathogen interactions. Recent highlights on the role of invertases in the establishment of plant defense responses suggest a more complex regulation of sugar signaling in plant-pathogen interaction. PMID:25002866

  18. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source

    PubMed Central

    Alegre, Ana Cláudia Paiva; de Lourdes Teixeira de Moraes Polizeli, Maria; Terenzi, Héctor Francisco; Jorge, João Atílio; Guimarães, Luis Henrique Souza

    2009-01-01

    The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30°C, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium) with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50°C while the extra- and intracellular enzymes produced in SbmF exhibited maximal activities at 60°C. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50°C. PMID:24031406

  19. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation.

    PubMed

    Gao, F; Cao, X F; Si, J P; Chen, Z Y; Duan, C L

    2016-05-06

    Dendrobium officinale is one of the most well-known traditional Chinese medicines, and polysaccharide is its main active ingredient. Many studies have investigated the synthesis and accumulation mechanisms of polysaccharide, but until recently, little was known about the molecular mechanism of how polysaccharide is synthesized because no related genes have been cloned. In this study, we cloned an alkaline/neutral invertase gene from D. officinale (DoNI) by the rapid amplification of cDNA ends (RACE) method. DoNI was 2231 bp long and contained an open reading frame that predicted a 62.8-kDa polypeptide with 554-amino acid residues. An alkaline/neutral invertase conserved domain was predicted from this deduced amino acid sequence, and DoNI had a similar deduced amino acid sequence to Setaria italica and Oryza brachyantha. We also found that DoNI expression in different tissues was closely related to DoNI activity, and more importantly, polysaccharide level. Our results indicate that DoNI is associated with polysaccharide accumulation in D. officinale.

  20. Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter.

    PubMed

    Hong, Seung-Pyo; Seip, John; Walters-Pollak, Dana; Rupert, Ross; Jackson, Raymond; Xue, Zhixiong; Zhu, Quinn

    2012-02-01

    Oleaginous yeast Yarrowia lipolytica is an important host for the production of lipid-derived compounds or heterologous proteins. Selection of strong promoters and effective expression systems is critical for heterologous protein secretion. To search for a strong promoter in Y. lipolytica, activities of FBA1, TDH1 and GPM1 promoters were compared to that of TEF1 promoter by constructing GUS reporter fusions. The FBA1 promoter activity was 2.2 and 5.5 times stronger than the TDH1 and GPM1 promoters, respectively. The FBA1IN promoter (FBA1 sequence of -826 to +169) containing an intron (+64 to +165) showed five-fold higher expression than the FBA1 promoter (-831 to -1). The transcriptional enhancement by the 5'-region within the FBA1 gene was confirmed by GPM1::FBA1 chimeric promoter construction. Using the strong FBA1IN promoter, four different S. cerevisiae SUC2 expression cassettes were tested for the SUC+ phenotype in Y. lipolytica. Functional invertase secretion was facilitated by the Xpr2 prepro-region with an additional 13 amino acids of mature Xpr2, or by the native Suc2 signal sequence. However, these two secretory signals in tandem, or the mature Suc2 with no secretory signal, did not direct secretion of functional invertase. Unlike previously reported Y. lipolytica SUC+ strains, our engineered stains secreted most of invertase into the medium. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Changes in sugar content and related enzyme activities in table grape (Vitis vinifera L.) in response to foliar selenium fertilizer.

    PubMed

    Zhu, Shuaimeng; Liang, Yinli; An, Xiaojuan; Kong, Fanchao; Gao, Dekai; Yin, Hongfei

    2017-09-01

    Spraying selenium (Se) fertilizer is an effective method for Se-enriched fruit production. Sugar content in fruit is the major factor determining berry quality. However, changes in sugar metabolism in response to Se fertilizer are unclear. Hence, this study was conducted to identify the effects of Se fertilizer on sugar metabolism and related enzyme activities of grape berries. Additionally, production of leaves with and without Se fertilizer was also investigated. Acid invertase (AI) activity, total soluble sugar and Se content in berries, and photosynthetic rate in leaves produced under Se fertilizer treatments were higher than that of control. Glucose and fructose were the primary sugars in berries, with a trace of sucrose. In both berries and leaves, neutral invertase activity was lower than AI, there was no significant difference in neutral invertase, sucrose synthase and sucrose phosphate synthase between Se fertilizer-treated and control. In berries, AI showed a significant positive correlation with glucose and fructose; also Se content was significantly correlated with sugar content. AI played an important role in the process of sugar accumulation in berries; high AI activity in berries and photosynthetic rate in leaves could explain the mechanism by which Se fertilizer affected sugar accumulation in berries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Optimized invertase expression and secretion cassette for improving Yarrowia lipolytica growth on sucrose for industrial applications.

    PubMed

    Lazar, Zbigniew; Rossignol, Tristan; Verbeke, Jonathan; Crutz-Le Coq, Anne-Marie; Nicaud, Jean-Marc; Robak, Małgorzata

    2013-11-01

    Yarrowia lipolytica requires the expression of a heterologous invertase to grow on a sucrose-based substrate. This work reports the construction of an optimized invertase expression cassette composed of Saccharomyces cerevisiae Suc2p secretion signal sequence followed by the SUC2 sequence and under the control of the strong Y. lipolytica pTEF promoter. This new construction allows a fast and optimal cleavage of sucrose into glucose and fructose and allows cells to reach the maximum growth rate. Contrary to pre-existing constructions, the expression of SUC2 is not sensitive to medium composition in this context. The strain JMY2593, expressing this new cassette with an optimized secretion signal sequence and a strong promoter, produces 4,519 U/l of extracellular invertase in bioreactor experiments compared to 597 U/l in a strain expressing the former invertase construction. The expression of this cassette strongly improved production of invertase and is suitable for simultaneously high production level of citric acid from sucrose-based media.

  3. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    PubMed

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.

  4. Effects of different deficit irrigation on sugar accumulation of pineapple during development

    NASA Astrophysics Data System (ADS)

    Feng, Haiyan; Du, Liqing; Liu, Shenghui; Zhang, Xiumei

    2017-08-01

    The potted pineapple cultivar ‘Comte de paris’ was used to study the influence of deficit irrigation on fruit sugar accumulation in greenhouse during the fruit enlargement period. The study included a control (normal irrigation) and two treatment groups, moderate deficit (50% of the control irrigation) and severe deficit (25% of the control irrigation). The results indicated that the deficit irrigation significantly decreased the sucrose accumulation. The sucrose content in the fruits of moderate deficit irrigation was the lowest. During the mature period, the deficit irrigation decreased the sucrose phosophate synthase activity(SPS) an increased the sucrose synthase (SS) and neutral invertase (NI). The moderate deficit irrigation significantly improved the acid invertase activity(AI). However, it was inhibited by the severe deficit irrigation. In general, the moderate treatment reduced the SPS activity and enhanced the NI and AI activities, while the severe treatment decreased the SPS and AI activities.

  5. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed

    Sturm, A; Chrispeels, M J

    1990-11-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose.

  6. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed Central

    Sturm, A; Chrispeels, M J

    1990-01-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose. PMID:2152110

  7. Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate

    PubMed Central

    Jameson, Paula E.; Dhandapani, Pragatheswari; Novak, Ondrej; Song, Jiancheng

    2016-01-01

    Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration. PMID:27916945

  8. Natural diversity of potato (Solanum tuberosum) invertases

    PubMed Central

    2010-01-01

    Background Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. Results For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. Conclusions Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs. PMID:21143910

  9. Cloning of Sucrose:Sucrose 1-Fructosyltransferase from Onion and Synthesis of Structurally Defined Fructan Molecules from Sucrose1

    PubMed Central

    Vijn, Irma; van Dijken, Anja; Lüscher, Marcel; Bos, Antoine; Smeets, Edward; Weisbeek, Peter; Wiemken, Andres; Smeekens, Sjef

    1998-01-01

    Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase. PMID:9701606

  10. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

    NASA Astrophysics Data System (ADS)

    Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.

    2014-01-01

    Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

  11. Fungal invertase as an aid for fermentation of cane molasses into ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.K.; Sato, H.H.

    1982-10-01

    Comparative studies of the fermentation of cane molasses into ethanol by Saccharomyces cerevisiae in the presence or absence of fungal invertase were performed. When cane molasses was fermented by the yeast at 30 degrees Centigrade and pH 5.0, the presence of the enzyme had no effect on ethanol production. At pH 3.4, ethanol production was increased by the addition of invertase. At 40 degrees C, the addition of invertase increased ethanol production by 5.5% at pH 5.0 and by 20.9% at pH 3.5. (Refs. 8).

  12. [Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China].

    PubMed

    Pan, Xin-li; Lin, Bo; Liu, Qing

    2008-08-01

    To investigate the effects of elevated temperature on the soil organic carbon content, soil respiration rate, and soil enzyme activities in subalpine Picea asperata plantations in western Sichuan Province of China, a simulation study was conducted in situ with open-top chambers from November 2005 to July 2007. The results showed that under elevated temperature, the mean air temperature and soil temperature were 0.42 degrees C and 0.25 degrees C higher than the control, respectively. In the first and the second year, the increased temperature had somewhat decreasing effects on the soil organic carbon and the C/N ratio at the soil depths of 0-10 cm and 10-20 cm. In the first year the soil organic carbon and the C/N ratio in 0-10 cm soil layer decreased by 8.69%, and 8.52%, respectively; but in the second year, the decrements were lesser. Soil respiration rate was significantly enhanced in the first year of warming, but had no significant difference with the control in the second year. In the first year of warming, the activities of soil invertase, polyphenol oxidase, catalase, protease, and urease increased, and the invertase and polyphenol oxidase activities in 0-10 cm soil layer were significantly higher than the control. In the second year of warming, the activities of invertase, protease and urease still had an increase, but those of catalase and polyphenol oxidase had a downtrend, compared with the control.

  13. [Study on relationship between effective components and soil enzyme activity in different growth patterns of Panax ginseng].

    PubMed

    Yang, Yan-Wen; Jiang, Yuan-Tong

    2016-08-01

    Study on 5 effective components and 6 soil enzyme activities of 2 different growth patterns, analyse the dates with the canonical correlation analysis, In order to reveal the relations between the effective components and soil enzyme activities. The result showed that they had a great relation between the effective components and soil enzyme activities, the activity of the same enzyme in humus soil was higher than that in farmland soil. Growth pattern of farmland soil, if the invertase and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside, water-miscible total proteins and total amino acid; Growth pattern of humus soil, if the invertase, urease and phosphatase activity were too high, which would inhibit the accumulation of total ginsenoside and the total essential oils. Integral soil enzyme activity can be used as a index of soil quality, which, together with other growth factors. The appropriate enzyme activity can accelerate the circulation and transformation of all kinds of material in the soil, improve effectively components accumulation. Copyright© by the Chinese Pharmaceutical Association.

  14. Intensified fractionation of brewery yeast waste for the recovery of invertase using aqueous two-phase systems.

    PubMed

    De León-González, Grecia; González-Valdez, José; Mayolo-Deloisa, Karla; Rito-Palomares, Marco

    2016-11-01

    The potential recovery of high-value products from brewery yeast waste confers value to this industrial residue. Aqueous two-phase systems (ATPS) have demonstrated to be an attractive alternative for the primary recovery of biological products and are therefore suitable for the recovery of invertase from this residue. Sixteen different polyethylene glycol (PEG)-potassium phosphate ATPS were tested to evaluate the effects of PEG molecular weight (MW) and tie-line length (TLL) upon the partition behavior of invertase. Concentrations of crude extract from brewery yeast waste were then varied in the systems that presented the best behaviors to intensify the potential recovery of the enzyme. Results show that the use of a PEG MW 400 g mol -1 system with a TLL of 45.0% (w/w) resulted in an invertase bottom phase recovery with a purification factor of 29.5 and a recovery yield of up to 66.2% after scaling the system to a total weight of 15.0 g. This represents 15.1 mg of invertase per mL of processed bottom phase. With these results, a single-stage ATPS process for the recovery of invertase is proposed. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  15. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  16. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling.

    PubMed

    Wang, Lu; Cook, Akiko; Patrick, John W; Chen, Xiao-Ya; Ruan, Yong-Ling

    2014-05-01

    Cotton fibers, the most important source of cellulose for the global textile industry, are single-celled trichomes derived from the ovule epidermis at or just prior to anthesis. Despite progress in understanding cotton fiber elongation and cell-wall biosynthesis, knowledge regarding the molecular basis of fiber cell initiation, the first step of fiber development determining the fiber yield potential, remains elusive. Here, we provide evidence that expression of a vacuolar invertase (VIN) is an early event that is essential for cotton fiber initiation. RNAi-mediated suppression of GhVIN1, a major VIN gene that is highly expressed in wild-type fiber initials, resulted in significant reduction of VIN activity and consequently a fiberless seed phenotype in a dosage dependent manner. The absence of a negative effect on seed development in these fiberless seeds indicates that the phenotype is unlikely to be due to lack of carbon nutrient. Gene expression analyses coupled with in vitro ovule culture experiments revealed that GhVIN1-derived hexose signaling may play an indispensable role in cotton fiber initiation, probably by regulating the transcription of several MYB transcription factors and auxin signaling components that were previously identified as required for fiber initiation. Together, the data represent a significant advance in understanding the mechanisms of cotton fiber initiation, and provide the first indication that VIN-mediated hexose signaling may act as an early event modulating the expression of regulatory genes and hence cell differentiation from the ovule epidermis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum1

    PubMed Central

    2016-01-01

    Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants. PMID:26893475

  18. Activities of sucrose and sorbitol metabolizing enzymes in vegetative sinks of peach and correlation with sink growth rate

    Treesearch

    Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung

    1999-01-01

    Terminal portions of 'Flordaguard' peach roots (Prunus persica ((L.) Batsch) were divided into six segments and the activities of NAD+-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), soluble acid invertase (AI),...

  19. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase*

    PubMed Central

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-01-01

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α)6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites −1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. PMID:27777307

  20. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase.

    PubMed

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-12-02

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α) 6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites -1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development.

    PubMed

    Rocchi, V; Janni, M; Bellincampi, D; Giardina, T; D'Ovidio, R

    2012-03-01

    Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.

    PubMed

    Hu, Liping; Sun, Huihui; Li, Ruifu; Zhang, Lingyun; Wang, Shaohui; Sui, Xiaolei; Zhang, Zhenxian

    2011-11-01

    The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed. © 2011 Blackwell Publishing Ltd.

  3. Three-dimensional Structure of Saccharomyces Invertase

    PubMed Central

    Sainz-Polo, M. Angela; Ramírez-Escudero, Mercedes; Lafraya, Alvaro; González, Beatriz; Marín-Navarro, Julia; Polaina, Julio; Sanz-Aparicio, Julia

    2013-01-01

    Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition. PMID:23430743

  4. Site-specific DNA Inversion by Serine Recombinases

    PubMed Central

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  5. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination.

    PubMed

    Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A

    2012-01-01

    In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination.

  6. Soil properties and enzyme activities as affected by biogas slurry irrigation in the Three Gorges Reservoir areas of China.

    PubMed

    Chen, Shiling; Yu, Weiwei; Zhang, Zhi; Luo, Surong

    2015-03-01

    Biogas slurry, as a quality organic fertilizer, is widely used on large scale livestock farmland in Southwest China. In the present study, slurry collected from anaerobic tank of dairy farm was used to irrigate farmland having typical purple soil in Chongquing, China. The study revealed that irrigation with biogasslurry increased soil ammonium nitrogen and soil nitrate by 47.8 and 19% respectively as compared to control check. The average soil available phosphorus and soil phosphorus absorption co-efficient changed slightly. Relative enzyme activities of N and P transformation were indicated by catalase, urease, invertase and phosphatase activity. Irrigation period and irrigation quantity were selected as variable factor Catalase, invertase and urease activity was highest when irrigation period and irrigation quantitiy was 4 days and 500 ml; whereas highest phosphatase activity increased significantly in purple irrigated by biogas slurry. The result of the present study is helpful in finding optimum irrigation conditions required for enzyme activity within defined range. It further reveals that biogas slurry enriches soil with various nutrients by enhancing N, P content and enzyme activities as well as it also deals with large number of biogas slurry for protecting the environment.

  7. Effects of high pressure processing on activity and structure of soluble acid invertase in mango pulp, crude extract, purified form and model systems.

    PubMed

    Li, Renjie; Wang, Yongtao; Ling, Jiangang; Liao, Xiaojun

    2017-09-15

    The effects of high pressure processing (HPP) on the activity of soluble acid invertase (SAI) in mango pulp, crude extract, purified SAI and purified SAI in model systems (pectin, bovine serum albumin (BSA), sugars and pH 3-7) were investigated. The activity of SAI in mango pulp was increased after HPP, and that in crude extract stayed unchanged. The activity of purified SAI was decreased after HPP at 45 and 50°C. Pectin exhibited a concentration-dependent protection for purified SAI against HPP at 50°C/600MPa for 30min. Pectin that had an esterification degree (DE) of 85% exhibited a greater protection than pectin that had a DE of 20-34%. BSA, acidic pH (3-6) and sucrose also exhibited protection for purified SAI against HPP. HPP at 50°C/600MPa for 30min disrupted the secondary structure and tertiary structure of purified SAI, but no aggregation of purified SAI was observed after HPP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    PubMed

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity, and the urease activity was negatively correlated with microbial biomass N, H index and D index.

  9. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland

    PubMed Central

    Shao, Xuexin; Yang, Wenying; Wu, Ming

    2015-01-01

    Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands. PMID:26560310

  10. Aluminum toxicity in tomato. Part 2.Leaf gas exchange, chlorophyll content, and invertase activity

    Treesearch

    L. Simon; M. Kieger; Shi-Jean S. Sung; T.J. Smalley

    1994-01-01

    The effect of aluminum (Al) toxicity on leaf gas exchange, leaf chlorophyll content, and sucrose metabolizing enzyme activity of two tomato cultivars (Lycopersicon esculentum Mill. 'Mountain Pride' and 'Floramerica') was studied to determine the mechanism of growth reduction observed in a related study (Simon et al., 1994, Part 1).Plants were grown...

  11. Purification and some properties of rose (Fructus cynosbati) hips invertase.

    PubMed

    Sacan, Ozlem; Yanardag, Refiye

    2012-04-01

    Invertase was purified from rose (Fructus cynosbati) hips by ammonium sulfate fractionation and hydroxyapatite column chromatography. The enzyme was obtained with a yield of 4.25% and about 10.48-fold purification and had a specific activity of 8.59 U/mg protein. The molecular mass of invertase was estimated to be 66.51 kDa by PAGE and 34 kDa by SDS-PAGE, indicating that the native enzyme was a homodimer. The enzyme was a glycoprotein and contained 5.86% carbohydrate. The K(m) for sucrose was 14.55 mM and the optimum pH and temperature of the enzyme were 4.5 and 40 degrees C, respectively. Sucrose was the most preferred substrate of the enzyme. The enzyme also hydrolyzed D(+) raffinose, D(+) trehalose and inulin (activity 39.88, 8.12 and 4.94%, respectively of that of sucrose), while D(+) lactose, cellobiose and D(+) maltose showed no effect on the enzyme. The substrate specificity was consistent with that for a beta-fructofuranoside, which is the most popular type in the higher plants. The enzyme was completely inhibited by HgCl2, MnCl2, MnSO4, FeCl3, Pb(NO3)2, ammonium heptamolybdate, iodoacetamide and pyridoxine hydrochloride. It was also inhibited by Ba(NO3)2 (86.32%), NH4Cl (84.91%), MgCl2 (74.45%), urea (71.63%), I2 (69.64%), LiCl (64.99%), BaCl2 (50.30%), Mg(NO3)2 (49.90%), CrCl3 (31.90%) and CuSO4 (21.45%) and but was activated by Tris (73.99%) and methionine (12.47%).

  12. Hexose Transport in Growing Petunia Pollen Tubes and Characterization of a Pollen-Specific, Putative Monosaccharide Transporter1

    PubMed Central

    Ylstra, Bauke; Garrido, Dolores; Busscher, Jacqueline; van Tunen, Arjen J.

    1998-01-01

    We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented. PMID:9733549

  13. Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum.

    PubMed

    Gupta, A K; Rathore, P; Kaur, N; Singh, R

    1990-01-01

    Fusarium oxysporum produced maximum extracellular inulinase after 9 days of its growth at 25 degrees C on a medium (pH 5.5) containing 3% fructan and 0.2% sodium nitrate. The level of this enzyme decreased on the addition of either glucose, fructose, galactose or sucrose to F. oxysporum already growing on a fructan-containing medium. A significant increase in invertase production which resulted in an increase of the invertase/inulinase (S/I) ratio, was observed on addition of inulin to this fungus growing on other carbon sources. Glycerol (10%) gave better protection to inulinase against thermal denaturation at 50 degrees C compared to ethylene glycol and sorbitol. Inulinase immobilised in polyacrylamide gel retained 45% of its original activity. The immobilised enzyme showed a higher optimum temperature (45 degrees C) compared to free enzyme (37 degrees C). The immobilised enzyme after storage at 25 degrees C for 96 h showed 58% activity. Thermal stability of entrapped inulinase increased in the presence of inulin.

  14. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity.

    PubMed

    Liu, Xun; Lin, Yuan; Liu, Jun; Song, Botao; Ou, Yongbin; Zhang, Huiling; Li, Meng; Xie, Conghua

    2013-06-01

    Reducing sugar (RS) accumulation in cold-stored potato tubers, known as cold-induced sweetening (CIS), is a crucial factor causing unacceptable colour changes and acrylamide formation of fried products. The activity of vacuolar invertase (StvacINV1) is proved important for the CIS process, and invertase inhibitors are speculated to play roles in the post-translational regulation of StvacINV1 activity. In our previous research, two putative inhibitors (StInvInh2A and StInvInh2B) of StvacINV1 were implied to be involved in potato CIS. Here, we further reported that StInvInh2A and StInvInh2B had similar function that specifically inhibited StvacINV1 activity in potatoes. The genetic transformation of these inhibitor genes in potatoes by overexpression in CIS-sensitive and RNAi-silenced in CIS-resistant genotypes showed that StvacINV1 activity was strongly regulated by alteration of the transcripts of the inhibitors without impacting on the expression of StvacINV1. A negative power relationship was found between the transcripts of the inhibitors and StvacINV1 activity, suggesting 1) a transcriptional determination of the inhibitory capacity of StInvInh2A and StInvInh2B and 2) a significant inhibitory role of these inhibitors in post-translational modulation of StvacINV1. The results also demonstrated that depression of StvacINV1 activity through overexpression of StInvInh2A and StInvInh2B weakened accumulation of RS and acrylamide in cold-stored tubers and consequently improved the chip quality. The present research strongly suggest that both StInvInh2A and StInvInh2B function as inhibitors of StvacINV1 and play similar roles in regulating potato CIS by capping StvacINV1 activity. These inhibitors could be novel genetic resources applicable for improving quality of potato processing products. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli.

    PubMed

    Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup

    2015-01-01

    Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Soil enzyme activities in Pinus tabuliformis (Carriere) plantations in northern China

    Treesearch

    Weiwei Wang; Deborah Page-Dumroese; Ruiheng Lv; Chen Xiao; Guolei Li; Yong Liu

    2016-01-01

    Changes in forest stand structure may alter the activity of invertase, urease, catalase and phenol oxidase after thinning Pinus tabuliformis (Carriére) plantations in Yanqing County of Beijing, China. We examined changes in these soil enzymes as influenced by time since thinning (24, 32, and 40 years since thinning) for 3 seasons (spring, summer and autumn)...

  17. Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba.

    PubMed

    Ma, Jun; Shen, Jinglong; Liu, Qingxing; Fang, Fang; Cai, Hongsheng; Guo, Changhong

    2014-05-01

    Pollution caused by petroleum is one of the most serious problems worldwide. To better understand the toxic effects of petroleum-contaminated soil on the microflora and phytocommunity, we conducted a comprehensive field study on toxic effects of petroleum contaminated soil collected from the city of Daqing, an oil producing region of China. Urease, protease, invertase, and dehydrogenase activity were significantly reduced in microflora exposed to contaminated soils compared to the controls, whereas polyphenol oxidase activity was significantly increased (P < 0.05). Soil pH, electrical conductivity, and organic matter content were correlated with total petroleum hydrocarbons (TPHs) and a correlation (P < 0.01) existed between the C/N ratio and TPHs. Protease, invertase and catalase were correlated with TPHs. The Vicia faba micronucleus (MN) test, chromosome aberrant (CA) analyses, and the mitotic index (MI) were used to detect genotoxicity of water extracts of the soil. Petroleum-contaminated samples indicated serious genotoxicity to plants, including decreased index level of MI, increased frequency of MN and CA. The combination of enzyme activities and genotoxicity test via Vicia faba can be used as an important indicator for assessing the impact of TPH on soil ecosystem.

  18. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination

    PubMed Central

    Obroucheva, Natalie V.; Lityagina, Snezhana V.; Novikova, Galina V.; Sin'kevich, Irina A.

    2012-01-01

    Backgrounds and aims In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Methodology Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H+-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Principal results Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H+-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Conclusions Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination. PMID:22593822

  19. In-depth glycoproteomic characterisation of grape berry vacuolar invertase using a combination of mass spectrometry-based approaches.

    PubMed

    Hovasse, Agnès; Alayi, Tchilabalo Dilezitoko; Van Dorsselaer, Alain; Marchal, Richard; Jégou, Sandrine; Schaeffer-Reiss, Christine

    2016-06-01

    Vacuolar invertase is a key enzyme of sugar metabolism in grape berries. A full characterisation of this highly N-glycosylated protein is required to help understand its biological and biochemical significance in grapes. We have developed a mass spectrometry (MS)-based glycoproteomic approach wherein deglycosylated peptides are analysed by LC-MS/MS, while intact glycopeptides are characterised using a dedicated MS method to determine the attachment sites and micro-heterogeneity. For grape invertase, in parallel with deglycosylated peptides analysis, different enzymatic digestions were performed and glycopeptide detection was improved by enrichment method, nanoLC-MS and oxonium glycan ions. This MS-based glycoproteomic approach demonstrates that vacuolar invertase is glycosylated at all twelve potential N-glycosylation sites. Glycosylation is heterogeneous, with twelve glycoforms identified at six of the sites. The identification of several types of N-glycans is a major result to correlate with the surface and foaming properties of wine, the solubility, allergenicity, and protease resistance of wine proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Invertase SUC2 Is the key hydrolase for inulin degradation in Saccharomyces cerevisiae.

    PubMed

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  1. Measurement of Enzyme Kinetics by Use of a Blood Glucometer: Hydrolysis of Sucrose and Lactose

    ERIC Educational Resources Information Center

    Heinzerling, Peter; Schrader, Frank; Schanze, Sascha

    2012-01-01

    An alternative analytical method for measuring the kinetic parameters of the enzymes invertase and lactase is described. Invertase hydrolyzes sucrose to glucose and fructose and lactase hydrolyzes lactose to glucose and galactose. In most enzyme kinetics studies, photometric methods or test strips are used to quantify the derivates of the…

  2. Cloning and sequence analysis of the invertase gene INV 1 from the yeast Pichia anomala.

    PubMed

    Pérez, J A; Rodríguez, J; Rodríguez, L; Ruiz, T

    1996-02-01

    A genomic library from the yeast Pichia anomala has been constructed and employed to clone the gene encoding the sucrose-hydrolysing enzyme invertase by complementation of a sucrose non-fermenting mutant of Saccharomyces cerevisiae. The cloned gene, INV1, was sequenced and found to encode a polypeptide of 550 amino acids which contained a 22 amino-acid signal sequence and ten potential glycosylation sites. The amino-acid sequence shows significant identity with other yeast invertases and also with Kluyveromyces marxianus inulinase, a yeast beta-fructofuranosidase which has a different substrate specificity. The nucleotide sequences of the 5' and 3' non-coding regions were found to contain several consensus motifs probably involved in the initiation and termination of gene transcription.

  3. Tentacle-type immobilized metal affinity cryogel for invertase purification from Saccharomyces cerevisiae.

    PubMed

    Çetin, Kemal; Perçin, Işık; Denizli, Fatma; Denizli, Adil

    2017-11-01

    The aim of this study is to investigate the usability of cryogel columns for the purification of invertase from Saccharomyces cerevisiae. Poly(2-hydroxyethyl methacrylate) monolithic columns were produced via cryogelation. Ester groups of the poly(2-hydroxyethyl methacrylate) structure were then converted to imine groups by the reaction with poly(ethylene imine) in the presence of NaHCO 3 . Transition metal ions, Cu(II), Co(II), and Ni(II), were chelated on the PEI-modified cryogel columns. Purification of invertase from natural source namely S. cerevisiae was also studied, and the purification fold values were obtained as 41.350, 44.714, and 30.302 for Cu(II)-chelated, Co(II)-chelated, and Ni(II)-chelated PHEMA/PEI columns, respectively.

  4. SUC1 gene of Saccharomyces: a structural gene for the large (glycoprotein) and small (carbohydrate-free) forms of invertase.

