Sample records for wall material properties

  1. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Remarkable proanthocyanidin adsorption properties of monastrell pomace cell wall material highlight its potential use as an alternative fining agent in red wine production.

    PubMed

    Bautista-Ortín, Ana Belén; Ruiz-García, Yolanda; Marín, Fátima; Molero, Noelia; Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna

    2015-01-21

    The existence of interactions between the polysaccharides of vegetal cell walls and proanthocyanins makes this cell wall material an interesting option for its use as a fining agent to reduce the level of proanthocyanins in wines. Pomace wastes from the winery are widely available and a source of cell wall material, and the identification of varieties whose pomace cell walls present high proanthocyanin binding capacity and of processing methods that could enhance their adsorption properties could be of great interest. This study compared the proanthocyanin adsorption properties of pomace cell wall material from three different grape varieties (Monastrell, Cabernet Sauvignon, and Syrah), and the results were compared with those obtained using fresh grape cell walls. Also, the effect of the vinification method has been studied. Analysis of the proanthocyanidins in the solution after reaction with the cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the adsorbed and nonadsorbed compounds. A highlight of this study was the observation that Monastrell pomace cell wall material showed a strong affinity for proanthocyanidins, with values similar to that obtained for fresh grapes cell walls, and a preferential binding of high molecular mass proanthocyanidins, so these pomace cell walls could be used in wines to reduce astringency. The use of maceration enzymes during vinification had little effect on the retention capacity of the pomace cell walls obtained from this vinification, although an increase in the retention of low molecular mass proanthocyanidins was observed, and this might have implications for wine sensory properties.

  3. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau

    PubMed Central

    King, Terrence L.; Ali, Heba; Sidker, Nehan; Cameron, Timothy M.

    2016-01-01

    Despite rapid damping, fish swimbladders have been modelled as underwater resonant bubbles. Recent data suggest that swimbladders of sound-producing fishes use a forced rather than a resonant response to produce sound. The reason for this discrepancy has not been formally addressed, and we demonstrate, for the first time, that the structure of the swimbladder wall will affect vibratory behaviour. Using the oyster toadfish Opsanus tau, we find regional differences in bladder thickness, directionality of collagen layers (anisotropic bladder wall structure), material properties that differ between circular and longitudinal directions (stress, strain and Young's modulus), high water content (80%) of the bladder wall and a 300-fold increase in the modulus of dried tissue. Therefore, the swimbladder wall is a viscoelastic structure that serves to damp vibrations and impart directionality, preventing the expression of resonance. PMID:27798293

  4. Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules.

    PubMed

    Díaz, Dafne I; Beristain, Cesar I; Azuara, Ebner; Luna, Guadalupe; Jimenez, Maribel

    2015-01-01

    Blackberry (Rubus fruticosus) juice possesses compounds with antioxidant activity, which can be protected by different biopolymers used in the microencapsulation. Therefore, the effects of cell wall material including maltodextrin (MD), Arabic gum (GA) and whey protein concentrate (WPC) were evaluated on the physicochemical and antioxidant properties of encapsulated blackberries using a spray-drying technique. Anthocyanin concentration, polymeric colour, total polyphenols, radical scavenging activity of the 1,1-diphenyl-2-picrilhydrazil radical, reducing power and the stability at different storage conditions were evaluated. GA and MD conferred a similar protection to the antioxidant compounds when the microcapsules were stored at low water activities (aw < 0.515) in contrast to at a high moisture content (aw > 0.902), whereas WPC presented a high protection. Therefore, the selection of the best wall material for blackberry juice encapsulation depends of the conditions of storage of the powder.

  5. Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials.

    PubMed

    Chen, Wuxi; Wang, Haijun; Zhang, Ke; Gao, Feng; Chen, Shulin; Li, Demao

    2016-08-01

    This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.

  6. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    PubMed

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  7. Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability.

    PubMed

    Hategekimana, Joseph; Masamba, Kingsley George; Ma, Jianguo; Zhong, Fang

    2015-06-25

    Spray drying technique was used to fabricate Vitamin E loaded nanocapsules using Octenyl Succinic Anhydride (OSA) modified starches as emulsifiers and wall materials. Several physicochemical properties of modified starches that are expected to influence emulsification capacity, retention and storage stability of Vitamin E in nanocapsules were investigated. High Degree of Substitution (DS), low Molecular Weight (Mw) and low interfacial tension improved emulsification properties while Oxygen Permeability (OP) and Water Vapor Permeability (WVP) affected the film forming properties. The degradation profile of Vitamin E fitted well with the Weibull model. Nanocapsules from OSA modified starches MS-A and MS-B retained around 50% of Vitamin E after a period of 60 days at 4-35°C. Reduced retention and short half-life (35 days) in nanocapsules fabricated using MS-C at 35°C were attributed to autoxidation reaction occurred due to poor film forming capacity. These results indicated that low molecular weights OSA modified starches were effective at forming stable Vitamin E nanocapsules that could be used in drug and beverage applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  9. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    NASA Astrophysics Data System (ADS)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  10. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    PubMed

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  11. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study

    PubMed Central

    Long, Linshuang; Ye, Hong

    2016-01-01

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials. PMID:27052186

  12. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    NASA Astrophysics Data System (ADS)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  13. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  14. Multiscale Investigation from Subcellular to Tissue Scale of Onion Epidermal Plant Cell Wall Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Zamil, Mohammad Shafayet

    The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To

  15. Method of measuring material properties of rock in the wall of a borehole

    DOEpatents

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  16. Method of measuring material properties of rock in the wall of a borehole

    DOEpatents

    Overmier, D.K.

    1984-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  17. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  18. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation

    PubMed Central

    Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.

    2012-01-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130

  19. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    PubMed

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  20. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    PubMed

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Investigation into the energy-absorbing properties of multilayered circular thin-walled tube

    NASA Astrophysics Data System (ADS)

    Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun

    2002-05-01

    With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.

  2. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  3. Bioprosthetic Mesh in Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454

  4. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Treesearch

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  5. Electrical properties of 0.4 cm long single walled nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Zhen

    2005-03-01

    Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).

  6. Numerical Estimation of the Elastic Properties of Thin-Walled Structures Manufactured from Short-Fiber-Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.

    2003-05-01

    A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.

  7. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  8. Comparative Analysis of the Biaxial Mechanical Behavior of Carotid Wall Tissue and Biological and Synthetic Materials Used for Carotid Patch Angioplasty

    PubMed Central

    Kamenskiy, Alexey V.; Pipinos, Iraklis I.; MacTaggart, Jason N.; Jaffar Kazmi, Syed A.; Dzenis, Yuris A.

    2011-01-01

    Patch angioplasty is the most common technique used for the performance of carotid endarterectomy. A large number of patching materials are available for use while new materials are being continuously developed. Surprisingly little is known about the mechanical properties of these materials and how these properties compare with those of the carotid artery wall. Mismatch of the mechanical properties can produce mechanical and hemodynamic effects that may compromise the long-term patency of the endarterectomized arterial segment. The aim of this paper was to systematically evaluate and compare the biaxial mechanical behavior of the most commonly used patching materials. We compared PTFE (n = 1), Dacron (n = 2), bovine pericardium (n = 10), autogenous greater saphenous vein (n = 10), and autogenous external jugular vein (n = 9) with the wall of the common carotid artery (n = 18). All patching materials were found to be significantly stiffer than the carotid wall in both the longitudinal and circumferential directions. Synthetic patches demonstrated the most mismatch in stiffness values and vein patches the least mismatch in stiffness values compared to those of the native carotid artery. All biological materials, including the carotid artery, demonstrated substantial nonlinearity, anisotropy, and variability; however, the behavior of biological and biologically-derived patches was both qualitatively and quantitatively different from the behavior of the carotid wall. The majority of carotid arteries tested were stiffer in the circumferential direction, while the opposite anisotropy was observed for all types of vein patches and bovine pericardium. The rates of increase in the nonlinear stiffness over the physiological stress range were also different for the carotid and patching materials. Several carotid wall samples exhibited reverse anisotropy compared to the average behavior of the carotid tissue. A similar characteristic was observed for

  9. Systematic Examination of Stardust Bulbous Track Wall Materials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Clemett, S. J.; Nguyen, A. N.; Berger, E. L.; Keller, L. P.; Messenger, S.

    2013-01-01

    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs.

  10. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  11. Optical, electrical and elastic properties of ferroelectric domain walls in lithium niobate and lithium titanate

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon

    Ferroelectric LiNbO3 and LiTaO3 crystals have developed, over the last 50 years as key materials for integrated and nonlinear optics due to their large electro-optic and nonlinear optical coefficients and a broad transparency range from 0.4 mum-4.5 mum wavelengths. Applications include high speed optical modulation and switching in 40GHz range, second harmonic generation, optical parametric amplification, pulse compression and so on. Ferroelectric domain microengineering has led to electro-optic scanners, dynamic focusing lenses, total internal reflection switches, and quasi-phase matched (QPM) frequency doublers. Most of these applications have so far been on non-stoichiometric compositions of these crystals. Recent breakthroughs in crystal growth have however opened up an entirely new window of opportunity from both scientific and technological viewpoint. The growth of stoichiometric composition crystals has led to the discovery of many fascinating effects arising from the presence or absence of atomic defects, such as an order of magnitude changes in coercive fields, internal fields, domain backswitching and stabilization phenomenon. On the nanoscale, unexpected features such as the presence of wide regions of optical contrast and strain have been discovered at 180° domain walls. Such strong influence of small amounts of nonstoichiometric defects on material properties has led to new device applications, particularly those involving domain patterning and shaping such as QPM devices in thick bulk crystals and improved photorefractive damage compositions. The central focus of this dissertation is to explore the role of nonstoichiometry and its precise influence on macroscale and nanoscale properties in lithium niobate and tantalate. Macroscale properties are studied using a combination of in-situ and high-speed electro-optic imaging microscopy and electrical switching experiments. Local static and dynamic strain properties at individual domain walls is studied

  12. Preparation and Properties of Nanocomposites Prepared From Shortened, Functionalized Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Delozier, D. M.; Watson, K. A.; Connell, J. W.; Yu, Aiping; Haddon, R. C.; Bekyarova, E.

    2006-01-01

    As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.

  13. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    NASA Astrophysics Data System (ADS)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  14. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  15. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  16. Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties

    PubMed Central

    Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan

    2013-01-01

    Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523

  17. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly.

    PubMed

    Lopez-Sanchez, Patricia; Martinez-Sanz, Marta; Bonilla, Mauricio R; Wang, Dongjie; Gilbert, Elliot P; Stokes, Jason R; Gidley, Michael J

    2017-04-15

    Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca 2+ -pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    PubMed Central

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division. PMID:25468333

  19. Scaling properties of multitension domain wall networks

    NASA Astrophysics Data System (ADS)

    Oliveira, M. F.; Martins, C. J. A. P.

    2015-02-01

    We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.

  20. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  1. Mechanical and Electrical Properties of a Polyimide Film Significantly Enhanced by the Addition of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2005-01-01

    Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.

  2. Electrostatic levitation technology for thermophysical properties of molten materials

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1993-01-01

    Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.

  3. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  4. Material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties produced using multi-wall carbon nanotubes wrapped with poly(ether sulphone) in a poly(ether ether ketone) matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Wang, Hongsong; Wang, Guibin; Jiang, Zhenhua

    2012-07-01

    A material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties was produced using multi-wall carbon nanotubes (MWCNTs) wrapped with poly(ether sulphone) (PES) dispersed in a poly(ether ether ketone) (PEEK) matrix. The material was fabricated using melt-blending, and MWCNT/PEEK composites show different degrees of improvement in the measured dielectric, mechanical, and thermal properties as compared to pure PEEK. This is attributed to the high conductivity of MWCNTs, the effect of wrapping MWCNTs with PES, the good dispersion of the wrapped MWCNTs in PEEK, and the strong interfacial adhesion between the wrapped MWCNTs and the PEEK.

  5. Preparation and characterization of functionalized single walled carbon nanotubes (fSWCNT)/ Hydroxyapatite (HAp)-Nylon hybridized composite biomaterial to study the mechanical properties

    NASA Astrophysics Data System (ADS)

    Khanal, Suraj; Leventouri, Theodora; Mahfuz, Hassan; Rondinone, Adam

    2014-03-01

    Synthetic hydroxyapatite (HAp) bears poor mechanical properties that limit its applicability in orthopedics. We study the possibility of overcoming such limitations by incorporating functionalized single walled carbon nanotubes (fSWCNT) in a biocompatible/bioactive nano-composite. We present results from synthesis and characterization of samples prepared under different processing parameters. Ultra sonication method was to disperse functionalized single walled carbon nanotubes (fSWCNT) in HAp followed by a simple hot assorting method to incorporate with polymerized ɛ-caprolactam. The fracture toughness of the composite materials was tested in compliance with the ASTM D-5045 standard. We have found that while the fracture toughness strongly depends on the processing parameters, a value comparable to the one for cortical bone is achieved. Mechanical properties, electron microscopy and crystal structure properties of the composite materials will be discussed.

  6. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE PAGES

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2017-03-09

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  7. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less

  8. Peculiarities of non-autoclaved lime wall materials production using clays

    NASA Astrophysics Data System (ADS)

    Volodchenko, A. A.; Lesovik, V. S.; Cherepanova, I. A.; Volodchenko, A. N.; Zagorodnjuk, L. H.; Elistratkin, M. Y.

    2018-03-01

    At present, the development and implementation of energy saving technologies for building materials production, which correspond to modern trends of «green» technologies, become ever more popular. One of the most widely spread wall materials today is a lime brick and stones. The primary raw goods used in production of such materials are quarziferous rocks. However, they have some disadvantages, including low strength index at the intermediate phase of their production, especially in case with a raw brick, which is an issue in the production of high-hollow goods due to low strength index of raw materials and the nonoptimal matrix structure. The conducted experiments confirmed the possibility to control structurization of building composites due to application of nonconventional argillous raw materials. Besides, the material and mineral composition of nonconventional clay rocks ensures the optimal microstructure thus providing for the production of efficient wall building materials via energy saving technology.

  9. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications.

    PubMed

    Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna

    2014-01-01

    Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity for the proanthocyanidins, one of the commercial tannins being bound up to 61% in the experiment. Comparison of the molecular mass distribution of the commercial enological tannins in solution, before and after fining, suggested that cell walls affinity for proanthocyanidins was more related with the proanthocyanidin molecular mass than with their percentage of galloylation. These interactions may have some enological implications, especially as regards the time of commercial tannins addition to the must/wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Failure evolution in granular material retained by rigid wall in active mode

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena; Leśniewska, Danuta

    2012-10-01

    This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.

  11. Identification of thermal properties distribution in building wall using infrared thermography

    NASA Astrophysics Data System (ADS)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    In the construction sector, most of the measurements carried out from IR camera devices are exploited in a qualitative way (e.g. observation of thermal bridges). However, unless a quantitative analysis is realized, it is not possible to assess the impact of the observed phenomena. Most of research efforts and proposed solutions to identify quantified thermal properties (e.g. U-values) have to be completed, adapted to the built environment and validated in experimental and real conditions to allow quantified assessment of materials thermal properties thanks to IR camera devices [1]. We still need several steps in terms of scientific and technical developments for such technological progress. The H2020 European Built2Spec research project (http://built2spec-project.eu/) aims at giving highlights on that. Heat transfer through the walls are generally model by 1D heat equation in the wall depth. The built is composed by a multilayer domain representing the construction process. In this context, the thermal parameters of the wall are piecewise constant space functions. We propose a methodology to recover the vector of the wall thermal properties (conductivity and capacity) from boundary measurements obtained from an IR camera. It formulates as an inverse problem where the unknown are sought as minimizers of a cost function evaluating the gap between the measures and the model response. This optimization problem is non linear, and we solve it with the Levenberg-Marquardt algorithm coupled with the conjugate gradient method [2-3]. To shorten the time of the identification process, we use the adjoint method coming from the control theory [4]. This method fasten the gradient computation by solving an associated model, named the adjoint model. We study the ability of the procedure to reconstruct internal wall constitution from different environmental conditions. Furthermore, we propose a controlled experimental test to evaluate the method in laboratory conditions. References

  12. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  13. Wall-collision line broadening of molecular oxygen within nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressuremore » and Doppler broadening.« less

  14. The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel

    2018-05-01

    This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.

  15. Boron-doped few-walled carbon nanotubes: novel synthesis and properties

    NASA Astrophysics Data System (ADS)

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  16. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra1[W][OA

    PubMed Central

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola; Jørgensen, Bodil; Borkhardt, Bernhard; Petersen, Bent Larsen; Ulvskov, Peter

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure. PMID:21075961

  17. Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.

    PubMed

    Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun

    2017-09-12

    This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.

  18. The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovascular graft.

    PubMed

    Corbett, T J; Molony, D S; Callanan, A; McGloughlin, T M

    2011-01-01

    Migration is a serious failure mechanism associated with endovascular abdominal aortic aneurysm (AAA) repair (EVAR). The effect of vessel material properties and pulsatile wall motion on stent fixation has not been previously investigated. A proximal stent from a commercially available stent graft was implanted into the proximal neck of silicone rubber abdominal aortic aneurysm models of varying proximal neck stiffness (β=25.39 and 20.44). The stent was then dislodged by placing distal force on the stent struts. The peak force to completely dislodge the stent was measured using a loadcell. Dislodgment was performed at ambient pressure with no flow (NF) and during pulsatile flow (PF) at pressures of 120/80 mmHg and 140/100 mmHg to determine if pulsatile wall motions affected the dislodgement force. An imaging analysis was performed at ambient pressure and at pressures of 120 mmHg and 140 mmHg to investigate diameter changes on the model due to the radial force of the stent and internal pressurisation. Stent displacement forces were ~50% higher in the stiffer model (7.16-8.4 N) than in the more compliant model (3.67-4.21 N). The mean displacement force was significantly reduced by 10.95-12.83% from the case of NF to the case of PF at 120/80 mmHg. A further increase in pressure to 140/120 mmHg had no significant effect on the displacement force. The imaging analysis showed that the diameter in the region of the stent was 0.37 mm greater in the less stiff model at all the pressures which could reduce the fixation of the stent. The results suggest that the fixation of passively fixated aortic stents could be comprised in more compliant walls and that pulsatile motions of the wall can reduce the maximum stent fixation. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  20. Plasma-wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials

    NASA Astrophysics Data System (ADS)

    Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.

    2012-12-01

    Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

  1. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  2. Development of an efficient Procedure for Resist Wall Space Experiment

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  3. On the radiation damage characterization of candidate first wall materials in a fusion reactor using various molten salts

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2006-12-01

    Evaluating radiation damage characteristics of structural materials considered to be used in fusion reactors is very crucial. In fusion reactors, the highest material damage occurs in the first wall because it will be exposed to the highest neutron, gamma ray and charged particle currents produced in the fusion chamber. This damage reduces the lifetime of the first wall material and leads to frequent replacement of this material during the reactor operation period. In order to decrease operational cost of a fusion reactor, lifetime of the first wall material should be extended to reactor's lifetime. Using a protective flowing liquid wall between the plasma and first wall can decrease the radiation damage on first wall and extend its lifetime to the reactor's lifetime. In this study, radiation damage characterization of various low activation materials used as first wall material in a magnetic fusion reactor blanket using a liquid wall was made. Various coolants (Flibe, Flibe + 4% mol ThF 4, Flibe + 8% mol ThF 4, Li 20Sn 80) were used to investigate their effect on the radiation damage of first wall materials. Calculations were carried out by using the code Scale4.3 to solve Boltzmann neutron transport equation. Numerical results brought out that the ferritic steel with Flibe based coolants showed the best performance with respect to radiation damage.

  4. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite

    PubMed Central

    Sorieul, Mathias; Dickson, Alan; Hill, Stefan J.; Pearson, Hamish

    2016-01-01

    Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood. PMID:28773739

  5. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite.

    PubMed

    Sorieul, Mathias; Dickson, Alan; Hill, Stefan J; Pearson, Hamish

    2016-07-26

    Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta . Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.

  6. Investigation of Thermal Expansion Properties of Single Walled Carbon Nanotubes by Raman Spectroscopy and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Casimir, Daniel

    The mechanical properties of nano-sized materials seem to differ significantly from the predicted behavior of their bulk macroscopic counterparts (Smart, 2014, 16). The former tend to be stronger, more malleable and exhibit greater flexibility. The thermal properties of materials have also been shown to be altered significantly after having been shrunken to nanometer dimensions. The nano material that exhibits this peculiar behavior that is studied in this dissertation are single walled carbon nanotubes. Single walled carbon nanotubes are hollow cylindrical tubes that are one atomic layer in thickness and made up of sp2 hybridized carbon atoms. The majority of samples have diameters on the order 1 nm, with lengths ranging from 1 micron to sometimes a centimeter (Tomanek, 2008, v). The thermo-mechanical quantity that I specifically examine in this research is the linear and volume thermal expansion coefficients of SWCNTs. The mean linear thermal expansion coefficient is the ratio of the change in unit length in response to a 1 degree Celsius rise in temperature. The "true" value of this quantity is obtained in the theoretical limit of a vanishing temperature range DeltaT in the ratio stated above. However, this simply stated thermo-mechanical quantity for Carbon Nanotubes still remains a controversial topic, with widespread discrepancies among results of certain magnitudes - such as the temperature at the occurrence of maximum contraction, and at the transition from contraction to expansion. In conclusion, there is much incentive in examining the somewhat controversial variation in the behavior and quoted values of the thermal expansion of these quasi one-dimensional objects. In this study, I examine this important property of single walled carbon nanotubes using Resonant Raman Spectroscopy and Molecular Dynamics Simulation based on the Adaptive Intermolecular Reactive Empirical Bond Order potential. The latter is a well established potential that is well-suited to

  7. Heat transfer characteristics of building walls using phase change material

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  8. The effect of ultrasonic processing of multi-wall carbon nanotubes on properties of elastomeric compositions on the basis of synthetic isoprene rubber

    NASA Astrophysics Data System (ADS)

    Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.

