Sample records for wall motion estimation

  1. Regional cardiac wall motion from gated myocardial perfusion SPECT studies

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.

    1999-06-01

    A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.

  2. Dynamic estimation of three-dimensional cerebrovascular deformation from rotational angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Chong; Villa-Uriol, Maria-Cruz; De Craene, Mathieu

    2011-03-15

    Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D+t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D+t measured projection sequence and the corresponding forward projections of themore » deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.« less

  3. Ab initio study of edge effect on relative motion of walls in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.

    2013-01-01

    Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.

  4. Wall shear stress estimation in the aorta: Impact of wall motion, spatiotemporal resolution, and phase noise.

    PubMed

    Zimmermann, Judith; Demedts, Daniel; Mirzaee, Hanieh; Ewert, Peter; Stern, Heiko; Meierhofer, Christian; Menze, Bjoern; Hennemuth, Anja

    2018-04-01

    Wall shear stress (WSS) presents an important parameter for assessing blood flow characteristics and evaluating flow-mediated lesions in the aorta. To investigate the robustness of WSS and oscillatory shear index (OSI) estimation based on 4D flow MRI against vessel wall motion, spatiotemporal resolution, and velocity encoding (VENC). Simulated and prospective. Synthetic 4D flow MRI data of the aorta, simulated using the Lattice-Boltzmann method; in vivo 4D flow MRI data of the aorta from healthy volunteers (n = 11) and patients with congenital heart defects (n = 17). 1.5T; 4D flow MRI with PEAK-GRAPPA acceleration and prospective electrocardiogram triggering. Predicated upon 3D cubic B-splines interpolation of the image velocity field, WSS was estimated in mid-systole, early-diastole, and late-diastole and OSI was derived. We assessed the impact of spatiotemporal resolution and phase noise, and compared results based on tracked-using deformable registration-and static vessel wall location. Bland-Altman analysis to assess WSS/OSI differences; Hausdorff distance (HD) to assess wall motion; and Pearson's correlation coefficient (PCC) to assess correlation of HD with WSS. Synthetic data results show systematic over-/underestimation of WSS when different spatial resolution (mean ± 1.96 SD up to -0.24 ± 0.40 N/m 2 and 0.5 ± 1.38 N/m 2 for 8-fold and 27-fold voxel size, respectively) and VENC-depending phase noise (mean ± 1.96 SD up to 0.31 ± 0.12 N/m 2 and 0.94 ± 0.28 N/m 2 for 2-fold and 4-fold VENC increase, respectively) are given. Neglecting wall motion when defining the vessel wall perturbs WSS estimates to a considerable extent (1.96 SD up to 1.21 N/m 2 ) without systematic over-/underestimation (Bland-Altman mean range -0.06 to 0.05). In addition to sufficient spatial resolution and velocity to noise ratio, accurate tracking of the vessel wall is essential for reliable image-based WSS estimation and should not be neglected if wall motion is present. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  5. Motion Tracking of the Carotid Artery Wall From Ultrasound Image Sequences: a Nonlinear State-Space Approach.

    PubMed

    Gao, Zhifan; Li, Yanjie; Sun, Yuanyuan; Yang, Jiayuan; Xiong, Huahua; Zhang, Heye; Liu, Xin; Wu, Wanqing; Liang, Dong; Li, Shuo