    PubMed Central

    Rodriguez, L; Lampen, J O; MacKay, V L

    1981-01-01

    Saccharomyces cerevisiae revertant strain D10-ER1 has been shown to contain thermosensitive forms of the large (glycoprotein) and small (carbohydrate-free) invertases and a very low level of the small enzyme, along with a wild-type level of the large form (T. Mizunaga et al., Mol. Cell. Biol. 1:460-468, 1981). These characteristics cosegregated in crosses of the revertant strain with wild-type sucrose-fermenting (SUC1) or nonfermenting (suc0) strains. In addition, there is tight linkage between sucrose and maltose fermentation in revertant D10-ER1 (characteristic of the SUC1 and MAL1 genes). From this we infer that a single reversion event is responsible for the several changes observed in D10-ER1, and that this mutation maps within or very close to the SUC1 gene present in the ancestor strain 4059-358D. The revertant SUC1 allele in D10-ER1 (termed SUC1-R1) was expressed independently of the wild-type SUC1 gene when both were present in diploid cells. Diploids carrying only the wild-type or the mutant genes synthesized invertases with the characteristics of the parental Suc+ haploids. The possibility that a modifier gene was responsible for the alterations in the invertases of revertant D10-ER1 was ruled out by appropriate crosses. We conclude that SUC1 is a structural gene that codes for both the large and the small forms of invertase and suggest that SUC2 through SUC5 are structural genes as well. PMID:6765604

  5. Some Immunochemical Properties of Dextransucrase and Invertase from Streptococcus mutans

    PubMed Central

    Fukui, Kazuhiro; Fukui, Yoshio; Moriyama, Takafumi

    1974-01-01

    Dextransucrase and invertase of some strains of Streptococcus mutans were examined by immunodiffusion with antisera against enzymes purified from strain HS-6 (Bratthall's serotype a). Both antisera cross-reacted with crude enzyme preparations from the other serotype a (strains HS-1 and AHT) and d organisms (strains KIR, OMZ176, and OMZ65) but not with those from serotype b (strains FA-1 and BHT) or c organisms (strains GS-5, Ingbritt, and NCTC 10449). Based upon the antiserum used, the orders of antigenic similarity of the cross-reacting enzymes to the HS-6 enzymes were HS-6 > HS-1 > AHT = KIR = OMZ176 = OMZ65 for dextransucrase and HS-6 = HS-1 > AHT = KIR = OMZ176 = OMZ65 for invertase. It was found that the enzymes from serotype a organisms were not always antigenically homogeneous, as seen between strains HS-6, HS-1, or AHT for dextransucrase, and between the HS group and strain AHT for invertase. Antiserum against the HS-6 dextransucrase markedly inhibited the heterologous dextransucrases of serotype a organisms with the exception of strain HS-1 and d organisms, with or without the addition of dextran. Images PMID:16558114

  6. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    PubMed

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))

  7. Student Collaboration in a Series of Integrated Experiments to Study Enzyme Reactor Modeling with Immobilized Cell-Based Invertase

    ERIC Educational Resources Information Center

    Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.

    2015-01-01

    An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…

  8. The Isolation of Invertase from Baker's Yeast: A Four-Part Exercise in Protein Purification and Characterization

    ERIC Educational Resources Information Center

    Timerman, Anthony P.; Fenrick, Angela M.; Zamis, Thomas M.

    2009-01-01

    A sequence of exercises for the isolation and characterization of invertase (E.C. 3.1.2.26) from baker's yeast obtained from a local grocery store is outlined. Because the enzyme is colorless, the use of colored markers and the sequence of purification steps are designed to "visualize" the process by which a colorless protein is selectively…

  9. [Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].

    PubMed

    Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong

    2003-02-01

    Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.

  10. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    PubMed

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress.

    PubMed

    Qian, Wenjun; Yue, Chuan; Wang, Yuchun; Cao, Hongli; Li, Nana; Wang, Lu; Hao, Xinyuan; Wang, Xinchao; Xiao, Bin; Yang, Yajun

    2016-11-01

    Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.

  12. Early carbon mobilization and radicle protrusion in maize germination.

    PubMed

    Sánchez-Linares, Luis; Gavilanes-Ruíz, Marina; Díaz-Pontones, David; Guzmán-Chávez, Fernando; Calzada-Alejo, Viridiana; Zurita-Villegas, Viridiana; Luna-Loaiza, Viridiana; Moreno-Sánchez, Rafael; Bernal-Lugo, Irma; Sánchez-Nieto, Sobeida

    2012-07-01

    Considerable amounts of information is available on the complex carbohydrates that are mobilized and utilized by the seed to support early seedling development. These events occur after radicle has protruded from the seed. However, scarce information is available on the role of the endogenous soluble carbohydrates from the embryo in the first hours of germination. The present work analysed how the soluble carbohydrate reserves in isolated maize embryos are mobilized during 6-24 h of water imbibition, an interval that exclusively embraces the first two phases of the germination process. It was found that sucrose constitutes a very significant reserve in the scutellum and that it is efficiently consumed during the time in which the adjacent embryo axis is engaged in an active metabolism. Sucrose transporter was immunolocalized in the scutellum and in vascular elements. In parallel, a cell-wall invertase activity, which hydrolyses sucrose, developed in the embryo axis, which favoured higher glucose uptake. Sucrose and hexose transporters were active in the embryo tissues, together with the plasma membrane H(+)-ATPase, which was localized in all embryo regions involved in both nutrient transport and active cell elongation to support radicle extension. It is proposed that, during the initial maize germination phases, a net flow of sucrose takes place from the scutellum towards the embryo axis and regions that undergo elongation. During radicle extension, sucrose and hexose transporters, as well as H(+)-ATPase, become the fundamental proteins that orchestrate the transport of nutrients required for successful germination.

  13. Effect of temperature on soluble invertase activity, and glucose, fructose and sucrose status of onion bulbs (Allium cepa) in store.

    PubMed

    Benkeblia, Noureddine; Onodera, Shuichi; Yoshihira, Taiki; Kosaka, Shinichi; Shiomi, Norio

    2004-06-01

    The activity of soluble invertase, and the variation in glucose, fructose and sucrose contents in onion bulbs (Allium cepa) during long-term storage at 10 degrees C and 20 degrees C were investigated. Invertase activity increased progressively after 8 weeks to 0.084 and 0.092 nkat/g fresh weight (FW), then sharply to 0.29 and 0.35 nkat/g FW at 20 degrees C and 10 degrees C, respectively, and remained high during 5 weeks. Then, activity decreased abruptly to 0.039 and 0.041 nkat/g, and remained low during the last 8 weeks and close to that observed initially. Glucose increased to 17.73 and 14.62 mg/g FW after 4 weeks at 20 degrees C and 10 degrees C, respectively, then decreased sharply between week 5 and week 7 to 4.13 and 4.91 mg/g FW, respectively, and remained rather stable ranging from 9 and 10 mg/g FW at both temperatures. Fructose showed a similar pattern and was 14.8 and 21.68 mg/g FW at 20 degrees C and 10 degrees C, respectively. Between week 10 and week 24, fructose ranged from 5 and 6 mg/g FW, and from 6 and 7 mg/g FW at 20 degrees C and 10 degrees C, respectively. Sucrose increased to 19.63 and 14.43 mg/g FW at 20 degrees C and 10 degrees C, respectively, decreased during 3 weeks, and then increased randomly from 5.69 to 9.42 mg/g FW at 20 degrees C, but remained in a steady state at 10 degrees C ranging 5.03 +/- 0.78 mg/g FW. During the last 6 weeks, the sucrose content was higher at 20 degrees C than at 10 degrees C. The fructose-glucose ratio varied during the first 8 weeks but remained at a steady level during the last 16 weeks. The (glucose+fructose)/sucrose ratio increased randomly at 10 degrees C, whereas at 20 degrees C the ratio increased during 10 weeks then decreased progressively during the final 14 weeks.

  14. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation.

    PubMed

    Verspreet, Joran; Hemdane, Sami; Dornez, Emmie; Cuyvers, Sven; Delcour, Jan A; Courtin, Christophe M

    2013-02-13

    The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.

  15. TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS.

    PubMed

    DUNICAN, L K; SEELEY, H W

    1963-11-01

    Dunican, L. K. (Cornell University, Ithaca, New York), and H. W. Seeley, Jr. Temperature-sensitive dextransucrase synthesis by a lactobacillus. J. Bacteriol. 86:1079-1083. 1963.-Dextran synthesis was found to be temperature-dependent in Lactobacillus strain RWM-13. Dextran was not formed above 37 C, although growth of cells occurred up to 42 C. Logarithmically growing cells transferred from 30 C to 40 C ceased producing dextran while growth decreased nominally. An examination of the extracts of cells broken by sonic treatment showed that as the temperature of growth was increased above 37 C the production of dextransucrase decreased. By use of an inhibitor of invertase, 10(-4)m AgNO(3), it was shown that invertase replaced dextransucrase activity at temperatures above 37 C. In contrast to dextransucrase in Leuconostoc mesenteroides, the enzyme in Lactobacillus strain RWM-13 was constitutive and thus resembled that of Streptococcus bovis. Thermosensitivity of dextransucrase synthesis has not been observed in Leuconostoc or Streptococcus.

  16. Mutants of Yeast Defective in Sucrose Utilization

    PubMed Central

    Carlson, Marian; Osmond, Barbara C.; Botstein, David

    1981-01-01

    Utilization of sucrose as a source of carbon and energy in yeast (Saccharomyces) is controlled by the classical SUC genes, which confer the ability to produce the sucrose-degrading enzyme invertase (Mortimer and Hawthorne 1969). Mutants of S. cerevisiae strain S288C (SUC2+) unable to grow anaerobically on sucrose, but still able to use glucose, were isolated. Two major complementation groups were identified: twenty-four recessive mutations at the SUC2 locus (suc2-); and five recessive mutations defining a new locus, SNF1 (for sucrose nonfermenting), essential for sucrose utilization. Two minor complementation groups, each comprising a single member with a leaky sucrose-nonfermenting phenotype, were also identified. The suc2 mutations isolated include four suppressible amber mutations and five mutations apparently exhibiting intragenic complementation; complementation analysis and mitotic mapping studies indicated that all of the suc2 mutations are alleles of a single gene. These results suggest that SUC2 encodes a protein, probably a dimer or multimer. No invertase activity was detected in suc2 mutants.—The SNF1 locus is not tightly linked to SUC2. The snf1 mutations were found to be pleiotropic, preventing sucrose utilization by SUC2+ and SUC7+ strains, and also preventing utilization of galactose, maltose and several nonfermentable carbon sources. Although snf1 mutants thus display a petite phenotype, classic petite mutations do not interfere with utilization of sucrose, galactose or maltose. A common feature of all the carbon utilization systems affected by SNF1 is that all are regulated by glucose repression. The snf1 mutants were found to produce the constitutive nonglycosylated form of invertase, but failed to produce the glucose-repressible, glycosylated, secreted invertase. This failure cannot be attributed to a general defect in production of glycosylated and secreted proteins because synthesis of acid phosphatase, a glycosylated secreted protein not subject to glucose repression, was not affected by snf1 mutations. These findings suggest that the SNF1 locus is involved in the regulation of gene expression by glucose repression. PMID:7040163

  17. Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering.

    PubMed Central

    Lambrechts, H.; Rook, F.; Kolloffel, C.

    1994-01-01

    The effect of a cold treatment on the carbohydrate status of the scales and flower stalk of Tulipa gesneriana L. cv Apeldoorn bulbs during growth after planting was studied and compared with bulbs not given cold treatment. Bulbs were stored dry for 12 weeks at 5[deg]C (precooled) or 17[deg]C (noncooled). Only the 5[deg]C treatment led to rapid flower stalk elongation and flowering following planting at higher temperatures. Precooling enhanced mobilization of starch, fructans, and sucrose in the scales. The cold-stimulated starch breakdown was initially accompanied by increased [alpha]-amylase activity per scale. In noncooled bulbs, [alpha]-amylase activity slightly decreased or remained more or less constant. Cold-induced flower stalk elongation was partially accompanied by a decrease in the sucrose content and an increase in the glucose content and invertase activity per g dry weight. The starch content in internodes initially decreased and subsequently increased; [alpha]-amylase activity per g dry weight of the lowermost internode showed a peak pattern during starch breakdown and increased thereafter. The internodes of noncooled bulbs, on the contrary, accumulated sucrose. Their glucose content and invertase activity per g dry weight remained low. Starch breakdown was not found and [alpha]-amylase activity per g dry weight of the lowermost internode remained at a low level. Precooling of tulip bulbs thus favors reserve mobilization in the scales and flower stalk and glucose accumulation in the elongating internodes. PMID:12232100

  18. Short versus long term effects of cyanide on sugar metabolism and transport in dormant walnut kernels.

    PubMed

    Gerivani, Zahra; Vashaee, Elham; Sadeghipour, Hamid Reza; Aghdasi, Mahnaz; Shobbar, Zahra-Sadat; Azimmohseni, Majid

    2016-11-01

    Tree seed dormancy release by cold stratification accompanies with the embryo increased gluconeogenesis competence. Cyanide also breaks seed dormancy however, integrated information about its effects on carbon metabolism is lacking. Accordingly, the impacts of HCN on germination, lipid gluconeogenesis and sugar transport capacity of walnut (Juglans regia L.) kernels were investigated during 10-days period prior to radicle protrusion. HCN increased walnut kernel germination and within four days of kernel incubation, hastened the decline of starch, reducing and non-reducing sugars and led to greater activities of alkaline invertase and glucose-6-phosphate dehydrogenase. From four days of kernel incubation onwards, starch and non-reducing sugars accumulated only in the HCN treated axes. Cyanide also increased the activities of phosphoenolpyruvate carboxykinase and glyoxysomal succinate oxidase and led to greater acid invertase activity during the aforementioned period. The expressions of both sucrose transporter (JrSUT1) and H + -ATPase (JrAHA1) genes especially in cotyledons and H + -ATPase activity in kernels were significantly enhanced by exposure to cyanide. Thus in short-term HCN led to prevalence of carbohydrate catabolic events such as oxidative pentose phosphate pathway and possibly glycolysis in dormant walnut kernels. Long-term effects however, are increased gluconeogenesis and enhanced sugar transport capacity of kernels as a prerequisite for germination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells

    NASA Technical Reports Server (NTRS)

    Long, Joanne C.; Zhao, Wei; Rashotte, Aaron M.; Muday, Gloria K.; Huber, Steven C.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (D-Glc and D-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented.

  20. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.

    PubMed

    McKinley, Brian; Rooney, William; Wilkerson, Curtis; Mullet, John

    2016-11-01

    Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Modulation of physiological responses with TiO2 nano-particle in Azolla pinnata R.Br. under 2,4-D toxicity.

    PubMed

    De, Arnab Kumar; Ghosh, Arijit; Debnath, Subhas Chandra; Sarkar, Bipul; Saha, Indraneel; Adak, Malay Kumar

    2018-06-05

    The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO 2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO 2 -NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO 2 -NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO 2 -NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO 2 -NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO 2 -NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO 2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO 2 -NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.

  2. Composition and antioxidant activity of Trigona carbonaria honey from Australia.

    PubMed

    Oddo, Livia Persano; Heard, Tim A; Rodríguez-Malaver, Antonio; Pérez, Rosa Ana; Fernández-Muiño, Miguel; Sancho, María Teresa; Sesta, Giulio; Lusco, Lorenzo; Vit, Patricia

    2008-12-01

    Stingless bees (Tribe Meliponini) are a diverse group of highly eusocial bees distributed throughout the tropics and subtropics. Trigona carbonaria honey, from Australia, was characterized by traditional physicochemical parameters (acidity, sugars, diastase, electrical conductivity, hydroxymethylfurfural, invertase, nitrogen, and water content) and other compositional factors (flavonoids, polyphenols, organic acids, and water activity), as well as total antioxidant capacity and radical scavenging activity. For the Australian T. carbonaria, the traditional analytical parameters were similar to those previously reported for neotropical stingless bee honey and confirm that honeys produced by Meliponini bees possess several physicochemical properties that are distinctly different from Apis mellifera honey, with higher values of moisture (26.5 +/- 0.8 g of water/100 g of honey), water activity (0.74 +/- 0.01), electrical conductivity (1.64 +/- 0.12 mS/cm), and free acidity (124.2 +/- 22.9 mEq/kg of honey) and a very low diastase activity (0.4 +/- 0.5 diastase number) and invertase activity (5.7 +/- 1.5 invertase number). The sugar spectrum was quite different from that of A. mellifera honey, with 20.3 +/- 2.9 g of maltose/100 g of honey. The values of pH (4.0 +/- 0.1), lactonic acidity (4.7 +/- 0.8 mEq/kg of honey), sucrose (1.8 +/- 0.4 g/100 g of honey), and fructose/glucose ratio (1.42 +/- 0.13) fell in the same ranges as those of A. mellifera honey. Citric (0.23 +/- 0.09) and malic (0.12 +/- 0.03) acid concentrations (in g/kg of honey) of T. carbonaria honeys were in the range described for A. mellifera honey. D-Gluconic was more concentrated (9.9 +/- 1.3 g/kg of honey), in the range of Italian Castanea, Thymus, Arbutus, and honeydew honeys. Flavonoid content was 10.02 +/- 1.59 mg of quercetin equivalents/100 g of honey, and polyphenol contents were 55.74 +/- 6.11 mg of gallic acid equivalents/100 g of honey. The antioxidant activity, expressed as percentage of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS(*+)) decolorization, was 233.96 +/- 50.95 microM Trolox equivalents, and free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) depletion was 48.03 +/- 12.58 equivalents of ascorbic acid. All reported values are averages +/- standard deviation. The antioxidant activity can represent an important added value for T. carbonaria honey, to initiate a medicinal approach for both nutritional and pharmaceutical applications, besides further physicochemical characterization.

  3. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    PubMed

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.

    PubMed

    Oliveira, Edna Maria Morais; Mansure, José João; Bon, Elba Pinto da Silva

    2005-04-01

    In Saccharomyces cerevisiae, sensing and signalling pathways regulate gene expression in response to quality of carbon and nitrogen sources. One such system, the target of rapamycin (Tor) proteins, senses nutrients and uses the GATA activators Gln3p and Nil1p to regulate translation in response to low-quality carbon and nitrogen. The signal transduction, triggered in response to nitrogen nutrition that is sensed by the Tor proteins, operates via a regulatory pathway involving the cytoplasmic factor Ure2p. When carbon and nitrogen are abundant, the phosphorylated Ure2p anchors the also phosphorylated Gln3p and Nil1p in the cytoplasm. Upon a shift from high- to low-quality nitrogen or treatment with rapamycin all three proteins are dephosphorylated, causing Gln3p and Nil1p to enter the nucleus and promote transcription. The genes that code for yeast periplasmic enzymes with nutritional roles would be obvious targets for regulation by the sensing and signalling pathways that respond to quality of carbon and nitrogen sources. Indeed, previous results from our laboratory had shown that the GATA factors Gln3p, Nil1p, Dal80p, Nil2p and also the protein Ure2 regulate the expression of asparaginase II, coded by ASP3. We also had observed that the activity levels of the also periplasmic invertase, coded by SUC2, were 6-fold lower in ure2 mutant cells in comparison to wild-type cells collected at stationary phase. These results suggested similarities between the signalling pathways regulating the expression of ASP3 and SUC2. In the present work we showed that invertase levels displayed by the single nil1 and gln3 and by the double gln3nil1 mutant cells, cultivated in a sucrose-ammonium medium and collected at the exponential phase, were 6-, 10- and 60-fold higher, respectively, in comparison to their wild-type counterparts. RT-PCR data of SUC2 expression in the double-mutant cells indicated a 10-fold increase in the mRNA(SUC2) levels.

  5. The effects of fruiting positions on cellulose synthesis and sucrose metabolism during cotton (Gossypium hirsutum L.) fiber development.

    PubMed

    Ma, Yina; Wang, Youhua; Liu, Jingran; Lv, Fengjuan; Chen, Ji; Zhou, Zhiguo

    2014-01-01

    Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.

  6. Biochemical and Thermodynamical Characterization of Glucose Oxidase, Invertase, and Alkaline Phosphatase Secreted by Antarctic Yeasts.

    PubMed

    Yuivar, Yassef; Barahona, Salvador; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2017-01-01

    The use of enzymes in diverse industries has increased substantially over past decades, creating a well-established and growing global market. Currently, the use of enzymes that work better at ambient or lower temperatures in order to decrease the temperatures of production processes is desirable. There is thus a continuous search for enzymes in cold environments, especially from microbial sources, with amylases, proteases, lipases and, cellulases being the most studied. Other enzymes, such as glucose oxidase (GOD), invertase (Inv), and alkaline phosphatase (ALP), also have a high potential for application, but have been much less studied in microorganisms living in cold-environments. In this work, secretion of these three enzymes by Antarctic yeast species was analyzed, and five, three, and five species were found to produce extracellular GOD, Inv, and ALP, respectively. The major producers of GOD, Inv, and ALP were Goffeauzyma gastrica, Wickerhamomyces anomalus , and Dioszegia sp., respectively, from which the enzymes were purified and characterized. Contrary to what was expected, the highest GOD and Inv activities were found at 64°C and 60°C, respectively, and at 47°C for ALP. However, the three enzymes maintained a significant percentage of activity at lower temperatures, especially ALP that kept a 67 and 43% of activity at 10°C and 4°C, respectively.

  7. Biochemical and Thermodynamical Characterization of Glucose Oxidase, Invertase, and Alkaline Phosphatase Secreted by Antarctic Yeasts

    PubMed Central

    Yuivar, Yassef; Barahona, Salvador; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2017-01-01

    The use of enzymes in diverse industries has increased substantially over past decades, creating a well-established and growing global market. Currently, the use of enzymes that work better at ambient or lower temperatures in order to decrease the temperatures of production processes is desirable. There is thus a continuous search for enzymes in cold environments, especially from microbial sources, with amylases, proteases, lipases and, cellulases being the most studied. Other enzymes, such as glucose oxidase (GOD), invertase (Inv), and alkaline phosphatase (ALP), also have a high potential for application, but have been much less studied in microorganisms living in cold-environments. In this work, secretion of these three enzymes by Antarctic yeast species was analyzed, and five, three, and five species were found to produce extracellular GOD, Inv, and ALP, respectively. The major producers of GOD, Inv, and ALP were Goffeauzyma gastrica, Wickerhamomyces anomalus, and Dioszegia sp., respectively, from which the enzymes were purified and characterized. Contrary to what was expected, the highest GOD and Inv activities were found at 64°C and 60°C, respectively, and at 47°C for ALP. However, the three enzymes maintained a significant percentage of activity at lower temperatures, especially ALP that kept a 67 and 43% of activity at 10°C and 4°C, respectively. PMID:29312954

  8. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  9. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    PubMed

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  10. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    PubMed

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.

  11. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    PubMed Central

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  12. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants.

    PubMed

    Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.

  13. Disruption of the processing alpha-mannosidase gene does not prevent outer chain synthesis in Saccharomyces cerevisiae.

    PubMed

    Puccia, R; Grondin, B; Herscovics, A

    1993-02-15

    Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis.

  14. Promoter regions of potato vacuolar invertase gene in response to sugars and hormones.

    PubMed

    Ou, Yongbin; Song, Botao; Liu, Xun; Xie, Conghua; Li, Meng; Lin, Yuan; Zhang, Huiling; Liu, Jun

    2013-08-01

    Potato vacuolar acid invertase (StvacINV1) (β-fructofuranosidase; EC 3.2.1.26) has been confirmed to play an important role in cold-induced sweetening of potato tubers. However, the transcriptional regulation mechanisms of StvacINV1 are largely unknown. In this study, the 5'-flanking sequence of StvacINV1 was cloned and the cis-acting elements were predicted. Histochemical assay showed that the StvacINV1 promoter governed β-glucuronidase (GUS) expression in potato leaves, stems, roots and tubers. Quantitative analysis of GUS expression suggested that the activity of StvacINV1 promoter was suppressed by sucrose, glucose, fructose, and cold, while enhanced by indole-3-acetic acid (IAA), and gibberellic acid (GA3). Further deletion analysis clarified that the promoter regions from -118 to -551, -551 to -1021, and -1021 to -1521 were required for responding to sucrose/glucose, GA3, and IAA, respectively. These findings provide essential information regarding transcriptional regulation mechanisms of StvacINV1. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Chimeric TALE recombinases with programmable DNA sequence specificity.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  16. Effect of Late Planting and Shading on Cellulose Synthesis during Cotton Fiber Secondary Wall Development

    PubMed Central

    Chen, Ji; Lv, Fengjuan; Liu, Jingran; Ma, Yina; Wang, Youhua; Chen, Binglin; Meng, Yali; Zhou, Zhiguo; Oosterhuis, Derrick M.

    2014-01-01

    Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%–25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%–20.9%) was greater than shading (decreased cellulose content by 0.7%–5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38–45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase. PMID:25133819

  17. Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis

    PubMed Central

    Zhu, Jinheng; Qi, Jiyan; Fang, Yongjun; Xiao, Xiaohu; Li, Jiuhui; Lan, Jixian; Tang, Chaorong

    2018-01-01

    Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants. PMID:29449852

  18. [Dynamic changes of soil microbial populations and enzyme activities in super-high yielding summer maize farmland soil].

    PubMed

    Hou, Peng; Wang, Yong-jun; Wang, Kong-jun; Yang, Jin-sheng; Li, Deng-hai; Dong, Shu-ting; Liu, Jing-guo

    2008-08-01

    To reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2). The numbers of bacteria, fungi, and actinomycetes as well as the activities of urease and invertase in 0-20 cm soil layer were determined. The results showed that in the growth period of maize, the numbers of bacteria, fungi, and actinomycetes in the two farmland soils increased first and declined then. At the later growth stages of maize, the numbers of soil microbes, especially those of bacteria and actinomycetes, were lower in HF than those in CF. At harvest stage, the ratio of the number of soil bacteria to fungi (B/ F) in HF was 2.03 times higher than that at sowing stage, and 3.02 times higher than that in CF. The B/F in CF had less difference at harvest and sowing stages. The soil urease activity in HF was significantly lower than that in CF at jointing stage, and the invertase activity in HF decreased rapidly after blooming stage, being significantly lower than that in CF.

  19. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops.

    PubMed

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S; Ding, Shi-You; Ciesielski, Peter N; Yang, Shihui; Tucker, Melvin P; Himmel, Michael E

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.

  20. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: Implications for the genetic engineering of bioenergy crops

    DOE PAGES

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; ...

    2015-05-13

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, for this study, we utilize a CaCl 2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This hasmore » led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. Finally, the implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.« less

  1. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    PubMed Central

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; Ding, Shi-You; Ciesielski, Peter N.; Yang, Shihui; Tucker, Melvin P.; Himmel, Michael E.

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed. PMID:26029221

  2. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: Implications for the genetic engineering of bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, for this study, we utilize a CaCl 2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This hasmore » led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. Finally, the implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.« less

  3. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    NASA Astrophysics Data System (ADS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles.

  4. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    PubMed

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p < 0.01). The addition of earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.

  5. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree).

    PubMed

    Liu, Shujin; Lan, Jixian; Zhou, Binhui; Qin, Yunxia; Zhou, Yihua; Xiao, Xiaohu; Yang, Jianghua; Gou, Jiqing; Qi, Jiyan; Huang, Yacheng; Tang, Chaorong

    2015-04-01

    In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    PubMed Central

    Xiang, Yu; Lu, Yi

    2012-01-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 μM detection limit) to an important biological cofactor (adenosine, 18 μM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers DNAzymes or aptazymes). PMID:21860458

  9. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Lu, Yi

    2011-09-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA-invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).

  10. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    PubMed

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  11. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants

    PubMed Central

    Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant’s circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source–sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant–nematode interactions. PMID:24187419

  12. Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose.

    PubMed

    Löwe, Hannes; Schmauder, Lukas; Hobmeier, Karina; Kremling, Andreas; Pflüger-Grau, Katharina

    2017-08-01

    Sucrose is an important disaccharide used as a substrate in many industrial applications. It is a major component of molasses, a cheap by-product of the sugar industry. Unfortunately, not all industrially relevant organisms, among them Pseudomonas putida, are capable of metabolizing sucrose. We chose a metabolic engineering approach to circumvent this blockage and equip P. putida with the activities necessary to consume sucrose. Therefore, we constructed a pair of broad-host range mini-transposons (pSST - sucrose splitting transposon), carrying either cscA, encoding an invertase able to split sucrose into glucose and fructose, or additionally cscB, encoding a sucrose permease. Introduction of cscA was sufficient to convey sucrose consumption and the additional presence of cscB had no further effect, though the sucrose permease was built and localized to the membrane. Sucrose was split extracellularly by the activity of the invertase CscA leaking out of the cell. The transposons were also used to confer sucrose consumption to Cupriavidus necator. Interestingly, in this strain, CscB acted as a glucose transporter, such that C. necator also gained the ability to grow on glucose. Thus, the pSST transposons are functional tools to extend the substrate spectrum of Gram-negative bacterial strains toward sucrose. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Starch and the Control of Kernel Number in Maize at Low Water Potentials1

    PubMed Central

    Zinselmeier, Christopher; Jeong, Byeong-Ryong; Boyer, John S.

    1999-01-01

    After reproduction is initiated in plants, subsequent reproductive development is sometimes interrupted, which decreases the final number of seeds and fruits. We subjected maize (Zea mays L.) to low water potentials (ψw) that frequently cause this kind of failure. We observed metabolite pools and enzyme activities in the developing ovaries while we manipulated the sugar stream by feeding sucrose (Suc) to the stems. Low ψw imposed for 5 d around pollination allowed embryos to form, but abortion occurred and kernel number decreased markedly. The ovary contained starch that nearly disappeared during this abortion. Analyses showed that all of the intermediates in starch synthesis were depleted. However, when labeled Suc was fed to the stems, label arrived at the ovaries. Solute accumulated and caused osmotic adjustment. Suc accumulated, but other intermediates did not, showing that a partial block in starch synthesis occurred at the first step in Suc utilization. This step was mediated by invertase, which had low activity. Because of the block, Suc feeding only partially prevented starch disappearance and abortion. These results indicate that young embryos abort when the sugar stream is interrupted sufficiently to deplete starch during early ovary development, and this abortion results in a loss of mature seeds and fruits. At low ψw, maintaining the sugar stream partially prevented the abortion, but invertase regulated the synthesis of ovary starch and partially prevented full recovery. PMID:10482657

  14. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment.