    2017-08-01

    The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.

  9. Global modeling of wall material migration following boronization in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Skinner, C. H.; Bedoya, F.; Scotti, F.; Soukhanovskii, V. A.; Schmid, K.

    2017-10-01

    NSTX-U operated in 2016 with graphite plasma facing components, periodically conditioned with boron to improve plasma performance. Following each boronization, spectroscopic diagnostics generally observed a decrease in oxygen influx from the walls, and an in-vacuo material probe (MAPP) observed a corresponding decrease in surface oxygen concentration at the lower divertor. However, oxygen levels tended to return to a pre-boronization state following repeated plasma exposure. This behavior is interpretively modeled using the WallDYN mixed-material migration code, which couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. A spatially inhomogenous model of the thin films produced by the boronization process is presented. Plasma backgrounds representative of NSTX-U conditions are reconstructed from a combination of NSTX-U and NSTX datasets. Low-power NSTX-U fiducial discharges, which led to less apparent surface degradation than normal operations, are also modeled with WallDYN. Likely mechanisms driving the observed evolution of surface oxygen are examined, as well as remaining discrepancies between model and experiment and potential improvements to the model. Work supported by US DOE contract DE-AC02-09CH11466.

  10. ECO-WALL SYSTEMS: USING RECYCLED MATERIAL IN THE DESIGN OF COMMERCIAL INTERIOR WALL SYSTEMS FOR BUILDINGS

    EPA Science Inventory

    This proposal describes an interdisciplinary project involving students from several academic departments at Miami University in the design of commercial wall systems to be manufactured from recycled materials. The goal of Phase I of the project is to develop and conduct prelimi...

  11. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  12. Dispersion of Multi-Walled Carbon Nanotubes in Skutterudites and Its Effect on Thermoelectric and Mechanical Properties.

    PubMed

    Schmitz, Andreas; Schmid, Carolin; de Boor, Johannes; Müller, Eckhard

    2017-03-01

    Filled cobalt-antimony based skutterudites have proven themselves as very promising thermoelectric materials for generator applications in an intermediate temperature range between 400 and 800 K due to their high figure of merit. Besides the functional thermoelectric properties also the skutterudites’ mechanical properties play an important role to withstand external mechanical and internal thermomechanical loads during operation. Properties of interest are hardness as well as fracture toughness and resistance to fatigue. Carbon nano tubes are well known for their high tensile strength and may therefore be used to increase the mechanical strength of composite materials. Additionally, the thermoelectric properties of the composite material might benefit from the high electrical conductivity of carbon nano tubes and increased phonon scattering at interfaces between matrix and carbon nano tube. A main precondition for benefiting from embedded nano-tubes is to achieve a homogeneous distribution of the CNTs and good adhesion between carbon nano tube and matrix material. In this work we present the influence of the introduction of multi-walled carbon nano tubes on the thermoelectric and mechanical properties of p-type skutterudites Ce(0.14)La(0.06)Co(2)Fe(2)Sb(12). The influence of different carbon nano tube concentrations and preparation routes on the resulting composite material’s thermoelectric, mechanical and microstructural properties is studied. A reduction of electrical and thermal conductivity as well as fracture strength is observed with increasing carbon nano tube content which is attributed to strong agglomeration of the nano tubes. The results underline the pivotal role of a homogeneous distribution of the carbon nano tubes for improving the mechanical properties of skutterudites.

  13. Isolation of the Cell Wall.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  14. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    DOE PAGES

    Tselev, Alexander; Yu, Pu; Cao, Ye; ...

    2016-05-31

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less

  15. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  16. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  17. Bioinspired assemblies of plant cell wall polymers unravel the affinity properties of carbohydrate-binding modules.

    PubMed

    Paës, Gabriel; von Schantz, Laura; Ohlin, Mats

    2015-09-07

    Lignocellulose-acting enzymes play a central role in the biorefinery of plant biomass to make fuels, chemicals and materials. These enzymes are often appended to carbohydrate binding modules (CBMs) that promote substrate targeting. When used in plant materials, which are complex assemblies of polymers, the binding properties of CBMs can be difficult to understand and predict, thus limiting the efficiency of enzymes. In order to gain more information on the binding properties of CBMs, some bioinspired model assemblies that contain some of the polymers and covalent interactions found in the plant cell walls have been designed. The mobility of three engineered CBMs has been investigated by FRAP in these assemblies, while varying the parameters related to the polymer concentration, the physical state of assemblies and the oligomerization state of CBMs. The features controlling the mobility of the CBMs in the assemblies have been quantified and hierarchized. We demonstrate that the parameters can have additional or opposite effects on mobility, depending on the CBM tested. We also find evidence of a relationship between the mobility of CBMs and their binding strength. Overall, bioinspired assemblies are able to reveal the unique features of affinity of CBMs. In particular, the results show that oligomerization of CBMs and the presence of ferulic acid motifs in the assemblies play an important role in the binding affinity of CBMs. Thus we propose that these features should be finely tuned when CBMs are used in plant cell walls to optimise bioprocesses.

  18. Influence of Wall Material on VUV Emission from Hydrogen Plasma in H- Source

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Glass-Maujean, M.; Ivanov, A. A., Jr; Nishiura, M.; Sasao, M.; Wada, M.

    2002-11-01

    The study of VUV emission from a hydrogen plasma produced in a filament discharge in a magnetic multicusp device showed that the use of tantalum and tungsten filaments leads to significant differences in the spectra. The effect of the filament material is interpreted in terms of the fresh film of this material, deposited on the wall. The synthetic spectrum convoluted with our apparatus function for the conditions of this experiment (gas temperature 500 K, electron energy 100 eV) agrees roughly well with the spectrum obtained with tungsten covered walls, but not with the spectrum obtained with tantalum covered walls. We show that in the case of tungsten covered walls the E-V singlet excitation is indeed a two-step Franck-Condon transition, going through either B or C state from an initial H2 molecule with v"=0, added to a Franck-Condon transition to highly excited states cascading to the B or C states. The excitation process to high v" states in the case of tantalum covered walls is a three step process, in which the first step is the formation by recombinative desorption on the wall of a vibrationally excited molecule with v"=1 or 2, which serves as the initial molecule in the subsequent E-V excitation through the B state. The results indicate a larger recombination coefficient of atoms on the tantalum covered wall.

  19. Structural and electronic properties of double-walled boron nitride nanocones

    NASA Astrophysics Data System (ADS)

    Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.

    2018-01-01

    First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.

  20. Dispersive elastic properties of Dzyaloshinskii domain walls

    NASA Astrophysics Data System (ADS)

    Pellegren, James; Lau, Derek; Sokalski, Vincent

    Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.

  1. Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes.

    PubMed

    López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario

    2014-04-29

    The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.

  2. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  3. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  4. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  5. Organic materials in the wall paintings in Pompei: a case study of Insula del Centenario

    PubMed Central

    2012-01-01

    Background The present research concerns the Roman wall paintings preserved at Insula del Centenario (IX, 8), the important Pompeian block situated in the Regio IX, along Via di Nola. Results The aims of this research are two: to verify the presence of lipidic and proteinaceous material to spread the pigments, and to identify organic matter in painting materials owing to previous restoration works. The samples collected from the wall paintings of different rooms have been investigated by Fourier Transform Infrared Spectroscopy (FT-IR), and Gas Chromatography/ Mass Spectrometry (GC/MS). Conclusions The analytical results show that these Roman wall paintings were realized without the use of lipidic and proteinaceous materials, supposedly in fresco technique. Moreover, it was detected that wax, egg, and animal glue were used in previous restoration works for protective purpose and to restore the wall paintings to their original brilliant colours. PMID:23006771

  6. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance.

    PubMed

    Ellsworth, Patrícia V; Ellsworth, Patrick Z; Koteyeva, Nuria K; Cousins, Asaph B

    2018-04-20

    Diffusion of CO 2 from the leaf intercellular air space to the site of carboxylation (g m ) is a potential trait for increasing net rates of CO 2 assimilation (A net ), photosynthetic efficiency, and crop productivity. Leaf anatomy plays a key role in this process; however, there are few investigations into how cell wall properties impact g m and A net . Online carbon isotope discrimination was used to determine g m and A net in Oryza sativa wild-type (WT) plants and mutants with disruptions in cell wall mixed-linkage glucan (MLG) production (CslF6 knockouts) under high- and low-light growth conditions. Cell wall thickness (T cw ), surface area of chloroplast exposed to intercellular air spaces (S c ), leaf dry mass per area (LMA), effective porosity, and other leaf anatomical traits were also analyzed. The g m of CslF6 mutants decreased by 83% relative to the WT, with c. 28% of the reduction in g m explained by S c . Although A net /LMA and A net /Chl partially explained differences in A net between genotypes, the change in cell wall properties influenced the diffusivity and availability of CO 2 . The data presented here indicate that the loss of MLG in CslF6 plants had an impact on g m and demonstrate the importance of cell wall effective porosity and liquid path length on g m . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. Plastic wall materials in the home and respiratory health in young children.

    PubMed Central

    Jaakkola, J J; Verkasalo, P K; Jaakkola, N

    2000-01-01

    OBJECTIVES: The relation between the presence of plastic wall materials in the home and respiratory health in children was assessed. METHODS: This population-based cross-sectional study involved 2568 Finnish children aged 1 to 7 years. RESULTS: In logistic regression models, lower respiratory tract symptoms--persistent wheezing (adjusted odds ratio [OR] = 3.42, 95% confidence interval [CI] = 1.13, 10.36), cough (OR = 2.41, 95% CI = 1.04, 5.63), and phlegm (OR = 2.76, 95% CI = 1.03, 7.41)--were strongly related to the presence of plastic wall materials, whereas upper respiratory symptoms were not. The risk of asthma (OR = 1.52, 95% CI = 0.35, 6.71) and pneumonia (OR = 1.81, 95% CI = 0.62, 5.29) was also increased in children exposed to such materials. CONCLUSIONS: Emissions from plastic materials indoors may have adverse effects on the lower respiratory tracts of small children. PMID:10800434

  8. Intrinsic phonon properties of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Levshov, D. I.; Nguyen, V. C.; Paillet, M.; Arenal, R.; Than, X. T.; Zahab, A. A.; Yuzyuk, Y. I.; Phan, N. M.; Sauvajol, J.-L.; Michel, T.

    2017-03-01

    Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  9. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-06-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.

  10. Single-wall nanohorn structure and distribution of incorporated materials

    NASA Astrophysics Data System (ADS)

    Maigne, Alan; Gloter, Alexandre; Ajima, Kumiko; Colliex, Christian; Iijima, Sumio

    2005-03-01

    Single-wall carbon nanohorns (SWNHs) are unique spherical-aggregates of single-wall carbon quasi-nanotubes. So far, the observable area has been limited to the aggregate surfaces. We studied core-region structure with TEM using thickness measurement method, EELS, and EDS, and found that carbon density was uniform over the whole aggregate. This result allows to modelize the core-region and to clarify previous models of SWNHs. We used same tools to investigate the incorporation of materials such as fullerenes or platinium compounds. We found that particles can even be incorporated in the core-region and that their distribution in the aggregate depends on their concentration. The information available with these models should be useful in the study of SWNH applications to, for example, drug delivery system.

  11. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  12. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  13. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    NASA Astrophysics Data System (ADS)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  14. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    PubMed

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  15. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian

    2014-06-14

    We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less

  16. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    PubMed

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

  17. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  18. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    PubMed Central

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-01-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species. PMID:27302853

  19. Chamber wall materials response to pulsed ions at power-plant level fluences

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Provencio, P. P.; Tanaka, T. J.; Olson, C. L.; Peterson, R. R.; Stolp, J. E.; Schroen, D. G.; Knowles, T. R.

    2005-12-01

    Candidate dry-wall materials for the reactor chambers of future laser-driven Inertial Fusion Energy (IFE) power plants have been exposed to ion pulses from RHEPP-1, located at Sandia National Laboratories. These pulses simulate the MeV-level ion pulses with fluences of up to 20 J/cm 2 that can be expected to impinge on the first wall of such future plants. Various forms of tungsten and tungsten alloy were subjected to up to 1600 pulses, usually while being heated to 600 °C. Other metals were exposed as well. Thresholds for roughening and material removal, and evolution of surface morphology were measured and compared with code predictions for materials response. Powder-metallurgy (PM) tungsten is observed to undergo surface roughening and subsurface crack formation that evolves over hundreds of pulses, and which can occur both below and above the melt threshold. This roughening is worse than for other metals, and worse than for either tungsten alloyed with rhenium (W25Re), or for CVD and single-crystal forms of tungsten. Carbon, particularly the form used in composite material, appears to suffer material loss well below its sublimation point. Some engineered materials were also investigated. It appears that some modification to PM tungsten is required for its successful use in a reactor environment.

  20. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  1. Low-cost sustainable wall construction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit wasmore » $3.76 per square foot ($$40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $$275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.« less

  2. Cellulose and pectin localization in roots of mycorrhizalAllium porrum: labelling continuity between host cell wall and interfacial material.

    PubMed

    Bonfante-Fasolo, P; Vian, B; Perotto, S; Faccio, A; Knox, J P

    1990-03-01

    Two different types of contacts (or interfaces) exist between the plant host and the fungus during the vesicular-arbuscular mycorrhizal symbiosis, depending on whether the fungus is intercellular or intracellular. In the first case, the walls of the partners are in contact, while in the second case the fungal wall is separated from the host cytoplasm by the invaginated host plasmamembrane and by an interfacial material. In order to verify the origin of the interfacial material, affinity techniques which allow identification in situ of cell-wall components, were used. Cellobiohydrolase (CBH I) that binds to cellulose and a monoclonal antibody (JIM 5) that reacts with pectic components were tested on roots ofAllium porrum L. (leek) colonized byGlomus versiforme (Karst.) Berch. Both probes gave a labelling specific for the host cell wall, but each probe labelled over specific and distinct areas. The CBH I-colloidal gold complex heavily labelled the thick epidermal cell walls, whereas JIM 5 only labelled this area weakly. Labelling of the hypodermis was mostly on intercellular material after treatment with JIM 5 and only on the wall when CBH I was used. Suberin bands found on the radial walls were never labelled. Cortical cells were mostly labelled on the middle lamella with JIM 5 and on the wall with CBH I. Gold granules from the two probes were found in interfacial material both near the point where the fungus enters the cell and around the thin hyphae penetrating deep into the cell. The ultrastructural observations demonstrate that cellulose and pectic components have different but complementary distributions in the walls of root cells involved in the mycorrhizal symbiosis. These components show a similar distribution in the interfacial material laid down around the vesicular-arbuscular mycorrhizal fungus indicating that the interfacial material is of host origin.

  3. Bioinspired Single-Walled Carbon Nanotubes as a Spider Silk Structure for Ultrahigh Mechanical Property.

    PubMed

    Luo, Chengzhi; Li, Fangying; Li, Delong; Fu, Qiang; Pan, Chunxu

    2016-11-16

    Due to its unique hierarchical structure, natural spider silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials. Herein, we design bioinspired spider silk single-walled carbon nanotubes (BISS-SWCNTs) that combine the hierarchical structure of spider silk and the high strength and conductivity of SWCNTs. To imitate the hierarchical structure, Fe nanoparticles are embedded on the surface of directly synthesized SWCNTs skeleton followed by coating an amorphous carbon layer. The carbon layer forms the spider silk-featured skin-core structure with SWCNTs, thus making the tube junction tougher. The embedded Fe nanoparticles act as glue spots for preventing interfacial slippages between the BISS-SWCNTs and the reinforced matrix. With only 2.1 wt % BISS-SWCNTs added, the tensile strength and Young's modulus of the BISS-SWCNTs/PMMA composites can be improved by 300%. More importantly, the BISS-SWCNTs also retain the high conductivity and transmittance of the pristine SWCNTs film. This unique bioinspired material will be of great importance in applications of multifunctional composite materials and has important implications for the future of biomimetic materials.

  4. Comparison of in vivo vs. ex situ obtained material properties of sheep common carotid artery.

    PubMed

    Smoljkić, Marija; Verbrugghe, Peter; Larsson, Matilda; Widman, Erik; Fehervary, Heleen; D'hooge, Jan; Vander Sloten, Jos; Famaey, Nele

    2018-05-01

    Patient-specific biomechanical modelling can improve preoperative surgical planning. This requires patient-specific geometry as well as patient-specific material properties as input. The latter are, however, still quite challenging to estimate in vivo. This study focuses on the estimation of the mechanical properties of the arterial wall. Firstly, in vivo pressure, diameter and thickness of the arterial wall were acquired for sheep common carotid arteries. Next, the animals were sacrificed and the tissue was stored for mechanical testing. Planar biaxial tests were performed to obtain experimental stress-stretch curves. Finally, parameters for the hyperelastic Mooney-Rivlin and Gasser-Ogden-Holzapfel (GOH) material model were estimated based on the in vivo obtained pressure-diameter data as well as on the ex situ experimental stress-stretch curves. Both material models were able to capture the in vivo behaviour of the tissue. However, in the ex situ case only the GOH model provided satisfactory results. When comparing different fitting approaches, in vivo vs. ex situ, each of them showed its own advantages and disadvantages. The in vivo approach estimates the properties of the tissue in its physiological state while the ex situ approach allows to apply different loadings to properly capture the anisotropy of the tissue. Both of them could be further enhanced by improving the estimation of the stress-free state, i.e. by adding residual circumferential stresses in vivo and by accounting for the flattening effect of the tested samples ex vivo. • Competing interests: none declared • Word count: 4716. Copyright © 2018. Published by Elsevier Ltd.

  5. Isotropic thin-walled pressure vessel experiment

    NASA Technical Reports Server (NTRS)

    Denton, Nancy L.; Hillsman, Vernon S.

    1992-01-01

    The objectives are: (1) to investigate the stress and strain distributions on the surface of a thin walled cylinder subject to internal pressure and/or axial load; and (2) to relate stress and strain distributions to material properties and cylinder geometry. The experiment, supplies, and procedure are presented.

  6. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less

  7. Integrating shotcrete walls into the natural landscape by application of 'Green Walls'

    NASA Astrophysics Data System (ADS)

    Medl, Alexandra; Kikuta, Silvia

    2017-04-01

    Steep slopes resulting from major road infrastructure constructions are increasingly perceived as disagreeable disturbance in the landscape. Thus, a tool to consider landscape aspects and integrate these slopes into the natural environment is required. The challenge is to establish a sustainable vegetation layer despite of adverse circumstances such as inclinations of almost 90⁰, exposed position of slopes near streets and lack of soil and water supply. The objective of this study was to assess the performance of an innovative greening technology for vertical structures (shotcrete wall) in terms of vegetation development on varying plant substrates and geotextiles. The field experiment in Steinach am Brenner, Tyrol, Austria, included testing three plant substrates on basis of nearby rocky excavation material ('Innsbrucker Quarzphyllit', 'Bündnerschiefer' and 'Zentralgneis') combined with compost. Additionally, five geotextiles (geogrid (3x4 mm), geogrid (9x10 mm), coir net, coir mat, geo mat) were applied for evaluation. All test combinations were evaluated regarding vegetation cover and biomass production from 2015 to 2016. Analyses of chemical properties were conducted for all plant substrates. Results showed highest vegetation cover ratio on 'Bündnerschiefer' and 'Innsbrucker Quarzphyllit', which can be explained by the favorable mineral composition (nutrient storage capacity) and chemical properties of compost (lower values of electrical conductivity and C/N ratio). In conclusion, the use of 'Green Walls' filled with 'Bündnerschiefer' or 'Innsbrucker Quarzphyllit' plant substrate in combination with netlike geotextiles proved best, since geo grid and coir net turned out as most successful one year after installation. 'Green Walls' are promising in terms of establishing an optimal vegetation cover on vertical structures and are well suited for integrating shotcrete walls into the landscape. The use of local excavation material for greening purposes can be

  8. Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems

    NASA Astrophysics Data System (ADS)

    Dean, J.; Bryan, M. T.; Schrefl, T.; Allwood, D. A.

    2011-01-01

    Artificial multiferroic systems, which combine piezoelectric and piezomagnetic materials, offer novel methods of controlling material properties. Here, we use combined structural and magnetic finite element models to show how localized strains in a piezoelectric film coupled to a piezomagnetic nanowire can attract and pin magnetic domain walls. Synchronous switching of addressable contacts enables the controlled movement of pinning sites, and hence domain walls, in the nanowire without applied magnetic field or spin-polarized current, irrespective of domain wall structure. Conversely, domain wall-induced strain in the piezomagnetic material induces a local potential difference in the piezoelectric, providing a mechanism for sensing domain walls. This approach overcomes the problems in magnetic nanowire memories of domain wall structure-dependent behavior and high power consumption. Nonvolatile random access or shift register memories based on these effects can achieve storage densities >1 Gbit/In2, sub-10 ns switching times, and power consumption <100 keV per operation.

  9. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications.

    PubMed

    Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim

    2018-06-21

    Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.

  10. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  11. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  12. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.

    PubMed

    Cao, Jianglin; Wang, Ying; Chen, Chunyang; Yu, Fei; Ma, Jie

    2018-05-15

    Capacitive deionization (CDI) is a technology used to remove salt from brackish water, and it is an energy-saving, low-cost method compared with other methods, such as reverse osmosis, multi-stage ash distillation and electrodialysis. In this paper, three-dimensional (3D) graphene hydrogels modified with single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were synthesized by a one-step water bath method to increase the conductivity of materials and reduce the aggregation of the graphene sheets. The CDI performance differences between the two materials were compared and discussed. The results suggested that SWCNTs/rGO had a higher electrosorption capacity (48.73 mg/g) than MWCNTs/rGO, and this was attributed to its high specific surface area (308.37 m 2 /g), specific capacity (36.35 F/g), and smaller charge transfer resistance compared with those of the MWCNTs/rGO electrode. The results indicate SWCNTs/rGO is a promising and suitable material for CDI technology and we provide basic guidance for further CNTs/graphene composite research. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Morphologic study of three collagen materials for body wall repair.