    2018-01-01

    The motion of the common carotid artery (CCA) wall has been established to be useful in early diagnosis of atherosclerotic disease. However, tracking the CCA wall motion from ultrasound images remains a challenging task. In this paper, a nonlinear state-space approach has been developed to track CCA wall motion from ultrasound sequences. In this approach, a nonlinear state-space equation with a time-variant control signal was constructed from a mathematical model of the dynamics of the CCA wall. Then, the unscented Kalman filter (UKF) was adopted to solve the nonlinear state transfer function in order to evolve the state of the target tissue, which involves estimation of the motion trajectory of the CCA wall from noisy ultrasound images. The performance of this approach has been validated on 30 simulated ultrasound sequences and a real ultrasound dataset of 103 subjects by comparing the motion tracking results obtained in this study to those of three state-of-the-art methods and of the manual tracing method performed by two experienced ultrasound physicians. The experimental results demonstrated that the proposed approach is highly correlated with (intra-class correlation coefficient ≥ 0.9948 for the longitudinal motion and ≥ 0.9966 for the radial motion) and well agrees (the 95% confidence interval width is 0.8871 mm for the longitudinal motion and 0.4159 mm for the radial motion) with the manual tracing method on real data and also exhibits high accuracy on simulated data (0.1161 ~ 0.1260 mm). These results appear to demonstrate the effectiveness of the proposed approach for motion tracking of the CCA wall.

  6. Comparison of method using phase-sensitive motion estimator with speckle tracking method and application to measurement of arterial wall motion

    NASA Astrophysics Data System (ADS)

    Miyajo, Akira; Hasegawa, Hideyuki

    2018-07-01

    At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.

  7. Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.

    PubMed

    Gao, Zhifan; Xiong, Huahua; Liu, Xin; Zhang, Heye; Ghista, Dhanjoo; Wu, Wanqing; Li, Shuo

    2017-04-01

    The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space approach for accurately measuring the two-dimensional motion of the carotid artery wall from the ultrasound imaging sequences. In our approach, we have employed a linear elasticity model of the carotid artery wall, and converted it into the state space equation. Then, the two-dimensional motion of carotid artery wall is computed by solving this state-space approach using the H ∞ filter and the block matching method. In addition, a parameter training strategy is proposed in this study for dealing with the parameter initialization problem. In our experiment, we have also developed an evaluation function to measure the tracking accuracy of the motion of the carotid artery wall by considering the influence of the sizes of the two blocks (acquired by our approach and the manual tracing) containing the same carotid wall tissue and their overlapping degree. Then, we have compared the performance of our approach with the manual traced results drawn by three medical physicians on 37 healthy subjects and 103 unhealthy subjects. The results have showed that our approach was highly correlated (Pearson's correlation coefficient equals 0.9897 for the radial motion and 0.9536 for the longitudinal motion), and agreed well (width the 95% confidence interval is 89.62 µm for the radial motion and 387.26 µm for the longitudinal motion) with the manual tracing method. We also compared our approach to the three kinds of previous methods, including conventional block matching methods, Kalman-based block matching methods and the optical flow. Altogether, we have been able to successfully demonstrate the efficacy of our elasticity-model based state-space approach (EBS) for more accurate tracking of the 2-dimensional motion of the carotid artery wall, towards more effective assessment of the status of atherosclerotic disease in the preclinical stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A model of acoustic transmission in the respiratory system.

    PubMed

    Wodicka, G R; Stevens, K N; Golub, H L; Cravalho, E G; Shannon, D C

    1989-09-01

    A theoretical model of sound transmission from within the respiratory tract to the chest wall due to the motion of the walls of the large airways was developed. The vocal tract, trachea, and the first five bronchial generations are represented over the frequency range from 100 to 600 Hz by an equivalent acoustic circuit. This circuit allows the estimation of the magnitude of airway wall motion in response to an acoustic perturbation at the mouth. The radiation of sound through the surrounding lung parenchyma is represented as a cylindrical wave in a homogeneous mixture of air bubbles in water. The effect of thermal losses associated with the polytropic compressions and expansions of these bubbles by the acoustic wave is included and the chest wall is represented as a massive boundary to the wave propagation. The model estimates the magnitude of acceleration over the extrathoracic trachea and at three locations on the posterior chest wall in the same vertical plane. The predicted spectral characteristics of transmission are consistent with previous experimental observations. This theoretical approach suggests that the locations of the spectral peaks are a strong function of the geometry and the wall properties of the airways, while the attenuation at higher frequencies is primarily associated with the absorption of sound in the parenchyma.