    PubMed

    Huang, Danlian; Liu, Linshan; Zeng, Guangming; Xu, Piao; Huang, Chao; Deng, Linjing; Wang, Rongzhong; Wan, Jia

    2017-05-01

    Owning to the potential in carbon sequestration and other environmental benefits, biochar has been widely used for in-situ environmental remediation. Understanding the biological effects of biochar is essential. The goal of this study was to explore the response of indigenous microbes under the stress of different concentrations of biochar. The results showed that biochar could significantly change physicochemical properties, enzymes activity and microbial community composition depending on biochar concentration and incubation time. When the concentration of biochar was 50 mg kg -1 , the activities of invertase and alkaline phosphatase were obviously inhibited. Meanwhile, bacterial 16S rRNA and fungal 18S rRNA coding gene copies were decreased by 74% and 25%, respectively after 90 days of incubation. Additionally, the bacterial community succession occurred and the relative intensity of dominant species decreased when treated with high concentration of biochar. However, the activity of urease and alkaline phosphatase, as well as bacterial and fungal abundance, were increased when sediment was treated with 10 mg kg -1 biochar. Relationships among physicochemical properties, heavy metals and microbes were analyzed by correlation analysis and redundancy analysis (RDA). Correlations between invertase activity and pH value in the experiment were significantly negative. Redundancy analysis showed physicochemical properties and heavy metals explained 92% of the variation in the bacterial DGGE profiles and organic matter content explained the majority (45%) of the variation. This study indicated that indigenous microbes could be affected by biochar either directly or indirectly via changing the physicochemical properties and heavy metals of sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Temporal dynamics of the compositions and activities of soil microbial communities post-application of the insecticide chlorantraniliprole in paddy soils.

    PubMed

    Wu, Meng; Liu, Jia; Li, Weitao; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2017-10-01

    Chlorantraniliprole (CAP) is a newly developed insecticide widely used in rice fields in China. There has been few studies evaluating the toxicological effects of CAP on soil-associated microbes. An 85-day microcosm experiment was performed to reveal the dissipation dynamics of CAP in three types of paddy soils in subtropical China. The effects of CAP on microbial activities (microbial biomass carbon-MBC, basal soil respiration-BSR, microbial metabolic quotient-qCO 2 , acid phosphatase and sucrose invertase activities) in the soils were periodically evaluated. Microbial phospholipid fatty acid (PLFA) analysis was used to evaluate the change of soil microbial community composition on day 14 and 50 of the experiment. CAP residues were extracted using the quick, easy, cheap, effective, rugged, and safe (QuChERS) method and quantification was measured by high performance liquid chromatography (HPLC). The half-lives (DT 50 ) of CAP were in the range of 41.0-53.0 days in the three soils. The results showed that CAP did not impart negative effects on MBC during the incubation. CAP inhibited BSR, qCO 2 , acid phosphatase and sucrose invertase activities in the first 14 days of incubation in all the soils. After day 14, the soil microbial parameters of CAP-treated soils became statistically at par with their controls. Principal component analysis (PCA) determining abundance of biomarker PLFAs indicated that the application of CAP significantly changed the compositions of microbial communities in all three paddy soils on day 14 but the compositions of soil microbial communities recovered by day 50. This study indicates that CAP does not ultimately impair microbial activities and microbial compositions of these three paddy soil types. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Purification and characterization of acid trehalase from the yeast suc2 mutant.

    PubMed

    Mittenbühler, K; Holzer, H

    1988-06-15

    Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.

  17. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes.

    PubMed

    Wiberley-Bradford, Amy E; Bethke, Paul C

    2018-01-01

    Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose, and fructose. This developmental process, senescent sweetening, manifests as a blush of color near the center of the fried chip, becomes more severe with time, and limits the storage period. Vacuolar invertase (VInv) converts sucrose to glucose and fructose and is hypothesized to play a role in senescent sweetening. To test this hypothesis, senescent sweetening was quantified in multiple lines of potato with reduced VInv expression. Chip darkening from senescent sweetening was delayed by about 4 weeks for tubers with reduced VInv expression. A strong positive correlation between frequency of dark chips and tuber hexose content was observed. Tubers with reduced VInv expression had lower hexose to sucrose ratios than controls. VInv activity contributes to reducing sugar accumulation during senescent sweetening. Sucrose breakdown during frying may contribute to chip darkening. Suppressing VInv expression increases the storage period of the chipping potato crop, which is an important consideration, as potatoes with reduced VInv expression are entering commercial production in the USA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Jasmonates act positively in adventitious root formation in petunia cuttings.

    PubMed

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-09-22

    Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.

  19. Disruption of the processing alpha-mannosidase gene does not prevent outer chain synthesis in Saccharomyces cerevisiae.

    PubMed Central

    Puccia, R; Grondin, B; Herscovics, A

    1993-01-01

    Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis. Images Figure 1 Figure 4 PMID:8439291

  20. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  1. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.).

    PubMed

    Bahuguna, Rajeev N; Solis, Celymar A; Shi, Wanju; Jagadish, Krishna S V

    2017-01-01

    High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23°C) and HNT (29°C) using unique field-based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64. HNT increased night respiration (Rn) accounted for higher carbon losses during post-flowering phase. Gharib and IR64 recorded 16 and 9% yield reduction with a 63 and 35% increase in average post-flowering Rn under HNT, respectively. HNT altered sugar accumulation in the rachis and spikelets across the cultivars with Gharib and IR64 recording higher sugar accumulation in the rachis. HNT reduced panicle starch content in Gharib (22%) and IR64 (11%) at physiological maturity, but not in the tolerant N22. At the enzymatic level, HNT reduced sink strength with lower cell wall invertase and sucrose synthase activity in Gharib and IR64, which affected starch accumulation in the developing grain, thereby reducing grain weight and quality. Interestingly, N22 recorded lower Rn-mediated carbon losses and minimum impact on sink strength under HNT. Mechanistic responses identified will facilitate crop models to precisely estimate HNT-induced damage under future warming scenarios. © 2016 Scandinavian Plant Physiology Society.

  2. [Effects of intensive management on soil C and N pools and soil enzyme activities in Moso bamboo plantations.

    PubMed

    Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan

    2016-11-18

    In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic fertilizer in the intensive mana-gement process for the sustainable management of Moso bamboo plantations in the future.

  3. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress.

    PubMed

    Palma, Francisco; Carvajal, Fátima; Lluch, Carmen; Jamilena, Manuel; Garrido, Dolores

    2014-03-01

    The postharvest handling of zucchini fruit includes low-temperature storage, making cold stress unavoidable. We have investigated the changes of soluble carbohydrates under this stress and its relation with weight loss and chilling injury in zucchini fruit during postharvest storage at 4 °C and 20 °C for up to 14 days. Two varieties with different degrees of chilling tolerance were compared: Natura, the more tolerant variety, and Sinatra, the variety that suffered more severe chilling-injury symptoms and weight loss. In both varieties, total soluble carbohydrates, reducing soluble carbohydrates and polyols content was generally higher during storage at 4 °C than at 20 °C, thus these parameters are related to the physiological response of zucchini fruit to cold stress. However, the raffinose content increased in Natura and Sinatra fruits during storage at 4 °C and 20 °C, although at 20 °C the increase in raffinose was more remarkable than at 4 °C in both varieties, so that the role of raffinose could be more likely related to dehydration than to chilling susceptibility of zucchini fruit. Glucose, fructose, pinitol, and acid invertase activity registered opposite trends in both varieties against chilling, increasing in Natura and decreasing in Sinatra. The increase in acid invertase activity in Natura fruit during cold storage could contribute in part to the increase of these reducing sugars, whose metabolism could be involved in the adaptation to postharvest cold storage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Impact of nano-CaCO3 -LDPE packaging on quality of fresh-cut sugarcane.

    PubMed

    Luo, Zisheng; Wang, Yansheng; Wang, Haohui; Feng, Simin

    2014-12-01

    In order to evaluate the effects of nano-CaCO3 -based low density polyethylene (nano-CaCO3 -LDPE) packaging on the quality of fresh-cut sugarcane, concentrations of O2 and CO2 within the packages, overall visual quality (OVQ), total bacterial count (TBC), yeast and mould count (YMC), reducing sugar content and total phenolic content, respiration, ethylene production, and the activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), acid invertase (AI) and neutral invertase (NI) were examined during storage at 10 °C for 5 days. The transmission rate of O2 and CO2 of the nano-CaCO3 -LDPE material was lower than that of LDPE, which lead to the more rapid formation of gas environment with low O2 and high CO2 concentration in the package. TBC and YMC counts of fresh-cut sugarcane were significantly retarded by nano-CaCO3 -LDPE packaging. Nano-CaCO3 -LDPE packaging fresh-cut sugarcane exhibited significantly lower activities of PAL, PPO, POD AI and NI than LDPE packaging fresh-cut sugarcanes during the storage. Meanwhile, nano-CaCO3 -LDPE packaging significantly inhibited the increase of browning index and total phenolic content, while improving OVQ. Our results indicated that nano-CaCO3 -LDPE packaging together with the cold storage is a promising approach in inhibiting browning and maintaining quality of fresh-cut sugarcane. © 2014 Society of Chemical Industry.

  5. Peach leaf curl disease shifts sugar metabolism in severely infected leaves from source to sink.

    PubMed

    Moscatello, Stefano; Proietti, Simona; Buonaurio, Roberto; Famiani, Franco; Raggi, Vittorio; Walker, Robert P; Battistelli, Alberto

    2017-03-01

    Peach leaf curl is a disease that affects the leaves of peach trees, and in severe cases all of the leaf can be similarly affected. This study investigated some effects of this disease on the metabolism of peach leaves in which all parts of the leaf were infected. These diseased leaves contained very little chlorophyll and performed little or no photosynthesis. Compared to uninfected leaves, diseased leaves possessed higher contents of fructose and especially glucose, but lowered contents of sucrose, sorbitol and especially starch. The activities of soluble acid invertase, neutral invertase, sorbitol dehydrogenase and sucrose synthase were all higher in diseased leaves, whereas, those of aldose-6-phosphate reductase and sucrose phosphate synthase were lower. The activities of hexokinase and fructokinase were little changed. In addition, immunblots showed that the contents of Rubisco and ADP-glucose phosphorylase were reduced in diseased leaves, whereas, the content of phosphoenolpyruvate carboxylase was increased. The results show that certain aspects of the metabolism of diseased leaves are similar to immature sink leaves. That is photosynthetic function is reduced, the leaf imports rather than exports sugars, and the contents of non-structural carbohydrates and enzymes involved in their metabolism are similar to sink leaves. Further, the effects of peach leaf curl on the metabolism of peach leaves are comparable to the effects of some other diseases on the metabolism of photosynthetic organs of other plant species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization.

    PubMed

    Nakajima, M; Watanabe, A; Jimbo, N; Nishizawa, K; Nakao, S

    1989-02-20

    A forced-flow enzyme membrane reactor system for sucrose inversion was investigated using three ceramic membranes having different pore sizes. Invertase was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-glutaraldehyde technique. With the cross-flow filtration of sucrose solution, the reaction rate was a function of the permeate flux, easily controlled by pressure. Using 0.5 microm support pore size of membrane, the volumetric productivity obtained was 10 times higher than that in a reported immobilized enzyme column reactor, with a short residence time of 5 s and 100% conversion of the sucrose inversion.

  7. Primary, Secondary Metabolites, Photosynthetic Capacity and Antioxidant Activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) Exposed to Potassium Fertilization under Greenhouse Conditions

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2012-01-01

    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant. PMID:23203128

  8. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase.

    PubMed

    Aziz, M G; Michlmayr, H; Kulbe, K D; Del Hierro, A M

    2011-01-05

    An easy procedure for cell free biotransformation of pineapple juice sugars into dietetic derivatives was accomplished using a commercial invertase and an oxidoreductase from Zymomonas mobilis. First, pineapple juice sucrose was quantitatively converted into glucose and fructose by invertase, thus increasing the concentration of each monosaccharide in the original juice to almost twice. In a second step, glucose-fructose oxidoreductase (GFOR) transformed glucose into gluconolactone, and fructose into the low calorie sweetener sorbitol. The advantage of using GFOR is simultaneous reduction of fructose and oxidation of glucose, allowing the continuous regeneration of the essential coenzyme NADP(H), that is tightly bound to the enzyme. The yield of GFOR catalyzed sugar conversion depends on initial pH and control of pH during the reaction. At optimal conditions (pH control at 6.2) a maximum of 80% (w/v) sugar conversion was obtained. Without pH control, GFOR is inactivated rapidly due to gluconic acid formation. Therefore, conversion yields are relatively low at the natural pH of pineapple juice. The application of this process might be more advantageous on juices of other tropical fruits (papaya, jackfruit, mango) due to their naturally given higher pH. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory

    PubMed Central

    2012-01-01

    Background Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression analysis, enzyme activity and metabolite measurements. Results Defoliation by insect herbivory (HD) or mechanical damage (MD) led to a rapid and transient reduction of non-structural carbohydrates (NSC) in all tissues examined. This correlated with a short-term induction of foliar sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and growth and reproductive parameters. Conclusions It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the coordinate action of genes/enzymes that are differentially affected by the way leaf damage is performed. Defoliation tolerance in grain is a complex process that can’t be fully explained at the transcriptomic level only. PMID:22966837

  10. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development.

    PubMed

    Leskow, Carla Coluccio; Kamenetzky, Laura; Dominguez, Pia Guadalupe; Díaz Zirpolo, José Antonio; Obata, Toshihiro; Costa, Hernán; Martí, Marcelo; Taboga, Oscar; Keurentjes, Joost; Sulpice, Ronan; Ishihara, Hirofumi; Stitt, Mark; Fernie, Alisdair Robert; Carrari, Fernando

    2016-07-01

    Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  12. The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization.

    PubMed

    Stritzler, Margarita; Muñiz García, María Noelia; Schlesinger, Mariana; Cortelezzi, Juan Ignacio; Capiati, Daniela Andrea

    2017-10-13

    This study presents the characterization of the plasma membrane (PM) H+-ATPases in potato, focusing on their role in stolon and tuber development. Seven PM H+-ATPase genes were identified in the Solanum tuberosum genome, designated PHA1-PHA7. PHA genes show distinct expression patterns in different plant tissues and under different stress treatments. Application of PM H+-ATPase inhibitors arrests stolon growth, promotes tuber induction, and reduces tuber size, indicating that PM H+-ATPases are involved in tuberization, acting at different stages of the process. Transgenic potato plants overexpressing PHA1 were generated (PHA1-OE). At early developmental stages, PHA1-OE stolons elongate faster and show longer epidermal cells than wild-type stolons; this accelerated growth is accompanied by higher cell wall invertase activity, lower starch content, and higher expression of the sucrose-H+ symporter gene StSUT1. PHA1-OE stolons display an increased branching phenotype and develop larger tubers. PHA1-OE plants are taller and also present a highly branched phenotype. These results reveal a prominent role for PHA1 in plant growth and development. Regarding tuberization, PHA1 promotes stolon elongation at early stages, and tuber growth later on. PHA1 is involved in the sucrose-starch metabolism in stolons, possibly providing the driving force for sugar transporters to maintain the apoplastic sucrose transport during elongation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Long-Term Application of Bioorganic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil

    PubMed Central

    Wang, Lei; Yang, Fang; E, Yaoyao; Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF) on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1) control without fertilization (CK); (2) chemical fertilizer application (CF); and (3) bioorganic fertilizer application (BOF). The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009–2015). The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0–20 cm, 20–40 cm, and 40–60 cm), e.g., the relative abundance of bio-control bacteria (Xanthomonadales, Lysobacter, Pseudomonas, and Bacillus), Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria, and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter, and Ohtaekwangia. These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity. PMID:27965631

  14. Molecular and Biochemical Characterization of a β-Fructofuranosidase from Xanthophyllomyces dendrorhous▿ †

    PubMed Central

    Linde, Dolores; Macias, Isabel; Fernández-Arrojo, Lucía; Plou, Francisco J.; Jiménez, Antonio; Fernández-Lobato, María

    2009-01-01

    An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained. PMID:19088319

  15. Long-Term Application of Bioorganic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil.

    PubMed

    Wang, Lei; Yang, Fang; E, Yaoyao; Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Soil biochemical properties and microbial communities are usually considered as important indicators of soil health because of their association with plant nutrition. In this study, we investigated the impact of long-term application of bioorganic fertilizer (BOF) on soil biochemical properties and microbial communities in the apple orchard soil of the Loess Plateau. The experiment included three treatments: (1) control without fertilization (CK); (2) chemical fertilizer application (CF); and (3) bioorganic fertilizer application (BOF). The high throughput sequencing was used to examine the bacterial and fungal communities in apple orchard soil. The results showed that the BOF treatment significantly increased the apple yield during the experimental time (2009-2015). The application of BOF significantly increased the activities of catalase and invertase compared to those in CK and CF treatments. The high throughput sequencing data showed that the application of BOF changed the microbial community composition of all soil depths considered (0-20 cm, 20-40 cm, and 40-60 cm), e.g., the relative abundance of bio-control bacteria ( Xanthomonadales, Lysobacter, Pseudomonas , and Bacillus ), Proteobacteria, Bacteroidetes, Ohtaekwangia, Ilyonectria , and Lecanicillium was increased while that of Acidobacteria, Chloroflexi, Gp4, Gp6 and Sphaerobacter was decreased. The increase in apple yield after the application of BOF might be due to increase in organic matter, total nitrogen and catalase and invertase activities of soil and change in the bacterial community composition by enriching Bacillus, Pseudomonas, Lysobacter , and Ohtaekwangia . These results further enhance the understanding on how BOFs alter soil microbial community composition to stimulate soil productivity.

  16. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    PubMed Central

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  17. Is Change in Ovary Carbon Status a Cause or a Consequence of Maize Ovary Abortion in Water Deficit during Flowering?1[OPEN

    PubMed Central

    Prodhomme, Duyên; Gibon, Yves; Tardieu, François

    2016-01-01

    Flower or grain abortion causes large yield losses under water deficit. In maize (Zea mays), it is often attributed to a carbon limitation via the disruption of sucrose cleavage by cell wall invertases in developing ovaries. We have tested this hypothesis versus another linked to the expansive growth of ovaries and silks. We have measured, in silks and ovaries of well-watered or moderately droughted plants, the transcript abundances of genes involved in either tissue expansion or sugar metabolism, together with the concentrations and amounts of sugars, and with the activities of major enzymes of carbon metabolism. Photosynthesis and indicators of sugar export, measured during water deprivation, suggested sugar export maintained by the leaf. The first molecular changes occurred in silks rather than in ovaries and involved genes affecting expansive growth rather than sugar metabolism. Changes in the concentrations and amounts of sugars and in the activities of enzymes of sugar metabolism occurred in apical ovaries that eventually aborted, but probably after the switch to abortion of these ovaries. Hence, we propose that, under moderate water deficits corresponding to most European drought scenarios, changes in carbon metabolism during flowering time are a consequence rather than a cause of the beginning of ovary abortion. A carbon-driven ovary abortion may occur later in the cycle in the case of carbon shortage or under very severe water deficits. These findings support the view that, until the end of silking, expansive growth of reproductive organs is the primary event leading to abortion, rather than a disruption of carbon metabolism. PMID:27208256

  18. Seasonal variation in non-structural carbohydrates, sucrolytic activity and secondary metabolites in deciduous and perennial Diospyros species sampled in Western Mexico

    PubMed Central

    Ramírez-Briones, Ernesto; Rodríguez-Macías, Ramón; Salcedo-Pérez, Eduardo; Martínez-Gallardo, Norma; Tiessen, Axel; Molina-Torres, Jorge; Délano-Frier, John P.; Zañudo-Hernández, Julia

    2017-01-01

    This study was performed to test the working hypothesis that the primary determinants influencing seasonal driven modifications in carbon mobilization and other key biochemical parameters in leaves of poorly known Diospyros digyna (Ddg; semi-domesticated; perennial) and D. rekoi (Dre; undomesticated; deciduous) trees are determined by environmental growing conditions, agronomic management and physiological plasticity. Thus, biochemical changes in leaves of both trees were recorded seasonally during two successive fruiting years. Trees were randomly sampled in Western Mexico habitats with differing soil quality, climatic conditions, luminosity, and cultivation practices. Leaves of Ddg had consistently higher total chlorophyll contents (CT) that, unexpectedly, peaked in the winter of 2015. In Dre, the highest leaf CT values recorded in the summer of 2015 inversely correlated with low average luminosity and high Chl a/ Chlb ratios. The seasonal CT variations in Dre were congruent with varying luminosity, whereas those in Ddg were probably affected by other factors, such as fluctuating leaf protein contents and the funneling of light energy to foliar non-structural carbohydrates (NSCs) accumulation, which were consistently higher than those detected in Dre leaves. Seasonal foliar NSC fluctuations in both species were in agreement with the carbon (C) demands of flowering, fruiting and/ or leaf regrowth. Seasonal changes in foliar hexose to sucrose (Hex/ Suc) ratios coincided with cell wall invertase activity in both species. In Dre, high Hex/ Suc ratios in spring leaves possibly allowed an accumulation of phenolic acids, not observed in Ddg. The above results supported the hypothesis proposed by showing that leaf responses to changing environmental conditions differ in perennial and deciduous Diospyros trees, including a dynamic adjustment of NSCs to supply the C demands imposed by reproduction, leaf regrowth and, possibly, stress. PMID:29073239

  19. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    PubMed

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  20. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  1. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development

    PubMed Central

    Katz, Ehud; Boo, Kyung Hwan; Kim, Ho Youn; Eigenheer, Richard A.; Phinney, Brett S.; Shulaev, Vladimir; Negre-Zakharov, Florence; Sadka, Avi; Blumwald, Eduardo

    2011-01-01

    Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development. PMID:21841177

  2. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency.

    PubMed

    Dahro, Bachar; Wang, Fei; Peng, Ting; Liu, Ji-Hong

    2016-03-29

    Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.

  3. Impact of reclamation treatment on the biological activity of soils of the solonetz complex in Western Siberia

    NASA Astrophysics Data System (ADS)

    Berezin, L. V.; Khamova, O. F.; Paderina, E. V.; Gindemit, A. M.

    2014-11-01

    The abundance and activity of the soil microflora were studied in a field experiment with the use of green manure crops to assess the impact of reclamation measures on the biological activity of soils of the solonetz complex. The number of microorganisms in the plow soil horizon increased in the background of the green fallows as compared to the black ones. Coefficients of mineralization, immobilization, and transformation of organic compounds were calculated for different variants of the soil treatment. The value of the mineralization coefficient indicates the intense decomposition of the green manure that entered the soil. In the first year, peas were actively decomposed, while oats, in the second year (aftereffect). The activity of the soil enzymes (invertase, urease, and catalase) was determined. A close relationship between the catalase activity and the intensity of the microbiological processes in the soils was revealed.

  4. The biological activity of chernozems in the Central Caucasus Mountains (Terskii variant of altitudinal zonality), Kabardino-Balkaria

    NASA Astrophysics Data System (ADS)

    Gedgafova, F. V.; Uligova, T. S.; Gorobtsova, O. N.; Tembotov, R. Kh.

    2015-12-01

    Some parameters of the biological activity (humus content; activity of hydrolytic enzymes invertase, phosphatase, urease; and the intensity of carbon dioxide emission) were studied in the chernozems of agrocenoses and native biogeocenoses in the foothills of the Caucasus Mountains representing the Terskii variant of the altitudinal zonality. The statistically significant differences were revealed between the relevant characteristics of the soils of the agrocenoses and of the native biogeocenoses. The integral index of the ecological-biological state of the soils was used to estimate changes in the biological activity of the arable chernozems. The 40-60% decrease of this index in the cultivated chernozems testified to their degradation with a decrease in fertility and the disturbance of ecological functions as compared to these characteristics in the virgin chernozems.

  5. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses.

    PubMed

    Arshad, Muhammad; Ahmed, Sibtain; Zia, Muhammad Anjum; Rajoka, Muhammad Ibrahim

    2014-03-01

    In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48 ± 0.02 g g(-1)), theoretical yield (93 ± 3%), and extracellular invertase productivity (1,430 ± 50 IU l(-1) h(-1)), respectively, when fermenting 180 g sugars l(-1) in molasses medium at 43 °C in 300 m(3) working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M(-1)) and entropy (ΔS*) (-202.88 J M(-1) K(-1)) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l(-1) h(-1)) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.

  6. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    NASA Astrophysics Data System (ADS)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  7. The influence of super-high-frequency radiation on the enzyme activity and number of microorganisms in soils of southern Russia

    NASA Astrophysics Data System (ADS)

    Denisova, T. V.; Kolesnikov, S. I.

    2009-04-01

    The effects of super-high-frequency radiation (SHF radiation) on the microflora and enzymatic activity of an ordinary chernozem, a chestnut soil, a brown forest soil, and gray sands were studied. The exposure time of the 800-W SHF radiation was 30 s, 1, 10, and 60 min. The activity of the soil enzymes (catalase and invertase) was found to be more resistant to the action of SHF radiation than the number of microorganisms (ammonifying bacteria (including sporogenous ones), bacteria of the genus Azotobacter, and micromycetes). According to the resistance of the enzymes, the soils studied form the following sequence: gray sands > ordinary chernozem ≥ chestnut soil > brown forest soil. Under the action of the SHF radiation, the number of microorganisms in the ordinary chernozem decreased to a lesser extent.

  8. The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region

    NASA Astrophysics Data System (ADS)

    Kazeev, K. Sh.; Kutrovskii, M. A.; Dadenko, E. V.; Vezdeneeva, L. S.; Kolesnikov, S. I.; Val'kov, V. F.

    2012-03-01

    The biological activity of different subtypes of soddy-calcareous soils (rendzinas) of the Northwest Caucasus region was studied. In the Novorossiisk-Abrau-Dyurso region (dry subtropics), typical soddy-calcareous soils with the high content of carbonates predominate; in the more humid conditions of the Lagonaki Plateau (Republic of Adygeya), leached soddy-calcareous soils carbonate-free down to the parent rock are spread. The number of microarthropods, the populations of fungi and bacteria, and the enzyme activity (catalase, dehydrogenase, and invertase) testify that the biological activity of these soils significantly differs. In the typical soddy-calcareous soils of the dry subtropics, the content of carbonates does not affect the characteristics mentioned; in the more humid conditions of the West Caucasus region, the presence of carbonates in the parent rocks intensifies the biological activity of the soddy-calcareous soils.

  9. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China

    USGS Publications Warehouse

    Song, Yanyu; Song, Changchun; Meng, Henan; Swarzenski, Christopher M.; Wang, Xianwei; Tan, Wenwen

    2017-01-01

    Nitrogen (N) is a limiting nutrient in many peatland ecosystems. Enhanced N deposition, a major component of global climate change, affects ecosystem carbon (C) balance and alters soil C storage by changing plant and soil properties. However, the effects of enhanced N deposition on peatland ecosystems are poorly understood. We conducted a two-year N additions field experiment in a peatland dominated by Eriophorum vaginatum in the Da Xing’an Mountains, Northeast China. Four levels of N treatments were applied: (1) CK (no N added), (2) N1 (6 g N m−2 yr−1), (3) N2 (12 g N m−2 yr−1), and (4) N3 (24 g N m−2  yr−1). Plant and soil material was harvested at the end of the second growing season. N additions increased litter N and phosphorus (P) content, as well as β-glucosidase, invertase, and acid-phosphatase activity, but decreased litter C:N and C:P ratios. Litter carbon content remained unchanged. N additions increased available NH4+–N and NO3−–N as well as total Gram-positive (Gram+), Gram-negative (Gram−), and total bacterial phospholipid fatty acids (PLFA) in shallow soil (0–15 cm depth). An increase in these PLFAs was accompanied by a decrease in soil labile organic C (microbial biomass carbon and dissolved organic carbon), and appeared to accelerate decomposition and reduce the stability of the soil C pool. Invertase and urease activity in shallow soils and acid-phosphatase activity in deep soils (15–30 cm depth) was inhibited by N additions. Together, these findings suggest that an increase in N deposition in peatlands could accelerate litter decomposition and the loss of labile C, as well as alter microbial biomass and function.

  10. Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance.

    PubMed

    Zhang, Chen; Li, Xia; He, Yafei; Zhang, Jinfei; Yan, Ting; Liu, Xiaolong

    2017-06-01

    We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C 4 PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C 4 -PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C 4 photosynthesis can be used to increase the yield of rice under drought conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood.

    PubMed

    Govarthanan, M; Mythili, R; Selvankumar, T; Kamala-Kannan, S; Kim, H

    2018-04-30

    In the present study, Helianthus annuus grown in arsenic- (As) and lead- (Pb) contaminated soil were treated with plant-growth promoting fungi Trichoderma sp. MG isolated from decayed wood and assessed for their phytoremediation efficiency. The isolate MG exhibited a high tolerance to As (650mg/L) and Pb (500mg/L), and could remove > 70% of metals in aqueous solution with an initial concentration of 100mg/L each. In addition, the isolate MG was screened for plant-growth-promoting factors such as siderophores, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA) synthesis, and phosphate solubilisation. Phytoremediation studies indicated that treatment of H. annuus with the isolate MG had the maximum metal-accumulation in shoots (As; 67%, Pb; 59%). Furthermore, a significant increase in the soil extracellular enzyme-activities was observed in myco-phytoremediated soils. The activities of phosphatase (35 U/g dry soil), dehydrogenase (41mg TPF/g soil), cellulase (37.2mg glucose/g/2h), urease (55.4mgN/g soil/2h), amylase (49.3mg glucose/g/2h) and invertase (45.3mg glucose/g/2h) significantly increased by 12%, 14%, 12%, 22%, 19% and 14% in As contaminated soil, respectively. Similarly, the activities of phosphatase (31.4U/g dry soil), dehydrogenase (39.3mg TPF/g soil), cellulase (37.1mg glucose/g/2h), urease (49.8mgN/g soil/2h), amylase (46.3mg glucose/g/2h), and invertase (42.1mg glucose/g/2h) significantly increased by 11%, 15%, 11%, 18%, 20% and 14% in Pb contaminated soil, respectively. Obtained results indicate that the isolate MG could be a potential strain for myco-phytoremediation of As and Pb contaminated soil. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation.