    PubMed

    Soiderer, Emily E; Lantz, Gary C; Kazacos, Evelyn A; Hodde, Jason P; Wiegand, Ryan E

    2004-05-15

    The search for ideal prostheses for body wall repair continues. Synthetic materials such as polypropylene mesh (PPM) are associated with healing complications. A porcine-derived collagen-based material (CBM), small intestinal submucosa (SIS), has been studied for body wall repair. Renal capsule matrix (RCM) and urinary bladder submucosa (UBS) are CBMs not previously evaluated in this application. This is the first implant study using RCM. Full-thickness muscle/fascia ventral abdominal wall defects were repaired with SIS, RCM, UBS, and PPM in rats with omentum and omentectomy. A random complete block design was used to allot implant type to each of 96 rats. Healing was evaluated at 4 and 8 weeks. Adhesion tenacity and surface area were scored. Implant site dimensions were measured at implantation and necropsy. Inflammation, vascularization, and fibrosis were histopathologically scored. Data were compared by analysis of variance (P < 0.05). PPM produced a granulomatous foreign body response in contrast to the organized healing of CBM implants. CBM mean scores were lower than PPM scores for adhesion tenacity, surface area, and inflammation at each follow-up time for rats with omentums (P < 0.02). The CBMs had less tenacity and inflammation than PPM at each follow-up time in omentectomy groups (P < 0.008). Wound contraction was greater for PPM (P < 0.0001) for all rats. RCM and UBS were similar to SIS invoking reduced inflammation, adhesion, and contraction compared to PPM. The fibrotic response to PPM was unique and more intense compared to CBMs. These CBM implants appear morphologically acceptable and warrant continued investigation.

  14. Investigation of Ferroelectric Domain Walls by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stone, Gregory A.

    Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman

  15. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  16. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  17. Functional electronic inversion layers at ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  18. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  19. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

    NASA Astrophysics Data System (ADS)

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-01-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

  20. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material.

    PubMed

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-12-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

  1. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    PubMed

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  2. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    NASA Astrophysics Data System (ADS)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  3. 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material

    NASA Astrophysics Data System (ADS)

    Obert, J. Christina; Scholz, Denis; Felis, Thomas; Brocas, William M.; Jochum, Klaus P.; Andreae, Meinrat O.

    2016-04-01

    We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A

  4. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  5. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    PubMed

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P < 0.0001) increased for all materials, with increasing precompaction RDP decreased for plastic materials (P < 0.05), whereas with increasing speed MDP decreased for all materials (P < 0.05). During decompression, microcrystalline cellulose and pre-gelatinized starch showed higher axial relaxation, whereas mannitol and lactose showed higher radial relaxation, calcium hydrogen phosphate showed high axial and radial relaxations. Plastic and brittle materials showed increased tendencies for friction because of high radial relaxation. Die-wall monitoring is suggested as a valuable tool for characterizing compaction behavior of materials and detecting friction phenomena in the early stage of development.

  6. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    PubMed

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  7. Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties

    NASA Technical Reports Server (NTRS)

    Kigel, J.; Cosgrove, D. J.

    1991-01-01

    The underlying mechanism of photoinhibition of stem elongation by blue (BL) and red light (RL) was studied in etiolated seedlings of pea (Pisum sativum L. cv Alaska). Brief BL irradiations resulted in fast transient inhibition of elongation, while a delayed (lag approximately 60 minutes) but prolonged inhibition was observed after brief RL. Possible changes in the hydraulic and wall properties of the growing cells during photoinhibition were examined. Cell sap osmotic pressure was unaffected by BL and RL, but both irradiations increased turgor pressure by approximately 0.05 megapascal (pressure-probe technique). Cell wall yielding was analyzed by in vivo stress relaxation (pressure-block technique). BL and RL reduced the initial rate of relaxation by 38 and 54%, while the final amount of relaxation was decreased by 48 and 10%, respectively. These results indicate that RL inhibits elongation mainly by lowering the wall yield coefficient, while most of the inhibitory effect of BL was due to an increase of the yield threshold. Mechanical extensibility of cell walls (Instron technique) was decreased by BL and RL, mainly due to a reduction in the plastic component of extensibility. Thus, photoinhibitions of elongation by both BL and RL are achieved through changes in cell wall properties, and are not due to effects on the hydraulic properties of the cell.

  8. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    PubMed Central

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-01-01

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310

  9. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations.

    PubMed

    Bao, Hua; Ruan, Xiulin; Fisher, Timothy S

    2010-03-15

    A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

  10. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples.

    PubMed

    Sahoo, B K; Sapra, B K; Gaware, J J; Kanse, S D; Mayya, Y S

    2011-06-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on ²²⁶Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties

    PubMed Central

    Xiong, Guanglei; Figueroa, C. Alberto; Xiao, Nan; Taylor, Charles A.

    2011-01-01

    SUMMARY Simulation of blood flow using image-based models and computational fluid dynamics has found widespread application to quantifying hemodynamic factors relevant to the initiation and progression of cardiovascular diseases and for planning interventions. Methods for creating subject-specific geometric models from medical imaging data have improved substantially in the last decade but for many problems, still require significant user interaction. In addition, while fluid–structure interaction methods are being employed to model blood flow and vessel wall dynamics, tissue properties are often assumed to be uniform. In this paper, we propose a novel workflow for simulating blood flow using subject-specific geometry and spatially varying wall properties. The geometric model construction is based on 3D segmentation and geometric processing. Variable wall properties are assigned to the model based on combining centerline-based and surface-based methods. We finally demonstrate these new methods using an idealized cylindrical model and two subject-specific vascular models with thoracic and cerebral aneurysms. PMID:21765984

  12. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism.

  13. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays.

    PubMed

    Giannoutsou, E; Apostolakos, P; Galatis, B

    2016-11-01

    The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and (c) the determination of the division plane in GMCs and SMCs.

  14. 1. View north from StanleyBostitch property toward southern boundary/stone wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View north from Stanley-Bostitch property toward southern boundary/stone wall of Joseph Fry Farm with South County Trail/Route 2 to the east (right) - Joseph Fry Farm Landscape, 2153 South County Trail Road (U.S. Route 2), East Greenwich, Kent County, RI

  15. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  16. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of

  17. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization

    PubMed Central

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin

    2018-01-01

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639

  18. Single Wall Carbon Nanotube-Based Structural Health Sensing Materials

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.

    2004-01-01

    Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.

  19. Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall.

    PubMed

    Yamamoto, H; Kojima, Y; Okuyama, T; Abasolo, W P; Gril, J

    2002-08-01

    In this study, a basic model is introduced to describe the biomechanical properties of the wood from the viewpoint of the composite structure of its cell wall. First, the mechanical interaction between the cellulose microfibril (CMF) as a bundle framework and the lignin-hemicellulose as a matrix (MT) skeleton in the secondary wall is formulated based on "the two phase approximation." Thereafter, the origins of (1) tree growth stress, (2) shrinkage or swelling anisotropy of the wood, and (3) moisture dependency of the Young's modulus of wood along the grain were simulated using the newly introduced model. Through the model formulation; (1) the behavior of the cellulose microfibril (CMF) and the matrix substance (MT) during cell wall maturation was estimated; (2) the moisture reactivity of each cell wall constituent was investigated; and (3) a realistic model of the fine composite structure of the matured cell wall was proposed. Thus, it is expected that the fine structure and internal property of each cell wall constituent can be estimated through the analyses of the macroscopic behaviors of wood based on the two phase approximation.

  20. Native backfill materials for mechanically stabilized earth walls.

    DOT National Transportation Integrated Search

    2005-01-01

    Mechanically stabilized earth walls are an attractive alternative to conventional reinforced concrete retaining walls. The economy of these walls for non-critical applications might be improved by using alternative backfills consisting of on-site soi...

  1. Role of Outgassing of ITER Vacuum Vessel In-Wall Shielding Materials in Leak Detection of ITER Vacuum Vessel

    NASA Astrophysics Data System (ADS)

    Maheshwari, A.; Pathak, H. A.; Mehta, B. K.; Phull, G. S.; Laad, R.; Shaikh, M. S.; George, S.; Joshi, K.; Khan, Z.

    2017-04-01

    ITER Vacuum Vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with In-Wall Shielding Blocks (IWS) and Water. The main purpose of IWS is to provide neutron shielding during ITER plasma operation and to reduce ripple of Toroidal Magnetic Field (TF). Although In-Wall Shield Blocks (IWS) will be submerged in water in between the walls of the ITER Vacuum Vessel (VV), Outgassing Rate (OGR) of IWS materials plays a significant role in leak detection of Vacuum Vessel of ITER. Thermal Outgassing Rate of a material critically depends on the Surface Roughness of material. During leak detection process using RGA equipped Leak detector and tracer gas Helium, there will be a spill over of mass 3 and mass 2 to mass 4 which creates a background reading. Helium background will have contribution of Hydrogen too. So it is necessary to ensure the low OGR of Hydrogen. To achieve an effective leak test it is required to obtain a background below 1 × 10-8 mbar 1 s-1 and hence the maximum Outgassing rate of IWS Materials should comply with the maximum Outgassing rate required for hydrogen i.e. 1 x 10-10 mbar 1 s-1 cm-2 at room temperature. As IWS Materials are special materials developed for ITER project, it is necessary to ensure the compliance of Outgassing rate with the requirement. There is a possibility of diffusing the gasses in material at the time of production. So, to validate the production process of materials as well as manufacturing of final product from this material, three coupons of each IWS material have been manufactured with the same technique which is being used in manufacturing of IWS blocks. Manufacturing records of these coupons have been approved by ITER-IO (International Organization). Outgassing rates of these coupons have been measured at room temperature and found in acceptable limit to obtain the required Helium Background. On the basis of these measurements, test reports have been generated and got

  2. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.

    PubMed

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Sotoodeh, Shahnaz

    2017-11-01

    Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. MSE wall void repair effect on corrosion of reinforcement - phase 2 : specialty fill materials.

    DOT National Transportation Integrated Search

    2015-08-01

    This project provided information and recommendations for material selection for best : corrosion control of reinforcement in mechanically stabilized earth (MSE) walls with void repairs. The : investigation consisted of small- and large-scale experim...

  4. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.

    PubMed

    Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo

    2018-01-01

    The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.

  5. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  6. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    PubMed

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  7. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  8. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.

    PubMed

    Shojaaee, Zahra; Roux, Jean-Noël; Chevoir, François; Wolf, Dietrich E

    2012-07-01

    We report on a numerical study of the shear flow of a simple two-dimensional model of a granular material under controlled normal stress between two parallel smooth frictional walls moving with opposite velocities ± V. Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks, reveal that, unlike rough walls made of strands of particles, smooth ones can lead to shear strain localization in the boundary layer. Specifically, we observe, for decreasing V, first a fluidlike regime (A), in which the whole granular layer is sheared, with a homogeneous strain rate except near the walls, then (B) a symmetric velocity profile with a solid block in the middle and strain localized near the walls, and finally (C) a state with broken symmetry in which the shear rate is confined to one boundary layer, while the bulk of the material moves together with the opposite wall. Both transitions are independent of system size and occur for specific values of V. Transient times are discussed. We show that the first transition, between regimes A and B, can be deduced from constitutive laws identified for the bulk material and the boundary layer, while the second one could be associated with an instability in the behavior of the boundary layer. The boundary zone constitutive law, however, is observed to depend on the state of the bulk material nearby.

  9. Modeling thermal performance of exterior walls retrofitted from insulation and modified laterite based bricks materials

    NASA Astrophysics Data System (ADS)

    Wati, Elvis; Meukam, Pierre; Damfeu, Jean Claude

    2017-12-01

    Uninsulated concrete block walls commonly found in tropical region have to be retrofitted to save energy. The thickness of insulation layer used can be reduced with the help of modified laterite based bricks layer (with the considerably lower thermal conductivity than that of concrete block layer) during the retrofit building fabrics. The aim of this study is to determine the optimum location and distribution of different materials. The investigation is carried out under steady periodic conditions under the climatic conditions of Garoua in Cameroon using a Simulink model constructed from H-Tools (the library of Simulink models). Results showed that for the continuous air-conditioned space, the best wall configuration from the maximum time lag, minimum decrement factor and peak cooling transmission load perspective, is dividing the insulation layer into two layers and placing one at the exterior surface and the other layer between the two different massive layers with the modified laterite based bricks layer at the interior surface. For intermittent cooling space, the best wall configuration from the minimum energy consumption depends on total insulation thickness. For the total insulation thickness less than 8 cm approximately, the best wall configuration is placing the half layer of insulation material at the interior surface and the other half between the two different massive layers with the modified earthen material at the exterior surface. Results also showed that, the optimum insulation thickness calculated from the yearly cooling transmission (estimated only during the occupied period) and some economic considerations slightly depends on the location of that insulation.

  10. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  11. Physiologic Simulation of the Fontan Surgery with Variable Wall Properties and Respiration

    NASA Astrophysics Data System (ADS)

    Long, Christopher; Bazilevs, Yuri; Feinstein, Jeffrey; Marsden, Alison

    2010-11-01

    Children born with single ventricle heart defects typically undergo a surgical procedure known as a total cavopulmonary connection (TCPC). The goal of this work is to perform hemodynamic simulations accounting for motion of the arterial walls in the TCPC. We perform fluid structure interactions (FSI) simulations using an Arbitrary Lagrangian Eulerian (ALE) finite element framework into a patient-specific model of the TCPC. The patient's post-op anatomy is reconstructed from MRI data. Respiration rate, heart rate, and venous pressures are obtained from catheterization data, and flowrates are obtained from phase contrast MRI data and are used together with a respiratory model. Lumped parameter (RCR) boundary conditions are used at the outlets. This study is the first to introduce variable elastic properties for the different areas of the TCPC, including a Gore-Tex conduit. Quantities such as wall shear stresses and pressures at critical junctions are extracted from the simulation and are compared with pressure tracings from clinical data as well as with rigid wall simulations.

  12. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. © 2016 The Authors.

  13. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  14. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  15. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  16. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  17. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an

    2012-10-01

    A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.

  18. Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations

    PubMed Central

    Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052

  19. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  20. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.

    PubMed

    Basanta, María F; de Escalada Plá, Marina F; Stortz, Carlos A; Rojas, Ana M

    2013-01-30

    The cell wall polysaccharides of Regina and Sunburst cherry varieties at two developmental stages were extracted sequentially, and their changes in monosaccharide composition and functional properties were studied. The loosely-attached pectins presented a lower d-galacturonic acid/rhamnose ratio than ionically-bound pectins, as well as lower thickening effects of their respective 2% aqueous solution: the lowest Newtonian viscosity and shear rate dependence during the pseudoplastic phase. The main constituents of the cell wall matrix were covalently bound pectins (probably through diferulate cross-linkings), with long arabinan side chains at the RG-I cores. This pectin domain was also anchored into the XG-cellulose elastic network. Ripening occurred with a decrease in the proportion of HGs, water extractable GGM and xylogalacturonan, and with a concomitant increase in neutral sugars. Ripening was also associated with higher viscosities and thickening effects, and to larger distribution of molecular weights. The highest firmness and compactness of Regina cherry may be associated with its higher proportion of calcium-bound HGs localized in the middle lamellae of cell walls, as well as to some higher molar proportion of NS (Rha and Ara) in covalently bound pectins. These pectins showed significantly better hydration properties than hemicellulose and cellulose network. Chemical composition and functional properties of cell wall polymers were dependent on cherry variety and ripening stage, and helped explain the contrasting firmness of Regina and Sunburst varieties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Cell-wall recovery after irreversible deformation of wood

    NASA Astrophysics Data System (ADS)

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  2. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  3. Variation of mechanical property of single-walled carbon nanotubes-treated cells explored by atomic force microscopy.

    PubMed

    Dulińska-Molak, Ida; Mao, Hongli; Kawazoe, Naoki; Chen, Guoping

    2014-04-01

    With a range of biological properties, single-walled carbon nanotubes (SWCNTs) are a promising material for nanobiotechnology. Concerns about their potential effect on human health have led to the interest in understanding the interaction between SWCNTs and cells. There are many reports showing the potential cellular effects of SWCNTs but this issue is quite controversially discussed in the literature. In this study, we used conventional biological evaluation methods and atomic force microscopy (AFM) to compare the effects of SWCNTs on three different cell types: bovine articular chondrocytes, human bone marrow-derived mesenchymal stem cells and HeLa cells. No obvious effects of SWCNTs on cell morphology and viability were observed during 3 days in vitro culture. However, SWCNTs significantly increased the Young's modulus of all the three types of cells. The effect of SWCNTs on Young's modulus was in an increasing order of Hela cells < chondrocytes < mesenchymal stem cells. AFM was shown to be a useful tool for investigation of the effect of nanomaterials on mechanical property of cells.

  4. Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials

    PubMed Central

    Li, Wenting; Zhu, Xujing; Zhao, Nan; Jiang, Zhengwu

    2016-01-01

    Self-healing microcapsules were synthesized by in situ polymerization with a melamine urea-formaldehyde resin shell and an epoxy resin adhesive. The effects of the key factors, i.e., core–wall ratio, reaction temperature, pH and stirring rate, were investigated by characterizing microcapsule morphology, shell thickness, particle size distribution, mechanical properties and chemical nature. Microcapsule healing mechanisms in cement paste were evaluated based on recovery strength and healing microstructure. The results showed that the encapsulation ability, the elasticity modulus and hardness of the capsule increased with an increase of the proportion of shell material. Increased polymerization temperatures were beneficial to the higher degree of shell condensation polymerization, higher resin particles deposition on microcapsule surfaces and enhanced mechanical properties. For relatively low pH values, the less porous three-dimensional structure led to the increased elastic modulus of shell and the more stable chemical structure. Optimized microcapsules were produced at a temperature of 60 °C, a core-wall ratio of 1:1, at pH 2~3 and at a stirring rate of 300~400 r/min. The best strength restoration was observed in the cement paste pre-damaged by 30% fmax and incorporating 4 wt % of capsules. PMID:28773280

  5. Collagen/hydroxyapatite composite materials with desired ceramic properties.

    PubMed

    Andronescu, Ecaterina; Voicu, Georgeta; Ficai, Maria; Mohora, Ioana Anita; Trusca, Roxana; Ficai, Anton

    2011-01-01

    Our purpose was to obtain and characterize some collagen/hydroxyapatite (COLL/HA) hybrid composite materials with desired ceramic properties. The ceramic properties of these materials were achieved by combining two drying methods: controlled air drying at 30°C followed by freeze-drying. Through the function of the air drying times, the materials morphology varies from porous materials (when the materials are freeze-dried) up to dense materials (when the materials are air-dried), while the combined drying allows us to obtain an intermediary morphology. The composite materials intended to be used as bone grafts and in a drug delivery system were characterized by XRD, FTIR, SEM, and also by determining the ceramic properties by using the Arthur method. The ceramic properties of these COLL/HA composite materials vary in large range, for instance the density of the materials varies from 0.06 up to 1.5 g/cm(3) while the porosity varies from 96.5% down to 27.5%.

  6. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  7. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  8. Synthesis, transfer printing, electrical and optical properties, and applications of materials composed of self-assembled, aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pint, Cary L.

    Super growth of single-walled carbon nanotubes (SWNTs) has emerged as a unique method for synthesizing self-assembled, pristine, aligned SWNT materials composed of ultra-long (millimeter-long) nanotubes. This thesis focuses on novel routes of synthesizing such self-assembled SWNTs and the challenges that arise in integrating this material into next-generation applications. First of all, this work provides unique insight into growth termination of aligned SWNTs, emphasizing the mechanism that inhibits the growth of infinitely long nanotubes. Exhaustive real-time growth studies, combined with ex-situ and in-situ TEM characterization emphasizes that Ostwald ripening and subsurface diffusion of catalyst particles play a key role in growth termination. As a result, rational steps to solving this problem can enhance growth, and may ultimately lead to the meter or kilometer-long SWNTs that are necessary for a number of applications. In addition, other novel synthesis routes are discussed, such as the ability to form macroscopic fibrils of SWNTs, called "flying carpets" from 40 nm thick substrates, and the ability to achieve supergrowth of SWNTs that are controllably doped with nitrogen. In the latter case, molecular heterojunctions of doped and undoped sections in a single strand of ultralong SWNTs are demonstrated Secondly, as supergrowth is conducted on alumina coated SiO2 substrates, any applications will require that one can transfer the SWNTs to host surfaces with minimal processing. This work demonstrates a unique contact transfer route by which both patterned arrays of SWNTs, or homogenous SWNT carpets, can be transferred to any host surface. In the first case, the SWNTs are grown vertically aligned, and transferred in patterns of horizontally aligned SWNT. This transfer process relies on simple water-vapor etching of amorphous carbons at the catalyst following growth, and strong van der Waals adhesion of the high surface-area SWNT to host surfaces (gecko effect

  9. Capturing strain localization behind a geosynthetic-reinforced soil wall

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.

    2003-04-01

    This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.

  10. Data analytics and parallel-coordinate materials property charts

    NASA Astrophysics Data System (ADS)

    Rickman, Jeffrey M.

    2018-01-01

    It is often advantageous to display material properties relationships in the form of charts that highlight important correlations and thereby enhance our understanding of materials behavior and facilitate materials selection. Unfortunately, in many cases, these correlations are highly multidimensional in nature, and one typically employs low-dimensional cross-sections of the property space to convey some aspects of these relationships. To overcome some of these difficulties, in this work we employ methods of data analytics in conjunction with a visualization strategy, known as parallel coordinates, to represent better multidimensional materials data and to extract useful relationships among properties. We illustrate the utility of this approach by the construction and systematic analysis of multidimensional materials properties charts for metallic and ceramic systems. These charts simplify the description of high-dimensional geometry, enable dimensional reduction and the identification of significant property correlations and underline distinctions among different materials classes.