  9. Registration Methods for IVUS: Transversal and Longitudinal Transducer Motion Compensation.

    PubMed

    Talou, Gonzalo D Maso; Blanco, Pablo J; Larrabide, Ignacio; Bezerra, Cristiano Guedes; Lemos, Pedro A; Feijoo, Raul A

    2017-04-01

    Intravascular ultrasound (IVUS) is a fundamental imaging technique for atherosclerotic plaque assessment, interventionist guidance, and, ultimately, as a tissue characterization tool. The studies acquired by this technique present the spatial description of the vessel during the cardiac cycle. However, the study frames are not properly sorted. As gating methods deal with the cardiac phase classification of the frames, the gated studies lack motion compensation between vessel and catheter. In this study, we develop registration strategies to arrange the vessel data into its rightful spatial sequence. Registration is performed by compensating longitudinal and transversal relative motion between vessel and catheter. Transversal motion is identified through maximum likelihood estimator optimization, while longitudinal motion is estimated by a neighborhood similarity estimator among the study frames. A strongly coupled implementation is proposed to compensate for both motion components at once. Loosely coupled implementations (DLT and DTL) decouple the registration process, resulting in more computationally efficient algorithms in detriment of the size of the set of candidate solutions. The DTL outperforms DLT and coupled implementations in terms of accuracy by a factor of 1.9 and 1.4, respectively. Sensitivity analysis shows that perivascular tissue must be considered to obtain the best registration outcome. Evidences suggest that the method is able to measure axial strain along the vessel wall. The proposed registration sorts the IVUS frames for spatial location, which is crucial for a correct interpretation of the vessel wall kinematics along the cardiac phases.

  10. Homage to Bob Brodkey at 85: ejections, sweeps and the genesis and extensions of quadrant analysis

    NASA Astrophysics Data System (ADS)

    Wallace, James

    2013-11-01

    Almost 50 years ago Bob Brodkey and his student, Corino, conceived and carried out a visualization experiment for the very near wall region of a turbulent pipe flow (JFM 37) that, together with the turbulent boundary layer visualization of Kline et al. (JFM 30), excited the turbulence community. Using a high speed movie camera mounted on a lathe bed that recorded magnified images in a moving frame of reference, they observed the motions of small particles in the sub- and buffer-layers. Surprisingly, these motion were not nearly so locally random as was the general view of turbulence at the time. Rather, connected regions of the near wall flow decelerated and then erupted away from the wall in what they called ``ejections.'' These decelerated motions were followed by larger scale connected motions toward the wall from above that they called ``sweeps.'' Brodkey and Corino estimated that ejections accounted for 70 % the Reynolds shear stress at Red = 20 , 000 while only occurring about 18 % of the time. Wallace et al. (JFM 54) attempted to quantify these visual observations by conceiving of and carrying out a quadrant analyisis in a turbulent oil channel flow. This paper will trace this history and describe the expanding use of these ideas in turbulence research today.

  11. Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Kitamura, K.; Liu, Y. M.; Ohuchi, F. S.; Li, J. Y.

    2011-09-01

    Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 single crystals was investigated using piezoresponse force microscopy (PFM). The domain wall motion was observed in PFM phase and amplitude images at room temperature after the sample was subjected to a thermal process at a heating temperature higher than 100 °C. In hexagonal domains with only y walls, predetermined nucleation with layer-by-layer growth is the main mechanism for the domain wall motion. In the domains composed of both x walls and y walls, the x walls are more mobile than the y walls, and the domain wall motion starts from the random nucleation of steps along the x walls that finally grow into y walls. The domain wall motion in the near-stoichiometric LiNbO3 crystal is attributed to the energy-preferable domain wall orientation, the pyroelectric effect, and the screening charge variation caused by the thermal process.