    PubMed

    Rabot, Amélie; Portemer, Virginie; Péron, Thomas; Mortreau, Eric; Leduc, Nathalie; Hamama, Latifa; Coutos-Thévenot, Pierre; Atanassova, Rossitza; Sakr, Soulaiman; Le Gourrierec, José

    2014-10-01

    Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    PubMed

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability.

  14. Arxula adeninivorans (Blastobotrys adeninivorans) — A Dimorphic Yeast of Great Biotechnological Potential

    NASA Astrophysics Data System (ADS)

    Böer, Erik; Steinborn, Gerhard; Florschütz, Kristina; Körner, Martina; Gellissen, Gerd; Kunze, Gotthard

    The dimorphic ascomycetous yeast Arxula adeninivorans exhibits some unusual properties. Being a thermo- and halotolerant species it is able to assimilate and ferment many compounds as sole carbon and/or nitrogen source. It utilises n-alkanes and is capable of degrading starch. Due to these unusual biochemical properties A. adeninivorans can be exploited as a gene donor for the production of enzymes with attractive biotechnological characteristics. Examples of A. adeninivorans-derived genes that are overexpressed include the ALIP1 gene encoding a secretory lipase, the AINV encoding invertase, the AXDH encoding xylitol dehydrogenase and the APHY encoding a secretory phosphatase with phytase activity.

  15. A gain-of-function mutation of plastidic invertase alters nuclear gene expression with sucrose treatment partially via GENOMES UNCOUPLED1-mediated signaling.

    PubMed

    Maruta, Takanori; Miyazaki, Nozomi; Nosaka, Ryota; Tanaka, Hiroyuki; Padilla-Chacon, Daniel; Otori, Kumi; Kimura, Ayako; Tanabe, Noriaki; Yoshimura, Kazuya; Tamoi, Masahiro; Shigeoka, Shigeru

    2015-05-01

    Plastid gene expression (PGE) is one of the signals that regulate the expression of photosynthesis-associated nuclear genes (PhANGs) via GENOMES UNCOUPLED1 (GUN1)-dependent retrograde signaling. We recently isolated Arabidopsis sugar-inducible cotyledon yellow-192 (sicy-192), a gain-of-function mutant of plastidic invertase, and showed that following the treatment of this mutant with sucrose, the expression of PhANGs as well as PGE decreased, suggesting that the sicy-192 mutation activates a PGE-evoked and GUN1-mediated retrograde pathway. To clarify the relationship between the sicy-192 mutation, PGE, and GUN1-mediated pathway, plastid and nuclear gene expression in a double mutant of sicy-192 and gun1-101, a null mutant of GUN1 was studied. Plastid-encoded RNA polymerase (PEP)-dependent PGE was markedly suppressed in the sicy-192 mutant by the sucrose treatment, but the suppression as well as cotyledon yellow phenotype was not mitigated by GUN1 disruption. Microarray analysis revealed that the altered expression of nuclear genes such as PhANG in the sucrose-treated sicy-192 mutant was largely dependent on GUN1. The present findings demonstrated that the sicy-192 mutation alters nuclear gene expression with sucrose treatment via GUN1, which is possibly followed by inhibiting PEP-dependent PGE, providing a new insight into the role of plastid sugar metabolism in nuclear gene expression. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaça.

    PubMed

    Gomes, Fátima C O; Pataro, Carla; Guerra, Juliana B; Neves, Maria J; Corrêa, Soraya R; Moreira, Elizabeth S A; Rosa, Carlos A

    2002-05-01

    Twenty-seven Schizosaccharomyces pombe isolates from seven cachaça distilleries were tested for maximum temperature of growth and fermentation, osmotolerance, ethanol resistance, invertase production, and trehalose accumulation. Two isolates were selected for studies of trehalose accumulation under heat shock and ethanol stress. The S. pombe isolates were also characterized by RAPD-PCR. The isolates were able to grow and ferment at 41 degrees C, resisted concentrations of 10% ethanol, and grew on 50% glucose medium. Four isolates yielded invertase activity of more than 100 micromol of reducing sugar x mg(-1) x min(-1). The S. pombe isolates were able to accumulate trehalose during stationary phase. Two isolates, strains UFMG-A533 and UFMG-A1000, submitted to a 15 min heat shock, were able to accumulate high trehalose levels. Strain UFMG-A533 had a marked reduction in viability during heat shock, but strain UFMG-A1000 preserved a viability rate of almost 20% after 15 min at 48 degrees C. No clear correlation was observed between trehalose accumulation and cell survival during ethanol stress. Strain UFMG-A1000 had higher trehalose accumulation levels than strain UFMG-A533 under conditions of combined heat treatment and ethanol stress. Molecular analysis showed that some strains are maintained during the whole cachaça production period; using the RAPD-PCR profiles, it was possible to group the isolates according to their isolation sites.

  17. Relations of enzymes inAspergillus repens grown under sodium chloride stress.

    PubMed

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2M sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2M NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na(+) (as NaCl) when added up to 100MM in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.

  18. Prevalence of IgE reactivities in mold-allergic subjects to commercially available fungal enzymes.

    PubMed

    Horner, W Elliott; Armstrong, Maricelis; El-Dahr, Jane; McCants, Marjorie; Reese, Gerald; Kobernick, Aaron K; Lehrer, Samuel B

    2008-01-01

    Fungi are important aeroallergens. However, fungal allergen sources of consistent quality for clinical testing are not readily available. Because some allergens have been identified as enzymes, we assessed the prevalence of IgE reactivity to commercially available fungal enzymes. The purpose of this study was to determine IgE antibody reactivity by radioallergosorbent assay (RAST) to commercially available fungal enzymes in mold-allergic individuals. Sera from 20 subjects with symptoms of respiratory allergies and skin test reactivity to 2 or more fungal allergens (4 conidial [imperfecti] fungi and/or 8 basidiomycetes) were selected. Controls were six atopic individuals with neither history of fungal allergy nor skin test reactivity to fungi. Seventeen commercial fungal enzymes were used as antigens to evaluate the subjects' IgE antibody reactivity by RAST. Sera from most fungus-allergic individuals showed substantial IgE antibody reactivity to enzymes; control sera showed little or no reactivity. The mean reactivity to all commercial enzymes of all subjects tested was RAST > or = 3% with only one exception. The most reactive fungal enzymes were invertase (bakers' yeast, Saccharomyces cerevisiae), cellulase (Trichoderma viride), and glucosidase (brewers yeast, S. cerevisiae) with mean binding of 14.6, 9.5, and 8.8%, respectively. Using RAST results with a combination of four enzymes from S. cerevisiae (brewers yeast glucosidase, bakers' yeast maltase, invertase, and invertase V), a sensitivity of 100% was shown for detecting mold-allergic patients. The studies suggest that fungal enzymes may be useful source materials for the identification of fungal allergens and may also provide readily available source materials to produce improved diagnostic and therapeutic reagents.

  19. The curse of invertase

    USDA-ARS?s Scientific Manuscript database

    Among the greatest quality concerns for chip and fry processing potato tubers are cold-induced sweetening, sugar end defects, translucent ends, stem-end chip defect and high acrylamide-forming potential. These problems all result from elevated amounts of glucose and fructose, reducing sugars produce...

  20. Modification of the activity of some C cycle hydrolases in soils afforested with Populus alba L. Preliminary results

    NASA Astrophysics Data System (ADS)

    Zorita, Félix; García-Campos, Elena; Gil-Sotres, Fernando; Leirós, Mā Carmen; Trasar-Cepeda, Carmen

    2010-05-01

    Since 1992 a large part of the agricultural land in Galicia (NW Spain) has disappeared as a result of the EU policy of providing grants and aid for transforming marginal land into forest terrain. In Galicia, this policy (EU Regulation 2080/1992) has mainly been applied to good quality agricultural land rather than to marginal land. As a result, the land has undergone a change in use, so that previously good quality agricultural land is now planted with various species of trees, usually of young age. Despite the large area of land transformed, until now the environmental cost of such changes has not been evaluated. Taking into account that one of the possible environmental effects derived from land transformation is changes in emissions of CO2 (a major greenhouse gas), it is therefore essential to evaluate any possible modifications undergone in such soils, with special attention given to biochemical properties, i.e. the properties that determine edaphic metabolism. With this aim, we are currently investigating the effect of afforestation on diverse biochemical properties, including the activity of hydrolytic enzymes involved in the C, N, P and S cycles, in a large number of afforested soils, planted with different trees and located in different areas throughout Galicia. In each case, an agricultural soil located close to the afforested soil, but under the original land use (usually maize cropped soils or pasture soils), is also collected and analysed, and the results obtained for afforested soils compared with those for the corresponding agricultural soils. Here we report some preliminary results on modifications in the activities of some C cycle hydrolases in six soils now planted with poplars, Populus alba L, but originally cropped with maize. Samples of all soils were collected in autumn, after harvesting and before any other agricultural activities were carried out. In all cases, the upper 10 cm of the soils were collected. The soils were sieved (4 mm) prior to analysis for ß-glucosidase, invertase and CM-cellulase activity. The main physical and chemical properties of the soils were also determined (total C and N contents, pH in water and in KCl, texture, etc) and the apparent density measured to enable the results to be expressed per unit of weight as well as per unit of volume. The mean values of total C and N in the afforested soils were slightly higher than in the cropped soils, independently of whether the results were expressed relative to weight or volume. The differences were not significant in any of the cases. Afforestation appeared to cause small increases in ß-glucosidase and invertase activities, but a decrease in CM-cellulase activity. Again the same results were obtained independently of whether the values were expressed per unit of weight or volume. The same was also found when the values were expressed relative to the N content of the soils, but when the values were expressed relative to the total C content, the ß-glucosidase activity was found to be the same in afforested and cropped soils. The greater availability of plant remains as the result of the change in land use may have favoured increased activity of enzymes that act on the most readily decomposable substrates (ß-glucosidase and invertase), which in turn would generate an increase in the substrates available for microorganisms, and possibly contribute to the higher respiratory activity observed in these soils (García-Campos et al., 2010, EGU General Assembly, Session 13). Acknowledgements. This research was financially supported by the Spanish Ministerio de Ciencia e Innovación (CGL2008-01992/BTE).

  1. Yeast Membrane Vesicles: Isolation and General Characteristics1

    PubMed Central

    Christensen, Michael S.; Cirillo, Vincent P.

    1972-01-01

    Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848

  2. Changes in the biological activity of chestnut soils upon the long-term application of fertilizers in a rotation with oil-bearing crops

    NASA Astrophysics Data System (ADS)

    Eleshev, R. E.; Bakenova, Z. B.

    2012-11-01

    Experimental studies showed that irrigated chestnut soils on the piedmont of the Zailiiskiy Alatau Range are characterized by the moderate activity of the hydrolytic and redox enzymes. The use of these soils in the crop rotation system increases the hydrolytic activity of the enzymes (invertase, urease, and ATP synthase) by 30% in comparison with the monoculture; at the same time, it does not have a significant impact on the changes in the biological activity of the redox enzymes (catalase and dehydrogenase). The hydrolytic activity of the soils is activated to a greater extent in the crop rotation and in the monoculture against the background application of organic fertilizers. In this case, the recommended rates of mineral fertilizers do not inhibit the activity of the hydrolytic and redox enzymes. An increase in the hydrolytic activity of the enzymes directly affects the yield of oilseed flax. Therefore, indices of the hydrolytic activity of soils can be used as a test for the diagnostics of the efficiency of fertilizers both in crop rotation and monoculture systems.

  3. Yeast Genes Controlling Responses to Topogenic Signals in a Model Transmembrane Protein

    PubMed Central

    Tipper, Donald J.; Harley, Carol A

    2002-01-01

    Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2–3% by a strong charge difference signal. Identified pio mutants increased this to 9–12%. PIO1 is SPF1, encoding a P-type ATPase located in the endoplasmic reticulum (ER) or Golgi. spf1-null mutants are modestly sensitive to EGTA. Sensitivity is considerably greater in an spf1 pmr1 double mutant, although PIO is not further disturbed. Pmr1p is the Golgi Ca2+ ATPase and Spf1p may be the equivalent ER pump. PIO2 is STE24, a metalloprotease anchored in the ER membrane. Like Spf1p, Ste24p is expressed in all yeast cell types and belongs to a highly conserved protein family. The effects of ste24- and spf1-null mutations on invertase secretion are additive, cell generation time is increased 60%, and cells become sensitive to cold and to heat shock. Ste24p and Rce1p cleave the C-AAX bond of farnesylated CAAX box proteins. The closest paralog of SPF1 is YOR291w. Neither rce1-null nor yor291w-null mutations affected PIO or the phenotype of spf1- or ste24-null mutants. Mutations in PIO3 (unidentified) cause a weaker Pio phenotype, enhanced by a null mutation in BMH1, one of two yeast 14-3-3 proteins. PMID:11950929

  4. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases.

    PubMed

    Kumar, Chanchal; Wagh, Jitendra; Archana, G; Naresh Kumar, G

    2016-12-01

    Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.

  5. Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-03-01

    The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits. Copyright © 2018 Crop Science Society of America.

  6. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family.

    PubMed

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved in the cytoplasm by sucrose synthases or cytoplasmic invertases and effluxed as glucose, but also directly exported as sucrose and then converted into glucose and fructose by cell wall-bound invertases. Precise biochemical, physiological and molecular analyses are now required to profile the role of each potato SWEET in the arbuscular mycorrhizal symbiosis.

  7. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family

    PubMed Central

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved in the cytoplasm by sucrose synthases or cytoplasmic invertases and effluxed as glucose, but also directly exported as sucrose and then converted into glucose and fructose by cell wall-bound invertases. Precise biochemical, physiological and molecular analyses are now required to profile the role of each potato SWEET in the arbuscular mycorrhizal symbiosis. PMID:27148312

  8. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes

    USDA-ARS?s Scientific Manuscript database

    Background: Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose and fructose. This developmental process, senescent sweetening, manifes...

  9. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato

    USDA-ARS?s Scientific Manuscript database

    Storing potato (Solanum tuberosum) tubers at cold temperatures prevents sprouting and minimizes losses due to disease. Unfortunately, cold storage triggers an accumulation of reducing sugars, a phenomenon referred to as cold-induced sweetening (CIS). High-temperature processing of potato tubers wit...

  10. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Xu, Xue-tao; Liang, Kai-yi; Zeng, Jia-ying

    2015-02-15

    A portable and sensitive quantitative DNA detection method based on personal glucose meters and isothermal circular strand-displacement polymerization reaction was developed. The target DNA triggered target recycling process, which opened capture DNA. The released target then found another capture DNA to trigger another polymerization cycle, which was repeated for many rounds, resulting in the multiplication of the DNA-invertase conjugation on the surface of Streptavidin-MNBs. The DNA-invertase was used to catalyze the hydrolysis of sucrose into glucose for PGM readout. There was a liner relationship between the signal of PGM and the concentration of target DNA in the range of 5.0 to 1000 fM, which is lower than some DNA detection method. In addition, the method exhibited excellent sequence selectivity and there was almost no effect of biological complex to the detection performance, which suggested our method can be successfully applied to DNA detection in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multiple Roles of Soluble Sugars in the Establishment of Gunnera-Nostoc Endosymbiosis1[OA

    PubMed Central

    Khamar, Hima J.; Breathwaite, Erick K.; Prasse, Christine E.; Fraley, Elizabeth R.; Secor, Craig R.; Chibane, Fairouz L.; Elhai, Jeff; Chiu, Wan-Ling

    2010-01-01

    Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state. PMID:20833727

  12. Transforming a Fructan:Fructan 6G-Fructosyltransferase from Perennial Ryegrass into a Sucrose:Sucrose 1-Fructosyltransferase1[C

    PubMed Central

    Lasseur, Bertrand; Schroeven, Lindsey; Lammens, Willem; Le Roy, Katrien; Spangenberg, German; Manduzio, Hélène; Vergauwen, Rudy; Lothier, Jérémy; Prud'homme, Marie-Pascale; Van den Ende, Wim

    2009-01-01

    Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale. PMID:18952861

  13. Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter.

    PubMed

    Wicke, Daniel; Reemtsma, Thorsten

    2010-02-01

    The effect of hydrolytic exoenzymes on the release of hydrophobic organic contaminants (HOC) from two different surface soils was studied in laboratory batch experiments. Incubation of the soils with cellulase with an activity fivefold above the inherent soil activity enhanced the release of hydrophobic contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and hydroxylated PCB) by 40-200%. Xylanase and invertase did not show measurable effects at comparable relative activity levels. This suggests that cellulose substructures are important for the retention of HOC in soil organic matter (SOM). Hydrolytic exoenzymes, and the microorganisms that release them, contribute to the mobilization of HOC from soil, by shifting the sorption equilibrium in the course of SOM transformation into dissolved organic matter or by facilitating HOC diffusion as a consequence of reduced rigidity of SOM. We conclude that not only biodegradation but also sorption and desorption of HOC in soil can be influenced by (micro-) biology and the factors that determine its activity.

  14. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene

    USDA-ARS?s Scientific Manuscript database

    Accumulation of reducing sugars during cold storage is a persistent and costly problem for the potato processing industry. High temperature processing of potato tubers with elevated amounts of reducing sugars results in potato chips, fries and other products that are unacceptable to consumers becaus...

  15. The role of invertases in plant compensatory responses to simulated herbivory

    USDA-ARS?s Scientific Manuscript database

    The ability of a plant to recover from mammalian herbivory by exhibiting enhanced growth and reproduction compared to unharmed plants, is called compensation. Although it is clear that genetic variation for compensation exists, little is known about the specific genes underpinnings leading this fitn...

  16. Deficit irrigation and fertilization strategies to improve soil quality and alfalfa yield in arid and semi-arid areas of northern China.

    PubMed

    Jia, Qianmin; Kamran, Muhammad; Ali, Shahzad; Sun, Lefeng; Zhang, Peng; Ren, Xiaolong; Jia, Zhikuan

    2018-01-01

    In the arid and semi-arid areas of northern China, overexploitation of fertilizers and extensive irrigation with brackish groundwater have led to soil degradation and large areas of farmland have been abandoned. In order to improve the soil quality of abandoned farmland and make reasonable use of brackish groundwater, we conducted field trials in 2013 and 2014. In our study, we used three fertilization modes (CF, chemical fertilizer; OM, organic manure and chemical fertilizer; NF, no fertilizer) and three deficit irrigation levels (I 0 : 0 mm; I 75 : 75 mm; I 150 : 150 mm). The results showed that the activities of soil urease, alkaline phosphatase, invertase, catalase, and dehydrogenase in the OM treatment were significantly improved compared with those in the CF and NF treatments under the three deficit irrigation levels. Compared with NF, the OM treatment significantly increased soil organic carbon (SOC), water-soluble carbon (WSC), total nitrogen, microbial biomass carbon and nitrogen (MBC and MBN), and soil respiration rate, and significantly decreased soil C:N and MBC:MBN ratios and the metabolic quotient, thus improving the soil quality of abandoned farmland. Furthermore, the OM treatment increased alfalfa plant height, leaf area index, leaf chlorophyll content, and biomass yield. Under the CF and OM fertilization modes, the activities of urease and catalase in I 150 were significantly higher than those in I 0 , whereas irrigating without fertilizer did not significantly increase the activity of these two enzymes. Regardless of fertilization, alkaline phosphatase activity increased with an increase in irrigation amount, whereas invertase activity decreased. The results showed that deficit irrigation with brackish groundwater under the OM treatment can improve soil quality. Over the two years of the study, maximum SOC, total nitrogen, WSC, MBC, and MBN were observed under the OM-I 150 treatment, and the alfalfa biomass yield of this treatment was also significantly higher than that of the OM-I 0 treatment. Therefore, the OM-I 150 treatment could be used as a suitable measure not only to improve the quality of abandoned farmland soil but also to increase the alfalfa biomass yield in arid and semi-arid areas of northern China.

  17. Effect of Waterlogging on Carbohydrate Metabolism and the Quality of Fiber in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Kuai, Jie; Chen, Yinglong; Wang, Youhua; Meng, Yali; Chen, Binglin; Zhao, Wenqing; Zhou, Zhiguo

    2016-01-01

    Transient waterlogging occurs frequently in the Yangtze River and adversely affects cotton fiber quality. However, the carbohydrate metabolic mechanism that affects fiber quality after waterlogging remains undescribed. Here, the effects of five waterlogging levels (0, 3, 6, 9, and 12 days) were assessed during flowering and boll formation to characterize the carbohydrates, enzymes and genes that affect the fiber quality of cotton after waterlogging. The cellulose and sucrose contents of cotton fibers were significantly decreased after waterlogging for 6 (WL6), 9 (WL9), and 12 d (WL12), although these properties were unaffected after 3 (WL3) and 6 days at the fruiting branch 14–15 (FB14–15). Sucrose phosphate synthase (SPS) was the most sensitive to waterlogging among the enzymes tested. SPS activity was decreased by waterlogging at FB6–7, whereas it was significantly enhanced under WL3–6 at FB10–15. Waterlogging down-regulated the expression of fiber invertase at 10 days post anthesis (DPA), whereas that of expansin, β-1,4-glucanase and endoxyloglucan transferase (XET) was up-regulated with increasing waterlogging time. Increased mRNA levels and activities of fiber SuSy at each fruiting branch indicated that SuSy was the main enzyme responsible for sucrose degradation because it was markedly induced by waterlogging and was active even when waterlogging was discontinued. We therefore concluded that the reduction in fiber sucrose and down-regulation of invertase at 10 DPA led to a markedly shorter fiber length under conditions WL6–12. Significantly decreased fiber strength at FB6–11 for WL6–12 was the result of the inhibition of cellulose synthesis and the up-regulation of expansin, β-1,4-glucanase and XET, whereas fiber strength increased under WL3–6 at FB14–15 due to the increased cellulose content of the fibers. Most of the indictors tested revealed that WL6 resulted in the best compensatory performance, whereas exposure to waterlogged conditions for more than 6 days led to an irreversible limitation in fiber development. PMID:27446110

  18. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    PubMed Central

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae. PMID:18304329

  19. Switching the mode of sucrose utilization by Saccharomyces cerevisiae.

    PubMed

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-02-27

    Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.

  20. Improving the Processing Quality of Existing Cultivars by Suppressing the Vacuolar Acid Invertase Gene

    USDA-ARS?s Scientific Manuscript database

    Storing potato tubers at low temperatures is highly advantageous in that it prevents sprouting, minimizes disease losses and increases the marketing window. Unfortunately, cold storage of existing cultivars causes an unacceptable accumulation of reducing sugars, a phenomenon referred to as cold-indu...

  1. Protein Kinases in Mammary Gland Development and Carcinogenesis

    DTIC Science & Technology

    1998-10-01

    conserved features of primary structure and classification of family members. Methods in Enzymology , 200:38-79, 1991. 23. Nairn ACand Picciotto MR... invertase of S. cerevisiae. Molecular and Cellular Biology, 14:2958-2965, 1994. 29. Drewes G, Ebneth A, Preuss U, Mandelkow EMand Mandelkow E. MARK, a novel

  2. Looking ahead…how biotechnology may change potato storage

    USDA-ARS?s Scientific Manuscript database

    We have been growing, harvesting, storing and characterizing tubers from transgenic potato plants for the past four years. The plants have low expression of the vacuolar invertase gene and were produced for research purposes by Jiming Jiang’s group at UW-Madison. We’ve analyzed sugars from over 2400...

  3. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon.

    PubMed

    Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian

    2017-04-15

    Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of Activity-based Cost Functions for Cellulase, Invertase, and Other Enzymes

    NASA Astrophysics Data System (ADS)

    Stowers, Chris C.; Ferguson, Elizabeth M.; Tanner, Robert D.

    As enzyme chemistry plays an increasingly important role in the chemical industry, cost analysis of these enzymes becomes a necessity. In this paper, we examine the aspects that affect the cost of enzymes based upon enzyme activity. The basis for this study stems from a previously developed objective function that quantifies the tradeoffs in enzyme purification via the foam fractionation process (Cherry et al., Braz J Chem Eng 17:233-238, 2000). A generalized cost function is developed from our results that could be used to aid in both industrial and lab scale chemical processing. The generalized cost function shows several nonobvious results that could lead to significant savings. Additionally, the parameters involved in the operation and scaling up of enzyme processing could be optimized to minimize costs. We show that there are typically three regimes in the enzyme cost analysis function: the low activity prelinear region, the moderate activity linear region, and high activity power-law region. The overall form of the cost analysis function appears to robustly fit the power law form.

  5. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    PubMed

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  6. Validation of a thin-layer chromatography/densitometry method for the characterization of invertase activity.

    PubMed

    Ferey, Justine; Da Silva, David; Bravo-Veyrat, Sophie; Lafite, Pierre; Daniellou, Richard; Maunit, Benoît

    2016-12-16

    This paper presents a kinetic study of invertase, a specific fructofuranosidase cloned from the Leishmania major genome. The kinetic parameters of the β-d-fructofuranosidase from Leishmania major (BfrA) were determined using Thin-Layer Chromatography (TLC) and UV-densitometry (TLC@UV) specifically developed for the separation and detection of three carbohydrates namely sucrose, glucose and fructose. Separation was performed on TLC silica gel 60 F254 plates impregnated with sodium bisulphate and citrate and heated prior to development. This fast and easy separation was performed with two successive developments using ACN/H 2 O 80/20 (v/v) as mobile phase. Sensitive and repeatable derivatization of sugars was achieved by dipping the plates in a solution of 4-aminobenzoic acid. Quantification was performed by UV-detection. The method was validated according to ICH guidelines Q2(R1) in terms of specificity, limits of detection and quantification, precision and robustness (with n=3 replicates and CV ≤10%). The characterization of BfrA reaction kinetic was performed by monitoring the accumulation of either glucose or fructose detected by TLC@UV. Hydrolysis of sucrose was described by the Michaelis-Menten kinetic parameters (K M ; V max ) respectively equal to 63.09±7.590mM; 0.037±0.00094mM/min using glucose production and 83.01±14.39mM; 0.031±0.0021mM/min monitoring fructose. Hydrolyses of three alternative substrates, raffinose, stachyose and inulin, were also compared and the regiospecificity of the reaction was characterized. This TLC@UV method is shown to be suitable for the refined kinetic analysis of different reactions related to the hydrolysis of sugars. Copyright © 2016. Published by Elsevier B.V.

  7. Identification of the gene for β-fructofuranosidase from Ceratocystis moniliformis CMW 10134 and characterization of the enzyme expressed in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background β-Fructofuranosidases (or invertases) catalyse the commercially-important biotransformation of sucrose into short-chain fructooligosaccharides with wide-scale application as a prebiotic in the functional foods and pharmaceutical industries. Results We identified a β-fructofuranosidase gene (CmINV) from a Ceratocystis moniliformis genome sequence using protein homology and phylogenetic analysis. The predicted 615 amino acid protein, CmINV, grouped with an existing clade within the glycoside hydrolase (GH) family 32 and showed typical conserved motifs of this enzyme family. Heterologous expression of the CmINV gene in Saccharomyces cerevisiae BY4742∆suc2 provided further evidence that CmINV indeed functions as a β-fructofuranosidase. Firstly, expression of the CmINV gene complemented the inability of the ∆suc2 deletion mutant strain of S. cerevisiae to grow on sucrose as sole carbohydrate source. Secondly, the recombinant protein was capable of producing short-chain fructooligosaccharides (scFOS) when incubated in the presence of 10% sucrose. Purified deglycosylated CmINV protein showed a molecular weight of ca. 66 kDa and a Km and Vmax on sucrose of 7.50 mM and 986 μmol/min/mg protein, respectively. Its optimal pH and temperature conditions were determined to be 6.0 and 62.5°C, respectively. The addition of 50 mM LiCl led to a 186% increase in CmINV activity. Another striking feature was the relatively high volumetric production of this protein in S. cerevisiae as one mL of supernatant was calculated to contain 197 ± 6 International Units of enzyme. Conclusion The properties of the CmINV enzyme make it an attractive alternative to other invertases being used in industry. PMID:24225070

  8. Properties of Streptococcus mutans Grown in a Synthetic Medium: Binding of Glucosyltransferase and In Vitro Adherence, and Binding of Dextran/Glucan and Glycoprotein and Agglutination

    PubMed Central

    Wu-Yuan, Christine D.; Tai, Stella; Slade, Hutton D.