  11. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    PubMed Central

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  12. Physical properties of the surface materials at the Viking landing sites on Mars

    USGS Publications Warehouse

    Moore, H.J.; Hutton, R.E.; Clow, G.D.; Spitzer, C.R.

    1987-01-01

    include: (1) acquiring motor-current data while excavating trenches, (2) performing surface-bearing tests, (3) performing backhoe touchdowns, (4) attempting to chip or scratch rocks, (5) comminuting samples, (6) measuring subsurface diurnal temperatures, and (7) constructing conical piles of materials on and among rocks. Sample trenches in the three major types of soil-like materials were different from one another. Trenches in drift material, which were typically 0.06 m deep, had steep walls along much of their lengths, lumpy tailings and floors, and smooth domed surfaces with sparse fine fractures around their tips. Trenches in blocky material, which were typically 0.03-0.04 m deep, had steep walls near their tips, and surfaces around their tips were displaced upward and some appeared blocky. Trenches in crusty to cloddy material, which were typically 0.04-0.05 m deep, had steep and often irregular slopes near their tips, clods and slabs of crust in their tailings, and disrupted areas around their tips composed of mixed fine-grained material and slabs of crust or thick polygonal clods that had been displaced upwards. Data acquired during landing, trenching, surface-bearing tests, backhoe touchdowns, and from other science experiments were used to determine the mechanical properties of drift, blocky, and crusty to cloddy materials. Drift material appeared to be very fine grained, with local planes of weakness; in general, the drift material was consistent with a material having an angle of internal friction about 18?, a cohesion ranging from 0.7 to 3.0 kPa, and a bulk density of 1,200 kg/m 3 . Blocky material was consistent with a material having an angle of internal friction about 30?, cohesions from 1.5 to 16 kPa, and a bulk density of 1,600 kg/m 3 . Crusty to cloddy material had variable properties. For chiefly crusty to cloddy material, angles of internal friction were about 35 ? , and cohesions were from 0.5 to 5.2 kPa. For mixed fines and crusts, a

  13. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping

  14. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties.

    PubMed

    Long, C C; Hsu, M-C; Bazilevs, Y; Feinstein, J A; Marsden, A L

    2012-05-01

    Children born with single ventricle heart defects typically undergo a staged surgical procedure culminating in a total cavopulmonary connection (TCPC) or Fontan surgery. The goal of this work was to perform physiologic, patient-specific hemodynamic simulations of two post-operative TCPC patients by using fluid-structure interaction (FSI) simulations. Data from two patients are presented, and post-op anatomy is reconstructed from MRI data. Respiration rate, heart rate, and venous pressures are obtained from catheterization data, and inflow rates are obtained from phase contrast MRI data and are used together with a respiratory model. Lumped parameter (Windkessel) boundary conditions are used at the outlets. We perform FSI simulations by using an arbitrary Lagrangian-Eulerian finite element framework to account for motion of the blood vessel walls in the TCPC. This study is the first to introduce variable elastic properties for the different areas of the TCPC, including a Gore-Tex conduit. Quantities such as wall shear stresses and pressures at critical locations are extracted from the simulation and are compared with pressure tracings from clinical data as well as with rigid wall simulations. Hepatic flow distribution and energy efficiency are also calculated and compared for all cases. There is little effect of FSI on pressure tracings, hepatic flow distribution, and time-averaged energy efficiency. However, the effect of FSI on wall shear stress, instantaneous energy efficiency, and wall motion is significant and should be considered in future work, particularly for accurate prediction of thrombus formation. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties.

    PubMed

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-09-19

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.

  16. Alterations in biomechanical properties and microstructure of colon wall in early-stage experimental colitis.

    PubMed

    Gong, Xiaohui; Xu, Xiaojuan; Lin, Sisi; Cheng, Yu; Tong, Jianhua; Li, Yongyu

    2017-08-01

    The aim of the current study was to investigate the effects of early-stage dextran sodium sulfate (DSS)-induced mouse colitis on the biomechanical properties and microstructure of colon walls. In the present study, colitis was induced in 8-week-old mice by the oral administration of DSS, and then 10 control and 10 experimental colitis samples were harvested. Uniaxial tensile tests were performed to measure the ultimate tensile strength and ultimate stretches of colon tissues. In addition, histological investigations were performed to characterize changes in the microstructure of the colon wall following treatment. The results revealed that the ultimate tensile stresses were 232±33 and 183±25 kPa for the control and DSS groups, respectively (P=0.001). Ultimate stretches at rupture for the control and DSS groups were 1.43±0.04 and 1.51±0.06, respectively (P=0.006). However, there was no statistically significant difference in tissue stiffness between the two groups. Histological analysis demonstrated high numbers of inflammatory cells infiltrated into the stroma in the DSS group, leading to significant submucosa edema. Hyperplasia was also identified in the DSS-treated submucosa, causing a disorganized microstructure within the colon wall. Furthermore, a large number of collagen fibers in the DSS-treated muscular layer were disrupted, and fiber bundles were thinner when compared with the control group. In conclusion, early-stage experimental colitis alters the mechanical properties and microstructural characteristics of the colon walls, further contributing to tissue remodeling in the pathological process.

  17. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  18. Self-Consistent Physical Properties of Carbon Nanotubes in Composite Materials

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Frankland, S. J. V.; Hubert, P.; Saether, E.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A set of relationships is developed for selected physical properties of single-walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of nanotube size in terms of the chiral vector integer pair, (n,m). Properties include density, principal Young's modulus, and specific Young's modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are developed for polymeric mixtures.

  19. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  20. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material

  1. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  2. The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures

    NASA Technical Reports Server (NTRS)

    Aitchison, C S; Tuckerman, L B

    1939-01-01

    The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.

  3. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop

  4. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE PAGES

    Fancher, C. M.; Brewer, S.; Chung, C. C.; ...

    2016-12-27

    Here, the contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectricmore » permittivity of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  5. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, C. M.; Brewer, S.; Chung, C. C.

    2017-03-01

    The contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectric permittivitymore » of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  6. Optoelectronic properties of single-wall carbon nanotubes.

    PubMed

    Nanot, Sébastien; Hároz, Erik H; Kim, Ji-Hee; Hauge, Robert H; Kono, Junichiro

    2012-09-18

    Single-wall carbon nanotubes (SWCNTs), with their uniquely simple crystal structures and chirality-dependent electronic and vibrational states, provide an ideal laboratory for the exploration of novel 1D physics, as well as quantum engineered architectures for applications in optoelectronics. This article provides an overview of recent progress in optical studies of SWCNTs. In particular, recent progress in post-growth separation methods allows different species of SWCNTs to be sorted out in bulk quantities according to their diameters, chiralities, and electronic types, enabling studies of (n,m)-dependent properties using standard macroscopic characterization measurements. Here, a review is presented of recent optical studies of samples enriched in 'armchair' (n = m) species, which are truly metallic nanotubes but show excitonic interband absorption. Furthermore, it is shown that intense ultrashort optical pulses can induce ultrafast bandgap oscillations in SWCNTs, via the generation of coherent phonons, which in turn modulate the transmission of a delayed probe pulse. Combined with pulse-shaping techniques, coherent phonon spectroscopy provides a powerful method for studying exciton-phonon coupling in SWCNTs in a chirality-selective manner. Finally, some of the basic properties of highly aligned SWCNT films are highlighted, which are particularly well-suited for optoelectronic applications including terahertz polarizers with nearly perfect extinction ratios and broadband photodetectors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180° domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy, and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond valence sums. Our results thus provide both theoretical and empirical guidance to further search for ferroelectric candidates in materials of the corundum derivative family. The work is supported by ONR Grant N00014-12-1-1035.

  8. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  9. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete.

    PubMed

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime; Ángel Álvarez, Miguel

    2013-08-15

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  10. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    PubMed Central

    Fenollera, María; Míguez, José Luis; Goicoechea, Itziar; Lorenzo, Jaime; Ángel Álvarez, Miguel

    2013-01-01

    The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof. PMID:28811450

  11. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  12. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

    PubMed Central

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  13. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  14. Nano-indentation creep properties of the S2 cell wall lamina and compound corner middle lamella [abstract

    Treesearch

    Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Donald S. Stone

    2010-01-01

    Bulk wood properties are derived from an ensemble of processes taking place at the micron-scale, and at this level the properties differ dramatically in going from cell wall layers to the middle lamella. To better understand the properties of these micron-scaled regions of wood, we have developed a unique set of nano-indentation tools that allow us to measure local...

  15. Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction

    NASA Astrophysics Data System (ADS)

    Paruch, Patrycja

    2013-03-01

    Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.

  16. The Effects of Insulator Wall Material on Hall Thruster Discharges: A Numerical Study

    DTIC Science & Technology

    2001-01-03

    An investigation was undertaken to determine how the choice of insulator wall material inside a Hall thruster discharge channel might affect thruster operation. In order to study this, an evolved hybrid particle-in-cell (PIC) numerical Hall thruster model, HPHall, was used. HPHall solves a set of quasi-one-dimensional fluid equations for electrons and tracks heavy particles using a PIC method.

  17. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  18. Apparatus and method to keep the walls of a free-space reactor free from deposits of solid materials

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A. (Inventor)

    1985-01-01

    An apparatus and method is disclosed for keeping interior walls of a reaction vessel free of undesirable deposits of solid materials in gas-to-solid reactions. The apparatus includes a movable cleaning head which is configured to be substantially complementary to the interior contour of the walls of the reaction vessel. The head ejects a stream of gas with a relatively high velocity into a narrow space between the head and the walls. The head is moved substantially continuously to at least intermittently blow the stream of gas to substantially the entire surface of the walls wherein undesirable solid deposition is likely to occur. The disclosed apparatus and process is particularly useful for keeping the walls of a free-space silane-gas-to-solid-silicon reactor free of undesirable silicon deposits.

  19. Conducting wall Hall thrusters in magnetic shielding and standard configurations

    NASA Astrophysics Data System (ADS)

    Grimaud, Lou; Mazouffre, Stéphane

    2017-07-01

    Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.

  20. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease.more » Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.« less

  1. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1992-11-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  2. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  3. The Role of Auxin in Cell Wall Expansion.

    PubMed

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  4. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  5. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  6. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation

    Treesearch

    Yan Wu; Siqun Wang; Dingguo Zhou; Cheng Xing; Yang Zhang; Zhiyong Cai

    2010-01-01

    Agricultural biomaterials such as crop stalks are natural sources of cellulosic fiber and have great potential as reinforced materials in bio-composites. In order to evaluate their potential as materials for reinforcement, the nano-mechanical properties of crop-stalk cell walls, i.e. those of cotton (Gossypium herbaceu) stalk, soybean (Glycine max) stalk, cassava (...

  7. Mechanical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  8. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  9. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  10. Improper origin of polar displacements at CaTiO3 and CaMnO3 twin walls

    NASA Astrophysics Data System (ADS)

    Barone, Paolo; Di Sante, Domenico; Picozzi, Silvia

    2014-04-01

    Recent interest in novel functionalities arising at domain walls of ferroic materials naturally calls for a microscopic understanding. To this end, first-principles calculations have been performed in order to provide solid evidence of polar distortions in the twin walls of nonpolar CaTiO3 and magnetic CaMnO3. We show that such polar displacements arise from rotation and/or tilting octahedral distortions—cooperatively acting at the twin wall in both considered systems—rather than from a proper secondary ferroelectric instability, as often believed. Our results are in excellent agreement with experimental observations of domain walls in CaTiO3. In addition, we show that magnetic properties at the twin wall in CaMnO3 are also modified, thus suggesting an unexplored route to achieve and detect multiferroic ordering in a single-phase material.

  11. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  12. Ferroelectric translational antiphase boundaries in nonpolar materials

    PubMed Central

    Wei, Xian-Kui; Tagantsev, Alexander K.; Kvasov, Alexander; Roleder, Krystian; Jia, Chun-Lin; Setter, Nava

    2014-01-01

    Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner. PMID:24398704

  13. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Flach, G.

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data asmore » it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.« less

  14. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  15. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  16. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  17. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores

    NASA Astrophysics Data System (ADS)

    Karakoç, Alp

    2018-01-01

    The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.

  18. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes.

    PubMed

    Al-Gharabli, Samer; Hamad, Eyad; Saket, Munib; Abu El-Rub, Ziad; Arafat, Hassan; Kujawski, Wojciech; Kujawa, Joanna

    2018-05-07

    Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  19. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-06-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  20. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  1. Cell wall invertase in tobacco crown gall cells : enzyme properties and regulation by auxin.

    PubMed

    Weil, M; Rausch, T

    1990-12-01

    The cell wall invertase from an Agrobacterium tumefaciens-transformed Nicotiana tabacum cell line (SR1-C58) was purified. The heterogeneously glycosylated enzyme has the following properties: M(r) 63,000, pH optimum at 4.7, K(m sucrose) 0.6 millimolar (at pH 4.7), pl 9.5. Enzyme activity is inhibited by micromolar concentrations of HgCl(2) but is insensitive to H(2)O(2), N-ethylmaleimide and dithiothreitol. Upon transfer of transformed cells from the stationary phase to fresh medium, a cycloheximide- and tunicamycin-sensitive de novo formation of cell wall invertase is demonstrated in the absence or presence of sucrose. While in an auxin mutant (lacking gene 1;SR1-3845) 1 micromolar 1-naphthaleneacetic acid led to a further increased activity, the wild-type transformed cell line (SR1-C58) responded with a decreased activity compared to the control. An analysis of cell wall invertase in and around tumors initiated with Agrobacterium tumefaciens (strain C58) on Nicotiana tabacum stem and Kalanchoë daigremontiana leaves revealed gradients of activity. The results indicate that the auxin-stimulated cell wall invertase is essential for the establishment of the tumor sink.

  2. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.

    PubMed

    Dong, Qi; Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2017-10-18

    As-synthetized single walled carbon nanotubes (SWCNTs) contain both metallic and semiconducting nanotubes. For the electronics, it is desirable to separate semiconducting SWCNTs (s-SWCNTs) from the metallic ones as s-SWCNTs provide desirable electronic properties. Here we test whether ultrapure semi-conducting single-walled carbon nanotubes (s-SWCNTs) provide advantageous electrochemical properties over the as prepared SWCNTs which contain a mixture of semiconducting and metallic CNTs. We test them as a transducer platform which enhanced the detection of target analytes (ascorbic acid, dopamine, uric acid) when compared to a bare glassy carbon (GC) electrode. Despite that, the two materials exhibit significantly different electrochemical properties and performances. A mixture of m-SWCNTs and s-SWCNTs demonstrated superior performance over ultrapure s-SWCNTs with greater peak currents and pronounced shift in peak potentials to lower values in cyclic and differential pulse voltammetry for the detection of target analytes. The mixture of m- and s-SWCNTs displayed about a 4 times improved heterogeneous electron transfer rate as compared to bare GC and a 2 times greater heterogeneous electron transfer rate than s-SWCNTs, demonstrating that ultrapure SWCNTs do not provide any major enhancement over the as prepared SWCNTs.

  3. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    DOE PAGES

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less

  4. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    PubMed

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  5. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties

    PubMed Central

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-01-01

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube. PMID:28788213

  6. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    NASA Astrophysics Data System (ADS)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  7. The Role of Auxin in Cell Wall Expansion

    PubMed Central

    2018-01-01

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition. PMID:29565829

  8. Effective media properties of hyperuniform disordered composite materials

    PubMed Central

    Sheng, Xin-Qing

    2017-01-01

    The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design. PMID:28982118

  9. Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Wang, Hsin; Menchhofer, Paul A.; Kiggans, James O.

    2013-11-01

    Since many thermoelectrics are brittle in nature with low mechanical strength, improving their mechanical properties is important to fabricate devices such as thermoelectric power generators and coolers. In this work, multiwalled carbon nanotubes (CNTs) were incorporated into polycrystalline Bi0.4Sb1.6Te3 through powder processing, which increased the flexural strength from 32 MPa to 90 MPa. Electrical and thermal conductivities were both reduced in the CNT containing materials, leading to unchanged figure of merit. Dynamic Young's and shear moduli of the composites were lower than the base material, while the Poisson's ratio was not affected by CNT doping.

  10. SiC/SiC Cladding Materials Properties Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Mary A.; Katoh, Yutai; Koyanagi, Takaaki

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormalmore » operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.« less

  11. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense.

    PubMed

    Parre, Elodie; Geitmann, Anja

    2005-02-01

    The cell wall is one of the structural key players regulating pollen tube growth, since plant cell expansion depends on an interplay between intracellular driving forces and the controlled yielding of the cell wall. Pectin is the main cell wall component at the growing pollen tube apex. We therefore assessed its role in pollen tube growth and cytomechanics using the enzymes pectinase and pectin methyl esterase (PME). Pectinase activity was able to stimulate pollen germination and tube growth at moderate concentrations whereas higher concentrations caused apical swelling or bursting in Solanum chacoense Bitt. pollen tubes. This is consistent with a modification of the physical properties of the cell wall affecting its extensibility and thus the growth rate, as well as its capacity to withstand turgor. To prove that the enzyme-induced effects were due to the altered cell wall mechanics, we subjected pollen tubes to micro-indentation experiments. We observed that cellular stiffness was reduced and visco-elasticity increased in the presence of pectinase. These are the first mechanical data that confirm the influence of the amount of pectins in the pollen tube cell wall on the physical parameters characterizing overall cellular architecture. Cytomechanical data were also obtained to analyze the role of the degree of pectin methyl-esterification, which is known to exhibit a gradient along the pollen tube axis. This feature has frequently been suggested to result in a gradient of the physical properties characterizing the cell wall and our data provide, for the first time, mechanical support for this concept. The gradient in cell wall composition from apical esterified to distal de-esterified pectins seems to be correlated with an increase in the degree of cell wall rigidity and a decrease of visco-elasticity. Our mechanical approach provides new insights concerning the mechanics of pollen tube growth and the architecture of living plant cells.

  12. Meteorite Material Model for Structural Properties

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alexander A.; Karajeh, Zaid S.; Bryson, Kathryn L.

    2017-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to complex petrology, it is technically challenging and expensive to obtain reliable material properties by means of laboratory test for a family of meteorites. In order to circumvent this challenge, meteorite unit models are developed to determine the effective material properties including Youngs modulus, compressive and tensile strengths and Poissons ratio, that in turn would help deduce the properties of asteroids. The meteorite unit is a representative volume that accounts for diverse minerals, porosity, cracks and matrix composition. The Youngs Modulus and Poissons Ratio in the meteorite units are calculated by performing several hundreds of Monte-Carlo simulations by randomly distributing the various phases inside these units. Once these values are obtained, cracks are introduced in these meteorite units. The size, orientation and distribution of cracks are derived by extensive CT-scans and visual scans of various meteorites from the same family. Subsequently, simulations are performed to attain stress-strain relations, strength and effective modulus values in the presence of these cracks. The meteorite unit models are presented for H, L and LL ordinary chondrites, as well as for terrestrial basalt. In the case of the latter, data from the simulations is compared with experimental data to validate the methodology. These material models will be subsequently used in fragmentation modeling of full scale asteroids.

  13. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  14. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up

    PubMed Central

    Wang, Qingyu; Canton, Gador; Guo, Jian; Guo, Xiaoya; Hatsukami, Thomas S.; Billiar, Kristen L.; Yuan, Chun; Wu, Zheyang

    2017-01-01

    Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline

  15. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    PubMed

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  17. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    NASA Astrophysics Data System (ADS)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  18. Research of footwear lining materials thermoconductive properties

    NASA Astrophysics Data System (ADS)

    Maksudova, U.; Ilkhamova, M.; Mirzayev, N.; Pazilova, D.

    2017-11-01

    Protective properties of footwear are influenced by a number of factors and the most important of them are: design features of the top and the bottom of the footwear, it’s shape, physical and mechanical properties of the components of which they are made. In course of work there were researched thermoconductive properties of different lining membrane materials used for production of high temperature protective footwear. Research results allow to select the appropriate materials by reference to thermoconductive properties during design of protective footwear for extreme conditions to prolong the wearer’s time of comfortable stay in conditions of exposure of elevated temperatures to a stack.

  19. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Writing on the wall with a new synthetic quill

    PubMed

    MacLachlan; Asefa; Ozin

    2000-07-14

    A new class of periodic mesoporous organosilicas (PMOs) with organic groups incorporated inside the channel walls of the material is discussed. In particular, the unique properties and chemistry exhibited by periodic mesoporous methylenesilica, an isoelectronic analogue of periodic mesoporous silica, are highlighted. Finally, some of the advances made in our group and others, as well as future directions that we envision in the field are described.