  12. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  13. Theory of Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2004-03-01

    Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be ∝[(j_s/j_s^cr)^2-1]^1/2. In the case of thin wall, driven by a force ∝ ρw j, the critical current density is given by j^cr∝ V_0/ρ_w. In nanocontacts, this is estimated to be ˜ 10^7[A/m^2]. This small critical current would be advantageous for device application. [1] G.Tatara and H.Kohno, cond-mat/0308464. [2] L.Berger, J.Appl.Phys.55,1954(1984); 71,2721(1992);73,6405(1993). [3] J.C.Slonczewski, J.Magn.Magn.Mater. 159,L1(1996); L.Berger, Phys.Rev.B54,9353(1996). [4] S.S.P.Parkin, private communication; T.Ono, private communication.

  14. Multi-scale AM-FM motion analysis of ultrasound videos of carotid artery plaques

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Murray, Victor; Loizou, C. P.; Pattichis, C. S.; Pattichis, Marios; Barriga, E. Simon

    2012-03-01

    An estimated 82 million American adults have one or more type of cardiovascular diseases (CVD). CVD is the leading cause of death (1 of every 3 deaths) in the United States. When considered separately from other CVDs, stroke ranks third among all causes of death behind diseases of the heart and cancer. Stroke accounts for 1 out of every 18 deaths and is the leading cause of serious long-term disability in the United States. Motion estimation of ultrasound videos (US) of carotid artery (CA) plaques provides important information regarding plaque deformation that should be considered for distinguishing between symptomatic and asymptomatic plaques. In this paper, we present the development of verifiable methods for the estimation of plaque motion. Our methodology is tested on a set of 34 (5 symptomatic and 29 asymptomatic) ultrasound videos of carotid artery plaques. Plaque and wall motion analysis provides information about plaque instability and is used in an attempt to differentiate between symptomatic and asymptomatic cases. The final goal for motion estimation and analysis is to identify pathological conditions that can be detected from motion changes due to changes in tissue stiffness.

  15. Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake

    NASA Astrophysics Data System (ADS)

    McGowan, S. M.; Jaiswal, K. S.; Wald, D. J.

    2017-09-01

    We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII-IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.

  16. Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake

    USGS Publications Warehouse

    McGowan, Sean; Jaiswal, Kishor; Wald, David J.

    2017-01-01

    We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII–IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.

  17. Depth interval estimates from motion parallax and binocular disparity beyond interaction space.

    PubMed

    Gillam, Barbara; Palmisano, Stephen A; Govan, Donovan G

    2011-01-01

    Static and dynamic observers provided binocular and monocular estimates of the depths between real objects lying well beyond interaction space. On each trial, pairs of LEDs were presented inside a dark railway tunnel. The nearest LED was always 40 m from the observer, with the depth separation between LED pairs ranging from 0 up to 248 m. Dynamic binocular viewing was found to produce the greatest (ie most veridical) estimates of depth magnitude, followed next by static binocular viewing, and then by dynamic monocular viewing. (No significant depth was seen with static monocular viewing.) We found evidence that both binocular and monocular dynamic estimates of depth were scaled for the observation distance when the ground plane and walls of the tunnel were visible up to the nearest LED. We conclude that both motion parallax and stereopsis provide useful long-distance depth information and that motion-parallax information can enhance the degree of stereoscopic depth seen.

  18. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  19. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting.

    PubMed

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido

    2004-10-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99mTc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%+/-3% vs 1.9%+/-4.9% p=NS) and inward septal motion (3+/-4.9 mm vs 2.3+/-6.1 mm p=NS), significant differences were observed in both perfusion (74.7%+/-6.2% vs 63.3%+/-13%, p>0.0001) and regional wall thickening (17.2%+/-7.4% vs 12.6%+/-7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population.