    1979-01-01

    The influence of culture media on various properties of Streptococcus mutans was investigated. Strains of S. mutans (serotypes c, d, f, and g) were grown in a complex medium (Todd-Hewitt broth [THB]) or a synthetic medium (SYN). The SYN cells, in contrast to THB cells, did not bind extracellular glucosyltransferase and did not produce in vitro adherence. Both types of cells possessed constitutive levels of glucosyltransferase. B13 cells grown in SYN plus invertase-treated glucose possessed the same level of constitutive enzyme as THB cells. In contrast to THB cells, the SYN cells of seven serotype strains did not agglutinate upon the addition of high-molecular-weight dextran/glucan. Significant quantities of lower-molecular-weight (2 × 104 or 7 × 104) dextran and B13 glucan were bound by SYN cells. SYN cells agglutinated weakly in anti-glucan serum (titers, 0 to 16), whereas THB cells possessed titers of 32 to 256. Evidence for the existence of a second binding site in agglutination which does not possess a glucan-like polymer has been obtained. B13 cells grown in invertase-treated THB agglutinated to the same degree as normal THB cells. The nature of this site is unknown. SYN cells possess the type-specific polysaccharide antigen. B13 cells did not bind from THB a glycoprotein which reacts with antisera to the A, B, or T blood group antigens or which allows agglutination upon the addition of dextran. The results demonstrate that S. mutans grown in a chemically defined medium possesse markedly different biochemical and biological activities than cells grown in a complex organic medium. PMID:457252

  9. Some Uses of Tissue Explants in the Teaching of Protein Synthesis

    ERIC Educational Resources Information Center

    King, B.

    1977-01-01

    Experiments are described in which inhibitors are used to investigate the timing of transcription and translation of the messenger RNA for the enzyme invertase. It is suggested that plant tissue slices provide adaptable material with which to study enzyme induction, protein synthesis, and cell differentiation at sixth-form level. (Author/MA)

  10. Treatment of Synthetic Urinous Wastewater Using Combined Reverse Osmosis, Immobilized Urease, and Ion Exchange Systems

    DTIC Science & Technology

    1974-09-01

    invertase on DEAE-Cellulose while glucoamylase bound to the same carrier has been studied (Bachler et al., 1970; Gruesbeck and Rase, 1972). Adsorption of...Arch. Biochem. Biophys. 130, 384. Katchalski, E., Silman, I., and Goldstein, R. (1971) Adv. Enzymology 34., 445. Katz, S. A., and Cowans, J

  11. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products

    USDA-ARS?s Scientific Manuscript database

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to ...

  12. Cloning of a CACTA transposon-like insertion in intron I of tomato invertase Lin5 gene and identification of transposase-like sequences of Solanaceae species.

    PubMed

    Proels, Reinhard K; Roitsch, Thomas

    2006-03-01

    Very few CACTA transposon-like sequences have been described in Solanaceae species. Sequence information has been restricted to partial transposase (TPase)-like fragments, and no target gene of CACTA-like transposon insertion has been described in tomato to date. In this manuscript, we report on a CACTA transposon-like insertion in intron I of tomato (Lycopersicon esculentum) invertase gene Lin5 and TPase-like sequences of several Solanaceae species. Consensus primers deduced from the TPase region of the tomato CACTA transposon-like element allowed the amplification of similar sequences from various Solanaceae species of different subfamilies including Solaneae (Solanum tuberosum), Cestreae (Nicotiana tabacum) and Datureae (Datura stramonium). This demonstrates the ubiquitous presence of CACTA-like elements in Solanaceae genomes. The obtained partial sequences are highly conserved, and allow further detection and detailed analysis of CACTA-like transposons throughout Solanaceae species. CACTA-like transposon sequences make possible the evaluation of their use for genome analysis, functional studies of genes and the evolutionary relationships between plant species.

  13. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from Plutella xylostella (L.) larvae midgut

    NASA Astrophysics Data System (ADS)

    Madihah, Malini, Desak Made; Roviani, Hana; Rani, Nessa Vidya; Hermawan, Wawan

    2018-02-01

    Andrographolide, an active compound of Andrographis paniculata, has shown antifeedant activity against Plutella xylostella larvae by disrupting the midgut histological structures. This study aims to determine the activity of andrographolide in crystallized powder form against several digestive enzymes from the midgut of 4th instar P. xylostella larvae. The concentrations used were 0 (control), 1000, 1600, 2500, 4000 and 6500 ppm with four replications each. No-choice antifeedant test with leaf disc method is used in a bioassay for 24 hours. The midgut was dissected from 2nd until 6th segment of 4th instar larvae and was homogenized in iced-buffer solution. Furthermore, larvae's midgut samples were centrifuged at 10,000 rpm, 4°C for 20 min and the supernatant is used as enzyme source. The results showed that andrographolide significantly reduces the amylase, invertase, protease and trypsin activity, as well as total protein concentration compared with control (p<0.05) in a dose-dependent manner. This study provides information about the mode of action of andrographolide in inhibiting feed activity by the reduced digestive enzyme activity of 4th instar P. xylostella larvae.

  14. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    PubMed

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  15. Effects of the halophytes Tecticornia indica and Suaeda fruticosa on soil enzyme activities in a Mediterranean Sabkha.

    PubMed

    Ouni, Youssef; Lakhdar, Abdelbasset; Rabhi, Mokded; Smaoui, Abderrazak; Maria, A Rao; Chedly, Abdelly

    2013-01-01

    In the present work, we studied the effectiveness of the predominant halophytes of Soliman sabkha (Tecticornia indica and Suaeda fruticosa) to promote soil biological activities and ecosystem productivity. Soil Arylsulphatese ARY, beta-glucosidase beta-GLU, phosphatase PHO, invertase INV, urease URE, and dehydogenase DES activities in Extra- and Intra-tuft halophytes and plant productivity were assessed. Results revealed a high increase of microbial community and ARY, beta-GLU, PHO, INV URE and DES activities (+298%, +400%, +800%, +350%, +320%, +25% and +759%, respectively) in Intra-tuft rhizosphere as compared to Extra-tuft one, which is likely due to the significant decrease of salinity in the rhizosphere of Tecticornia indica and Suaeda fruticosa. Both perennial plants exhibited high productivities (7.4 t dry weight ha(-1) and 2.2 t dry weight ha(-1), respectively) and Na+-hyperaccumulating capacities (0.75 t Na+ ha(-1) and 0.22 t Na+ ha(-1), respectively), reducing salt constraint and favouring soil fertility. This constitutes a promising alternative to enhance productivity in such a salt-affected biotope by offering suitable microhabitat for annual glycophytes.

  16. Regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage

    USDA-ARS?s Scientific Manuscript database

    Regulation of sugar metabolism in cold-stored potato tubers has significant ramifications for potato chip and French fry producers and consumers. Though low-temperature storage reduces losses due to sprouting and disease, it induces accumulation of the reducing sugars glucose and fructose. These rea...

  17. Temperature-dependent regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage

    USDA-ARS?s Scientific Manuscript database

    Regulation of sugar metabolism in cold-stored potato tubers has significant ramifications for potato chip and French fry producers and consumers. Though low-temperature storage reduces losses due to sprouting and disease, it induces accumulation of the reducing sugars glucose and fructose. These rea...

  18. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  19. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  20. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes.

    PubMed

    Mazola, Yuliet; Guirola, Osmany; Palomares, Sucel; Chinea, Glay; Menéndez, Carmen; Hernández, Lázaro; Musacchio, Alexis

    2015-09-01

    Arabidopsis thaliana cell wall invertase 1 (AtcwINV1) and Thermotoga maritima β-fructosidase (BfrA) are among the best structurally studied members of the glycoside hydrolase family 32. Both enzymes hydrolyze sucrose as the main substrate but differ strongly in their thermal stability. Mesophilic AtcwINV1 and thermophilic BfrA have divergent sequence similarities in the N-terminal five bladed β-propeller catalytic domain (31 %) and the C-terminal β-sandwich domain (15 %) of unknown function. The two enzymes were subjected to 200 ns molecular dynamics simulations at 300 K (27 °C) and 353 K (80 °C). Regular secondary structure regions, but not loops, in AtcwINV1 and BfrA showed no significant fluctuation differences at both temperatures. BfrA was more rigid than AtcwINV1 at 300 K. The simulation at 353 K did not alter the structural stability of BfrA, but did increase the overall flexibility of AtcwINV1 exhibiting the most fluctuating regions in the β-propeller domain. The simulated heat treatment also increased the gyration radius and hydrophobic solvent accessible surface area of the plant enzyme, consistent with the initial steps of an unfolding process. The preservation of the conformational rigidity of BfrA at 353 K is linked to the shorter size of the protein loops. Shortening of BfrA loops appears to be a key mechanism for thermostability.

  1. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress.

    PubMed

    Li, Xia; Lawas, Lovely M F; Malo, Richard; Glaubitz, Ulrike; Erban, Alexander; Mauleon, Ramil; Heuer, Sigrid; Zuther, Ellen; Kopka, Joachim; Hincha, Dirk K; Jagadish, Krishna S V

    2015-10-01

    Heat and drought stress are projected to become major challenges to sustain rice (Oryza sativa L.) yields with global climate change. Both stresses lead to yield losses when they coincide with flowering. A significant knowledge gap exists in the mechanistic understanding of the responses of rice floral organs that determine reproductive success under stress. Our work connects the metabolomic and transcriptomic changes in anthers, pistils before pollination and pollinated pistils in a heat-tolerant (N22) and a heat-sensitive (Moroberekan) cultivar. Systematic analysis of the floral organs revealed contrasts in metabolic profiles across anthers and pistils. Constitutive metabolic markers were identified that can define reproductive success in rice under stress. Six out of nine candidate metabolites identified by intersection analysis of stressed anthers were differentially accumulated in N22 compared with Moroberekan under non-stress conditions. Sugar metabolism was identified to be the crucial metabolic and transcriptional component that differentiated floral organ tolerance or susceptibility to stress. While susceptible Moroberekan specifically showed high expression of the Carbon Starved Anthers (CSA) gene under combined heat and drought, tolerant N22 responded with high expression of genes encoding a sugar transporter (MST8) and a cell wall invertase (INV4) as markers of high sink strength. © 2015 John Wiley & Sons Ltd.

  2. Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin.

    PubMed

    Shao, Hainan; Zhang, Yalin

    2017-07-17

    Considering the fact that biopesticides are increasingly used to replace synthetic pesticides in pest control, it is necessary to assess their ecotoxicity and especially their non-target effects on soil microorganisms, which is largely unknown. In this study, the effects of the synthetic pesticide carbendazim and the biopesticides (cantharidin and norcantharidin) on soil microbial parameters in a silt loam soil were evaluated. By using commercial formulations at the recommended and higher rates, both cantharidin and norcantharidin induced adverse effects on soil invertase, phosphatase activities and fungal gene structure, but these changes were transient. After about two weeks, the harmful effects owing to the application of pesticides phased out and eventually became comparable with non-treated samples. The degradation of cantharidin and norcantharidin was rapid and can be completed within a few days in the soil. None of the three pesticides caused significant shifts in urease activity. This study provides a comprehensive assessment of the soil microbial toxicity of these biopesticides for reasonable and efficient usage.

  3. [Effects of intercropping Chinese onion cultivars of different allelopathic potential on cucumber growth and soil micro-environment].

    PubMed

    Yang, Yang; Wu, Feng-zhi

    2011-10-01

    A pot experiment was conducted to study the effects of intercropping various Chinese onion cultivars of different allelopathic potential on the cucumber growth and rhizospheric soil environment. When intercropped with high allelopathic Chinese onion cultivars, the EC value and peroxidase activity of cucumber rhizospheric soil decreased, while the pH value, invertase and catalase activities, and bacterial community diversity increased. The cloning and sequencing results indicated that most DGGE bands amplified from cucumber rhizospheric soil samples showed a high homology to uncultured bacterial species. The common bands were affiliated with Actinobacteria and Proteobacteria, and the differential bacteria bands were affiliated with Proteobacteria and Anaerolineaceae. Rhodospirillales and Acidobacteria were only found in the cucumber rhizospheric soil intercropped with low allelopathic Chinese onion cultivars. Correlation analysis showed that there were significant positive correlations between rhizospheric soil urease activity and cucumber seedlings height, total dry biomass, leaf area, and DGGE band number. It was suggested that intercropping high allelopathic Chinese onion cultivars could establish a good rhizospheric soil micro-environment for cucumber growth, and promote the growth of cucumber seedlings markedly.

  4. Organization of the SUC gene family in Saccharomyces.

    PubMed Central

    Carlson, M; Botstein, D

    1983-01-01

    The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains. Images PMID:6843548

  5. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.

    PubMed

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.

  6. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

    PubMed Central

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar ‘SweetSunshine Williams’, the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars. PMID:26284099

  7. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress.

    PubMed

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.

  8. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter decomposition rate in the plastic film mulched soil was significantly higher than that in the no plastic film mulched soil. 125 days after incubation, the recovery rates of cotton straw and alfalfa straw were 39.7% and 46.5% with saline water irrigation, 36.3% and 36.5% with brackish water irrigation, and 30.5% and 35.4% with CK, respectively. In conclusion, brackish water drip irrigation had a significant adverse effect on soil enzyme activities, which decreased soil microbial biomass, soil CO2 flux and soil organic matter decomposition, and subsequently deteriorated the soil biological characteristics in oasis farmland.

  9. Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase-thionine conjugate for ultrasensitive electrochemical immunoassay.

    PubMed

    Lin, Youxiu; Zhou, Qian; Lin, Yuping; Tang, Dianping; Niessner, Reinhard; Knopp, Dietmar

    2015-08-18

    A novel (invertase) enzymatic hydrolysate-triggered displacement reaction strategy with multifunctional silica beads, doped with horseradish peroxidase-thionine (HRP-Thi) conjugate, was developed for competitive-type electrochemical immunoassay of small molecular aflatoxin B1 (AFB1). The competitive-type displacement reaction was carried out on the basis of the affinity difference between enzymatic hydrolysate (glucose) and its analogue (dextran) for concanavalin A (Con A) binding sites. Initially, thionine-HRP conjugates were doped into nanometer-sized silica beads using the reverse micelle method. Then monoclonal anti-AFB1 antibody and Con A were covalently conjugated to the silica beads. The immunosensor was prepared by means of immobilizing the multifunctional silica beads on a dextran-modified sensing interface via the dextran-Con A binding reaction. Gold nanoparticles functionalized with AFB1-bovine serum albumin conjugate (AFB1-BSA) and invertase were utilized as the trace tag. Upon target AFB1 introduction, a competitive-type immunoreaction was implemented between the analyte and the labeled AFB1-BSA on the nanogold particles for the immobilized anti-AFB1 antibody on the electrode. The invertase followed by gold nanoparticles hydrolyzed sucrose into glucose and fructose. The produced glucose displaced the multifunctional silica beads from the electrode based on the classical dextran-Con A-glucose system, thus decreasing the catalytic efficiency of the immobilized HRP on the electrode relative to that of the H2O2-thionine system. Under optimal conditions, the detectable electrochemical signal increased with the increasing target AFB1 in a dynamic working range from 3.0 pg mL(-1) to 20 ng mL(-1) with a detection limit of 2.7 pg mL(-1). The strong bioconjugation with two nanostructures also resulted in a good repeatability and interassay precision down to 9.3%. Finally, the methodology was further validated for analysis of naturally contaminated or spiked AFB1 peanut samples, giving results matched well with those from a commercialized AFB1 enzyme-linked immunosorbent assay kit. Importantly, the system provides a signal-on competitive-type immunosensing platform for ultrasensitive detection of small molecules.

  10. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles.

    PubMed

    Ye, Lingxian; Zhao, Guangying; Dou, Wenchao

    2018-05-15

    A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO 2 NPs) and Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO 2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO 2 NPs, forming Au@Pt/SiO 2 NPs. Antibody and invertase conjugated Au@Pt/SiO 2 NPs (denoted as Ab/invertase-Au@Pt/SiO 2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe 3 O 4 @SiO 2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 10 2 to 3.5 × 10 8 CFU mL -1 with a detection limit of 1.83 × 10 2 CFU mL -1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis.

    PubMed

    Liu, Jie; Han, Lina; Huai, Baoyu; Zheng, Peijing; Chang, Qing; Guan, Tao; Li, Dan; Huang, Lili; Kang, Zhensheng

    2015-12-01

    Numerous studies have found that sucrose (Suc) metabolism plays a crucial role in the environmental stress response of many plant species. The majority of Suc metabolism-associated reports refer to acid invertases (Ac-Invs). However, alkaline/neutral Invs (A/N-Invs) have been poorly studied. In this study, a wheat A/N-Inv gene, Ta-A/N-Inv1, with three copies located on chromosomes 4A, 4B, and 4D, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of the three Ta-A/N-Inv1 copies were up-regulated in wheat leaves that were infected by Pst or had experienced certain abiotic treatments. Furthermore, the expression of Ta-A/N-Inv1 was decreased by treatment with exogenous hormones. Heterologous mutant complementation and subcellular localization revealed that Ta-A/N-Inv1 is a cytoplasmic invertase. Knocking down all three copies of Ta-A/N-Inv1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31, which is associated with pathogen-induced H2O2 accumulation and enhanced necrosis. Interestingly, 48h dark treatment of the Ta-A/N-Inv1-knockdown plants immediately after inoculation abrogated their enhanced resistance, suggesting that H2O2 production and its associated cell death and resistance in the Ta-A/N-Inv1-silenced plants require light. Consistent with this observation, photosynthesis and reactive oxygen species (ROS)-related genes were significantly up-regulated in the Ta-A/N-Inv1-knockdown plants infected by CYR31 under light exposure. These results suggest that Ta-A/N-Inv1 might act as a negative regulator in wheat disease resistance to Pst by increasing cytoplasmic hexose accumulation and downregulating photosynthesis of the leaves to avoid cell death due to excessive ROS production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Changchun; Liu, Deyan; Song, Yanyu; Yang, Guisheng; Wan, Zhongmei; Li, Yingchen; Xu, Xiaofeng

    2011-03-01

    Anthropogenic activities have increased phosphorus (P) inputs to wetland ecosystems. However, little is known about the effect of P enrichment on soil respiration in these ecosystems. To understand the effect of P enrichment on soil respiration, we conducted a field experiment in Calamagrostis angustifolia-dominated freshwater marshes, the Sanjiang Plain, Northeast China. We investigated soil respiration in the first growing season after P addition at four rates (0, 1.2, 4.8 and 9.6 g P m-2 year-1). In addition, we also examined aboveground biomass, soil labile C fractions (dissolved organic C, DOC; microbial biomass C, MBC; easily oxidizable C, EOC) and enzyme activities (invertase, urease and acid phosphatase activities) following one year of P addition. P addition decreased soil respiration during the growing season. Dissolved organic C in soil pore water increased after P addition at both 5 and 15 cm depths. Moreover, increased P input generally inhibited soil MBC and enzyme activities, and had no effects on aboveground biomass and soil EOC. Our results suggest that, in the short-term, soil respiration declines under P enrichment in C. angustifolia-dominated freshwater marshes of Northeast China, and its extent varies with P addition levels.

  13. Transcriptome and selected metabolite analyses reveal points of sugar metabolism in jackfruit (Artocarpus heterophyllus Lam.).

    PubMed

    Hu, Lisong; Wu, Gang; Hao, Chaoyun; Yu, Huan; Tan, Lehe

    2016-07-01

    Artocarpus heterophyllus Lam., commonly known as jackfruit, produces the largest tree-borne fruit known thus far. The edible part of the fruit develops from the perianths, and contains many sugar-derived compounds. However, its sugar metabolism is poorly understood. A fruit perianth transcriptome was sequenced on an Illumina HiSeq 2500 platform, producing 32,459 unigenes with an average length of 1345nt. Sugar metabolism was characterized by comparing expression patterns of genes related to sugar metabolism and evaluating correlations with enzyme activity and sugar accumulation during fruit perianth development. During early development, high expression levels of acid invertases and corresponding enzyme activities were responsible for the rapid utilization of imported sucrose for fruit growth. The differential expression of starch metabolism-related genes and corresponding enzyme activities were responsible for starch accumulated before fruit ripening but decreased during ripening. Sucrose accumulated during ripening, when the expression levels of genes for sucrose synthesis were elevated and high enzyme activity was observed. The comprehensive transcriptome analysis presents fundamental information on sugar metabolism and will be a useful reference for further research on fruit perianth development in jackfruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. [Effects of bio-organic fertilizer on soil enzyme activities and microbial community in kiwifruit orchard.

    PubMed

    Sun, Jia Un; Fu, Qing Xia; Gu, Jie; Wang, Xiao Juan; Gao, Hua

    2016-03-01

    A field experiment was conducted to compare the effects of three fertilizer managements (bio-organic fertilizer, traditional organic fertilizer and chemical fertilizer) and a no-fertilizer control on soil enzyme activities and microbial community functional diversity in a kiwifruit orchard. The results showed that the soil invertase and FDA hydrolase activities in the bio-organic fertilizer treatment were 12.2%-129.4% and 18.8%-87.4% higher than those in the no-fertilizer control during kiwifruit growth period, respectively. The application of bio-organic fertilizer also increased soil urease and acid phosphatase activities at the expanding stage and maturity stage. The Biolog results suggested that bio-organic fertilizer treatment improved the average well color development (AWCD) and increased the species diversity, richness and evenness. The relative ratios of six groups of carbon sources by microbes were changed to some extent after the application of bio-organic fertilizer. Compared with the no-fertilizer control, bio-organic fertilizer application decreased the capacity of microbes in using amino acids, but enhanced the utilization of polyphenols and polyamines. The principal components analysis demonstrated that the differentiation of microbial community was mainly in utilization of carbohydrates, amino acids and carboxylic acids.

  15. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    PubMed

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  16. [Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber].

    PubMed

    Li, Min; Wu, Feng-zhi

    2014-12-01

    Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber (Cucumis sativus) were analyzed by conventional chemical method, PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR methods. Pot experiment was carried out in the greenhouse for three consecutive years with cucumber as the main crop, and scallion (Allium fistulosum), wheat (Triticum aestivum) and oilseed rape (Brassica campestri) as catch crops. Results showed that, with the increase of crop planting times, soil urease, neutral phosphatase and invertase activities in the wheat treatment were significantly) higher than in the scallion and oilseed rape treatments, and these enzyme activities in the oilseed rape treatment were significantly higher than in the scallion treatment. PCR-DGGR analysis showed that cucumber rhizosphere bacterial community structures were different among treatments. Scallion and wheat treatments maintained relatively higher diversity indices of bacterial community structure. qPCR results showed that the abundance of soil bacterial community in the wheat treatment was significantly higher than in the scallion and oilseed rape treatments. In conclusion, different catch treatments affected soil enzyme activities and bacteria community and changed the soil environment. Wheat used as summer catch crop could maintain relatively higher soil enzyme activities, bacterial community diversity and abundance.

  17. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    PubMed Central

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-01-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070

  18. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    NASA Astrophysics Data System (ADS)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  19. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  20. Multifunctional fructans and raffinose family oligosaccharides

    PubMed Central

    den Ende, Wim Van

    2013-01-01

    Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure–function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called “defective invertases.” Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source–sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans. PMID:23882273

  1. Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor

    NASA Astrophysics Data System (ADS)

    Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe

    2011-05-01

    Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.

  2. Production of fructanase by a wild strain of Saccharomyces cerevisiae on tequila agave fructan.

    PubMed

    Corona-González, R I; Pelayo-Ortiz, C; Jacques, G; Guatemala, G; Arriola, E; Arias, J A; Toriz, G

    2015-01-01

    A new wild strain of Saccharomyces cerevisiae (CF3) isolated from tequila must was evaluated for production of fructanase on Agave tequilana Weber fructan (FT). Fructanase activity (F) was assessed by a 3(3) factorial design (substrate, temperature and pH). High enzymatic activity (31.1 U/ml) was found at 30 °C, pH 5, using FT (10 g/l) as substrate. The effect of initial substrate concentration on F (FT0, 5.7-66 g/l) was studied and it was found that F was highest (44.8 U/ml) at FT0 25 g/l. A 2(2) factorial experimental design with five central points was utilized to study the effect of stirring and aeration on fructanase activity; stirring exhibited a stronger effect on F. The ratio fructanase to invertase (F/S) was 0.57, which confirms that the enzymes are fructanase. Crude fructanase reached high substrate hydrolysis (48 wt%) in 10 h. It is shown that S. cerevisiae CF3 was able to produce large amounts of fructanase by growing it on fructan from A. tequilana.

  3. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    NASA Astrophysics Data System (ADS)

    Irena, Gancarz; Jolanta, Bryjak; Karolina, Zynek

    2009-07-01

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm -2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  4. Protein changes in leaf-sheath pulvini of barley (hordeum) induced by gravistimulation

    NASA Technical Reports Server (NTRS)

    Kaufman, P. B.; Song, I.

    1984-01-01

    Sodium dodecyl sulfate polyacrylamade gel electrophoresis (SDS-PAGE) pattern of salt soluble proteins elicite by gravistimulation were shown in the top and the bottom halves of the gravistimulated pulvini as follows: at least five proteins were increased in the tissues derived from the bottom halves of the pulvini in the approximate molecular weight range of 91, 57, 50, 22, 17 kilodatons. SDS densitometric scans indicated that the two of them are probably cellulase and invertase.

  5. New insights into plant glycoside hydrolase family 32 in Agave species

    PubMed Central

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  6. New insights into plant glycoside hydrolase family 32 in Agave species.

    PubMed

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  7. Enzymatic conversion of sucrose to glucose and its anomerization by quantitative NMR spectroscopy: Application of a simple consecutive reaction rates approach

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Her, Cheenou; Krishnan, V. V.

    2018-02-01

    The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.

  8. A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis.

    PubMed

    Martín, Mariana L; Lechner, Leandra; Zabaleta, Eduardo J; Salerno, Graciela L

    2013-03-01

    Recent findings demonstrate that alkaline/neutral invertases (A/N-Invs), enzymes that catalyze the breakdown of sucrose into glucose and fructose, are essential proteins in plant life. The fact that different isoforms are present in multiple locations makes them candidates for the coordination of metabolic processes. In the present study, we functionally characterized the encoding gene of a novel A/N-Inv (named A/N-InvC) from Arabidopsis, which localizes in mitochondria. A/N-InvC is expressed in roots, in aerial parts (shoots and leaves) and flowers. A detailed phenotypic analysis of knockout mutant plants (invc) reveals an impaired growth phenotype. Shoot growth was severely reduced, but root development was not affected as reported for A/N-InvA mutant (inva) plants. Remarkably, germination and flowering, two energy demanding processes, were the most affected stages. The effect of exogenous growth regulators led us to suggest that A/N-InvC may be modulating hormone balance in relation to the radicle emergence. We also show that oxygen consumption is reduced in inva and invc in comparison with wild-type plants, indicating that both organelle isoenzymes may play a fundamental role in mitochondrion functionality. Taken together, our results emphasize the involvement of mitochondrial A/N-Invs in developmental processes and uncover the possibility of playing different roles for the two isoforms located in the organelle.

  9. Tapping natural variation at functional level reveals allele specific molecular characteristics of potato invertase Pain-1.

    PubMed

    Draffehn, Astrid M; Durek, Pawel; Nunes-Nesi, Adriano; Stich, Benjamin; Fernie, Alisdair R; Gebhardt, Christiane

    2012-12-01

    Biochemical, molecular and genetic studies emphasize the role of the potato vacuolar invertase Pain-1 in the accumulation of reducing sugars in potato tubers upon cold storage, and thereby its influence on the quality of potato chips and French fries. Previous studies showed that natural Pain-1 cDNA alleles were associated with better chip quality and higher tuber starch content. In this study, we focused on the functional characterization of these alleles. A genotype-dependent transient increase of total Pain-1 transcript levels in cold-stored tubers of six different genotypes as well as allele-specific expression patterns were detected. 3D modelling revealed putative structural differences between allelic Pain-1 proteins at the molecule's surface and at the substrate binding site. Furthermore, the yeast SUC2 mutant was complemented with Pain-1 cDNA alleles and enzymatic parameters of the heterologous expressed proteins were measured at 30 and 4 °C. Significant differences between the alleles were detected. The observed functional differences between Pain-1 alleles did not permit final conclusions on the mechanism of their association with tuber quality traits. Our results show that natural allelic variation at the functional level is present in potato, and that the heterozygous genetic background influences the manifestation of this variation. © 2012 Blackwell Publishing Ltd.

  10. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.

    PubMed Central

    Bickle, M; Delley, P A; Schmidt, A; Hall, M N

    1998-01-01

    The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237

  11. Autolysis and extension of isolated walls from growing cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Durachko, D. M.

    1994-01-01

    Walls isolated from cucumber hypocotyls retain autolytic activities and the ability to extend when placed under the appropriate conditions. To test whether autolysis and extension are related, we treated the walls in various ways to enhance or inhibit long-term wall extension ('creep') and measured autolysis as release of various saccharides from the wall. Except for some non-specific inhibitors of enzymatic activity, we found no correlation between wall extension and wall autolysis. Most notably, autolysis and extension differed strongly in their pH dependence. We also found that exogenous cellulases and pectinases enhanced extension in native walls, but when applied to walls previously inactivated with heat or protease these enzymes caused breakage without sustained extension. In contrast, pretreatment of walls with pectinase or cellulase, followed by boiling in methanol to inactivate the enzymes, resulted in walls with much stronger expansin-mediated extension responses. Crude protein preparations from the digestive tracts of snails enhanced extension of both native and inactivated walls, and these preparations contained expansin-like proteins (assessed by Western blotting). Our results indicate that the extension of isolated cucumber walls does not depend directly on the activity of endogenous wall-bound autolytic enzymes. The results with exogenous enzymes suggest that the hydrolysis of matrix polysaccharides may not induce wall creep by itself, but may act synergistically with expansins to enhance wall extension.

  12. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.).