  1. Yeast-assisted synthesis of polypyrrole: Quantification and influence on the mechanical properties of the cell wall.

    PubMed

    Andriukonis, Eivydas; Stirke, Arunas; Garbaras, Andrius; Mikoliunaite, Lina; Ramanaviciene, Almira; Remeikis, Vidmantas; Thornton, Barry; Ramanavicius, Arunas

    2018-04-01

    In this study, the metabolism of yeast cells (Saccharomyces cerevisiae) was utilized for the synthesis of the conducting polymer - polypyrrole (Ppy).Yeast cells were modified in situ by synthesized Ppy. The Ppy was formed in the cell wall by redox-cycling of [Fe(CN) 6 ] 3-/4- , performed by the yeast cells. Fluorescence microscopy, enzymatic digestions, atomic force microscopy and isotope ratio mass spectroscopy were applied to determine both the polymerization reaction itself and the polymer location in yeast cells. Ppy formation resulted in enhanced resistance to lytic enzymes, significant increase of elasticity and alteration of other mechanical cell wall properties evaluated by atomic force microscopy (AFM). The suggested method of polymer synthesis allows the introduction of polypyrrole structures within the cell wall, which is build up from polymers consisting of carbohydrates. This cell wall modification strategy could increase the usefulness of yeast as an alternative energy source in biofuel cells, and in cell based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Dielectric properties of agricultural materials and their application

    USDA-ARS?s Scientific Manuscript database

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  3. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  4. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  5. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Astrophysics Data System (ADS)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  6. Preparation and multi-properties determination of radium-containing rocklike material

    NASA Astrophysics Data System (ADS)

    Hong, Changshou; Li, Xiangyang; Zhao, Guoyan; Jiang, Fuliang; Li, Ming; Zhang, Shuai; Wang, Hong; Liu, Kaixuan

    2018-02-01

    The radium-containing rocklike material were fabricated using distilled water, ordinary Portland cement and additives mixed aggregates and admixtures according to certain proportion. The physico-mechanical properties as well as radioactive properties of the prepared rocklike material were measured. Moreover, the properties of typical granite sample were also investigated. It is found on one hand, similarities exist in physical and mechanical properties between the rocklike material and the granite sample, this confirms the validity of the proposed method; on the other hand, the rocklike material generally performs more remarkable radioactive properties compared with the granite sample, while radon diffusive properties in both materials are essentially matching. This study will provide a novel way to prepare reliable radium-containing samples for radon study of underground uranium mine.

  7. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  8. Manipulation of domain-wall solitons in bi- and trilayer graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng

    2018-01-01

    Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.

  9. Investigation into the optimal prosthetic material for wound healing of abdominal wall defects

    PubMed Central

    Akcakaya, Adem; Aydogdu, Ibrahim; Citgez, Bulent

    2018-01-01

    The purpose of this experimental study is to investigate and compare the effects of prosthetic materials used for wound healing of abdominal wall hernias. A total of 60 rats were divided into five equal groups: Group I, control subjected to laparotomy; group II, abdominal wall defect 3×2 cm+polypropylene (PP) mesh; group III, abdominal wall defect 3×2 cm+PP mesh+hyaluronate and carboxymethylcellulose (H-CMC; Seprafilm®); group IV, abdominal wall defect 3×2 cm+polytetrafluoroethylene (PTFE; Composix™); and group V, abdominal wall defect 3×2 cm+polyethylene terephthalate (PET; Dacron®). A total of 14 days after the surgery, rats were sacrificed and the meshes with the surrounding tissue were extracted in block. The breaking strength of the mesh from the fascia was recorded. The healing tissue was examined with the index of histopathology and the hydroxyproline value was analyzed using the Switzer method. Both the breaking strength and histopathological index of the wound healing were significantly improved in groups II and III compared with that in groups IV and V (P<0.001). Hydroxyproline values were the highest in group I (P<0.001). There was also a statistically significant difference between groups II and IV, and group V and the other groups (P<0.001). The present findings demonstrated that PP mesh and PP mesh+H-CMC had a superior breaking strength and improved histopathologic indices compared with PTFE and PET. Furthermore, hydroxyproline values were the lowest in the PET group. In conclusion, wound healing was improved in the PP mesh group and the PP mesh+H-CMC group compared with the PTFE and PET groups according to the present study parameters. PMID:29399133

  10. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  11. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.

    PubMed

    Taghizadeh, Hadi; Tafazzoli-Shadpour, Mohammad

    2017-01-01

    Arterial wall tissues are sensitive to their mechanical surroundings and remodel their structure and mechanical properties when subjected to mechanical stimuli such as increased arterial pressure. Such remodeling is evident in hypertension and aging. Aging is characterized by stiffening of the artery wall which is assigned to disturbed elastin function and increased collagen content. To better understand and provide new insight on microstructural changes induced by aging, the lamellar model of the aortic media was utilized to characterize and compare wall structure and mechanical behavior of the young and old human thoracic aortic samples. Such model regards arterial media as two sets of alternating concentric layers, namely sheets of elastin and interlamellar layers. Histological and biaxial tests were performed and microstructural features and stress-strain curves of media were evaluated in young and old age groups. Then using optimization algorithms and hyperelastic constitutive equations the stress-strain curves of layers were evaluated for both age groups. Results indicated slight elevation in the volume fraction of interlamellar layer among old subjects most probably due to age related collagen deposition. Aging indicated substantial stiffening of interlamellar layers accompanied by noticeable softening of elastic lamellae. The general significant stiffening of old samples were attributed to both increase of volume fraction of interlamellar layers and earlier recruitment of collagen fibers during load bearing due to functional loss of elastin within wall lamellae. Mechanical characterization of lamellar structure of wall media is beneficial in study of arterial remodeling in response to alternated mechanical environment in aging and clinical conditions through coupling of wall microstructure and mechanical behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of the first wall material on the particle fuelling in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lunt, T.; Reimold, F.; Wolfrum, E.; Carralero, D.; Feng, Y.; Schmid, K.; the ASDEX Upgrade Team

    2017-05-01

    In the period from 2002 to 2007 the material of the plasma facing components (PFCs) of ASDEX Upgrade (AUG) was changed from carbon (C) to tungsten (W). Comparing the measured density profiles of low-density L-mode discharges with little or no gas puff before and after this modification, a significantly higher pedestal-top density was found for W PFCs together with a steeper gradient and a lower pedestal temperature. This change can be explained by larger particle- and energy reflection coefficients for D on W compared to D on C, as shown by EMC3-EIRENE simulations of AUG discharges in similar conditions on a computational grid extending to the main chamber first wall. In the simulations, a change of the wall material at fixed separatrix density indeed shows that for W PFCs more neutrals cross the separatrix, resulting in a steeper density gradient. Analysis of the source resolved and poloidally resolved neutral flux densities across the separatrix show a dominant contribution of the divertor targets to the fuelling profile in the simulation of the low density case. Increasing the density decreases the electron temperature at the target and therefore the potential drop in the electrostatic sheath as well as the energy of the ions impinging on the surface. Neutrals with ∼eV energies, able to reach the separatrix, are then only produced via molecular dissociation processes in the plasma volume independently of the PFC material. Also the contribution of the main chamber PFCs to the fuelling is observed to increase at higher densities.

  13. Size-Dependent Materials Properties Toward a Universal Equation

    PubMed Central

    2010-01-01

    Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done. PMID:20596422

  14. Subatomic movements of a domain wall in the Peierls potential.

    PubMed

    Novoselov, K S; Geim, A K; Dubonos, S V; Hill, E W; Grigorieva, I V

    2003-12-18

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.

  15. The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties.

    PubMed

    Denny, Mark W; King, Felicia A

    2016-06-15

    By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (∼14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (∼35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology. © 2016. Published by The Company of Biologists Ltd.

  16. RLC model of visco-elastic properties of the chest wall

    NASA Astrophysics Data System (ADS)

    Aliverti, Andrea; Ferrigno, Giancarlo

    1996-04-01

    The quantification of the visco-elastic properties (resistance (R), inertia (L) and compliance (C)) of the different chest wall compartments (pulmonary rib cage,diaphragmatic rib cage and abdomen) is important to study the status of the passive components of the respiratory system, particularly in selected pathologies. Applying the viscoelastic-electrical analogy to the chest wall, we used an identification method in order to estimate the R, L and C parameters of the different parts of the chest, basing on different models; the input and output measured data were constituted by the volume variations of the different chest wall compartments and by the nasal pressure during controlled intermittent positive pressure ventilation by nasal mask, while the parameters of the system (R, L and C of the different compartments) were to be estimated. Volumes were measured with a new method, recently validated, based on an opto-electronic motion analyzer, able to compute with high accuracy and null invasivity the absolute values and the time variations of the volumes of each of the three compartments. The estimation of the R, L and C parameters has been based on a least-squared criterion, and the minimization has been based on a robustified iterative Gauss-Newton algorithm. The validation of the estimation procedure (fitting) has ben performed computing the percentage root mean square value of the error between the output real data and the output estimated data. The method has been applied to 2 healthy subjects. Also preliminary results have been obtained from 20 subjects affected by neuromuscular diseases (Duchenne Muscular Dystrophy (DMD) and Spinal Muscle Atrophy (SMA)). The results show that: (a) the best-fitting electrical models of the respiratory system are made up by one or three parallel RLC branches supplied by a voltage generator (so considering inertial properties, particularly in the abdominal compartment, and not considering patient/machine connection); (b) there

  17. The carbohydrate-binding module (CBM)-like sequence is crucial for rice CWA1/BC1 function in proper assembly of secondary cell wall materials.

    PubMed

    Sato, Kanna; Ito, Sachiko; Fujii, Takeo; Suzuki, Ryu; Takenouchi, Sachi; Nakaba, Satoshi; Funada, Ryo; Sano, Yuzou; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2010-11-01

    We recently reported that the cwa1 mutation disturbed the deposition and assembly of secondary cell wall materials in the cortical fiber of rice internodes. Genetic analysis revealed that cwa1 is allelic to bc1, which encodes glycosylphosphatidylinositol (GPI)-anchored COBRA-like protein with the highest homology to Arabidopsis COBRA-like 4 (COBL4) and maize Brittle Stalk 2 (Bk2). Our results suggested that CWA1/BC1 plays a role in assembling secondary cell wall materials at appropriate sites, enabling synthesis of highly ordered secondary cell wall structure with solid and flexible internodes in rice. The N-terminal amino acid sequence of CWA1/BC1, as well as its orthologs (COBL4, Bk2) and other BC1-like proteins in rice, shows weak similarity to a family II carbohydrate-binding module (CBM2) of several bacterial cellulases. To investigate the importance of the CBM-like sequence of CWA1/BC1 in the assembly of secondary cell wall materials, Trp residues in the CBM-like sequence, which is important for carbohydrate binding, were substituted for Val residues and introduced into the cwa1 mutant. CWA1/BC1 with the mutated sequence did not complement the abnormal secondary cell walls seen in the cwa1 mutant, indicating that the CBM-like sequence is essential for the proper function of CWA1/BC1, including assembly of secondary cell wall materials.

  18. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  19. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  20. Distributed databases for materials study of thermo-kinetic properties

    NASA Astrophysics Data System (ADS)

    Toher, Cormac

    2015-03-01

    High-throughput computational materials science provides researchers with the opportunity to rapidly generate large databases of materials properties. To rapidly add thermal properties to the AFLOWLIB consortium and Materials Project repositories, we have implemented an automated quasi-harmonic Debye model, the Automatic GIBBS Library (AGL). This enables us to screen thousands of materials for thermal conductivity, bulk modulus, thermal expansion and related properties. The search and sort functions of the online database can then be used to identify suitable materials for more in-depth study using more precise computational or experimental techniques. AFLOW-AGL source code is public domain and will soon be released within the GNU-GPL license.

  1. Desalination of Walls and Façades

    NASA Astrophysics Data System (ADS)

    Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.

    2012-04-01

    For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost

  2. Investigation of Effective Material Properties of Stony Meteorites

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn

    2016-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.

  3. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    PubMed

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  4. Vacancy and curvature effects on the phonon properties of single wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hossain Howlader, Ashraful; Sherajul Islam, Md.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    Single wall carbon nanotube (SWCNT) is considered as an ideal candidate for next-generation nanoelectronics owing to its unusual properties. Here we have performed an in-depth theoretical analysis of the effect of vacancy defects and curvature on the phonon properties of (10,0) and (10,10) SWCNTs using the forced vibrational method. We report that Raman active E2g mode softens towards the low-frequency region with increasing vacancies and curvature in both types of CNTs. Vacancy induces some new peaks at low-frequency region of the phonon density of states. Phonon localization properties are also manifested. Our calculated mode pattern and localization length show that optical phonon at Raman D-band frequency is strongly localized in vacancy defected and large curved CNTs. Our findings will be helpful in explaining the thermal conductivity, specific heat capacity, and Raman spectra in vacancy type disordered CNTs, as well as electron transport properties of CNT-based nanoelectronic devices.

  5. Characterization of temperature-dependent optical material properties of polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less

  6. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  7. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    NASA Astrophysics Data System (ADS)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  8. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Plasma-wall interactions in ITER

    NASA Astrophysics Data System (ADS)

    Parker, R.; Janeschitz, G.; Pacher, H. D.; Post, D.; Chiocchio, S.; Federici, G.; Ladd, P.; Iter Joint Central Team; Home Teams

    1997-02-01

    This paper reviews the status of the design of the divertor and first-wall/shield, the main in-vessel components for ITER. Under nominal ignited conditions, 300 MW of alpha power will be produced and must be removed from the divertor and first-wall. Additional power from auxiliary sources up to the level of 100 MW must also be removed in the case of driven burns. In the ignited case, about 100 MW will be radiated to the first wall as bremsstrahlung. Allowing the remaining power to be conducted to the divertor target plates would result in excessive heat fluxes. The power handling strategy is to radiate an additional 100-150 MW in the SOL and the divertor channel via a combination of radiation from hydrogen, and intrinsic and seeded impurities. Vertical targets have been adopted for the baseline divertor configuration. This geometry promotes partial detachment, as found in present experiments and in the results of modelling runs for ITER conditions, and power densities on the target plates can be ≤ 5 MW/ m2. Such regimes promote relatively high pressure (> 1 Pa) in the divertor and even with a low helium enrichment factor of 0.2, the required pumping speed to pump helium is ≤ 50 m3/ s. An important physics question is the quality of core confinement in these attractive divertor regimes. In addition to power and particle handling issues, the effects of disruptions play a major role in the design and performance of in-vessel components. Both centered disruptions and VDE's produce stresses in the first-wall/shield modules, backplate and the divertor wings and cassettes that are near or even somewhat in excess of allowables for normal operation. Also plasma-wall contact from disruptions, including at the divertor target, together with material properties are major factors determining component lifetime. Considering the potential for impurity contamination and minimizing tritium inventory as well as thermomechanical performance, the present material selection calls

  10. The flexural properties of endodontic post materials.

    PubMed

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J

    2010-08-01

    To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Glycoprotein of the wall of sycamore tissue-culture cells.

    PubMed

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  12. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  13. Impact Interaction of Projectile with Conducting Wall at the Presence of Electric Current

    NASA Astrophysics Data System (ADS)

    Chemerys, Volodymyr T.; Raychenko, Aleksandr I.; Karpinos, Boris S.

    2002-07-01

    The paper introduces with schemes of possible electromagnetic armor augmentation. The interaction of projectile with a main wall of target after penetration across the pre-defense layer is of interest here. The same problem is of interest for the current-carrying elements of electric guns. The theoretical analysis is done in the paper for the impact when the kinetic energy of projectile is enough to create the liquid layer in the crater of the wall's metal. Spherical head of projectile and right angle of inclination have been taken for consideration. The solution of problem for the liquid layer of metal around the projectile head has resulted a reduction of the resistant properties of wall material under current influence, in view of electromagnetic pressure appearance, what is directed towards the wall likely the projectile velocity vector.

  14. Thermal properties of granulated materials.

    NASA Technical Reports Server (NTRS)

    Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.

    1972-01-01

    Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.

  15. 3D fiber deposited polymeric scaffolds for external auditory canal wall.

    PubMed

    Mota, Carlos; Milazzo, Mario; Panetta, Daniele; Trombi, Luisa; Gramigna, Vera; Salvadori, Piero A; Giannotti, Stefano; Bruschini, Luca; Stefanini, Cesare; Moroni, Lorenzo; Berrettini, Stefano; Danti, Serena

    2018-05-07

    The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young's modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. This study demonstrated the fabrication feasibility of outer ear canal wall scaffolds via additive manufacturing. Aimed to match several important requirements for biomaterial application to ear replacements under the Tissue Engineering paradigm, including shape, porosity and pore size, surface area, mechanical properties and favorable in vitro interaction with osteo-differentiated mesenchymal stromal cells.

  16. Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve

    PubMed Central

    Pasta, Salvatore; Rinaudo, Antonino; Luca, Angelo; Pilato, Michele; Scardulla, Cesare; Gleason, Thomas G.; Vorp, David A.

    2014-01-01

    The aortic dissection (AoD) of an ascending thoracic aortic aneurysm (ATAA) initiates when the hemodynamic loads exerted on the aneurysmal wall overcome the adhesive forces holding the elastic layers together. Parallel coupled, two-way fluid–structure interaction (FSI) analyses were performed on patient-specific ATAAs obtained from patients with either bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV) to evaluate hemodynamic predictors and wall stresses imparting aneurysm enlargement and AoD. Results showed a left-handed circumferential flow with slower-moving helical pattern in the aneurysm's center for BAV ATAAs whereas a slight deviation of the blood flow toward the anterolateral region of the ascending aorta was observed for TAV ATAAs. Blood pressure and wall shear stress were found key hemodynamic predictors of aneurysm dilatation, and their dissimilarities are likely associated to the morphological anatomy of the aortic valve. We also observed discontinues, wall stresses on aneurysmal aorta, which was modeled as a composite with two elastic layers (i.e., inhomogeneity of vessel structural organization). This stress distribution was caused by differences on elastic material properties of aortic layers. Wall stress distribution suggests AoD just above sinotubular junction. Moreover, abnormal flow and lower elastic material properties that are likely intrinsic in BAV individuals render the aneurysm susceptible to the initiation of AoD. PMID:23664314

  17. Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine.

    PubMed

    Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao

    2018-04-04

    With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.

  18. Comparison of mechanical properties of multi-walled carbon nanotube and graphene nanosheet/polyethylene oxide composites plasticized with lithium triflate

    NASA Astrophysics Data System (ADS)

    Jurkane, A.; Gaidukov, S.

    2017-10-01

    A strong engineering interest in nanostructured conducting polymers and its composite materials have been widely used to build various sensor devices, electronic interconnect devices, fuel cells and batteries. Preparation of polymeric nano-composites with finely controlled structure, especially, at nano-scale, is still one of the most perspective modification ways of the properties of polymeric composites. Multi-walled carbon nanotube (MWCNT)/polyethylene oxide (PEO) and graphene nanosheets (GR)/PEO composites and composite of MWCNT/GR/PEO were prepared by solution casting and hot-pressing method. Composites were plasticized by 5% of Lithium triflate (LiTrifl), which play role of additional ion source in conducting polymer composite. Mechanical tensile tests were performed to evaluate nanoparticles influence on the mechanical strength of the conductive polymer composite materials. Difference of tensile tests of prepared composition can be seen from tensile tests data curves. The results of tensile tests indicated that the nanoparticles can provide PEO/5%LiTrifl composite with stiffening effects at rather low filler content (at least 0.05% by volume).

  19. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-01

    The structural, electronic, and magnetic properties of single-walled Mo2C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo2C nanotubes can be rolled up from a graphene-like Mo2C monolayer with H- or T-type phase, i.e. H-Mo2C and T-Mo2C nanotubes. The armchair-type T-Mo2C nanotubes are more energetically stable than H-Mo2C nanotubes with the same diameter, while zigzag-type H-Mo2C nanotubes are more energetically stable than T-Mo2C nanotubes. In particular, (8, 0) H-Mo2C nanotube are more stable than Mo2C monolayer due to structural deformation. All Mo2C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo2C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  20. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study.

    PubMed

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-18

    The structural, electronic, and magnetic properties of single-walled Mo 2 C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo 2 C nanotubes can be rolled up from a graphene-like Mo 2 C monolayer with H- or T-type phase, i.e. H-Mo 2 C and T-Mo 2 C nanotubes. The armchair-type T-Mo 2 C nanotubes are more energetically stable than H-Mo 2 C nanotubes with the same diameter, while zigzag-type H-Mo 2 C nanotubes are more energetically stable than T-Mo 2 C nanotubes. In particular, (8, 0) H-Mo 2 C nanotube are more stable than Mo 2 C monolayer due to structural deformation. All Mo 2 C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo 2 C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  1. Biomechanical Properties of The Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse

    PubMed Central

    Rahn, David D.; Ruff, Matthew D.; Brown, Spencer A.; Tibbals, Harry F.; Word, R. Ann

    2009-01-01

    Objectives To identify pregnancy-induced changes in biomechanical properties of the vaginal wall and compare these with Fibulin-5 knockout mice (Fbln5-/-) with and without prolapse. Study Design Mid-vaginal segments of nonpregnant and late-pregnant wild type (WT), Fbln5-/- with prolapse, and Fbln5-/- mice without prolapse were studied. Tissue length at failure, maximal strain, maximal stress, and tissue stiffness were determined. Results Compared with nonpregnant mice, vaginas of pregnant and Fbln5-/- (with prolapse) mice exhibited decreased maximal stress, increased distensibility and strain, and decreased stiffness. Tissues from Fbln5-/- mice without prolapse were similar to nonpregnant WT animals. Conclusions Pregnancy confers remarkable changes in the vaginal wall including increased distensibility and decreased stiffness and maximal stress. Elastinopathy alone is insufficient to cause significant changes in these properties, but prolapse confers additional alterations in distensibility and stiffness similar to those observed in pregnancy. These changes may contribute to the poor durability of many restorative surgical procedures for prolapse. PMID:18455541

  2. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  3. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  4. Crossmodal association of auditory and visual material properties in infants.

    PubMed

    Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K

    2018-06-18

    The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.

  5. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Reinink, Shawn K.; Yaras, Metin I.

    2015-06-01

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between

  6. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  7. Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Temporal evolution of N2 adsorption (77 K) properties of as-produced and purified single-walled nanotubes (SWNTs) samples is described here. The N2 adsorption isotherms are used to characterize the samples' surface areas and porosities. The as-produced samples demonstrate a temporal increase in surface area and pore volumes for up to 16 months. The purified samples, however, reached their stable values of surface area and pore volumes within four to seven months. N2 adsorption capacity of the purified SWNTs also increased when the fresh samples were subjected to thermal pre-processing, with diminishing changes in adsorption capacity with increased age. These observations indicate that the freshly prepared SWNTs, both as-produced and purified, were in an unstable state with their porosity changing with increasing sample age and thermal treatments. It is hypothesized that SWNTs undergo slow but progressive changes in their surface chemistry which causes their N2 adsorption properties to change over several months. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Comparison of prosthetic materials for abdominal wall reconstruction in the presence of contamination and infection.