    PubMed

    Zommick, Daniel H; Knowles, Lisa O; Pavek, Mark J; Knowles, N Richard

    2014-06-01

    The effects of soil temperature during tuber development on physiological processes affecting retention of postharvest quality in low-temperature sweetening (LTS) resistant and susceptible potato cultivars were investigated. 'Premier Russet' (LTS resistant), AO02183-2 (LTS resistant) and 'Ranger Russet' (LTS susceptible) tubers were grown at 16 (ambient), 23 and 29 °C during bulking (111-164 DAP) and maturation (151-180 DAP). Bulking at 29 °C virtually eliminated yield despite vigorous vine growth. Tuber specific gravity decreased as soil temperature increased during bulking, but was not affected by temperature during maturation. Bulking at 23 °C and maturation at 29 °C induced higher reducing sugar levels in the proximal (basal) ends of tubers, resulting in non-uniform fry color at harvest, and abolished the LTS-resistant phenotype of 'Premier Russet' tubers. AO02183-2 tubers were more tolerant of heat for retention of LTS resistance. Higher bulking and maturation temperatures also accelerated LTS and loss of process quality of 'Ranger Russet' tubers, consistent with increased invertase and lower invertase inhibitor activities. During LTS, tuber respiration fell rapidly to a minimum as temperature decreased from 9 to 4 °C, followed by an increase to a maximum as tubers acclimated to 4 °C; respiration then declined over the remaining storage period. The magnitude of this cold-induced acclimation response correlated directly with the extent of buildup in sugars over the 24-day LTS period and thus reflected the effects of in-season heat stress on propensity of tubers to sweeten and lose process quality at 4 °C. While morphologically indistinguishable from control tubers, tubers grown at elevated temperature had different basal metabolic (respiration) rates at harvest and during cold acclimation, reduced dormancy during storage, greater increases in sucrose and reducing sugars and associated loss of process quality during LTS, and reduced ability to improve process quality through reconditioning. Breeding for retention of postharvest quality and LTS resistance should consider strategies for incorporating more robust tolerance to in-season heat stress.

  13. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  14. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium.

    PubMed

    Smiri, Moêz; Chaoui, Abdelilah; El Ferjani, Ezzedine

    2009-02-15

    Seeds of pea (Pisum sativum L.) were germinated for 5d by soaking in distilled water or 5mM cadmium nitrate. The relationships among cadmium stress, germination rate, changes in respiratory enzyme activities and carbohydrates mobilization were studied. Two cell fractions were obtained from embryonic axis: (1) mitochondria, used to determine enzyme activities of citric acid cycle and electron transport chain, and (2) soluble, to measure some enzyme activities involved in fermentation and pentose phosphate pathway. Activities of malate- and succinate-dehydrogenases (MDH, SDH) and NADH- and succinate-cytochrome c reductases (NCCR, SCCR) were rapidly inhibited, while cytochrome c oxidase (CCO) was unaltered by cadmium treatment. However, this stimulated the NADPH-generating enzyme activities of the pentose phosphate pathway, glucose-6-phosphate- and 6-phosphogluconate-dehydrogenases (G6PDH, 6PGDH), as well as enzyme activity of fermentation, alcohol dehydrogenase (ADH), with concomitant inhibition in the capacity of enzyme inactivator (INADH). Moreover, Cd restricted carbohydrate mobilization in the embryonic axis. Almost no glucose and less than 7% of control fructose and total soluble sugars were available in the embryo tissues after 5d of exposure to cadmium. Cotyledonary invertase isoenzyme activity was also inhibited by Cd. The results indicate that cadmium induces disorder in the resumption of respiration in germinating pea seeds. The contribution of Cd-stimulated alternative metabolic pathways to compensate for the failure in mitochondrial respiration is discussed in relation to the delay in seed germination and embryonic axis growth.

  15. Scapulothoracic Muscle Activity during Use of a Wall Slide Device (WSD), a Comparison with the General Wall Push up Plus

    PubMed Central

    Park, Se-yeon; Ahn, Tae-kyung; Eom, Ji-hwan; Youn, Hyun-ji; Kim, In-kwang; Yoo, Won-gyu

    2014-01-01

    [Purpose] The purpose of this study was to evaluate the effect of the wall slide device on activation of the scapulothoracic musculature. [Subjects] We recruited 15 healthy male subjects. [Methods] The subjects performed the general wall push-up plus (WPUP) and the wall slide with device (WSD) exercises. During the exercises, the muscle activities of the upper and lower trapezius (UT, LT), middle and lower serratus anterior (MSA, LSA), and pectoralis major (PM) were measured. [Results] The normalized muscle activity data of the WSD were significantly higher in UT, MSA and LSA than the WPUP. [Conclusion] Our results suggest that exercise using the WSD can more effectively activate the scapulothoracic musculature than the general WPUP. PMID:25013271

  16. Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity.

    PubMed Central

    Batista, F R; Hernández, L; Fernández, J R; Arrieta, J; Menéndez, C; Gómez, R; Támbara, Y; Pons, T

    1999-01-01

    beta-Fructofuranosidases share a conserved aspartic acid-containing motif (Arg-Asp-Pro; RDP) which is absent from alpha-glucopyranosidases. The role of Asp-309 located in the RDP motif of levansucrase (EC 2.4.1.10) from Acetobacter diazotrophicus SRT4 was studied by site-directed mutagenesis. Substitution of Asp-309 by Asn did not affect enzyme secretion. The kcat of the mutant levansucrase was reduced 75-fold, but its Km was similar to that of the wild-type enzyme, indicating that Asp-309 plays a major role in catalysis. The two levansucrases showed optimal activity at pH 5.0 and yielded similar product profiles. Thus the mutation D309N affected the efficiency of sucrose hydrolysis, but not the enzyme specificity. Since the RDP motif is present in a conserved position in fructosyltransferases, invertases, levanases, inulinases and sucrose-6-phosphate hydrolases, it is likely to have a common functional role in beta-fructofuranosidases. PMID:9895294

  17. [Effect of spermine on cell growth and polysaccharide production in suspension cultures of protocorm-like bodies from Dendrobium huoshanense].

    PubMed

    Wei, Ming; Jiang, Shao-Tong; Luo, Jian-Ping

    2007-03-01

    The effect of outer spermine on cell growth, accumulation of polysaccharides and utilization of nutrient together with the intracellular polyamine contents were investigated in suspension cultures of protocorm-like bodies from Dendrobium huoshanense. The results indicated that spermine at 0.6 mmol/L was the most effective in increasing cell growth and polysaccharide synthesis. The specific growth rate of cell increased from 0.046d(-1) to 0.054d(-1), and the maximum dry weight and polysaccharide production reached 32.4g DW/L and 2.46g/L respectively, which were 1.32-fold and 1.31-fold that of the control on day 30. The titres of intracellular free polyamines were higher in the cultures treated with spermine than that of the control. Invertase and nitrate reductase activities were found to increase significantly in the cultured cells treated with spermine, which was beneficial to the utilization of carbon and nitrogen source.

  18. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    PubMed

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1.

    PubMed

    Rodríguez, Cristina; Sanz, Pascual; Gancedo, Carlos

    2003-03-01

    We isolated from Saccharomyces cerevisiae two mutants, esc1-1 and ESC3-1, in which genes FBP1, ICL1 or GDH2 were partially derepressed during growth in glucose or galactose. The isolation was done starting with a triple mutant pyc1 pyc2 mth1 unable to grow in glucose-ammonium medium and selecting for mutants able to grow in the non-permissive medium. HXT1 and HXT2 which encode glucose transporters were expressed at high glucose concentrations in both esc1-1 and ESC3-1 mutants, while derepression of invertase at low glucose concentrations was impaired. REG1, cloned as a suppressor of ESC3-1, was not allelic to ESC3-1. Two-hybrid analysis showed an increased interaction of the protein kinase Snf1 with Snf4 in the ESC3-1 mutant; this was not due to mutations in SNF1 or SNF4. ESC3-1 did not bypass the requirement of Snf1 for derepression. We hypothesize that ESC3-1 either facilitates activation of Snf1 or interferes with its glucose-dependent inactivation.

  20. Vegetation succession influences soil carbon sequestration in coastal alkali-saline soils in southeast China.

    PubMed

    Li, Niu; Shao, Tianyun; Zhu, Tingshuo; Long, Xiaohua; Gao, Xiumei; Liu, Zhaopu; Shao, Hongbo; Rengel, Zed

    2018-06-27

    The area of saline soils accounts for 8% of the earth's surface, making these soils an important terrestrial carbon sink. Soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), soil enzyme activity, and soil bacterial abundance and biodiversity were measured in four successive coastal tidal flat ecosystems representing: bare saline soil (BS), Suaeda glauca land (SL), Imperata cylindrica grassland (IG), and Jerusalem artichoke field (JF). A decrease in soil salt content resulted in increased SOC content. With vegetation succession, MBC and DOC concentrations showed a positive trend, and activities of soil urease, catalase, invertase and alkaline phosphatase increased. A next-generation, Illumina-based sequencing approach showed that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Nitrospirae and Planctomycetes were the dominant bacterial communities (a total of 597 taxa were detected, and 27 genera showed significant differences among the vegetation communities). Bacterial diversity at two soil depths was enhanced with the succession of vegetation ecosystems, with the increases in operational taxonomic units (OTUs) and the Shannon and Chao1 indices ranked in the order: JF > IG > SL > BS. The SOC and C/N were the most determinant factors influencing diversity of bacterial communities in the succession ecosystems.

  1. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  2. Critical Roles of Vacuolar Invertase in Floral Organ Development and Male and Female Fertilities Are Revealed through Characterization of GhVIN1-RNAi Cotton Plants1[OPEN

    PubMed Central

    2016-01-01

    Seed number and quality are key traits determining plant fitness and crop yield and rely on combined competence in male and female fertilities. Sucrose metabolism is central to reproductive success. It remains elusive, though, how individual sucrose metabolic enzymes may regulate the complex reproductive processes. Here, by silencing vacuolar invertase (VIN) genes in cotton (Gossypium hirsutum) reproductive organs, we revealed diverse roles that VIN plays in multiple reproductive processes. A set of phenotypic and genetic studies showed significant reductions of viable seeds in GhVIN1-RNAi plants, attributed to pollination failure and impaired male and female fertilities. The former was largely owing to the spatial mismatch between style and stamen and delayed pollen release from the anthers, whereas male defects came from poor pollen viability. The transgenic stamen exhibited altered expression of the genes responsible for starch metabolism and auxin and jasmonic acid signaling. Further analyses identified the reduction of GhVIN expression in the seed coat as the major cause for the reduced female fertility, which appeared to disrupt the expression of some key genes involved in trehalose and auxin metabolism and signaling, leading to programmed cell death or growth repression in the filial tissues. Together, the data provide an unprecedented example of how VIN is required to synchronize style and stamen development and the formation of male and female fertilities for seed development in a crop species, cotton. PMID:26969720

  3. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  4. Changes in Biochemical Characteristics and Activities of Ripening Associated Enzymes in Mango Fruit during the Storage at Different Temperatures

    PubMed Central

    Kimura, Yoshinobu

    2014-01-01

    As a part of the study to explore the possible strategy for enhancing the shelf life of mango fruits, we investigated the changes in biochemical parameters and activities of ripening associated enzymes of Ashwina hybrid mangoes at 4-day regular intervals during storage at −10°C, 4°C, and 30 ± 1°C. Titratable acidity, vitamin C, starch content, and reducing sugar were higher at unripe state and gradually decreased with the increasing of storage time at all storage temperatures while phenol content, total soluble solid, total sugar, and nonreducing sugar contents gradually increased. The activities of amylase, α-mannosidase, α-glucosidase, and invertase increased sharply within first few days and decreased significantly in the later stage of ripening at 30 ± 1°C. Meanwhile polyphenol oxidase, β-galactosidase, and β-hexosaminidase predominantly increased significantly with the increasing days of storage till later stage of ripening. At −10°C and 4°C, the enzymes as well as carbohydrate contents of storage mango changed slightly up to 4 days and thereafter the enzyme became fully dormant. The results indicated that increase in storage temperature and time correlated with changes in biochemical parameters and activities of glycosidases suggested the suppression of β-galactosidase and β-hexosaminidase might enhance the shelf life of mango fruits. PMID:25136564

  5. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    PubMed

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo

    2004-04-01

    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  6. [Spatiotemporal evolvement of soil microbiological characteristics in upland fields with different utilization duration in Cixi, Zhejiang Province].

    PubMed

    Hu, Jun-Li; Lin, Xian-Gui; Yin, Rui; Chu, Hai-Yan; Zhang, Hua-Yong; Wang, Jun-Hua; Cao, Zhi-Hong

    2008-09-01

    The microbial number, microbial biomass, and enzymatic activities in five upland soils under agricultural utilization for 50-700 years were determined, with the correlations between soil microbiological characteristics and agricultural utilization duration analyzed. In the meantime, the functional diversity of microbes in soils having been utilized for 50, 100, and 700 years were investigated. The results showed that at the early stage (< 100 years) of agricultural utilization, the number of soil fungi (F) had a slight increase, while the bacterial number (B), B/F ratio, microbial biomass C (C(mic)), microbial biomass N (N(mic)), and the activities of catalase, invertase and urease all decreased markedly. After utilized for more than 100 years, the F decreased significantly, while the B, B/F ratio, C(mic), N(mic), and the activities of test enzymes all tended to increase. During the whole utilization period from 50 to 700 years, the C(mic)/N(mic) ratio had a significant increase with year. The Shannon, Simpson, and McIntosh indices of soil microbial community had the same responses to the agricultural utilization duration as the bacterial number, microbial biomass, and enzymatic activities. All of these indicated that in the upland fields in Cixi of Zhejiang Province, shifts of soil microbial community occurred with increasing agricultural utilization duration, and soil microbiological quality had an overall increase after 100 years agricultural utilization.

  7. Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing.

    PubMed

    Byrd, J C; Tarentino, A L; Maley, F; Atkinson, P H; Trimble, R B

    1982-12-25

    Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).

  8. Production, Purification, and Gene Cloning of a β-Fructofuranosidase with a High Inulin-hydrolyzing Activity Produced by a Novel Yeast Aureobasidium sp. P6 Isolated from a Mangrove Ecosystem.

    PubMed

    Jiang, Hong; Ma, Yan; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2016-08-01

    After screening of over 300 yeast strains isolated from the mangrove ecosystems, it was found that Aureobasidium sp. P6 strain had the highest inulin-hydrolyzing activity. Under the optimal conditions, this yeast strain produced an inulin-hydrolyzing activity of 30.98 ± 0.8 U/ml after 108 h of a 10-l fermentation. After the purification, a molecular weight of the enzyme which had the inulin-hydrolyzing activity was estimated to be 47.6 kDa, and the purified enzyme could actively hydrolyze both sucrose and inulin and exhibit a transfructosylating activity at 30.0 % sucrose, converting sucrose into fructooligosaccharides (FOS), indicating that the purified enzyme was a β-D-fructofuranosidase. After the full length of a β-D-fructofuranosidase gene (accession number KU308553) was cloned from Aureobasidium sp. P6 strain, a protein deduced from the cloned gene contained the conserved sequences MNDPNGL, RDP, ECP, FS, and Q of a glycosidehydrolase GH32 family, respectively, but did not contain a conserved sequence SVEVF, and the amino acid sequence of the protein from Aureobasidium sp. P6 strain had a high similarity to that of the β-fructofuranosidase from any other fungal strains. After deletion of the β-D-fructofuranosidase gene, the disruptant still had low inulin hydrolyzing and invertase activities and a trace amount of the transfructosylating activity, indicating that the gene encoding an inulinase may exist in the Aureobasidium sp. P6 strain.

  9. Uronic Acid Products Release from Enzymically Active Cell Wall from Tomato Fruit and Its Dependency on Enzyme Quantity and Distribution 1

    PubMed Central

    Huber, Donald J.; Lee, James H.

    1988-01-01

    Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed. PMID:16666191

  10. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    PubMed

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Method for converting sucrose to .beta.-D-glucose

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Volponi, Joanne V [Livermore, CA; Ingersoll, David [Albuquerque, NM; Walker, Andrew [Woodinville, WA

    2009-07-07

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three-stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  13. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    PubMed

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P < 0.05. Additionally, high-speed visualizations, laser-vibrometer measurements and numerical simulations of the file oscillation were conducted. File-to-wall contact occurred in all cases during 20% of the activation time. Contact time was significantly shorter at high power (P < 0.001), when the file was positioned away from working length (P < 0.001), in the larger root canal (P < 0.001) and from coronal towards apical third of the root canal (P < 0.002), in most of the cases studied. Previous training did not show a consistent significant effect. File oscillation was affected by contact during 94% of the activation time. During wall contact, the file bounced back and forth against the wall at audible frequencies (ca. 5 kHz), but still performed the original 30 kHz oscillations. Travelling waves were identified on the file. The file oscillation was not dampened completely due to the contact and hydrodynamic cavitation was detected. Considerable file-to-wall contact occur-red during irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  15. Seasonal development of cambial activity in relation to xylem formation in Chinese fir.

    PubMed

    Wu, Hongyang; Xu, Huimin; Li, Hanyin; Wei, Dongmei; Lin, Jinxing; Li, Xiaojuan

    2016-05-20

    The vascular cambium is a lateral meristem which can differentiate into secondary phloem and xylem. The secondary growth of woody plants resulting from vascular cambium activity has been a focus of considerable attention, but the quantitative relationships between cambial activity and secondary xylem formation have been little studied. Our analysis of cytological changes in the cambium of Chinese fir (Cunninghamia lanceolata), revealed a significant positive correlation between vascular cambium cell numbers and cambium zone width through the seasonal cycle. Cambium cell numbers and the cambium cell radial diameter were closely related to xylem formation. Immuno-labeling showed that de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes were highly abundant in cell walls of dormant-stage cambium, whereas high methylesterified homogalacturonan was strongly labeled in the active stage. Raman spectroscopy detected significant changes in the chemical composition of cell walls during the active-dormant stage transition. More pectin and less monolignols occurred in radial cell walls than in tangential walls during the dormant stage, but no significant changes were found in other stages, indicating that pectin accumulation facilitates cell wall expansion, with cambium activity transition. Our quantitative analysis of the relationship between cambial activity and xylem formation, as well as the cell wall modification during the active stage provides useful information about cambial characteristics and xylogenesis. Copyright © 2016. Published by Elsevier GmbH.

  16. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit.

    PubMed Central

    D'Aoust, M A; Yelle, S; Nguyen-Quoc, B

    1999-01-01

    The role of sucrose synthase (SuSy) in tomato fruit was studied in transgenic tomato (Lycopersicon esculentum) plants expressing an antisense fragment of fruit-specific SuSy RNA (TOMSSF) under the control of the cauliflower mosaic virus 35S promoter. Constitutive expression of the antisense RNA markedly inhibited SuSy activity in flowers and fruit pericarp tissues. However, inhibition was only slight in the endosperm and was undetectable in the embryo, shoot, petiole, and leaf tissues. The activity of sucrose phosphate synthase decreased in parallel with that of SuSy, but acid invertase activity did not increase in response to the reduced SuSy activity. The only effect on the carbohydrate content of young fruit was a slight reduction in starch accumulation. The in vitro sucrose import capacity of fruits was not reduced by SuSy inhibition at 23 days after anthesis, and the rate of starch synthesized from the imported sucrose was not lessened even when SuSy activity was decreased by 98%. However, the sucrose unloading capacity of 7-day-old fruit was substantially decreased in lines with low SuSy activity. In addition, the SuSy antisense fruit from the first week of flowering had a slower growth rate. A reduced fruit set, leading to markedly less fruit per plant at maturity, was observed for the plants with the least SuSy activity. These results suggest that SuSy participates in the control of sucrose import capacity of young tomato fruit, which is a determinant for fruit set and development. PMID:10590167

  17. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  18. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils

    NASA Astrophysics Data System (ADS)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia

    2017-04-01

    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic and biotic factors (e.g., redox changes, water and bio-turbation processes, etc) and stressors (e.g., salinity and anoxia). However, saltmarshes constitute an unique natural system to observe the influence of anoxic conditions on SOM degradation, because the tide fluctuations on the soil surface allow the formation of provisionally or permanently submerged soils. With the aim to investigate the quality of SOM in subaqueous soils, triplicates of subaqueous soils (SASs), intertidal soils (ITSs) and terrestrial soils (TESs) were collected in the saltmarshes of the Baiona Lagoon (Northern Italy) and classified according to their pedogenetic horizons. The SOM quality on each soil horizon was investigated by quantifying SOM, total and water-soluble organic carbon (TOC, WSC) and microbial biomass carbon (MBC). Given the contribution of soil enzymes to the degradation of SOM, some enzymatic assays were also performed. Thereafter, soil classification and humus morpho-functional classification were used to join together similar soil profiles to facilitate the description and discussion of results. Soils were ranked as Aquent or Wassent Entisols, with an A/AC/C pedosequence. SOM, TOC and MBC were statistically higher in A than in AC and C horizons. Among the A horizons, ITSs were those showing the highest values for these parameters (11% TOC, 1.6 mg kg-1 MBC, 0.9 mg kg-1 WSC). These results, combined with the morpho-functional classification of epipedons, reflect the influence of the type of annual biomass depositions on ITSs (i.e. Salicornia europaea), but also the important role of the tide oscillation that promotes the continuous alternation of red-ox exchanges and thus fasten the organic matter turnover in ITSs. On these pedons, invertase was the most effective enzymes (11.6 μmol glucose g-1h-1). Moreover, in SASs and ITSs, most of the activities linked to the degradation of exoskeletons and fungi (e.g. chitinase) increase along the soil profile, probably due to the disrupting effect of water on the soil and to the type of SOM in saltmarshes soils. By considering the specific activity (enzymatic activity/TOC content), data showed how SASs, ITSs and TESs had different oxidoreductases and hydrolases trends, suggesting a different path and effectiveness of SOM degradation, which probably depends both on the soil hydric regime, and on the different type of organic compounds. A particular increase of catalase and invertase specific activities along the soil profiles, suggests the presence of microaerophilic environment in some saturated AC and C sandy horizons but generally, it was observed a gradual decrease of biochemical alteration of the SOM by enzymatic activities along the soil profile due to the progressive restriction of the edaphic conditions.

  19. Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.

    PubMed

    Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti

    2017-07-01

    The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.

  20. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    PubMed

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  1. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

    PubMed Central

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567

  2. Modification of the activity of cell wall-bound peroxidase by hypergravity in relation to the stimulation of lignin formation in azuki bean epicotyls

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Kazuyuki; Nakano, Saho; Soga, Kouichi; Hoson, Takayuki

    Lignin is a component of cell walls of terrestrial plants, which provides cell walls with the mechanical rigidity. Lignin is a phenolic polymer with high molecular mass and formed by the polymerization of phenolic substances on a cellulosic matrix. The polymerization is catalyzed by cell wall-bound peroxidase, and thus the activity of this enzyme regulates the rate of formation of lignin. In the present study, the changes in the lignin content and the activity of cell wall peroxidase were investigated along epicotyls of azuki bean seedlings grown under hypergravity conditions. The endogenous growth occurred primarily in the upper regions of the epicotyl and no growth was detected in the middle or basal regions. The amounts of acetyl bromide-soluble lignin increased from the upper to the basal regions of epicotyls. The lignin content per unit length in the basal region was three times higher than that in the upper region. Hypergravity treatment at 300 g for 6 h stimulated the increase in the lignin content in all regions of epicotyls, particularly in the basal regions. The peroxidase activity in the protein fraction extracted from the cell wall preparation with a high ionic strength buffer also increased gradually toward the basal region, and hypergravity treatment clearly increased the activity in all regions. There was a close correlation between the lignin content and the enzyme activity. These results suggest that gravity stimuli modulate the activity of cell wall-bound peroxidase, which, in turn, causes the stimulation of the lignin formation in stem organs.

  3. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    PubMed

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  4. Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli

    NASA Astrophysics Data System (ADS)

    Calvari, Sonia; Intrieri, Emanuele; Di Traglia, Federico; Bonaccorso, Alessandro; Casagli, Nicola; Cristaldi, Antonio

    2016-05-01

    Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli volcano, investigated by means of a monitoring network comprising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network revealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse occurred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlargement of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.

  5. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode.

    PubMed

    Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping

    2015-06-15

    A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Critical Roles of Vacuolar Invertase in Floral Organ Development and Male and Female Fertilities Are Revealed through Characterization of GhVIN1-RNAi Cotton Plants.

    PubMed

    Wang, Lu; Ruan, Yong-Ling

    2016-05-01

    Seed number and quality are key traits determining plant fitness and crop yield and rely on combined competence in male and female fertilities. Sucrose metabolism is central to reproductive success. It remains elusive, though, how individual sucrose metabolic enzymes may regulate the complex reproductive processes. Here, by silencing vacuolar invertase (VIN) genes in cotton (Gossypium hirsutum) reproductive organs, we revealed diverse roles that VIN plays in multiple reproductive processes. A set of phenotypic and genetic studies showed significant reductions of viable seeds in GhVIN1-RNAi plants, attributed to pollination failure and impaired male and female fertilities. The former was largely owing to the spatial mismatch between style and stamen and delayed pollen release from the anthers, whereas male defects came from poor pollen viability. The transgenic stamen exhibited altered expression of the genes responsible for starch metabolism and auxin and jasmonic acid signaling. Further analyses identified the reduction of GhVIN expression in the seed coat as the major cause for the reduced female fertility, which appeared to disrupt the expression of some key genes involved in trehalose and auxin metabolism and signaling, leading to programmed cell death or growth repression in the filial tissues. Together, the data provide an unprecedented example of how VIN is required to synchronize style and stamen development and the formation of male and female fertilities for seed development in a crop species, cotton. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    PubMed

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  9. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism

    PubMed Central

    Kissoudis, Christos; Sunarti, Sri; van de Wiel, Clemens; Visser, Richard G.F.; van der Linden, C. Gerard; Bai, Yuling

    2016-01-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na+ and Cl− accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant’s performance under the combination of abiotic and biotic stress. PMID:27436279

  10. Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril L.

    PubMed

    Brandão, A D; Del Bem, L E V; Vincentz, M; Buckeridge, M S

    2009-01-01

    During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and beta-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source-sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey.

  11. Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril L.

    PubMed Central

    Brandão, A. D.; Del Bem, L. E. V.; Vincentz, M.; Buckeridge, M. S.

    2009-01-01

    During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and β-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source–sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey. PMID:19221141

  12. Experimental assessment of the microbocenosis stability in chemically polluted soils

    NASA Astrophysics Data System (ADS)

    Sorokin, N. D.; Grodnitskaya, I. D.; Shapchenkova, O. A.; Evgrafova, S. Yu.

    2009-06-01

    Water solutions of fluorine and sulfur-containing salts of sodium—NaF, Na2SO3, and NaF + Na2SO3 (30, 150, and 300 MPC, respectively)—and salts of heavy metals—(Cu(NO3)2 · 3H2O, NiSO4, and Pb(NO3)2 (10, 25, and 50 MPC, respectively)—were applied as pollutants to dark gray forest soils of experimental plots (1 m2) in Siberian larch ( Larix sibirica Ledeb.) plantations once per growing period. The soil samples for the determination of the microbial biomass, respiration, and enzymatic activity (urease, protease, invertase, and catalase) were taken from the mineral soil layer (0-5 cm) at the beginning of the growing seasons before the application of the pollutants then in 14- to 18-day intervals every month. The fluorine and sulfur-containing compounds applied activated the respiration, lowered the enzymatic activity of the microorganisms, and decreased the microbial biomass by 1.3-2.2 times in the soils of the test plots as compared to the control one. The single application of Cu, Ni, and Pb increased the microbial biomass, while the changes in the basal respiration were compatible with its natural variability. Two months after the beginning of the experiment, all the parameters characterizing the functioning of the soil microbocenoses were restored.

  13. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves

    PubMed Central

    Zhang, Lei; Luo, Junyu; Dong, Helin; Ma, Yan; Zhao, Xinhua; Chen, Binglin; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    This study investigated sucrose metabolism of the youngest fully expanded main-stem leaf (MSL) and the subtending leaf of cotton (Gossypium hirsutum L.) boll (LSCB) of salt-tolerant (CCRI-79) and salt-sensitive (Simian 3) cultivars and its relationship to boll weight under low, medium and high soil salinity stress in Dafeng, China, in 2013 and 2014. The results showed that with increased soil salinity, 1) both the chlorophyll content and net photosynthetic rate (Pn) decreased, while the internal CO2 concentration firstly declined, and then increased in the MSL and LSCB; 2) carbohydrate contents in the MSL reduced significantly, while sucrose and starch contents in the LSCB increased, as did the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) in both the MSL and LSCB; 3) but invertase activity in both the MSL and LSCB did not change significantly. Our study also showed that the LSCB was more sensitive to soil salinity than was the MSL. Of the measured physiological indices, higher SPS activity, mainly controlled by sps3, may contribute to adaption of the LSCB to soil salinity stress because SPS is beneficial for efficiently sucrose synthesis, reduction of cellular osmotic potential and combined actions of Pn, and sucrose transformation rate and SPS may contribute to the reduction in boll weight under soil salinity stress. PMID:27228029

  14. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  15. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis

    PubMed Central

    2014-01-01

    Background Trichomonas vaginalis, a flagellated protozoan, is the agent responsible for trichomoniasis, the most common nonviral sexually transmitted infection worldwide. A reported 200 million cases are documented each year with far more cases going unreported. However, T. vaginalis is disproportionality under studied, especially considering its basic metabolism. It has been reported that T. vaginalis does not grow on sucrose. Nevertheless, the T. vaginalis genome contains some 11 putative sucrose transporters and a putative β-fructofuranosidase (invertase). Thus, the machinery for both uptake and cleavage of sucrose appears to be present. Results We amplified the β-fructofuranosidase from T. vaginalis cDNA and cloned it into an Escherichia coli expression system. The expressed, purified protein was found to behave similarly to other known β-fructofuranosidases. The enzyme exhibited maximum activity at pH close to 5.0, with activity falling off rapidly at increased or decreased pH. It had a similar Km and Vmax to previously characterized enzymes using sucrose as a substrate, was also active towards raffinose, but had no detectable activity towards inulin. Conclusions T. vaginalis has the coding capacity to produce an active β-fructofuranosidase capable of hydrolyzing di- and trisaccharides containing a terminal, non-reducing fructose residue. Since we cloned this enzyme from cDNA, we know that the gene in question is transcribed. Furthermore, we could detect β-fructofuranosidase activity in T. vaginalis cell lysates. Therefore, the inability of the organism to utilize sucrose as a carbon source cannot be explained by an inability to degrade sucrose. PMID:24972630

  17. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis.