    PubMed Central

    Brown, G L; Richardson, J D; Malangoni, M A; Tobin, G R; Ackerman, D; Polk, H C

    1985-01-01

    Abdominal wall defects resulting from trauma, invasive infection, or hernia present a difficult problem for the surgeon. In order to study the problems associated with the prosthetic materials used for abdominal wall reconstruction, an animal model was used to simulate abdominal wall defects in the presence of peritonitis and invasive infection. One hundred guinea pigs were repaired with either polytetrafluorethylene (PTFE) or polypropylene mesh (PPM). Our experiments included intra-operative contamination with Staphylococcus aureus. We found significantly fewer organisms (p less than 0.05) adherent to the PTFE than to the PPM when antibiotics were administered after surgery, as well as when no antibiotics were given. In the presence of peritonitis, we found no real difference in numbers of intraperitoneal bacteria present whether PTFE or PPM was used. In all instances, the PTFE patches produced fewer adhesions and were more easily removed. From these experiments, it appears that PTFE may be associated with fewer problems than PPM in the presence of contamination and infection. Images FIG. 1. PMID:3159353

  9. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    PubMed

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  10. Determination of orthotropic material properties by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, Junpeng

    The methodology for determination of orthotropic material properties in plane stress condition will be presented. It is applied to orthotropic laminated plates like printed wiring boards. The first part of the thesis will focus on theories and methodologies. The static beam model and vibratory plate model is presented. The methods are validated by operating a series of test on aluminum. In the static tests, deflection and two directions of strain are measured, thus four of the properties will be identified: Ex, Ey, nuxy, nuyx. Moving on to dynamic test, the first ten modes' resonance frequencies are obtained. The technique of modal analysis is adopted. The measured data is processed by FFT and analyzed by curve fitting to extract natural frequencies and mode shapes. With the last material property to be determined, a finite element method using ANSYS is applied. Along with the identified material properties in static tests, and proper initial guess of the unknown shear modulus, an iterative process creates finite element model and conducts modal analysis with the updating model. When the modal analysis result produced by ANSYS matches the natural frequencies acquired by dynamic test, the process will halt. Then we obtained the last material property in plane stress condition.

  11. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  12. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  13. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2018-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  14. Characterization of the Mechanical Strength, Resorption Properties, and Histologic Characteristics of a Fully Absorbable Material (Poly-4-hydroxybutyrate—PHASIX Mesh) in a Porcine Model of Hernia Repair

    PubMed Central

    Deeken, Corey R.; Matthews, Brent D.

    2013-01-01

    Purpose. Poly-4-hydroxybutyrate (P4HB) is a naturally derived, absorbable polymer. P4HB has been manufactured into PHASIX Mesh and P4HB Plug designs for soft tissue repair. The objective of this study was to evaluate mechanical strength, resorption properties, and histologic characteristics in a porcine model. Methods. Bilateral defects were created in the abdominal wall of n = 20 Yucatan minipigs and repaired in a bridged fashion with PHASIX Mesh or P4HB Plug fixated with SorbaFix or permanent suture, respectively. Mechanical strength, resorption properties, and histologic characteristics were evaluated at 6, 12, 26, and 52 weeks (n = 5 each). Results. PHASIX Mesh and P4HB Plug repairs exhibited similar burst strength, stiffness, and molecular weight at all time points, with no significant differences detected between the two devices (P > 0.05). PHASIX Mesh and P4HB Plug repairs also demonstrated significantly greater burst strength and stiffness than native abdominal wall at all time points (P < 0.05), and material resorption increased significantly over time (P < 0.001). Inflammatory infiltrates were mononuclear, and both devices exhibited mild to moderate granulation tissue/vascularization. Conclusions. PHASIX Mesh and P4HB Plug demonstrated significant mechanical strength compared to native abdominal wall, despite significant material resorption over time. Histological assessment revealed a comparable mild inflammatory response and mild to moderate granulation tissue/vascularization. PMID:23781348

  15. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  16. Wall contraction in Bloch wall films

    NASA Technical Reports Server (NTRS)

    Bartran, D. S.; Bourne, H. C., Jr.

    1972-01-01

    The phenomenon of wall contraction characterized by a peak in the velocity field relationship and a region of negative differential mobility is observed. Uniaxial magnetic thin films of various compositions and magnetic properties are studied in careful interrupted pulse experiments. The observed results agree quite well with the theory for bulk samples.

  17. Topological domain walls in helimagnets

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  18. Functional lignocellulosic materials prepared by ATRP from a wood scaffold.

    PubMed

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-08-10

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood.

  19. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  20. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  1. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  2. Polarization domain walls in optical fibres as topological bits for data transmission

    PubMed Central

    Gilles, M.; Bony, P-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.

    2016-01-01

    Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics. PMID:28168000

  3. Important physical properties of peat materials

    Treesearch

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  4. A multi-analytical approach for the characterization of wall painting materials on contemporary buildings

    NASA Astrophysics Data System (ADS)

    Magrini, Donata; Bracci, Susanna; Cantisani, Emma; Conti, Claudia; Rava, Antonio; Sansonetti, Antonio; Shank, Will; Colombini, MariaPerla

    2017-02-01

    Samples from Keith Haring's wall painting of the Necker Children Hospital in Paris were studied by a multi-analytical protocol. X-ray fluorescence (XRF), powder X-ray diffraction (XRDP), Electron microscope (SEM-EDS), Infrared and Raman spectroscopy (μ-FT-IR and μ-Raman) measurements were performed in order to characterize the materials and to identify the art technique used to produce this contemporary work. Materials from the mural suffered from severe detachments of materials and several fragments were found on the ground beneath. Some of these fragments, which were representative of the whole palette and stratigraphic sequence, were collected and studied. The fragments were sufficiently large to enable non-invasive measurements to be performed in order to characterize the materials. A comparison of the data of the techniques applied revealed that Haring's palette was composed of organic pigments such as Naphtol red, phthalocyanine blue and green and Hansa yellow, in accordance with those used previously by the artist in other painted murals.

  5. Effects of Coal Gangue on Cement Grouting Material Properties

    NASA Astrophysics Data System (ADS)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  6. The hierarchical structure and mechanics of plant materials.

    PubMed

    Gibson, Lorna J

    2012-11-07

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.

  7. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  8. Shear properties of pultruded fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.

    2018-06-01

    This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.

  9. A semi-empirical model relating micro structure to acoustic properties of bimodal porous material

    NASA Astrophysics Data System (ADS)

    Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine

    2015-01-01

    Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.

  10. Seismic Vulnerability and Performance Level of confined brick walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-07-08

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iranmore » is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.« less

  11. Seismic Vulnerability and Performance Level of confined brick walls

    NASA Astrophysics Data System (ADS)

    Ghalehnovi, M.; Rahdar, H. A.

    2008-07-01

    There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material. Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide. Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures. In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

  12. Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2007-11-01

    Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.

  13. Persistence and distribution of 4-nonylphenol in water, sediment, macrophytes, and wall material of littoral enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinis, L.J.; Tunell, R.; Liber, K.

    1994-12-31

    Eighteen enclosures (5 m x 10 m) were constructed in the littoral zone of a 2-ha pond near Duluth, MN. Each enclosure consisted of 5 m of natural shoreline and three walls of an inert plastic. The enclosures had an average surface area of 31.9 m{sup 2} , an average depth of 0.6 m and an average water volume of 33.1 m{sup 3}. The enclosure waters were treated with the alkyl phenol ethoxylate precursor and degradation product 4-nonylphenol. Application was accomplished by sub-surface injection over a 20-day period with a 2 day frequency. Nominal aqueous concentrations were 0, 3, 30,more » 100 and 300 {mu}g/L. Concentrations of 4-nonylphenol were monitored during and after application in the water, sediment, macrophytes, and enclosure wall material. Average maximum water concentrations ranged from 96.5% of nominal to 62.0% of nominal and average minimum water concentrations ranged from 33.3% of nominal to 29.5% of nominal during the application period. Water concentrations decreased exponentially after application ended. Sediment concentrations during the application period were constant from 8 to 20 d and peak concentrations occurred 48 d after application began. Macrophyte concentrations peaked 21 d after initial application with a steady decline through 76 d. Enclosure wall material concentrations reached a peak 3 h before the final application. A gradual decline occurred until 34 d after initial application followed by a more rapid dissipation.« less

  14. Aerophytic Cyanobacteria as a Factor in the Biodegradation of Technical Materials on External Building Walls

    NASA Astrophysics Data System (ADS)

    Piontek, Marlena; Lechów, Hanna

    2014-12-01

    A study conducted at the Institute of Environmental Engineering, University of Zielona Góra showed the presence of 4 species of aerophytic cyanobacteria in the biological material sampled from the external building wall with visible biocorrosion: Gloeocapsa montana Kützing, Phormidium calcareum Kützing, Aphanothece saxicola Nägeli, Gloeothece caldariorum (P. Richter) Hollerbach. High levels of moisture were detected in the places of biofilm occurrence.

  15. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  16. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  17. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  18. Bumper wall for plasma device

    DOEpatents

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  19. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.

    PubMed

    Bazan, I; Ramos, A; Balay, G; Negreira, C

    2018-07-01

    The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., < 7 μm in carotid arteries). The novelty of our proposal is the new technique used to estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being

  20. Rheological and mechanical properties of polypropylene prepared with multi-walled carbon nanotube masterbatch.

    PubMed

    Shim, Young-Sun; Park, Soo-Jin

    2012-07-01

    In this study, the effects of polypropylene-grafted maleic-anhydride-treated multi-walled carbon nanotubes (PP-MWNTs) on the viscoelastic behaviors and mechanical properties of a polypropylene-(PP)-based composite system were examined. The PP-MWNT/PP composites were prepared via melt mixing with a 3:1 ratio of PP-g-MA and acid-treated MWNTs at 220 degrees C. The surface characteristics of the PP-MWNTs were confirmed via Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The viscoelastic behavior and mechanical properties of the PP-MWNT/PP composites were confirmed using a rheometer and an ultimate testing machine (UTM). The storage and loss moduli increased with increasing PP-MWNT content. The critical intensity stress factor (K(IC)) of the PP-MWNT/PP composites at high filler loading was also higher than that of the MWNT/PP composites. In conclusion, the viscoelastic behavior and mechanical properties of MWNT/PP can be improved by grafting MWNTs to PP-g-MA.

  1. Economics of abdominal wall reconstruction.

    PubMed

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  3. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  4. Optimum Material Composition for Minimizing the Stress Intensity Factor of Edge Crack in Thick-Walled FGM Circular Pipes Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Sekine, Hideki; Yoshida, Kimiaki

    This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.

  5. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  6. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    PubMed

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  7. Wall Finishes; Carpentry: 901895.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  8. Thermoelectric properties of higher manganese silicide/multi-walled carbon nanotube composites.

    PubMed

    Truong, D Y Nhi; Kleinke, Holger; Gascoin, Franck

    2014-10-28

    Composites made of Higher Manganese Silicide (HMS)-based compound MnSi1.75Ge0.02 and multi-walled carbon nanotubes (MWCNTs) were prepared by an easy and effective method including mechanical milling under mild conditions and reactive spark plasma sintering. SEM compositional mappings show a homogeneous dispersion of MWCNTs in the HMS matrix. Electronic and thermal transport properties were measured from room temperature to 875 K. While power factors are virtually unchanged by the addition of MWCNTs, the lattice thermal conductivity is significantly reduced by about 30%. As a consequence, the maximum figure of merit for the composites with 1 wt% MWCNTs is improved by about 20% compared to the MWCNT free HMS-based sample.

  9. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  10. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    PubMed Central

    Chabriac, Pierre-Antoine; Fabbri, Antonin; Morel, Jean-Claude; Laurent, Jean-Paul; Blanc-Gonnet, Joachim

    2014-01-01

    Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR) principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior. PMID:28788603

  11. Density-functional tight-binding investigation of the structure, stability and material properties of nickel hydroxide nanotubes

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Mosey, Nicholas J.

    2018-01-01

    Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.

  12. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  13. Structure and physical properties of silkworm cocoons

    PubMed Central

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2012-01-01

    Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916

  14. A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.

    PubMed

    Horbens, Melanie; Eder, Michaela; Neinhuis, Christoph

    2015-12-01

    Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  16. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  17. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    PubMed

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  18. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  19. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  20. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  1. Thermal Property Parameter Estimation of TPS Materials

    NASA Technical Reports Server (NTRS)

    Maddren, Jesse

    1998-01-01

    Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.

  2. Domain walls in single-chain magnets

    NASA Astrophysics Data System (ADS)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  3. Analysis of speckle and material properties in laider tracer

    NASA Astrophysics Data System (ADS)

    Ross, Jacob W.; Rigling, Brian D.; Watson, Edward A.

    2017-04-01

    The SAL simulation tool Laider Tracer models speckle: the random variation in intensity of an incident light beam across a rough surface. Within Laider Tracer, the speckle field is modeled as a 2-D array of jointly Gaussian random variables projected via ray tracing onto the scene of interest. Originally, all materials in Laider Tracer were treated as ideal diffuse scatterers, for which the far-field return computed uses the Lambertian Bidirectional Reflectance Distribution Function (BRDF). As presented here, we implement material properties into Laider Tracer via the Non-conventional Exploitation Factors Data System: a database of properties for thousands of different materials sampled at various wavelengths and incident angles. We verify the intensity behavior as a function of incident angle after material properties are added to the simulation.

  4. Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units

    NASA Astrophysics Data System (ADS)

    Buz, Jennifer; Ehlmann, Bethany L.; Pan, Lu; Grotzinger, John P.

    2017-05-01

    The Curiosity rover has detected diverse lithologies in float rocks and sedimentary units on the Gale crater floor, interpreted to have been transported from the rim. To understand their provenance, we examine the mineralogy and geology of Gale's rim, walls, and floor, using high-resolution imagery and infrared spectra. While no significant differences in bedrock spectral properties were observed within most Thermal Emission Imaging System and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) scenes, some CRISM scenes of rim and wall rocks showed olivine-bearing bedrock accompanied by Fe/Mg phyllosilicates. Hydrated materials with 2.48 μm absorptions in Gale's eastern walls are spectrally similar to the sulfate unit in Mount Sharp (Aeolis Mons). Sedimentary strata on the Gale floor southwest of the landing site, likely coeval with the Bradbury units explored by Curiosity, also are hydrated and/or have Fe/Mg phyllosilicates. Spectral properties of these phyllosilicates differ from the Al-substituted nontronite detected by CRISM in Mount Sharp, suggesting formation by fluids of different composition. Geologic mapping of the crater floor shows that the hydrated or hydroxylated materials are typically overlain by spectrally undistinctive, erosionally resistant, cliff-forming units. Additionally, a 4 km impact crater exposes >250 m of the Gale floor, including finely layered units. No basement rocks are exposed, thus indicating sedimentary deposits ≥250 m beneath strata studied by Curiosity. Collectively, the data indicate substantial sedimentary infill of Gale crater, including some materials derived from the crater rim. Lowermost thin layers are consistent with deposition in a lacustrine environment; interbedded hydrated/hydroxylated units may signify changing environmental conditions, perhaps in a drying or episodically dry lake bed.

  5. Construction and geometric stability of physiological flow rate wall-less stenosis phantoms.

    PubMed

    Ramnarine, K V; Anderson, T; Hoskins, P R

    2001-02-01

    Wall-less flow phantoms are preferred for ultrasound (US) because tissue-mimicking material (TMM) with good acoustical properties can be made and cast to form anatomical models. The construction and geometrical stability of wall-less TMM flow phantoms is described using a novel method of sealing to prevent leakage of the blood-mimicking fluid (BMF). Wall-less stenosis flow models were constructed using a robust agar-based TMM and sealed using reticulated foam at the inlet and outlet tubes. There was no BMF leakage at the highest flow rate of 2.8 L/min in 0%, 35% and 57% diameter reduction stenoses models. Failure of the 75% stenosis model, due to TMM fracture, occurred at maximum flow rate of 2 L/min (mean velocity 10 m/s within the stenosis). No change of stenosis geometry was measured over 4 days. The construction is simple and effective and extends the possibility for high flow rate studies using robust TMM wall-less phantoms.

  6. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  7. Architecture and material properties of diatom shells provide effective mechanical protection

    NASA Astrophysics Data System (ADS)

    Hamm, Christian E.; Merkel, Rudolf; Springer, Olaf; Jurkojc, Piotr; Maier, Christian; Prechtel, Kathrin; Smetacek, Victor

    2003-02-01

    Diatoms are the major contributors to phytoplankton blooms in lakes and in the sea and hence are central in aquatic ecosystems and the global carbon cycle. All free-living diatoms differ from other phytoplankton groups in having silicified cell walls in the form of two `shells' (the frustule) of manifold shape and intricate architecture whose function and role, if any, in contributing to the evolutionary success of diatoms is under debate. We explored the defence potential of the frustules as armour against predators by measuring their strength. Real and virtual loading tests (using calibrated glass microneedles and finite element analysis) were performed on centric and pennate diatom cells. Here we show that the frustules are remarkably strong by virtue of their architecture and the material properties of the diatom silica. We conclude that diatom frustules have evolved as mechanical protection for the cells because exceptional force is required to break them. The evolutionary arms race between diatoms and their specialized predators will have had considerable influence in structuring pelagic food webs and biogeochemical cycles.

  8. Architecture and material properties of diatom shells provide effective mechanical protection.

    PubMed

    Hamm, Christian E; Merkel, Rudolf; Springer, Olaf; Jurkojc, Piotr; Maier, Christian; Prechtel, Kathrin; Smetacek, Victor

    2003-02-20

    Diatoms are the major contributors to phytoplankton blooms in lakes and in the sea and hence are central in aquatic ecosystems and the global carbon cycle. All free-living diatoms differ from other phytoplankton groups in having silicified cell walls in the form of two 'shells' (the frustule) of manifold shape and intricate architecture whose function and role, if any, in contributing to the evolutionary success of diatoms is under debate. We explored the defence potential of the frustules as armour against predators by measuring their strength. Real and virtual loading tests (using calibrated glass microneedles and finite element analysis) were performed on centric and pennate diatom cells. Here we show that the frustules are remarkably strong by virtue of their architecture and the material properties of the diatom silica. We conclude that diatom frustules have evolved as mechanical protection for the cells because exceptional force is required to break them. The evolutionary arms race between diatoms and their specialized predators will have had considerable influence in structuring pelagic food webs and biogeochemical cycles.

  9. Comparative study on stiffness properties of WOODCAST and conventional casting materials.

    PubMed

    Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika

    2013-08-01

    Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.

  10. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration.

    PubMed

    Rubshtein, A P; Trakhtenberg, I Sh; Makarova, E B; Triphonova, E B; Bliznets, D G; Yakovenkova, L I; Vladimirov, A B

    2014-02-01

    A porous material has been produced by pressing spongy titanium granules with subsequent vacuum sintering. The material with porosity of more than 30% has an open system of interconnecting pores. The Young's modulus and 0.2% proof strength have been measured for the samples having 20-55% porosity. If the porosity is between 30 and 45%, the mechanical properties are determined by irregular shape of pores, which is due to spongy titanium granules. The experiment in vivo was performed on adult rabbits. Before surgery the implants were saturated with adherent autologous bone marrow cells. The implants were introduced into the defects formed in the condyles of tibias and femurs. Investigations of osseointegration of implants having 40% porosity showed that the whole system of pores was filled with mature bone tissue in 16 weeks after surgery. Neogenic bone tissue has an uneven surface formed by lacunas and craters indicative of active resorption and subsequent rearrangement (SEM examination). The bone tissue is pierced by neoformed vessels. Irregular-shaped pores with tortuous walls and numerous lateral channels going through the granules provide necessary conditions for the formation of functional bone tissue in the implant volume and the periimplant region. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis and electronic properties of nanophase semiconductor materials

    NASA Astrophysics Data System (ADS)

    Sailor, Michael J.

    1993-05-01

    The objective of the research effort is to understand and learn to control the morphologic and electronic properties of electrodeposited nanophase semiconductors. The initial work has focused on electrodeposition of nanophase CdSe, using a sequential monolayer deposition technique that we are developing. We are currently extending the synthesis phase of this project into silicon, silicon carbide, and phosphor materials. This work also encompasses studying semiconductor electrodeposition into materials with restricted dimensions, such as microporous alumina and porous silicon membranes. By growing films with very small grain sizes, we hope to produce and study materials that display unusual electronic or luminescent effects. We are primarily interested in the electronic properties of the II-VI and group IV materials, for potential applications in nanoscale electronics and optical detector technologies. The phosphors are being studied for their potential as efficient high-resolution display materials.

  12. Digital material laboratory: Considerations on high-porous volcanic rock

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Stöckhert, Ferdinand; Duda, Mandy; Fischer, Laura; Osorno, Maria; Steeb, Holger

    2017-04-01

    Digital material methodology combines modern microscopic imaging with advanced numerical simulations of the physical properties of materials. One goal is to complement physical laboratory investigations for a deeper understanding of relevant physical processes. Large-scale numerical modeling of elastic wave propagation directly from the microstructure of the porous material is integral to this technology. The parallelized finite-difference-based Stokes solver is suitable for the calculation of effective hydraulic parameters for low and high porous materials. Reticulite is formed in very high Hawaiian fire fountaining events. Hawaiian fire fountaining eruptions produce columns or fountains of lava, which can last for a few hours to days. Reticulite was originally thought to have formed from further expanded hot scoria foam. However, some researchers believe reticulite forms from magma that formed vesicles instantly, which expanded rapidly and uniformly to produce the polyhedral vesicle walls. These walls then ruptured and cooled rapidly. The (open) honeycomb network of bubbles is held together by glassy threads and forms a structure with a porosity higher than 80%. The fragile rock sample is difficult to characterize with classical experimental methods and we show how to determine porosity, effective elastic properties and Darcy permeability by using digital material methodology. A technical challenge will be to image with the CT technique the thin skin between the glassy threads visible on the microscopy image. A numerical challenge will be determination of effective material properties and viscous fluid effects on wave propagation in such a high porous material.

  13. Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments.

    PubMed

    Duque, Juan G; Hamilton, Christopher E; Gupta, Gautam; Crooker, Scott A; Crochet, Jared J; Mohite, Aditya; Htoon, Han; Obrey, Kimberly A DeFriend; Dattelbaum, Andrew M; Doorn, Stephen K

    2011-08-23

    A general challenge in generating functional materials from nanoscale components is integrating them into useful composites that retain or enhance their properties of interest. Development of single walled carbon nanotube (SWNT) materials for optoelectronics and sensing has been especially challenging in that SWNT optical and electronic properties are highly sensitive to environmental interactions, which can be particularly severe in composite matrices. Percolation of SWNTs into aqueous silica gels shows promise as an important route for exploiting their properties, but retention of the aqueous and surfactant environment still impacts and limits optical response, while also limiting the range of conditions in which these materials may be applied. Here, we present for the first time an innovative approach to obtain highly fluorescent solution-free SWNT-silica aerogels, which provides access to novel photophysical properties. Strongly blue-shifted spectral features, revelation of new diameter-dependent gas-phase adsorption phenomena, and significant increase (approximately three times that at room temperature) in photoluminescence intensities at cryogenic temperatures all indicate greatly reduced SWNT-matrix interactions consistent with the SWNTs experiencing a surfactant-free environment. The results demonstrate that this solid-state nanomaterial will play an important role in further revealing the true intrinsic SWNT chemical and photophysical behaviors and represent for the first time a promising new solution- and surfactant-free material for advancing SWNT applications in sensing, photonics, and optoelectronics. © 2011 American Chemical Society

  14. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  15. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil

    PubMed Central

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation. PMID:28496464

  17. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    PubMed

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  18. Adding crumb rubber into exterior wall materials.

    PubMed

    Zhu, Han; Thong-On, Norasit; Zhang, Xiong

    2002-10-01

    In Arizona US, most houses are built with walls covered by stuccos/coatings/mortars. This paper presents an explorative investigation of adding crumb rubber into stuccos/coatings/mortars. A series of experiments are conducted to examine the thermal and mechanical performance of the crumb rubber mixes. The results show that, the mixes with crumb rubber do exhibit more desirable performances like being high in crack-resistance and thermal insulation, and low in thermal expansion/contraction. The drawback for the crumb rubber mixes is the reduction in compressive strength, but which can be compensated by other means. As a site experiment, an area of 100 square-feet of crumb rubber coatings for two mix designs is sprayed on a tire-adobe wall. After being sprayed more than 14 months, the coatings apparently are in good condition. Significance of this study is that this practice, if accepted, will yield improved products that consume large quantities of crumb rubber.

  19. Structural and electronic properties of chiral single-wall copper nanotubes

    NASA Astrophysics Data System (ADS)

    Duan, YingNi; Zhang, JianMin; Xu, KeWei

    2014-04-01

    The structural, energetic and electronic properties of chiral ( n, m) (3⩽ n⩽6, n/2⩽ m⩽ n) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.

  20. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  1. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  2. Application of small panel damping measurements to larger walls

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  3. Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, D.

    2011-01-01

    Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framingmore » properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.« less

  4. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  5. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  6. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  7. The hierarchical structure and mechanics of plant materials

    PubMed Central

    Gibson, Lorna J.

    2012-01-01

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency. PMID:22874093

  8. Material Modeling of Stony Meteorites for Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, P.

    2016-12-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects (other than synthetic meteorites) from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to limited number of meteorites available for testing it is difficult to develop a material model that can be purely based on statistics from the test data. Therefore, we are developing computational models to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The internal structure of meteorites are very complex. They consists of several minerals that include the silica based materials such as Olivine, Pyroxene, Feldspar that are found in terrestrial rocks, as well as Fe-Ni based minerals such as Kamacite, Troilite and Taenite that are unique to meteorites. Each of these minerals have different densities and mechanical properties. In addition, the meteorites have different phases that can be summarized as chondrules, metal and matrix. The meteorites have varying degree of porosity and pre-cracked structure. In order to account for diverse petrology of the meteorites a unique methodology is developed the form of unit cell model. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. All the minerals and phases inside these unit cells are randomly distributed. Several hundreds of Monte-Carlo simulations are performed to generate the effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell. Stress-strain curves as well as strength estimates are generated based on the unit cell models. These estimates will used as material models for full scale

  9. Stochasticity in materials structure, properties, and processing—A review

    NASA Astrophysics Data System (ADS)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  10. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms

    NASA Astrophysics Data System (ADS)

    Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.

    In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.

  12. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  13. Functional lignocellulosic materials prepared by ATRP from a wood scaffold

    PubMed Central

    Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo

    2016-01-01

    Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood. PMID:27506369

  14. Casimir stress in materials: Hard divergency at soft walls

    NASA Astrophysics Data System (ADS)

    Griniasty, Itay; Leonhardt, Ulf

    2017-11-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.

  15. [Use and versatility of titanium for the reconstruction of the thoracic wall].

    PubMed

    Córcoles Padilla, Juan Manuel; Bolufer Nadal, Sergio; Kurowski, Krzysztof; Gálvez Muñoz, Carlos; Rodriguez Paniagua, José Manuel

    2014-02-01

    Chest wall deformities/defects and chest wall resections, as well as complex rib fractures require reconstruction with various prosthetic materials to ensure the basic functions of the chest wall. Titanium provides many features that make it an ideal material for this surgery. The aim is to present our initial results with this material in several diseases. From 2008 to 2012, 14 patients were operated on and titanium was used for reconstruction of the chest wall. A total of 7 patients had chest wall tumors, 2 with sternal resection, 4 patients with chest wall deformities/defects and 3 patients with severe rib injury due to traffic accident. The reconstruction was successful in all cases, with early extubation without detecting problems in the functionality of the chest wall at a respiratory level. Patients with chest wall tumors including sternal resections were extubated in the operating room as well as the chest wall deformities. Chest trauma cases were extubated within 24h from internal rib fixation. There were no complications related to the material used and the method of implementation. Titanium is an ideal material for reconstruction of the chest wall in several clinical situations allowing for great versatility and adaptability in different chest wall reconstructions. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.

  16. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    NASA Astrophysics Data System (ADS)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  17. Materials thermal and thermoradiative properties/characterization technology

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.; Ho, C. Y.

    1989-01-01

    Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.

  18. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  19. Silk/nano-material hybrid: properties and functions

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.

    2014-03-01

    Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.

  20. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Gas storage materials, including hydrogen storage materials

    DOEpatents

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  2. Structure-property relationships of multiferroic materials: A nano perspective

    NASA Astrophysics Data System (ADS)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  3. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids

    DOE PAGES

    Jin, Haibao; Ding, Yan-Huai; Wang, Mingming; ...

    2018-01-18

    Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less

  4. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Haibao; Ding, Yan-Huai; Wang, Mingming

    Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less

  5. Modeling Enclosure Design in Above-Grade Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, J.; Ueno, K.; Musunuru, S.

    2016-03-01

    This report describes the modeling of typical wall assemblies that have performed well historically in various climate zones. The WUFI (Warme und Feuchte instationar) software (Version 5.3) model was used. A library of input data and results are provided. The provided information can be generalized for application to a broad population of houses, within the limits of existing experience. The WUFI software model was calibrated or tuned using wall assemblies with historically successful performance. The primary performance criteria or failure criteria establishing historic performance was moisture content of the exterior sheathing. The primary tuning parameters (simulation inputs) were airflow andmore » specifying appropriate material properties. Rational hygric loads were established based on experience - specifically rain wetting and interior moisture (RH levels). The tuning parameters were limited or bounded by published data or experience. The WUFI templates provided with this report supply useful information resources to new or less-experienced users. The files present various custom settings that will help avoid results that will require overly conservative enclosure assemblies. Overall, better material data, consistent initial assumptions, and consistent inputs among practitioners will improve the quality of WUFI modeling, and improve the level of sophistication in the field.« less

  6. Overview of the JET results with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Romanelli, F.; EFDA Contributors, JET

    2013-10-01

    Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H98,y2 close to 1 and βN ˜ 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.

  7. A Statistics-Based Material Property Analysis to Support TPS Characterization

    NASA Technical Reports Server (NTRS)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  8. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    NASA Astrophysics Data System (ADS)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  9. Beyond local effective material properties for metamaterials

    NASA Astrophysics Data System (ADS)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  10. Properties of Extruded PS-212 Type Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  11. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  12. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  13. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.

    PubMed

    Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher

    2015-02-01

    Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  15. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  16. Material Property Characterization of Potential Nanocarbon Metal-Matrix Composite: An Investigational Study

    NASA Astrophysics Data System (ADS)

    Zavala, Mitchel

    Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.

  17. Characterisation and properties of alkali activated pozzolanic materials

    NASA Astrophysics Data System (ADS)

    Bordeian, Georgeta Simona

    Many of the waste materials produced from modem heavy industries are pozzalans, which develop cementitious properties when finely divided in the presence of free lime. This property allows a potential industrial use for this waste as a cement replacement material in concrete. An example of such a waste material is blast furnace slag from the smelting of iron and steel. The US produces 26 million tons of blast furnace slag annually. Most of the slag is slowly cooled in air and it makes a poor pozzolan. Only 1.6 million tons of the slag is available in the granulated form, which is suitable as a cementitious and pozzolanic admixture. Most European countries are well endowed with coal-fired power stations and this produces fly and bottom ash, flue gas desulphurisation (FGD) gypsum. However, less than 25% of the total ash from power stations has found an industrial use mainly in cement and concrete industry. This creates a massive waste-disposal problem. Disposal of unused fly ash in open tips and ponds, for example, creates pollution problems since the drainage of effluents from the ash in the deposit ponds threaten water supplies by polluting the ground water with traces of toxic chemicals.Recent research has concentrated on the alkali activation of waste pozzolanic materials, especially ground blast furnace slag. This thesis has investigated the alkali activation of low calcium fly ashes. These form very poor pozzolans and the alkali activation of the fly ash offers the opportunity for the large scale use of fly ash. Water glass was selected as a suitable activator for the fly ash. A comprehensive series of tests have been carried out to gain information on the effect of different parameters, such as proportion and composition of the constituent materials, curing conditions and casting methods, in developing high performance construction materials. Laboratory investigations were carried out to determine the following characteristics of alkali activated materials

  18. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  19. A Generalized Wall Function

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.

    1999-01-01

    The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

  20. First wall for polarized fusion reactors

    DOEpatents

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  1. Thermal Expansion Properties of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  2. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    NASA Astrophysics Data System (ADS)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  3. Ferroelectricity and piezoelectricity in soft biological tissue: Porcine aortic walls revisited

    NASA Astrophysics Data System (ADS)

    Lenz, Thomas; Hummel, Regina; Katsouras, Ilias; Groen, Wilhelm A.; Nijemeisland, Marlies; Ruemmler, Robert; Schäfer, Michael K. E.; de Leeuw, Dago M.

    2017-09-01

    Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical structure of the aortic wall with different extracellular matrices appears unlikely to be ferroelectric. The reason is that a prerequisite for ferroelectricity, which is the spontaneous switching of the polarization, is a polar crystal structure of the material. Although the PFM measurements were performed locally, the phase-voltage hysteresis loops could be reproduced at different positions on the tissue, suggesting that the whole aorta is ferroelectric. To corroborate this hypothesis, we analyzed entire pieces of porcine aorta globally, both with electrical and electromechanical measurements. We show that there is no hysteresis in the electric displacement as well as in the longitudinal strain as a function of applied electric field and that the strain depends on the electric field squared. By using the experimentally determined quasi-static permittivity and Young's modulus of the fixated aorta, we show that the strain can quantitatively be explained by Maxwell stress and electrostriction, meaning that the aortic wall is neither piezoelectric nor ferroelectric, but behaves as a regular dielectric material.

  4. Properties of HIPed stainless steel powder

    NASA Astrophysics Data System (ADS)

    Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.

    1996-10-01

    In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.

  5. Use of material dielectric properties in agricultural applications

    USDA-ARS?s Scientific Manuscript database

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  6. Managing genetic material to protect intellectual property rights.

    PubMed

    Jong, S C; Cypess, R H

    1998-02-01

    One of the most important policy instruments for the promotion of further biotechnology development is intellectual property right (IPR) protection. However, one cannot improve upon a biotechnological invention without physical access to the germplasm, making exchanges of genetic material necessary. A formal transfer agreement, which addresses the key issues of ownership, access, use, and equitable benefit-sharing, is a powerful legal instrument for intellectual property. Other restrictions are generally imposed as a result of national and international safety regulations. Forming strategic alliances, such as joint ventures, collaborative research agreements, joint research and development agreements, and manufacturing and distribution alliances to exploit the economic value of genetic material, provides scientists with the mechanisms they need to bring their research material and products to the marketplace.

  7. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  8. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  9. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  10. High temperature surface effects of He + implantation in ICF fusion first wall materials

    NASA Astrophysics Data System (ADS)

    Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.

    2009-06-01

    The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.

  11. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    PubMed

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  12. Material migration studies with an ITER first wall panel proxy on EAST

    NASA Astrophysics Data System (ADS)

    Ding, R.; Pitts, R. A.; Borodin, D.; Carpentier, S.; Ding, F.; Gong, X. Z.; Guo, H. Y.; Kirschner, A.; Kocan, M.; Li, J. G.; Luo, G.-N.; Mao, H. M.; Qian, J. P.; Stangeby, P. C.; Wampler, W. R.; Wang, H. Q.; Wang, W. Z.

    2015-02-01

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed to the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. Excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.

  13. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  14. Some functional properties of composite material based on scrap tires

    NASA Astrophysics Data System (ADS)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  15. First wall structural analysis of the aqueous self-cooled blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, D.A.; Steiner, D.; Embrechts, M.J.

    1986-11-01

    A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstandingmore » high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).« less

  16. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca

    2015-06-15

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing

  17. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less

  18. Initial Ferritic Wall Mode studies on HBT-EP

    NASA Astrophysics Data System (ADS)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  19. Intrinsic material properties of cortical bone.

    PubMed

    Lopez Franco, Gloria E; Blank, Robert D; Akhter, Mohammed P

    2011-01-01

    The G171V mutation (high bone mass, HBM) is autosomal dominant and is responsible for high bone mass in humans. Transgenic HBM mice in which the human LRP5 G171V gene is inserted also show a similar phenotype with greater bone mass and biomechanical performance than wild-type mice, as determined by whole bone testing. Whole bone mechanics, however, depend jointly on bone mass, architecture, and intrinsic bone tissue mechanical properties. To determine whether the HBM mutation affects tissue-level biomechanical performance, we performed nano-indentation testing of unembedded cortical bone from HBM mice and their nontransgenic (NTG) littermates. Femora from 17-week-old mice (female, 8 mice/genotype) were subjected to nano-indentation using a Triboscope (Hysitron, Minneapolis, MN, USA). For each femoral specimen, approximately 10 indentations were made on the midshaft anterior surface with a target force of either 3 or 9 mN at a constant loading rate of 400 mN/s. The load-displacement data from each test were used to calculate indentation modulus and hardness for bone tissue. The intrinsic material property that reflected the bone modulus was greater (48%) in the HBM as compared to the NTG mice. Our results of intrinsic properties are consistent with the published structural and material properties of the midshaft femur in HBM and NTG mice. The greater intrinsic modulus in HBM reflects greater bone mineral content as compared to NTG (wild-type, WT) mice. This study suggests that the greater intrinsic property of cortical bone is derived from the greater bone mineral content and BMD, resulting in greater bone strength in HBM as compared to NTG (WT) mice.

  20. Material properties and their influence on the behaviour of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.

    2017-06-01

    With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.

  1. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-07-08

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), andmore » 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.« less

  2. Wall conditioning in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rohde, V.; Dux, R.; Kallenbach, A.; Krieger, K.; Neu, R.; ASDEX Upgrade Team

    2007-06-01

    An overview on wall conditioning in ASDEX Upgrade is presented. Helium glow discharges (HeGD) are needed mostly for plasma start up after high density discharges, disruptions and disruption mitigation gas puffs. Boronisation is routinely applied. The reduction of the oxygen content is a minor effect. Strong variation of the wall pumping is observed for tungsten first wall materials. The uncoated tungsten surface stores and releases large amounts of He, which can disturb the plasma. The released He causes the modification in the wall pumping. By reducing HeGD this effect could be minimized. Advanced and natural density scenarios are sensitive to the status of the wall coating. Accumulation of impurities at the pedestal influences the ELM frequency and finally causes radiation unstable discharges.

  3. The Effect of Water Molecules on Mechanical Properties of Cell Walls

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Youssefian, Sina

    The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.

  4. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  5. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  6. Experimental analysis of electrical properties of composite materials

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Rovnaník, P.; Černý, R.

    2017-02-01

    Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.

  7. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  8. Statewide Geotechnical Asset Management Program Development : Final Report for Rock Slopes, Unstable Soil Slopes and Embankments, Retaining Walls, and Material Sites

    DOT National Transportation Integrated Search

    2017-09-05

    The Alaska Department of Transportation and Public Facilities (AKDOT&PF) has developed the nations first Geotechnical Asset Management Program. The program encompasses rock slopes, unstable slopes and embankments, retaining walls, and material sou...

  9. Electronic properties of new topological quantum materials

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Topological materials are characterized by the presence of nontrivial quantum electronic states, where often the electron spin is locked to its momentum. This opens up the possibility for developing new devices in which information is processed or stored by means of spin rather than charge. In this talk we will discuss the electronic properties of several of newly discovered topological quantum materials. In WTe2 we have observed a topological transition involving a change of the Fermi surface topology (known as a Lifshitz transition) driven by temperature. The strong temperature-dependence of the chemical potential that is at the heart of this phenomenon is also important for understanding the thermoelectric properties of such semimetals. Both WTe2 and MoTe2 were proposed to host type II Weyl semimetalic state. Indeed our data provides first experimental confirmation of such state in both of these materials. We will also present evidence for a new topological state in PtSn4 where pairs of extended Dirac node arcs rather are present rather than Dirac points, that is so far not understood theoretically. Our research opens up new directions on enhancing topological responsiveness of new quantum materials. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (ARPES measurements), Center for Emergent Materials, an NSF MRSEC, under Grant DMR-1420451 (theory and data anal.

  10. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2017-12-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  11. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  12. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  13. Electronic and Thermal Properties of Puckered Orthorhombic Materials

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang

    Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in

  14. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    PubMed Central

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-01

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. PMID:28772461

  15. Computational methods for 2D materials: discovery, property characterization, and application design.

    PubMed

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  16. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  17. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  18. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  19. Investigating the thermophysical properties of indurated materials on Mars

    NASA Astrophysics Data System (ADS)

    Murphy, Nathaniel William

    Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft

  20. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  1. Double Wall Framing Technique An Example of High Performance, Sustainable Building Envelope Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S

    2015-01-01

    Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less

  2. A wave model for rigid-frame porous materials using lumped parameter concepts

    NASA Astrophysics Data System (ADS)

    Rossetti, S.; Gardonio, P.; Brennan, M. J.

    2005-08-01

    The work presented in this paper concerns the behaviour of porous media when exposed to a normal incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass, stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the layer(s) and interference effects due to the wave reflection-transmission at the interfaces of the layer(s). Results from the theoretical model have been validated by measurements on samples of consolidated rubber granulate material. Two typical installations where a layer of porous material is placed next to a rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical and physical properties of porous materials can be described by such parameters as the non-dimensional shape factor and the porosity. The propagating model introduced is used to investigate the effect of these two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.

  3. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  4. Investigation of discharge channel wall material influence on lifetime of hall effect thruster with high specific impulse

    NASA Astrophysics Data System (ADS)

    Abashkin, V. V.; Belikov, M. B.; Gorshkov, O. A.; Lovtsov, A. S.; Khrapach, I. N.

    2011-10-01

    Results of 500-hour life tests of the 900-watt Hall-thruster laboratory model with the specific impulse of 2000 s are presented. The thruster discharge channel walls were manufactured from 60% BN + 40% SiO2 and >90% BN hot-pressed ceramics. The predicted total lifetime was ˜3000 h for both wall materials in spite of greater erosion resistance of pure BN in comparison with BN-SiO2 mixture. To clarify the accompanying phenomena, the following diagnostics were carried out. The surface microstructure and composition insulators were investigated by means of electron microscopy and X-ray fluorescence analysis and nearwall plasma parameters were measured with flat Langmuir probes. The obtained distributions of plasma parameters were compared with the results of stationary one-dimensional (1D) hydrodynamic modeling of discharge channel.

  5. Plasma Surface Interactions Common to Advanced Fusion Wall Materials and EUV Lithography - Lithium and Tin

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.

    2004-09-01

    Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.

  6. Magnetic compensation and critical properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou; Feng, Cui-Ju; Luo, Jian-Guo; Hu, De-Zhi

    2018-01-01

    In recent years, some theoretical interests have been focused on the binary alloy nanotubes and nanowires with mixed spins. Compared with ferrimagnetic nanowires, few studies have been done on ferrimagnetic nanotubes. In this paper, the magnetic properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice are calculated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. Magnetic compensation and critical properties are obtained for a wide range of parameters in the Hamiltonian, and magnetic phase diagrams are plotted in the related planes. For Heisenberg single-walled nanotube superlattice model with Néel-type magnetic structure, anisotropy must be taken into account, and the easy-axis single-ion anisotropy is considered in this paper. The next nearest neighbor exchange interactions Jbb and/or single-ion anisotropy strength Db of the smaller spin sublattice were necessary in order to obtain a compensation point. The influence of the wall diameter number of the tubes, m, an important parameter of the system, on the compensation behavior is considered. Calculation shows that as Jbb and Db are fixed, only when m is beyond a certain minimum value, mmin, can compensation temperature Tcom appears, where the next nearest neighbor exchange interactions Jaa and single-ion anisotropy strength Da of the larger spin sublattice are absent. The compensation temperature and critical temperature increase with m rising, which indicates that the longitudinal correlation effect is enhanced and the fluctuation effect is weakened with the increase of m.