    PubMed

    Dirkx, Michael; Boyer, Michael P; Pradhan, Prajakta; Brittingham, Andrew; Wilson, Wayne A

    2014-06-28

    Trichomonas vaginalis, a flagellated protozoan, is the agent responsible for trichomoniasis, the most common nonviral sexually transmitted infection worldwide. A reported 200 million cases are documented each year with far more cases going unreported. However, T. vaginalis is disproportionality under studied, especially considering its basic metabolism. It has been reported that T. vaginalis does not grow on sucrose. Nevertheless, the T. vaginalis genome contains some 11 putative sucrose transporters and a putative β-fructofuranosidase (invertase). Thus, the machinery for both uptake and cleavage of sucrose appears to be present. We amplified the β-fructofuranosidase from T. vaginalis cDNA and cloned it into an Escherichia coli expression system. The expressed, purified protein was found to behave similarly to other known β-fructofuranosidases. The enzyme exhibited maximum activity at pH close to 5.0, with activity falling off rapidly at increased or decreased pH. It had a similar K(m) and V(max) to previously characterized enzymes using sucrose as a substrate, was also active towards raffinose, but had no detectable activity towards inulin. T. vaginalis has the coding capacity to produce an active β-fructofuranosidase capable of hydrolyzing di- and trisaccharides containing a terminal, non-reducing fructose residue. Since we cloned this enzyme from cDNA, we know that the gene in question is transcribed. Furthermore, we could detect β-fructofuranosidase activity in T. vaginalis cell lysates. Therefore, the inability of the organism to utilize sucrose as a carbon source cannot be explained by an inability to degrade sucrose.

  18. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes.

    PubMed

    Zhang, Jin; Cheng, Yi; Lu, Shanfu; Jia, Lichao; Shen, Pei Kang; Jiang, San Ping

    2014-11-18

    The inner tubes of carbon nanotubes (CNTs) have a significant promotion effect on the electrocatalytic activity of Pd nanoparticles (NPs) for the ethanol oxidation of direct alcohol fuel cells (DAFCs) and Pd NPs supported on CNTs with 3-7 walls show a much higher activity as compared to that supported on typical single-walled and multi-walled CNTs.

  20. Pectin methyl esterases and pectins in normal and hyperhydric shoots of carnation cultured in vitro.

    PubMed

    Saher, Shady; Piqueras, Abel; Hellin, Eladio; Olmos, Enrique

    2005-02-01

    Control and hyperhydric micropropagated plantlets from three carnation cultivars have been used to study their pectin composition and the activity of pectin methyl esterases (PMEs; EC 3.1.1.11). Pectins are a highly heterogeneous group of polymers that contribute to cell adhesion, cell wall architecture, and cell wall mechanical strength. Pectins control cell wall porosity and cell wall ionic status and are implicated in intercellular space development. The degree of esterification of pectins is controlled by the activity of cell wall PMEs; their different actions can affect the properties of the cell wall, which have been considered important with respect to controlling the development of hyperhydricity. The total pectins of hyperhydric leaves of the three varieties were significantly reduced in comparison with controls. The pectate fraction was significantly increased in hyperhydric leaves of all varieties while soluble pectins and protopectins were significantly lower. The PME activity of hyperhydric leaves was higher (4-10 times) compared to controls of the three varieties. Isoelectric focusing of PME isozymes revealed the presence of three isoforms; neutral PME activity was the major isozyme in control and hyperhydric leaves of the three varieties, whilst a decrease in the activity of the acidic isoforms was observed in hyperhydric leaves. The different PME activities could regulate some of the structural changes related to hyperhydricity in micropropagated carnation plants.

  1. The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review.

    PubMed

    Morris, Cécile; Morris, Gordon A

    2012-07-15

    There is evidence that fructo-oligosaccharides (FOS) and inulin can impart a range of health benefits if consumed on a regular basis. The health benefits include increased mineral absorption and improved immune response and while there is mounting evidence that prebiotics play a role in colorectal cancer prevention, their role of satiety and weight management is still being investigated. In this review we look at the evidence published so far on FOS or inulin supplementation and weight management. We also establish whether prebiotic enriched breads are feasible in terms of dough machinability, bread characteristics and consumers acceptance. Addition of inulin to bread generally resulted in smaller loaves with a harder crumb and darker colour. The limited sensory studies on those products reflect those findings and acceptability decreased with inulin content. However, a fortification of 5% seems achievable. Despite evidence that yeast invertase and dry heat degrade inulin, the extent to which this is the case and whether the prebiotics maintain their activity is not known. There is still a great deal of work to be done to establish whether a bread prepared with enough inulin to retain a significant activity can be manufactured without compromising consumer acceptance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    NASA Astrophysics Data System (ADS)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  3. [Effect of grafting on rhizosphere soil environment and its relationship with disease resistance and yield of pepper.

    PubMed

    Duan, Xi; Bi, Huan Gai; Wei, You Ying; Li, Ting; Wang, Hong Tao; Ai, Xi Zhen

    2016-11-18

    We investigated the effect of grafting on the root rhizosphere soil microorganisms, physical properties, nutrient content, soil-borne disease and yield of pepper, using 'Weishi' (WS) and 'Buyeding' (BYD) as rootstocks, the cultivar pepper 'Xinfeng 2' (XF) as scion, and the own-root (XF/XF) pepper as the control. The results indicated that XF/WS and XF/BYD significantly increased the populations of fungi and actinomycetes and the percentage of actinomycetes. 60 days after transplanting, the activities of catalase (CAT) and peroxidase (POD) were much higher in root rhizosphere soil of grafted pepper. 90 days after transplanting, the activities of phosphatase, invertase, urease, and nitrate reductase (NR) were much higher in root rhizosphere soil of XF/WS. In addition, The XF/WS and XF/BYD also highly increased hydrocarbon compounds in soil extraction, slightly increased electric conductivity (EC) but lowered nitrogen, phosphorus and potassium contents in root rhizosphere soil. Higher pH in root rhizosphere soil was found in XF/WS but not in XF/BYD. These data indicated that grafting could optimize the rhizosphere soil environment of pepper and enhance the resistance of soil-borne diseases. The yields of XF/WS and XF/BYD were increased by 40.8% and 28.7%, respectively.

  4. Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae.

    PubMed

    Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia

    2017-01-01

    Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.

  5. Model-Assisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion[W

    PubMed Central

    Beauvoit, Bertrand P.; Colombié, Sophie; Monier, Antoine; Andrieu, Marie-Hélène; Biais, Benoit; Bénard, Camille; Chéniclet, Catherine; Dieuaide-Noubhani, Martine; Nazaret, Christine; Mazat, Jean-Pierre; Gibon, Yves

    2014-01-01

    A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features. Cell division was characterized by a high sucrolytic activity of the vacuole, whereas sucrose cleavage during expansion was sustained by both sucrose synthase and neutral invertase, associated with minimal futile cycling. Most importantly, a tight correlation between flux rate and enzyme capacity was found for fructokinase and PPi-dependent phosphofructokinase during cell division and for sucrose synthase, UDP-glucopyrophosphorylase, and phosphoglucomutase during expansion, thus suggesting an adaptation of enzyme abundance to metabolic needs. In contrast, for most enzymes, flux rates varied irrespectively of enzyme capacities, and most enzymes functioned at <5% of their maximal catalytic capacity. One of the major findings with the model was the high accumulation of soluble sugars within the vacuole together with organic acids, thus enabling the osmotic-driven vacuole expansion that was found during cell division. PMID:25139005

  6. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.

    PubMed

    Batista, Anderson S; Miletti, Luiz C; Stambuk, Boris U

    2004-01-01

    Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.

  7. A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptake.

    PubMed

    Entian, K D

    1980-01-01

    The previously isolated recessive mutant allele hex2-3 of Saccharomyces cerevisiae caused a defect in carbon catabolite repression of maltase, invertase, malate dehydrogenase, and respiration but at the same time led to an extreme sensitivity to maltose (Zimmerman and Scheel, 1977; Entian and Zimmermann, 1980). Addition of maltose to a growing culture of a hex2-3 mutant resulted within 60 to 90 min in an inhibition of growth, glycolysis, and de novo protein synthesis. This was not accompanied by any abnormal levels of glycolysis metabolites or glycolytic enzyme activities. However, inhibitory effects coincided with a dramatic increase in intracellular glucose up to 150 mM relative to cell water as opposed to 2.5 mM in wild-type cells. This abnormal behavior is interpreted as a result of an uncontrolled maltose uptake in hex2 mutants, which in combination with increasing maltase activity results in an accumulation of intracellular glucose. Obviously the amount of available glucose surpassed glycolytic capacity in hex2 mutants. Properties of mutant alleles hex2 and hex1 (see Entian and Zimmermann, 1980) clearly show, that specific gene functions are involved in adapting the rate of sugar uptake into the cell to the actual glycolytic capacity.

  8. Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA

    PubMed Central

    van Munster, Jolanda M.; Nitsche, Benjamin M.; Akeroyd, Michiel; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.; Ram, Arthur F. J.

    2015-01-01

    Background The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. Results In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. Conclusion The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification, which contributes to understanding cell wall remodeling mechanisms during development. PMID:25629352

  9. Improved Properties of Baker's Yeast Mutants Resistant to 2-Deoxy-d-Glucose

    PubMed Central

    Rincón, Ana M.; Codón, Antonio C.; Castrejón, Francisco; Benítez, Tahía

    2001-01-01

    We isolated spontaneous mutants from Saccharomyces cerevisiae (baker's yeast V1) that were resistant to 2-deoxy-d-glucose and had improved fermentative capacity on sweet doughs. Three mutants could grow at the same rate as the wild type in minimal SD medium (0.17% Difco yeast nitrogen base without amino acids and ammonium sulfate, 0.5% ammonium sulfate, 2% glucose) and had stable elevated levels of maltase and/or invertase under repression conditions but lower levels in maltose-supplemented media. Two of the mutants also had high levels of phosphatase active on 2-deoxy-d-glucose-6-phosphate. Dough fermentation (CO2 liberation) by two of the mutants was faster and/or produced higher final volumes than that by the wild type, both under laboratory and industrial conditions, when the doughs were supplemented with glucose or sucrose. However, the three mutants were slower when fermenting plain doughs. Fermented sweet bakery products obtained with these mutants were of better quality than those produced by the wild type, with regard to their texture and their organoleptic properties. PMID:11526034

  10. Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae)--Cecidomyiidae gall systems.

    PubMed

    de Oliveira, Denis Coelho; Carneiro, Renê Gonçalves da Silva; Magalhães, Thiago Alves; Isaias, Rosy Mary dos Santos

    2011-10-01

    Previous ultrastructural and histochemical analysis proposed patterns in the accumulation of substances in galls of Diptera: Cecidomyiidae in some plant species of the temperate region. Similar analyses were done to verify the conservativeness of these patterns in the Neotropical region, where a great number of species of Cecidomyiidae is responsible for a wide diversity of morphotypes. Two gall morphotypes induced by Cecidomyiidae in a unique host plant, Copaifera langsdorffii, were studied. The gradients of carbohydrates and the activity of invertases and acid phosphatases were similar, but the cytological gradients and distribution of proteins evidenced that the sites of the induction as well as the amount of neoformed tissues may be peculiar to each gall system. The production of lipids just in the secretory cavities either in the non-galled or galled tissues indicated a potentiality of the host plant which could not be manipulated by the galling insects. Further, the absence of nucleus in the nutritive tissue, an exclusive feature of the horn-shaped galls, indicates cell death attributed to the feeding habit of the galling herbivore.

  11. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains.

    PubMed

    Hernandez-Lopez, M J; Prieto, J A; Randez-Gil, F

    2003-01-01

    The response of Saccharomyces cerevisiae and freeze-tolerant Torulaspora delbrueckii strains to osmotic stress and their CO2 production capacity in sweet and frozen-sweet dough has been examined. T. delbrueckii strains, IGC5321 and IGC5323 showed higher leavening ability than Saccharomyces, specially after exposure to hyperosmotic stress of bread dough containing 20% sucrose and 2% salt added. In addition, Torulaspora and especially T. delbrueckii IGC5321 exhibited no loss of CO2 production capacity during freeze-thaw stress. Overall, these results appeared to indicate that Torulaspora cells are more tolerant than Saccharomyces to osmotic stress of bread dough. This trait correlated with a low invertase activity, a slow rate of trehalose mobilisation and the ability to respond rapidly to osmotic stress. Growth behaviour on high osmotic synthetic media was also examined. Cells of the IGC5321 strain showed intrinsic osmotolerance and ion toxicity resistance. However, T. delbrueckii IGC5323 exhibited a clear phenotype of osmosensitivity. Hence, this characteristic may not be essential or the only determinant for leavening ability in salted high-sugar dough.

  12. Use of glutaraldehyde and benzalkonium chloride for minimizing post-harvest physio-chemical and microbial changes responsible for sucrose losses in sugar cane.

    PubMed

    Singh, Pushpa; Arya, Namita; Tiwari, Priyanka; Suman, Archna; Rai, R K; Shrivastava, A K; Solomon, S

    2008-08-27

    Sugar cane is sensitive to enormous sucrose losses induced by physio-chemical and microbial changes, the severity being increased during the time lag between harvest and crushing in the mills. Minimization of the sucrose losses in the field is essential for better sugar recovery and prevention of sucrose losses. An experiment was conducted to evaluate the efficacy of glutaraldehyde and benzalkonium chloride for their effects on the microbial counts and physio-chemical changes responsible for sucrose losses. Glutaraldehyde and benzalkonium chloride (1000 + 250 ppm) reduced the losses in sucrose content to 7.1% as compared to the 30.8% loss in the control, thus improving the performance by 76.9%. The application of chemicals reduced the acid invertase activity (by 60%), lowered weight loss, titrable acidity, reducing sugars content, dextran, ethanol, and ethylene production and respiration rates. The application led to the reduction in the total bacterial, fungal, Leuconostoc, and yeast counts by 67.92, 51.3%, 26.08, and 51.2%, respectively.

  13. Inhibition of Cell Wall-Associated Enzymes in Vitro and in Vivo with Sugar Analogs

    PubMed Central

    Nagahashi, Gerald; Tu, Shu-I; Fleet, George; Namgoong, Sun K.

    1990-01-01

    Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised. PMID:16667291

  14. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    PubMed

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk. Copyright © 2015. Published by Elsevier GmbH.

  15. Hypoxia enhances innate immune activation to Aspergillus fumigates through cell wall modulation

    PubMed Central

    Shepardson, Kelly M.; Ngo, Lisa Y.; Aimanianda, Vishukumar; Latge, Jean-Paul; Barker, Bridget M.; Blosser, Sara J.; Iwakura, Yoichiro; Hohl, Tobias M.; Cramer, Robert A.

    2013-01-01

    Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content. In addition, hypoxia-induced cell wall alterations increase macrophage and neutrophil responsiveness and antifungal activity as judged by inflammatory cytokine production and ability to induce hyphal damage. We observe that these effects are largely dependent on the mammalian β-glucan receptor dectin-1. In a corticosteroid model of invasive pulmonary aspergillosis, A. fumigatus β-glucan exposure correlates with the presence of hypoxia in situ. Our data suggest that hypoxia-induced fungal cell wall changes influence the activation of innate effector cells at sites of hyphal tissue invasion, which has potential implications for therapeutic outcomes of invasive pulmonary aspergillosis. PMID:23220005

  16. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE PAGES

    Wang, Wei; Li, Eryang; Porth, Ilga; ...

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  17. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Eryang; Porth, Ilga

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  18. Differences in muscle activation patterns during pelvic floor muscle contraction and Valsalva maneuver.

    PubMed

    Thompson, Judith A; O'Sullivan, Peter B; Briffa, N Kathryn; Neumann, Patricia

    2006-01-01

    To investigate the different muscle activation patterns around the abdomino-pelvic cavity in continent women and their effect on pressure generation during a correct pelvic floor muscle (PFM) contraction and a Valsalva maneuver. Thirteen continent women were assessed. Abdominal, chest wall, and PFM activity and vaginal and intra-abdominal pressure (IAP), were recorded during two tasks: PFM contraction and Valsalva whilst bladder base position was monitored on trans-abdominal ultrasound. A correct PFM contraction was defined as one that resulted in bladder base elevation and a Valsalva resulted in bladder base depression. Comparison of the mean of the normalized EMG activity of all the individual muscle groups was significantly different between PFM contraction and Valsalva (P = 0.04). During a correct PFM contraction, the PFM were more active than during Valsalva (P = 0.001). During Valsalva, all the abdominal muscles (IO (P = 0.006), EO (P < 0.001), RA (P = 0.011)), and the chest wall (P < 0.001) were more active than during PFM contraction. The change in IAP was greater during Valsalva (P = 0.001) but there was no difference in the change in vaginal pressure between PFM contraction and Valsalva (P = 0.971). This study demonstrates a difference in muscle activation patterns between a correct PFM contraction and Valsalva maneuver. It is important to include assessment of the abdominal wall, chest wall, and respiration in the clinical evaluation of women performing PFM exercises as abdominal wall bracing combined with an increase in chest wall activity may cause rises in IAP and PFM descent. (c) 2005 Wiley-Liss, Inc.

  19. In-situ determination of residual specific activity in activated concrete walls of a PET-cyclotron room

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Toyoda, A.; Masumoto, K.; Yoshida, G.; Yagishita, T.; Nakabayashi, T.; Sasaki, H.; Matsumura, K.; Yamaya, Y.; Miyazaki, Y.

    2018-06-01

    In the decommissioning work for concrete walls of PET-cyclotron rooms, an in-situ measurement is expected to be useful for obtaining a contour map of the specific activity on the walls without destroying the structure. In this study, specific activities of γ-ray-emitting radionuclides in concrete walls were determined by using an in-situ measurement method employing a portable Ge semiconductor detector, and compared with the specific activity obtained using the sampling measurement method, at the Medical and Pharmacological Research Center Foundation in Hakui, Ishikawa, Japan. Accordingly, the specific activity could be determined by the in-situ determination method. Since there is a clear correlation between the total specific activity of γ-ray-emitting radionuclides and contact dose rate, the specific activity can be determined approximately by contact dose-rate measurement using a NaI scintillation survey meter. The specific activity of each γ-ray-emitting radionuclide can also be estimated from the contact dose rate using a NaI scintillation survey meter. The in-situ measurement method is a powerful tool for the decommissioning of the PET cyclotron room.

  20. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  1. A new fractional order derivative based active contour model for colon wall segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong

    2018-02-01

    Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.

  2. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  3. Quantification of Rock Damage from Small Explosions and Its Effect on Shear-Wave Generation

    DTIC Science & Technology

    2009-06-15

    close to a nearby cell /radio tower and the active quarry wall to detonate our planned 400 lb explosions. Core drilling at an alternative test site...Figure ) was conducted further away from the active quarry wall and a nearby cell /radio tower. The alternative site would be far enough away from...returned into the original location (Figure ). In order to reduce the projected ground vibrations at the cell /radio tower and high wall of the active

  4. Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Terry, M. E.; Hoops, P.; Dauwalder, M.; Roux, S. J.

    1988-01-01

    A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.

  5. The History of Maltose-active Disaccharidases.

    PubMed

    Lentze, Michael J

    2018-06-01

    The history of maltose-active disaccharidases is closely related to the history of the sugar and starch industry. It began in the 19th century, when a shortage of cane sugar occurred in continental Europe, because Napoleon Bonaparte decreed that no goods could be imported from England to the countries he occupied. Other sugar sources had to be found, and it led to the identification of sugar beets as alternative source of sugar by Marggraf in 1774, to the detection of starch hydrolysis by diluted sulfuric acid by Kirchhoff in 1812, and to the starch digestion enzyme, α-amylase, by Payen in 1833. In the 20th century, Borkström's group in Sweden investigated the absorption of nutrients in human adults by transintubation techniques and found that the luminal concentration of invertase was small compared to that of α-amylase. They speculated that the major locus of this enzyme activity must be in the intestinal cells. Borkström's coworker, Dahlqvist, investigated the maltose-active enzymes in pig intestine, and a second group around Semenza studied the maltase-active enzymes in rabbit intestine. After the first descriptions of congenital sucrase-isomaltase deficiency in 1960 and 1961, the research on disaccharidases increased. Dahlqvist published the first quantitative method to measure these enzymes. Consecutive research led to the discovery of 4 maltases, which were later identified as 2 complex enzymes: the sucrase-isomaltase complex and the maltase-glucoamylase complex. The homology of the 2 enzyme complexes was later determined when the cDNA sequences of the 2 complexes in human intestine were identified.

  6. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.

    2006-11-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  7. The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum.

    PubMed

    Safari, Masoumeh; Ghanati, Faezeh; Safarnejad, Mohammad Reza; Chashmi, Najmeh Ahmadian

    2018-02-01

    Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H + -ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.

  8. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation.

    PubMed

    Yin, Ningning; Zhang, Zhen; Wang, Liping; Qian, Kuimei

    2016-09-01

    Mining activities can cause drastic disturbances in soil properties, which adversely affect the nutrient cycling and soil environment. As a result, many efforts have been made to explore suitable reclamation strategies that can be applied to accelerate ecology restoration. In this study, we reconstructed mine soils with fly ash, gangue, sludge, planted ryegrass, and inoculated arbuscular mycorrhizal fungi (AMF) in Pangzhuang mine of Xuzhou during 2009 to 2015. The soil aggregation process, enzyme activities (i.e., invertase, urease and acid phosphatase activities), soil organic carbon (SOC) as well as other soil nutrients such as nitrogen, phosphorus, and potassium contents of the reconstructed mine soils were monitored during 6-year reclamation. The integrated application of sludge and AMF led to a promising reclamation performance of mining areas, in which soil aggregate stability, enzyme activities, SOC, and ryegrass biomass were effectively enhanced. The micro-aggregates (< 0.25 mm) decreased with the increase of macro-aggregates (> 0.25 mm) during the reclamation, indicating that macro-aggregates were gradually formed from micro-aggregates during the pedogenesis of reconstructed mine soils. The correlation analysis shows that SOC contents in aggregate fraction of 0.25∼0.5 mm were correlated with aggregate distribution and enzyme activities. Enzyme activities, however, were not significantly correlated with aggregate distribution. The outcomes from the present study could enrich our understanding on soil property changes in pedogenesis process of reconstructed mine soils, and meanwhile, the employment of sludge combined with AMF is suggested to be an effective alternative for the mine soil reclamation.

  9. A novel β-fructofuranosidase in Coleoptera: Characterization of a β-fructofuranosidase from the sugarcane weevil, Sphenophorus levis.

    PubMed

    Pedezzi, Rafael; Fonseca, Fernando P P; Santos Júnior, Célio Dias; Kishi, Luciano T; Terra, Walter R; Henrique-Silva, Flávio

    2014-12-01

    β-fructofuranosidases or invertases (EC 3.2.1.26) catalyze the hydrolysis of sucrose into fructose and glucose. β-fructofuranosidases have been widely described in microorganisms, but were not known in the animal kingdom until very recently. There are studies reporting lepidopteran β-fructofuranosidases, but no β-fructofuranosidase gene sequence or encoding transcript has previously been identified in beetles. Considering the scarcity of functional studies on insect β-fructofuranosidases and their apparent non-occurrence among coleopterans, the aim of the present study was to investigate the occurrence and characterize a β-fructofuranosidase transcript identified in a cDNA library from the sugarcane weevil, Sphenophorus levis (Curculionidae). To validate that the β-fructofuranosidase sequence (herein denominated Sl-β-fruct) is indeed encoded by the S. levis genome, PCRs were performed using genomic DNA extracted from the larval fat body as well as DNA from the midgut with microbial content. Amplification of Sl-β-fruct gene using larval fat body DNA indicated its presence in the insect's genomic DNA. The Sl-β-fruct gene was cloned in Pichia pastoris to produce the recombinant enzyme (rSl-β-fruct). Molecular weight of the recombinant protein was about 64 kDa, indicating possible glycosylation, since the theoretical weight was 54.8 kDa. The substrate specificity test revealed that rSl-β-fruct hydrolyzes sucrose and raffinose, but not melibiose or maltose, thereby confirming invertase activity. The pH curve revealed greatest activity at pH 5.0, demonstrating rSl-β-fruct to be an acidic β-fructofuranosidase. Quantitative PCR (qRT-PCR) analyses indicated that the production of mRNA only occurs in the midgut and reaches the greatest expression level in 30-day-old larvae, which is the expected pattern for digestive enzymes. Chromatography of glycosidases from S. levis midguts showed two enzymes acting as β-fructofuranosidase, indicating the presence of a Sl-β-fruct isoform or a β-fructofuranosidase from insect intestinal microbiota. Moreover, it was found that α-glucosidases do not act on sucrose hydrolysis. Phylogenetic analyses indicated this enzyme to be similar to enzymes found in other coleopteran and lepidopteran β-fructofuranosidases, but also closely similar to bacterial enzymes, suggesting potential horizontal gene transfer. Despite this, the enzyme seems to be restricted to different groups of bacteria, which suggests distinct origin events. The present study expands the concept of the occurrence of β-fructofuranosidase in insects. Despite the few descriptions of this gene in the animal kingdom, it is possible to state that β-fructofuranosidase is crucial to the establishment of some insects throughout their evolutionary history, especially members of the Lepidoptera and Coleoptera clades. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Open-field arena boundary is a primary object of exploration for Drosophila

    PubMed Central

    Soibam, Benjamin; Mann, Monica; Liu, Lingzhi; Tran, Jessica; Lobaina, Milena; Kang, Yuan Yuan; Gunaratne, Gemunu H; Pletcher, Scott; Roman, Gregg

    2012-01-01

    Drosophila adults, when placed into a novel open-field arena, initially exhibit an elevated level of activity followed by a reduced stable level of spontaneous activity and spend a majority of time near the arena edge, executing motions along the walls. In order to determine the environmental features that are responsible for the initial high activity and wall-following behavior exhibited during exploration, we examined wild-type and visually impaired mutants in arenas with different vertical surfaces. These experiments support the conclusion that the wall-following behavior of Drosophila is best characterized by a preference for the arena boundary, and not thigmotaxis or centrophobicity. In circular arenas, Drosophila mostly move in trajectories with low turn angles. Since the boundary preference could derive from highly linear trajectories, we further developed a simulation program to model the effects of turn angle on the boundary preference. In an hourglass-shaped arena with convex-angled walls that forced a straight versus wall-following choice, the simulation with constrained turn angles predicted general movement across a central gap, whereas Drosophila tend to follow the wall. Hence, low turn angled movement does not drive the boundary preference. Lastly, visually impaired Drosophila demonstrate a defect in attenuation of the elevated initial activity. Interestingly, the visually impaired w1118 activity decay defect can be rescued by increasing the contrast of the arena's edge, suggesting that the activity decay relies on visual detection of the boundary. The arena boundary is, therefore, a primary object of exploration for Drosophila. PMID:22574279

  11. DOING Physics: Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1985-01-01

    Recommends an experiment which will help students experience the physical evidence that floors, tables, and walls actually bend when pressure is exerted against them. Set-up includes: laser, radio, solar cell, and wall-mounted mirror. When the beam is moved by pressure on the wall, participants can "hear the wall bend." (DH)

  12. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    PubMed

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  13. Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ida, Mizuho; Chida, Teruo; Furuya, Kazuyuki; Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi

    2009-04-01

    For long time operation of a liquid lithium target of the International Fusion Materials Irradiation Facility, annual replacement of a back-wall, a part of the flow channel, is planned, since the target suffers neutron damage of more than 50 dpa/fpy. Considering irradiation/activation conditions, remote weld on stainless steel 316L between a back-wall and a target assembly was employed. Furthermore, dissimilar weld between the 316L and a reduced-activation ferritic/martensitic steel F82H in the back-wall was employed. The objective of this study is to clarify structures and materials of the back-wall with acceptable thermal-stress under nuclear heating. Thermal-stress analysis was done using a code ABAQUS and data of the nuclear heating. As a result, thermal-stress in the back-wall is acceptable level, if thickness of the stress-mitigation part is more than 5 mm. With results of the analysis, necessity of material data for F82H and 316L under conditions of irradiation tests and mechanical tests are clarified.

  14. Nectar and pollination drops: how different are they?

    PubMed

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both nectar and pollination drop that will contribute to the study of plant reproduction and evolution.

  15. 16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER AT REAR; UNUSED WATER-DRIVEN EXCITER IN FOREGROUND. VIEW TO SOUTH-SOUTHWEST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  16. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion.