  7. Computational methods for 2D materials: discovery, property characterization, and application design

    NASA Astrophysics Data System (ADS)

    Paul, J. T.; Singh, A. K.; Dong, Z.; Zhuang, H.; Revard, B. C.; Rijal, B.; Ashton, M.; Linscheid, A.; Blonsky, M.; Gluhovic, D.; Guo, J.; Hennig, R. G.

    2017-11-01

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials’ electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  8. Silicon carbide at nanoscale: Finite single-walled to "infinite" multi-walled tubes

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil

    A systematic ab initio study of silicon carbide (SiC) nanostructures, especially finite single-walled, infinite double- and multi-walled nanotubes and nanocones is presented. Electronic and structural properties of all these nanostructures have been calculated using hybrid density functionals (B3LYP and PBE0) as implemented in the GAUSSIAN 03/09 suite of software. The unusual dependence of band gap of silicon carbide nanotubes (SiCNT) has been explained as a direct consequence of curvature effect on the ionicity of the bonds. The study of fullerene hemisphere capped, finite SiC nanotubes indicates that the carbon-capped SiC nanotubes are energetically more preferred than silicon-capped finite or hydrogen terminated infinite nanotubes. Capping a nanotube by fullerene hemisphere reduces its band gap. SiC nanocones have also been investigated as possible cap structures of nanotubes. Electronic properties of the nanocones are found to be strongly dependent upon their tip and edge structures, with possible interesting applications in surface science. Three types of double-walled SiCNTs (n, n)@(m, m) (3 ≤ n ≤ 6 ; 7 ≤ m ≤ 12) have been studied using the finite cluster approximation. The stabilities of these nanotubes are of the same order as those of the single-walled SiC nanotubes and it should be experimentally possible to synthesize both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes and their types. A study of binding energies, Mulliken charges, density of states and HOMO-LUMO gaps has been performed for all nanotubes from (n, n)@(n+3,n+3) to (n, n)@(n+6, n+6) (n=3-6). Evolution of band gaps of the SiCNTs with increase in the number of walls has also been investigated. The nature of interaction between transition metal atoms and silicon carbide nanotubes with different

  9. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    NASA Astrophysics Data System (ADS)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  10. Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)

    DTIC Science & Technology

    2006-08-01

    flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow

  11. Characterization of the Dynamic Material Properties of Magnetostrictive Terfenol-D

    NASA Technical Reports Server (NTRS)

    Calkins, Frederick T.; Flatau, Alison B.; Hall, David L.

    1996-01-01

    A major limitation in use of electromagnetic and/or magnetomechanical models for design of Terfenol-D actuators is the lack of reliable material property data for Terfenol-D. In particular data on the performance of Terfenol-D as employed in a transducer, operating under real world dynamic conditions is needed. To provide this information, Terfenol-D rod properties need to be measured under as run prestressed and magnetically biased states. Using a Terfenol-D actuator, the following properties can be measured and/or calculated: mechanical quality factor, speed of sound in the material, the resonant frequency, the anti-resonant frequency, two magnetic permeabilities (one at constant stress and one at constant strain), two Young's moduli (one at constant amplitude applied magnetic field and one at constant amplitude magnetic flux density in the material), the magnetomechanical coupling, and the axial strain coefficient. The development of the material properties measurements and calculations is based on the model of low signal, linear, magnetostriction from Clark, the linear transduction equations for a transducer from Hunt, and a one degree of freedom mechanical model of the transducer. The electrical impedance and admittance mobility loops are used to determine the resonant, anti-resonant, and half power point frequencies. The rest of the material properties indicated above can then be calculated using these frequencies, acceleration from an accelerometer mounted on the actuator arm, and readily measurable transducer and Terfenol-D rod parameters.

  12. Mechanics of the Toxoplasma gondii oocyst wall

    USDA-ARS?s Scientific Manuscript database

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  13. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  14. Thermophysical properties of lunar materials. I - Thermal radiation properties of lunar materials from the Apollo missions

    NASA Technical Reports Server (NTRS)

    Birkebak, R. C.

    1974-01-01

    The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.

  15. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs andmore » microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.« less

  16. The effects of temperature on the lattice barrier for twin wall motion

    NASA Astrophysics Data System (ADS)

    Zreihan, Noam; Faran, Eilon; Shilo, Doron

    2015-07-01

    The sideways motion of twin walls in ferroic materials requires overcoming an intrinsic energy barrier that originates from the periodicity of the crystal structure. Here, we measure the temperature dependence of the lattice barrier in a ferromagnetic Ni-Mn-Ga crystal using the pulsed magnetic field method. Our results reveal a monotonic decrease in the lattice barrier with increasing temperature. Yet, the barrier does not vanish as the temperature approaches the temperature of the martensite to austenite transformation. These findings enable the formulation of an analytical expression that correlates the lattice barrier to the physical properties of the twin wall, such as its thickness and the associated transformation strain. The derived relation provides a good quantitative description of the data measured in Ni-Mn-Ga.

  17. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  18. Fabrication, Characterization, And Deformation of 3D Structural Meta-Materials

    NASA Astrophysics Data System (ADS)

    Montemayor, Lauren C.

    Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (mum -- mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation

  19. Handbook of the Materials Properties of FeCrAl Alloys For Nuclear Power Production Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Snead, Mary A.; Field, Kevin G.

    FeCrAl alloys are a class of alloys that have seen increased interest for nuclear power applications including as accident tolerant fuel cladding, structural components for fast fission reactors, and as first wall and blanket structures for fusion reactors. FeCrAl alloys are under consideration for these applications due to their inherent corrosion resistance, stress corrosion cracking resistance, radiation-induced swelling resistance, and high temperature oxidation resistance. A substantial amount of research effort has been completed to design, develop, and begin commercial scaling of FeCrAl alloys for nuclear power applications over the past half a century. These efforts have led to the developmentmore » of an extensive database on material properties and process knowledge for FeCrAl alloys but not within a consolidated format. The following report is the first edition of a materials handbook to consolidate the state-of-the-art on FeCrAl alloys for nuclear power applications. This centralized database focuses solely on wrought FeCrAl alloys, oxide dispersion strengthened alloys, although discussed in brief, are not covered. Where appropriate, recommendations for applications of the data is provided and current knowledge gaps are identified.« less

  20. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  1. Tight binding simulation study on zigzag single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena; Gupta, Vishu

    2018-01-01

    Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.

  2. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  3. Imparting the unique properties of DNA into complex material architectures and functions.

    PubMed

    Xu, Phyllis F; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W; Nakatsuka, Matthew A; Goodwin, Andrew P; Cha, Jennifer N

    2013-07-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA's ability to control a material's architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors.

  4. Wall finish selection in hospital design: a survey of facility managers.

    PubMed

    Lavy, Sarel; Dixit, Manish K

    2012-01-01

    This paper seeks to analyze healthcare facility managers' perceptions regarding the materials used for interior wall finishes and the criteria used to select them. It also examines differences in wall finish materials and the selection process in three major hospital spaces: emergency, surgery, and in-patient units. These findings are compared with healthcare designers' perceptions on similar issues, as currently documented in the literature. Hospital design and the materials used for hospital construction have a considerable effect on the environment and health of patients. A 2002 survey revealed which characteristics healthcare facility designers consider when selecting materials for healthcare facilities; however, no similar study has examined the views of facility managers on building finish selection. A 22-question survey questionnaire was distributed to 210 facility managers of metropolitan, for-profit hospitals in Texas; IRB approval was obtained. Respondents were asked to rank 10 interior wall finish materials and 11 selection criteria for wall finishes. Data from 48 complete questionnaires were analyzed using descriptive statistics and nonparametric statistical analysis methods. The study found no statistically significant differences in terms of wall finish materials or the characteristics for material selection in the three major spaces studied. It identified facility managers' four most-preferred wall finish materials and the five-most preferred characteristics, with a statistical confidence level of greater than 95%. The paper underscores the importance of incorporating all perspectives: facility designers and facility managers should work together toward achieving common organizational goals.

  5. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our

  6. Heat Transmission Properties of Insulating and Building Materials

    National Institute of Standards and Technology Data Gateway

    SRD 81 NIST Heat Transmission Properties of Insulating and Building Materials (Web, free access)   NIST has accumulated a valuable and comprehensive collection of thermal conductivity data. Version 1.0 of the database includes data for over 2000 measurements, covering several categories of materials including concrete, fiberboard, plastics, thermal insulation, and rubber.

  7. Reflector and Shield Material Properties for Project Prometheus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  8. Material migration studies with an ITER first wall panel proxy on EAST

    DOE PAGES

    Ding, R.; Pitts, R. A.; Borodin, D.; ...

    2015-01-23

    The ITER beryllium (Be) first wall (FW) panels are shaped to protect leading edges between neighbouring panels arising from assembly tolerances. This departure from a perfectly cylindrical surface automatically leads to magnetically shadowed regions where eroded Be can be re-deposited, together with co-deposition of tritium fuel. To provide a benchmark for a series of erosion/re-deposition simulation studies performed for the ITER FW panels, dedicated experiments have been performed on the EAST tokamak using a specially designed, instrumented test limiter acting as a proxy for the FW panel geometry. Carbon coated molybdenum plates forming the limiter front surface were exposed tomore » the outer midplane boundary plasma of helium discharges using the new Material and Plasma Evaluation System (MAPES). Net erosion and deposition patterns are estimated using ion beam analysis to measure the carbon layer thickness variation across the surface after exposure. The highest erosion of about 0.8 µm is found near the midplane, where the surface is closest to the plasma separatrix. No net deposition above the measurement detection limit was found on the proxy wall element, even in shadowed regions. The measured 2D surface erosion distribution has been modelled with the 3D Monte Carlo code ERO, using the local plasma parameter measurements together with a diffusive transport assumption. In conclusion, excellent agreement between the experimentally observed net erosion and the modelled erosion profile has been obtained.« less

  9. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  10. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  11. Structure and properties of hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chernyshova, T. A.; Kobeleva, L. I.; Bolotova, L. K.; Katin, I. V.

    2013-03-01

    The structure and interfacial interaction are studied in the hybrid aluminum-matrix composite materials fabricated by reactive casting combined with mechanical mixing of fillers with a metallic melt. The following types of hardening are considered: hardening by ceramic particles and by the phases formed as isolated inclusions or coatings on ceramic particles during in situ reactions. The hardness and tribological properties of the composite materials as functions of their compositions are discussed.

  12. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  13. Structure - Property Relationships of Furanyl Thermosetting Polymer Materials Derived from Biobased Feedstocks

    NASA Astrophysics Data System (ADS)

    Hu, Fengshuo

    Biobased thermosetting polymers have drawn significant attention due to their potential positive economic and ecological impacts. New materials should mimic the rigid, phenylic structures of incumbent petroleum-based thermosetting monomers and possess superior thermal and mechanical properties. Furans and triglycerides derived from cellulose, hemicellulose and plant oils are promising candidates for preparing such thermosetting materials. In this work, furanyl diepoxies, diamines and di-vinyl esters were synthesized using biobased furanyl materials, and their thermal and mechanical properties were investigated using multiple techniques. The structure versus property relationship showed that, compared with the prepared phenylic analogues, biobased furanyl thermosetting materials possess improved glassy storage modulus (E '), advanced fracture toughness, superior high-temperature char yield and comparable glass transition temperature (Tg) properties. An additive molar function analysis of the furanyl building block to the physical properties, such as Tg and density, of thermosetting polymers was performed. The molar glass transition function value (Yg) and molar volume increment value (Va,i) of the furanyl building block were obtained. Biobased epoxidized soybean oil (ESO) was modified using different fatty acids at varying molar ratios, and these prepared materials dramatically improved the critical strain energy release rate (G1c) and the critical stress intensity factor (K1c) values of commercial phenylic epoxy resins, without impairing their Tg and E ' properties. Overall, it was demonstrated that biobased furans and triglycerides possess promising potential for use in preparing high-performance thermosetting materials, and the established methodologies in this work can be utilized to direct the preparation of thermosetting materials with thermal and mechanical properties desired for practical applications.

  14. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  15. Wall roughness induces asymptotic ultimate turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  16. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency.

    PubMed

    Sarkar, S; Salacinski, H J; Hamilton, G; Seifalian, A M

    2006-06-01

    When autologous vein is unavailable, prosthetic graft materials, particularly expanded polytetrafluoroethylene are used for peripheral arterial revascularisation. Poor long term patency of prosthetic materials is due to distal anastomotic intimal hyperplasia. Intimal hyperplasia is directly linked to shear stress abnormalities at the vessel wall. Compliance and calibre mismatch between native vessel and graft, as well as anastomotic line stress concentration contribute towards unnatural wall shear stress. High porosity reduces graft compliance by causing fibrovascular infiltration, whereas low porosity discourages the development of an endothelial lining and hence effective antithrombogenicity. Therefore, consideration of mechanical properties is necessary in graft development. Current research into synthetic vascular grafts concentrates on simulating the mechanical properties of native arteries and tissue engineering aims to construct a new biological arterial conduit.

  17. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonicationmore » in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.« less

  18. Plasma Protein Corona Modulates the Vascular Wall Interaction of Drug Carriers in a Material and Donor Specific Manner

    PubMed Central

    Sobczynski, Daniel J.; Charoenphol, Phapanin; Heslinga, Michael J.; Onyskiw, Peter J.; Namdee, Katawut; Thompson, Alex J.; Eniola-Adefeso, Omolola

    2014-01-01

    The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid) (PLGA) spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer) is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases. PMID:25229244

  19. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  20. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  1. RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS

    PubMed Central

    Ray, Peter M.

    1967-01-01

    Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369

  2. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  3. Mechanical properties on geopolymer brick: A review

    NASA Astrophysics Data System (ADS)

    Deraman, L. M.; Abdullah, M. M. A.; Ming, L. Y.; Ibrahim, W. M. W.; Tahir, M. F. M.

    2017-09-01

    Bricks has stand for many years as durable construction substantial, especially in the area of civil engineering to construct buildings. Brick commonly used in the structure of buildings as a construction wall, cladding, facing perimeter, paving, garden wall and flooring. The contribution of ordinary Portland cement (OPC) in cement bricks production worldwide to greenhouse gas emissions. Due to this issue, some researchers have done their study with other materials to produce bricks, especially as a by-product material. Researchers take effort in this regard to synthesizing from by-product materials such as fly ash, bottom ash and kaolin that are rich in silicon and aluminium in the development of inorganic alumina-silicate polymer, called geopolymer Geopolymer is a polymerization reaction between various aluminosilicate oxides with silicates solution or alkali hydroxide solution forming polymerized Si-O-Al-O bonds. This paper summarized some research finding of mechanical properties of geopolymer brick using by-product materials.

  4. WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics.

    PubMed

    Kha, Hung; Tuble, Sigrid C; Kalyanasundaram, Shankar; Williamson, Richard E

    2010-02-01

    We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.

  5. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  6. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  7. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  8. Method for the unique identification of hyperelastic material properties using full-field measures. Application to the passive myocardium material response.

    PubMed

    Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S

    2017-11-01

    Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Measurement of material mechanical properties in microforming

    NASA Astrophysics Data System (ADS)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  10. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  11. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.

    PubMed

    Lefebvre, Jacques; Ding, Jianfu; Li, Zhao; Finnie, Paul; Lopinski, Gregory; Malenfant, Patrick R L

    2017-10-17

    Semiconducting single-walled carbon nanotubes (sc-SWCNTs) are emerging as a promising material for high-performance, high-density devices as well as low-cost, large-area macroelectronics produced via additive manufacturing methods such as roll-to-roll printing. Proof-of-concept demonstrations have indicated the potential of sc-SWCNTs for digital electronics, radiofrequency circuits, radiation hard memory, improved sensors, and flexible, stretchable, conformable electronics. Advances toward commercial applications bring numerous opportunities in SWCNT materials development and characterization as well as fabrication processes and printing technologies. Commercialization in electronics will require large quantities of sc-SWCNTs, and the challenge for materials science is the development of scalable synthesis, purification, and enrichment methods. While a few synthesis routes have shown promising results in making near-monochiral SWCNTs, gram quantities are available only for small-diameter sc-SWCNTs, which underperform in transistors. Most synthesis routes yield mixtures of SWCNTs, typically 30% metallic and 70% semiconducting, necessitating the extraction of sc-SWCNTs from their metallic counterparts in high purity using scalable postsynthetic methods. Numerous routes to obtain high-purity sc-SWCNTs from raw soot have been developed, including density-gradient ultracentrifugation, chromatography, aqueous two-phase extraction, and selective DNA or polymer wrapping. By these methods (termed sorting or enrichment), >99% sc-SWCNT content can be achieved. Currently, all of these approaches have drawbacks and limitations with respect to electronics applications, such as excessive dilution, expensive consumables, and high ionic impurity content. Excess amount of dispersant is a common challenge that hinders direct inclusion of sc-SWCNTs into electronic devices. At present, conjugated polymer extraction may represent the most practical route to sc-SWCNTs. By the use of

  12. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method

    NASA Astrophysics Data System (ADS)

    Kulak, S. M.; Novikov, V. F.; Baranov, A. V.

    2016-10-01

    Deformations of the walls of pressure vessels arising in the process of testing and operation, as well as reduce their thickness due to corrosion, to create the prerequisites for the growth of mechanical stresses which accelerating the processes of strain aging, embrittlement of the material and reducing its fatigue properties. This article is devoted to researches of the magnetoelastic demagnetization in the wall of steel vessel of loading by internal pressure. It is established that the increasing pressure on the vessel wall is accompanied by a monotonic decrease in the intensity of the magnetic stray field of local magnetization of steel. It is shown that a magnetic stray field of local magnetization of the wall of steel vessel is non-uniform due to differences in structure and stresses. It is proposed to use the obtained results to control the stress state of vessels, experiencing multi-axial loads generated by internal pressure (pipelines, oil tanks, etc.) The method of magnetoelastic of the demagnetization of the steel has a high sensitivity to mechanical stress, the simplicity of implementation and expressiveness compared to the strain gauge and method of coercive force.

  13. Gas adsorption properties of hybrid graphene-MOF materials.

    PubMed

    Szczęśniak, Barbara; Choma, Jerzy; Jaroniec, Mietek

    2018-03-15

    Nowadays, hybrid porous materials consisting of metal-organic frameworks (MOFs) and graphene nanosheets become more and more attractive because of their growing applications in adsorption, catalysis and related areas. Incorporation of graphene oxide into MOFs can provide benefits such as increased water resistance and thermal stability as well as enhanced surface area and adsorption properties. Graphene oxide is one of the best additives to other materials owing to its two main virtues: high atomic density and large amount of surface functional groups. Due to its dense array of atoms, graphene oxide can significantly increase dispersion forces in graphene-MOF materials, which is beneficial for adsorption of small molecules. This work presents a concise appraisal of adsorption properties of MOFs and graphene-MOF hybrids toward CO 2 , volatile organic compounds, hydrogen and methane. It shows that the graphene-MOF materials represent an important class of materials with potential applications in adsorption and catalysis. A special emphasis of this article is placed on their adsorption applications for gas capture and storage. A large number of graphene-MOF adsorbents has been so far explored and their appraisal could be beneficial for researchers interested in the development of hybrid adsorbents for adsorption-based applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Wood plastic composites from agro-waste materials: Analysis of mechanical properties.

    PubMed

    Nourbakhsh, Amir; Ashori, Alireza

    2010-04-01

    This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  16. Decay patterns of brick wall in atmospheric environment: a possible analogue to rock weathering?

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Weishauptová, Zuzana; Přikrylová, Jiřina; Jablonský, Jakub

    2015-04-01

    This study is focused on the decay of bricks exposed in enclosing wall of the Regional maternal hospital in Prague city centre (Czech Republic). The hospital, listed as a Czech architectural monument, has been constructed from locally produced bricks in neo-Gothic style in the period of 1867-1875. The bricks of the enclosing wall show sequence of decay patterns that resemble weathering forms observable on monuments built of natural stone. This study aims to study the observed decay patterns by means of in situ mapping and by analyses of decayed material (optical microscopy, SEM/EDS, X-ray diffraction, Hg-porosimetry, water soluble salts analysis) and to interpret them based on the phase composition and other properties of bricks. Finally, the decay patterns of studied brick wall are compared to known weathering sequences on porous rocks (both on natural outcrops and on artistic monuments).

  17. Advanced low-activation materials. Fibre-reinforced ceramic composites

    NASA Astrophysics Data System (ADS)

    Fenici, P.; Scholz, H. W.

    1994-09-01

    A serious safety and environmental concern for thermonuclear fusion reactor development regards the induced radioactivity of the first wall and structural components. The use of low-activation materials (LAM) in a demonstration reactor would reduce considerably its potential risk and facilitate its maintenance. Moreover, decommissioning and waste management including disposal or even recycling of structural materials would be simplified. Ceramic fibre-reinforced SiC materials offer highly appreciable low activation characteristics in combination with good thermomechanical properties. This class of materials is now under experimental investigation for structural application in future fusion reactors. An overview on the recent results is given, covering coolant leak rates, thermophysical properties, compatibility with tritium breeder materials, irradiation effects, and LAM-consistent purity. SiC/SiC materials present characteristics likely to be optimised in order to meet the fusion application challenge. The scope is to put into practice the enormous potential of inherent safety with fusion energy.

  18. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  19. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  20. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion.

    PubMed

    Willats, W G; Orfila, C; Limberg, G; Buchholt, H C; van Alebeek, G J; Voragen, A G; Marcus, S E; Christensen, T M; Mikkelsen, J D; Murray, B S; Knox, J P

    2001-06-01

    Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.