    PubMed

    Bledsoe, Samuel W; Henry, Clémence; Griffiths, Cara A; Paul, Matthew J; Feil, Regina; Lunn, John E; Stitt, Mark; Lagrimini, L Mark

    2017-04-12

    Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol∙g -1 FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA.3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014):1-13, 2015). The impact of kernel excision from the ear triggers a cascade of events starting with the precipitous drop in Tre6P levels. It is proposed that the removal of Tre6P suppression of SnRK1 activity results in transcription of putative SnRK1 target genes, and the metabolic transition from biosynthesis to catabolism. This highlights the importance of Tre6P in the metabolic response to starvation. We also present evidence that sugars can mediate the activation of SnRK1. The precipitous drop in Tre6P corresponds to a large increase in transcription of ZmTPPA.3, indicating that this specific enzyme may be responsible for the de-phosphorylation of Tre6P. The high levels of Tre6P in the immature embryo are likely important for preventing kernel abortion.

  17. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    PubMed Central

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  18. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Changes in apoplastic peroxidase activity and cell wall composition are associated with cold-induced morpho-anatomical plasticity of wheat leaves.

    PubMed

    Lorenzo, M; Pinedo, M L; Equiza, M A; Fernández, P V; Ciancia, M; Ganem, D G; Tognetti, J A

    2018-02-14

    Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  20. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    PubMed

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biocompatible Capsules and Methods of Making

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2017-01-01

    Embodiments of the invention include capsules for containing medical implants and delivery systems for release of active biological substances into a host body. Delivery systems comprise a capsule comprising an interior enclosed by walls, and a source of active biological substances enclosed within the capsule interior, wherein the active biological substances are free to diffuse across the capsule walls. The capsule walls comprise a continuous mesh of biocompatible fibers and a seal region where two capsule walls overlap. The interior of the capsule is substantially isolated from the medium surrounding the capsule, except for diffusion of at least one species of molecule between the capsule interior and the ambient medium, and prevents cell migration into or out of the capsule. Methods for preparing and using the capsules and delivery systems are provided.

  2. Materials for Adaptive Structural Acoustic Controls

    DTIC Science & Technology

    1994-01-31

    non -184T walls are possibly active under a weak cternial driving field. I. INTRODUCTION sic and extrinsic contributions from tile experimental data...increased activity in non - I 8Or wall in PZT-500, The experimental methods presented in this however, the disproportionate increase in e. may refiect be...Electromechanical Nonlinearity of Ferroelecuic Ceramic and Related non 180" Domain Wall Motion. Feaoelectrics 139,25- 49 (1993). 14. Jiang, Q., W. Cao, and L E

  3. Unexpected arterial wall and cellular inflammation in patients with rheumatoid arthritis in remission using biological therapy: a cross-sectional study.

    PubMed

    Bernelot Moens, Sophie J; van der Valk, Fleur M; Strang, Aart C; Kroon, Jeffrey; Smits, Loek P; Kneepkens, Eva L; Verberne, Hein J; van Buul, Jaap D; Nurmohamed, Michael T; Stroes, Erik S G

    2016-05-21

    Increasing numbers of patients (up to 40 %) with rheumatoid arthritis (RA) achieve remission, yet it remains to be elucidated whether this also normalizes their cardiovascular risk. Short-term treatment with TNF inhibitors lowers arterial wall inflammation, but not to levels of healthy controls. We investigated whether RA patients in long-term remission are characterized by normalized inflammatory activity of the arterial wall and if this is dependent on type of medication used (TNF-inhibitor versus nonbiological disease-modifying antirheumatic drugs (DMARDs)). Arterial wall inflammation, bone marrow and splenic activity (index of progenitor cell activity) was assessed with (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) in RA patients in remission (disease activity score (DAS28) <2.6 for >6 months) and healthy controls. We performed ex vivo characterization of monocytes using flow cytometry and a transendothelial migration assay. Overall, arterial wall inflammation was comparable in RA patients (n = 23) in long-term remission and controls (n = 17). However, RA subjects using current anti-TNF therapy (n = 13, disease activity score 1.98[1.8-2.2]) have an almost 1.2-fold higher (18)F-FDG uptake in the arterial wall compared to those using DMARDs (but with previous anti-TNF therapy) (n = 10, disease activity score 2.24[1.3-2.5]), which seemed to be predominantly explained by longer duration of their rheumatic disease in a multivariate linear regression analysis. This coincided with increased expression of pro-adhesive (CCR2) and migratory (CD11c, CD18) surface markers on monocytes and a concomitant increased migratory capacity. Finally, we found increased activity in bone marrow and spleen in RA patients using anti-TNF therapy compared to those with DMARDs and controls. A subset of patients with RA in clinical remission have activated monocytes and increased inflammation in the arterial wall, despite the use of potent TNF blocking therapies. In these subjects, RA disease duration was the most important contributor to the level of arterial wall inflammation. This increased inflammatory state implies higher cardiovascular risk in these patients, who thus may require more stringent CV risk management.

  4. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis.

    PubMed

    Hua, Wei; Li, Rong-Jun; Zhan, Gao-Miao; Liu, Jing; Li, Jun; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-02-01

    Seed oil content is an important agronomic trait in rapeseed. However, our understanding of the regulatory processes controlling oil accumulation is still limited. Using two rapeseed lines (zy036 and 51070) with contrasting oil content, we found that maternal genotype greatly affects seed oil content. Genetic and physiological evidence indicated that difference in the local and tissue-specific photosynthetic activity in the silique wall (a maternal tissue) was responsible for the different seed oil contents. This effect was mimicked by in planta manipulation of silique wall photosynthesis. Furthermore, the starch content and expression of the important lipid synthesis regulatory gene WRINKLED1 in developing seeds were linked with silique wall photosynthetic activity. 454 pyrosequencing was performed to explore the possible molecular mechanism for the difference in silique wall photosynthesis between zy036 and 51070. Interestingly, the results suggested that photosynthesis-related genes were over-represented in both total silique wall expressed genes and genes that were differentially expressed between genotypes. A potential regulatory mechanism for elevated photosynthesis in the zy036 silique wall is proposed on the basis of knowledge from Arabidopsis. Differentially expressed ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-related genes were used for further investigations. Oil content correlated closely with BnRBCS1A expression levels and Rubisco activities in the silique wall, but not in the leaf. Taken together, our results highlight an important role of silique wall photosynthesis in the regulation of seed oil content in terms of maternal effects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  5. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax.

    PubMed

    Chabi, Malika; Goulas, Estelle; Leclercq, Celine C; de Waele, Isabelle; Rihouey, Christophe; Cenci, Ugo; Day, Arnaud; Blervacq, Anne-Sophie; Neutelings, Godfrey; Duponchel, Ludovic; Lerouge, Patrice; Hausman, Jean-François; Renaut, Jenny; Hawkins, Simon

    2017-09-01

    Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Michael G.

    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plantmore » cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.« less

  7. Polymer mobility in cell walls of cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  8. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Liu, Weitao; Liang, Xuefeng; Wang, Lin

    2016-01-15

    A pot trial was conducted to assess the effectiveness of sepiolite, bentonite, and phosphate on the immobilization remediation of cadmium (Cd)-contaminated soils using a set of variables, namely, physiological traits, sequential extraction procedure, plant growth and Cd concentration, and soil enzymatic activities and microbial population. Results showed that superoxide dismutase and peroxidase activities in the leaves of Oryza sativa L. and catalase activities in soils were stimulated after applying the amendments. However, soluble protein contents in leaves and urease and invertase activities in soils were reduced from 7.1% to 31.7%, 1.0%-23.3%, and 21.1%-62.5%, respectively, compared with the control. Results of the sequence extraction procedures revealed that the exchangeable fraction of Cd in soils was mostly converted into carbonated-associated forms. The water soluble plus exchangeable fraction (SE) of Cd in soil decreased when treated with single and compound materials of sepiolite, bentonite and phosphate, which resulted in 13.2%-69.2% reduction compared with that of CK (control test). The amendments led to decreased Cd concentrations in roots, stems, leaves, brown rice, and rice hull by 16.2%-54.5%, 16.6%-42.8%, 19.6%-59.6%, 5.0%-68.2%, and 6.2%-20.4%, respectively. Higher bacterial and actinomycete amount indicated that remediation measures improved soil environmental quality. Composite amendments could be more efficiently used for the stabilization remediation of Cd contaminated soils with low Cd uptake and translocation in the plants and available contents of Cd in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    NASA Astrophysics Data System (ADS)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  10. Xyloglucan endotransglucosylase/hydrolases (XTHs) are inactivated by binding to glass and cellulosic surfaces, and released in active form by a heat-stable polymer from cauliflower florets.

    PubMed

    Sharples, Sandra C; Nguyen-Phan, Tu C; Fry, Stephen C

    2017-11-01

    Xyloglucan endotransglucosylase (XET) activity, which cuts and re-joins hemicellulose chains in the plant cell wall, contributing to wall assembly and growth regulation, is the major activity of XTH proteins. During purification, XTHs often lose XET activity which, however, is restored by treatment with certain cold-water-extractable, heat-stable polymers (CHPs), e.g. from cauliflower florets. It was not known whether the XTH-activating factor (XAF) present in CHPs works by promoting (e.g. allosterically) XET activity or by re-solubilising sequestered XTH proteins. We now show that XTHs in dilute solution bind to diverse surfaces (e.g. glass and cellulose), and that CHPs can re-solubilise the bound enzyme, re-activating it. Cell walls prepared from cauliflower florets, mung bean shoots and Arabidopsis cell-suspension cultures each contained endogenous, tightly bound, inactive XTHs, which were likewise rapidly solubilised (within 0.5h) and thus activated by cauliflower XAF. We present a convenient quantitative assay for XAF acting on the native sequestered XTHs of Arabidopsis cell walls; using this assay, we show that CHPs from all plants tested possess XAF activity. The XAF activity of diverse CHPs does not correlate with their conductivity, showing that this activity is not a simple ionic effect. The XAF action of cauliflower CHPs was augmented by NaCl, although NaCl alone was much less effective than a CHP solution of similar conductivity, confirming that the cauliflower polymers did not simply exert a salt effect. We suggest that XAF is an endogenous regulator of XET action, modulating cell-wall loosening and/or assembly in vivo. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Counter Clockwise Rotation of Cylinder with Variable Position to Control Base Flows

    NASA Astrophysics Data System (ADS)

    Asadullah, Mohammed; Khan, S. A.; Asrar, Waqar; Sulaeman, E.

    2018-05-01

    Experimental study of supersonic base flow at Mach 2 has been carried out to see the effect of cylinder when rotated counter clockwise inside the dead zone at variable locations near its base to control base pressure for different level of expansion for area ratio 9. Active cylinder of 2 mm diameter rotating counter clockwise when seen from top, is mounted as a controller. Three locations are chosen from the side wall of square duct namely at 2, 4, 6 mm respectively and 8 mm from square nozzle exit in the base region to mount the controller. Base pressure in recirculation zone and wall pressure along the square duct length has been measured with and without control. The experiments were carried out for NPR 2, 3, 6, 7.8 and 8.5. Cylinder when rotated counter clockwise as an active controller were found to reduce the base drag as high as 62 percent at NPR 8.5 when located near to duct wall and 50 percent when located away from duct wall for the same NPR. For perfectly expanded flows at NPR 7.8 the reduction in base drag was 53 percent near duct wall and 44 percent near duct wall. The active controller was up to 19 percentage effective for over expanded flows near to duct wall and up to 12 percent when located away from duct wall. Also, the control did not adversely affect the flow field.

  12. Products Released from Enzymically Active Cell Wall Stimulate Ethylene Production and Ripening in Preclimacteric Tomato (Lycopersicon esculentum Mill.) Fruit 1

    PubMed Central

    Brecht, Jeffrey K.; Huber, Donald J.

    1988-01-01

    Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit. PMID:16666417

  13. Plasma Membrane Ca2+-Permeable Channels are Differentially Regulated by Ethylene and Hydrogen Peroxide to Generate Persistent Plumes of Elevated Cytosolic Ca2+ During Transfer Cell Trans-Differentiation.

    PubMed

    Zhang, Hui-ming; van Helden, Dirk F; McCurdy, David W; Offler, Christina E; Patrick, John W

    2015-09-01

    The enhanced transport capability of transfer cells (TCs) arises from their ingrowth wall architecture comprised of a uniform wall on which wall ingrowths are deposited. The wall ingrowth papillae provide scaffolds to amplify plasma membranes that are enriched in nutrient transporters. Using Vicia faba cotyledons, whose adaxial epidermal cells spontaneously and rapidly (hours) undergo a synchronous TC trans-differentiation upon transfer to culture, has led to the discovery of a cascade of inductive signals orchestrating deposition of ingrowth wall papillae. Auxin-induced ethylene biosynthesis initiates the cascade. This in turn drives a burst in extracellular H2O2 production that triggers uniform wall deposition. Thereafter, a persistent and elevated cytosolic Ca(2+) concentration, resulting from Ca(2+) influx through plasma membrane Ca(2+)-permeable channels, generates a Ca(2+) signal that directs formation of wall ingrowth papillae to specific loci. We now report how these Ca(2+)-permeable channels are regulated using the proportionate responses in cytosolic Ca(2+) concentration as a proxy measure of their transport activity. Culturing cotyledons on various combinations of pharmacological agents allowed the regulatory influence of each upstream signal on Ca(2+) channel activity to be evaluated. The findings demonstrated that Ca(2+)-permeable channel activity was insensitive to auxin, but up-regulated by ethylene through two independent routes. In one route ethylene acts directly on Ca(2+)-permeable channel activity at the transcriptional and post-translational levels, through an ethylene receptor-dependent pathway. The other route is mediated by an ethylene-induced production of extracellular H2O2 which then acts translationally and post-translationally to up-regulate Ca(2+)-permeable channel activity. A model describing the differential regulation of Ca(2+)-permeable channel activity is presented. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids.

    PubMed

    Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten; Burkovski, Andreas; Lang, Roland

    2017-07-01

    Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. Copyright © 2017 American Society for Microbiology.

  15. Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids

    PubMed Central

    Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten

    2017-01-01

    ABSTRACT Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro. Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. PMID:28483856

  16. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  17. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger.

    PubMed

    Yuan, Xiao-Lian; Roubos, Johannes A; van den Hondel, Cees A M J J; Ram, Arthur F J

    2008-01-01

    The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.

  18. Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides.

    PubMed

    Morimoto, Kenji; Yoshihara, Akihide; Furumoto, Toshio; Takata, Goro

    2015-06-01

    Sucrose phosphorylase (SPase) from Leuconostoc mesenteroides exhibited activity towards eight ketohexoses, which behaved as D-glucosyl acceptors, and α-D-glucose-1-phosphate (G1P), which behaved as a donor. All eight of these ketohexoses were subsequently transformed into the corresponding d-glucosyl-ketohexoses. Of the eight ketohexoses evaluated in the current study, d-allulose behaved as the best substrate for SPase, and the resulting d-glucosyl-d-alluloside product was found to be a non-reducing sugar with a specific optical rotation of [α]D(20) + 74.36°. D-Glucosyl-D-alluloside was identified as α-D-glucopyranosyl-(1→2)-β-D-allulofuranoside by NMR analysis. D-Glucosyl-D-alluloside exhibited an inhibitory activity towards an invertase from yeast with a Km value of 50 mM, where it behaved as a competitive inhibitor with a Ki value of 9.2 mM. D-Glucosyl-D-alluloside was also successfully produced from sucrose using SPase and D-tagatose 3-epimerase. This process also allowed for the production of G1P from sucrose and d-allulose from D-fructose, which suggested that this method could be used to prepare d-glucosyl-d-alluloside without the need for expensive reagents such as G1P and d-allulose. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. On fully three-dimensional resistive wall mode and feedback stabilization computationsa)

    NASA Astrophysics Data System (ADS)

    Strumberger, E.; Merkel, P.; Sempf, M.; Günter, S.

    2008-05-01

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Köppendörfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208].

  20. On fully three-dimensional resistive wall mode and feedback stabilization computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strumberger, E.; Merkel, P.; Sempf, M.

    2008-05-15

    Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes.more » In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208].« less

  1. [Effects of Different Altitudes on Soil Microbial PLFA and Enzyme Activity in Two Kinds of Forests].

    PubMed

    Zeng, Qing-ping; He, Bing-hui; Mao, Qiao-zhi; Wu, Yao-peng; Huang, Qi; Li, Yuan

    2015-12-01

    The soil microbial community is an important part in soil ecosystem, and it is sensitive to the ecological environment. Phospholipid-derived fatty acids ( PLFA ) analysis was used to examine variations in soil microbial community diversity and its influencing factors. The results showed that: there existed 48 PLFAs that were significant in the soil samples from six altitudes. The PLFAs of six altitudes with the highest contents were i16:0, 10Me17:0, 10Me18:0 TBSA. The citrus forest exhibited richer soil PLFAs distribution both in type and amount than those in masson pine. The microbial activity and functional diversity of masson pine were increased with increasing altitudes, and citrus forest gradually decreased, the PLFA content of different microbial groups in each altitude were significantly different. The richness index, Shannon-Wiener index and Pielou evenness index of masson pine in low elevation were holistically higher than those in high elevation. However, the highest richness index of citrus forest was in low altitude, the highest Shannon-Wiener index and Pielou evenness index were in high altitude. The PLFAs content of different microbial groups were closely correlated to the soil enzyme activities and environmental factors. The PLFAs of bacteria, actinomycetes, G⁻ (Gram- positive), G⁺ (Gram-negative) were positively correlated with Ure(urease) , Ive(invertase) , CAT( catalase activity) and forest type, the PLFAs of fungi was significantly correlated with Ure, Ive, CAT, the PLFAs of bacteria, fungi, actinomycetes, G⁻ , G⁺ were significantly negatively or less correlated with elevation. Ure, Ive, CAT, forest type and elevation are the pivotal factors controlling the soil microbial biomass and activities.

  2. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    PubMed

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  3. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism

    PubMed Central

    Nardozza, Simona; MacRae, Elspeth A.; Sulpice, Ronan; Clearwater, Michael J.

    2013-01-01

    Tomato, melon, grape, peach, and strawberry primarily accumulate soluble sugars during fruit development. In contrast, kiwifruit (Actinidia Lindl. spp.) and banana store a large amount of starch that is released as soluble sugars only after the fruit has reached maturity. By integrating metabolites measured by gas chromatography–mass spectrometry, enzyme activities measured by a robot-based platform, and transcript data sets during fruit development of Actinidia deliciosa genotypes contrasting in starch concentration and size, this study identified the metabolic changes occurring during kiwifruit development, including the metabolic hallmarks of starch accumulation and turnover. At cell division, a rise in glucose (Glc) concentration was associated with neutral invertase (NI) activity, and the decline of both Glc and NI activity defined the transition to the cell expansion and starch accumulation phase. The high transcript levels of β-amylase 9 (BAM9) during cell division, prior to net starch accumulation, and the correlation between sucrose phosphate synthase (SPS) activity and sucrose suggest the occurrence of sucrose cycling and starch turnover. ADP-Glc pyrophosphorylase (AGPase) is identified as a key enzyme for starch accumulation in kiwifruit berries, as high-starch genotypes had 2- to 5-fold higher AGPase activity, which was maintained over a longer period of time and was also associated with enhanced and extended transcription of the AGPase large subunit 4 (APL4). The data also revealed that SPS and galactinol might affect kiwifruit starch accumulation, and suggest that phloem unloading into kiwifruit is symplastic. These results are relevant to the genetic improvement of quality traits such as sweetness and sugar/acid balance in a range of fruit species. PMID:24058160

  4. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism.

    PubMed

    Nardozza, Simona; Boldingh, Helen L; Osorio, Sonia; Höhne, Melanie; Wohlers, Mark; Gleave, Andrew P; MacRae, Elspeth A; Richardson, Annette C; Atkinson, Ross G; Sulpice, Ronan; Fernie, Alisdair R; Clearwater, Michael J

    2013-11-01

    Tomato, melon, grape, peach, and strawberry primarily accumulate soluble sugars during fruit development. In contrast, kiwifruit (Actinidia Lindl. spp.) and banana store a large amount of starch that is released as soluble sugars only after the fruit has reached maturity. By integrating metabolites measured by gas chromatography-mass spectrometry, enzyme activities measured by a robot-based platform, and transcript data sets during fruit development of Actinidia deliciosa genotypes contrasting in starch concentration and size, this study identified the metabolic changes occurring during kiwifruit development, including the metabolic hallmarks of starch accumulation and turnover. At cell division, a rise in glucose (Glc) concentration was associated with neutral invertase (NI) activity, and the decline of both Glc and NI activity defined the transition to the cell expansion and starch accumulation phase. The high transcript levels of β-amylase 9 (BAM9) during cell division, prior to net starch accumulation, and the correlation between sucrose phosphate synthase (SPS) activity and sucrose suggest the occurrence of sucrose cycling and starch turnover. ADP-Glc pyrophosphorylase (AGPase) is identified as a key enzyme for starch accumulation in kiwifruit berries, as high-starch genotypes had 2- to 5-fold higher AGPase activity, which was maintained over a longer period of time and was also associated with enhanced and extended transcription of the AGPase large subunit 4 (APL4). The data also revealed that SPS and galactinol might affect kiwifruit starch accumulation, and suggest that phloem unloading into kiwifruit is symplastic. These results are relevant to the genetic improvement of quality traits such as sweetness and sugar/acid balance in a range of fruit species.

  5. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China.

    PubMed

    Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei

    2018-06-01

    Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland).

    PubMed

    Ciarkowska, Krystyna

    2018-05-01

    Effect of tourism, especially skiing activities, and urbanization on chemical and biochemical properties of soils in touristy town-Zakopane-was investigated. The concentration of heavy metals, nutrients, soil organic matter (SOM), dehydrogenase (DHA), invertase (IA) and urease (Ure) activities in soils from the town centre and out of the town centre was compared with the respective values of adjacent soils in protected areas (TNP). In order to evaluate a degree of contamination and risks of degradation enrichment factor (EF), ecological risk index (RI), Nemerov Pollution Index (PI Nemerov ) as well as enzyme activity index (EAI) were calculated. Soils in the centre of Zakopane were polluted with Zn, Pb, Cd and Cu in a moderate degree when those of skiing areas were polluted with Pb and Cd in a high degree. Strong positive correlation between these metals and negative correlation between them and a distance from the main roundabout in town indicated their anthropogenic origin. Soils of both locations were also enriched in P, but depleted in SOM when compared to TNP soils. Soils of touristy areas (out of the centre) were additionally enriched in N. Activity of studied enzymes was also lowered in soils of Zakopane when compared to soils of TNP. Pollution indices, RI, PI Nemerov as well as EAI, indicated that soils of Zakopane are at risk of degradation. Soils of touristy areas are under stronger negative impact than soils of the centre because of the cumulative effect of transport of heavy metals from the city centre, pollution by skiing machinery and melting water from the artificial snow.

  7. The Aspergillus fumigatus pkcA G579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model

    PubMed Central

    Rocha, Marina Campos; de Godoy, Krissia Franco; de Castro, Patrícia Alves; Hori, Juliana Issa; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; da Cunha, Anderson Ferreira; Goldman, Gustavo Henrique; Malavazi, Iran

    2015-01-01

    Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcA G579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcA G579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcA G579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection. PMID:26295576

  8. Localization of functional β-xylosidases, encoded by the same single gene, xlsIV (xlnD), from Aspergillus niger E-1.

    PubMed

    Inoue, Kotomi; Takahashi, Yui; Obara, Ken; Murakami, Shuichiro

    2017-03-01

    Cell wall-associated β-xylosidase was isolated from Aspergillus niger E-1 and identified as XlsIV, corresponding to the extracellular enzyme XlnD reported previously. xlsIV was transcribed only in the early cultivation period. Cell wall-associated enzyme activity gradually decreased, but extracellular activity increased as the strain grew. These results indicate that XlsIV (XlnD) was secreted into culture after localizing at cell wall.

  9. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Youn, B.; Mills, A. F.

    1995-01-01

    Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.

  10. A mutation Ser213/Asn in the hexokinase 1 from Schizosaccharomyces pombe increases its affinity for glucose.

    PubMed

    Petit, T; Herrero, P; Gancedo, C

    1998-10-29

    Alignment of amino acids of the region implicated in glucose binding from a series of hexokinases showed that Schizosaccharomyces pombe hexokinase 1 had a Ser residue in a place where all other kinases had an Asn. We changed an AGT codon to AAT to place an Asn in the Ser213 position. This mutation decreased Km for glucose from 9.4 mM to 1.6 mM and the ratio Vmax (Fructose)/Vmax (Glucose) from 5 to 2.5. Also the Km for 2-deoxyglucose decreased from 2.7 mM to 0.8 mM. A mutation in the similar position of S. pombe hexokinase 2 (Asn196/Ser) increased the Km for glucose from 0.16 mM to 0.56 mM. Fermentation of glucose is not detectable in a S. pombe mutant with only hexokinase 1 activity but expression of the hxk1(S213/N) gene conferred ability to ferment the sugar. While the mutated hexokinase 1 partially mimicked S. cerevisiae hexokinase II in catabolite repression of invertase, the wild type one could not substitute for it. Copyright 1998 Academic Press.

  11. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    PubMed

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  12. The Anticomplementary Activity of ’Fusobacterium polymorphum’ in Normal and C-4 Deficient Sources of Guinea Pig Complement.

    DTIC Science & Technology

    1977-01-12

    A complement consumption assay was used to show that the anticomplementary activity of a cell wall preparation from F. polymorphum in guinea pig complement...tests with C𔃾-deficient guinea pig sera confirmed that F. polymorphum cell walls were capable of generating alternate complement pathway activity in guinea pig sera.

  13. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yijun; Zhang, Jun; Li, Ting

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, wemore » suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.« less

  14. [Intensity of lipid peroxidation and antioxidant enzyme activity in arterial and venous walls during hypervitaminosis D].

    PubMed

    Harbuzova, V Iu

    2002-01-01

    The intensity of the lipid peroxydation (LPO) and the antioxidant enzyme activity (superoxide dismutase, glutathione peroxydase and catalase) on injecting vitamin D in high doses (10,000 U/kg) was examined in the arterial and venous walls of rabbits. The increase in the amount of the intermediate and final LPO products has been found in the vessels of all types. The lowest intensity of LPO was noted in the vena cava. The decrease in the antioxidant activity has been revealed. But vena cava inferior was the exception because the activity of all studied antioxidant enzymes grew in its wall. This increase is likely to be one of the reasons for vena resistance to the action of damaging factors.

  15. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    NASA Astrophysics Data System (ADS)

    Popescu, M. N.; Uspal, W. E.; Dietrich, S.

    2017-04-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate ‘point-particle’ analysis, we show analytically that—owing to this kind of induced active response (chemi-osmosis) of the wall—such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial ‘swimmers’ exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with ‘source’ chemical reactions on one half of the surface and either ‘inert’ or ‘sink’ reactions over the other half.

  16. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research. PMID:25453142

  17. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.

  18. Enzymatic changes in pectic polysaccharides related to the beneficial effect of soaking on bean cooking time.

    PubMed

    Martínez-Manrique, Enrique; Jacinto-Hernández, Carmen; Garza-García, Ramón; Campos, Albino; Moreno, Ernesto; Bernal-Lugo, Irma

    2011-10-01

    Cooking time decreases when beans are soaked first. However, the molecular basis of this decrease remains unclear. To determine the mechanisms involved, changes in both pectic polysaccharides and cell wall enzymes were monitored during soaking. Two cultivars and one breeding line were studied. Soaking increased the activity of the cell wall enzymes rhamnogalacturonase, galactanase and polygalacturonase. Their activity in the cell wall was detected as changes in chemical composition of pectic polysaccharides. Rhamnose content decreased but galactose and uronic acid contents increased in the polysaccharides of soaked beans. A decrease in the average molecular weight of the pectin fraction was induced during soaking. The decrease in rhamnose and the polygalacturonase activity were associated (r = 0.933, P = 0.01, and r = 0.725, P = 0.01, respectively) with shorter cooking time after soaking. Pectic cell wall enzymes are responsible for the changes in rhamnogalacturonan I and polygalacturonan induced during soaking and constitute the biochemical factors that give bean cell walls new polysaccharide arrangements. Rhamnogalacturonan I is dispersed throughout the entire cell wall and interacts with cellulose and hemicellulose fibres, resulting in a higher rate of pectic polysaccharide thermosolubility and, therefore, a shorter cooking time. Copyright © 2011 Society of Chemical Industry.

  19. Modeling of influencing parameters in active noise control on an enclosure wall

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Roure, Alain

    2008-04-01

    This paper investigates, by means of a numerical model, the possibility of using an active noise barrier to virtually reduce the acoustic transparency of a partition wall inside an enclosure. The room is modeled with the image method as a rectangular enclosure with a stationary point source; the active barrier is set up by an array of loudspeakers and error microphones and is meant to minimize the squared sound pressure on a wall with the use of a decentralized control. Simulations investigate the effects of the enclosure characteristics and of the barrier geometric parameters on the sound pressure attenuation on the controlled partition, on the whole enclosure potential energy and on the diagonal control stability. Performances are analyzed in a frequency range of 25-300 Hz at discrete 25 Hz steps. Influencing parameters and their effects on the system performances are identified with a statistical inference procedure. Simulation results have shown that it is possible to averagely reduce the sound pressure on the controlled partition. In the investigated configuration, the surface attenuation and the diagonal control stability are mainly driven by the distance between the loudspeakers and the error microphones and by the loudspeakers directivity; minor effects are due to the distance between the error microphones and the wall, by the wall reflectivity and by the active barrier grid meshing. Room dimensions and source position have negligible effects. Experimental results point out the validity of the model and the efficiency of the barrier in the reduction of the wall acoustic transparency.

  20. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion (lower ADC values) is associated with multiple MRI findings that are traditionally associated with active inflammation in pediatric small bowel Crohn disease.

Top