  20. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  1. Driving mechanism of unsteady separation shock motion in hypersonic interactive flow

    NASA Technical Reports Server (NTRS)

    Dolling, D. S.; Narlo, J. C., II

    1987-01-01

    Wall pressure fluctuations were measured under the steady separation shock waves in Mach 5 turbulent interactions induced by unswept circular cylinders on a flat plate. The wall temperature was adiabatic. A conditional sampling algorithm was developed to examine the statistics of the shock wave motion. The same algorithm was used to examine data taken in earlier studies in the Princeton University Mach 3 blowdown tunnel. In these earlier studies, hemicylindrically blunted fins of different leading-edge diameters were tested in boundary layers which developed on the tunnel floor and on a flat plate. A description of the algorithm, the reasons why it was developed and the sensitivity of the results to the threshold settings, are discussed. The results from the algorithm, together with cross correlations and power spectral density estimates suggests that the shock motion is driven by the low-frequency unsteadiness of the downstream separated, vortical flow.

  2. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  3. Recovery of BMIPP uptake and regional wall motion in insulin resistant patients following angioplasty for acute myocardial infarction.

    PubMed

    Fujino, Takayuki; Ishii, Yoshinao; Takeuchi, Toshiharu; Hirasawa, Kunihiko; Tateda, Kunihiko; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2003-09-01

    The effect of insulin resistance (IR) on the fatty acid metabolism of myocardium, and therefore on the recovery of left ventricular (LV) wall motion, has not been established in patients with acute myocardial infarction (AMI). A total of consecutive 58 non-diabetic AMI patients who had successfully undergone emergency coronary angioplasty were analyzed retrospectively. They were categorized into 2 groups, normal glucose tolerance (NGT) and impaired glucose tolerance (IGT), based on a 75-g oral glucose tolerance test (OGTT). The parameters of OGTT, myocardial scintigraphy (n=58) (thallium-201 (Tl) and iodine-123-beta-methyl-iodophenylpentadecanoic acid (BMIPP)) and left ventriculography (n=24) were compared in the 2 groups after reperfusion (acute phase) and 3-4 weeks after the AMI (chronic phase). The insulin resistance (IR), estimated by the serum concentration of insulin at 120 min (IRI 120') of the OGTT and by the HOMA (the homeostasis model assessment) index, was higher in the IGT group than in NGT group. An inverse correlation was found between the recovery of regional LV wall motion in the ischemic lesion and the IRI 120' and HOMA index. Although the recovery of BMIPP uptake from the acute to the chronic phase was higher in the IGT group, it was only correlated with the degree of IRI 120', not with the HOMA. IR accompanied by IGT can negatively influence the recovery of regional LV wall motion.

  4. Elastohydrodynamics of a free cylinder near a soft wall

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.; Salez, Thomas

    2015-11-01

    We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall. We use scaling arguments to establish different regimes of settling, sliding, rolling and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding, and spinning motions of a cylinder. Numerical integration of the resulting equations confirms our scaling relations and further yields a range of behaviours such as spontaneously oscillations when sliding, lift via a Magnus-like effect, a spin-induced reversal effect, and an unusual sedimentation singularity. Our description also allows us to address a sedimentation-sliding transition that can lead to the particle coasting over very long distances, similar to certain geophysical phenomena.

  5. Design and characterisation of a wall motion phantom.

    PubMed

    Dineley, J; Meagher, S; Poepping, T L; McDicken, W N; Hoskins, P R

    2006-09-01

    Arterial wall motion is an essential feature of a healthy cardiovascular system and it is known that wall motion is affected by age and disease. In recent years, methods have been developed for measurement of wall motion with the intention of providing diagnostically useful information. An issue with all of these techniques is the accuracy and variability of both wall motion and derived quantities such as elasticity, which requires the development of suitable test tools. In this paper, a vessel wall phantom is described for use in ultrasound studies of wall motion. The vessel was made from polyvinyl alcohol (PVA) subjected to a freeze-thaw process to form a cryogel (PVA-C). The elastic modulus, acoustic velocity and attenuation coefficient varied from 57 kPa, 1543 m s(-1) and 0.18 dB cm(-1) MHz(-1) for one freeze-thaw cycle to 330 kPa, 1583 m s(-1) and 0.42 dB cm(-1) MHz(-1) for 10 freeze-thaw cycles. Wall motion was effected by the use of pulsatile flow produced from a gear pump. The use of a downstream flow resistor removed gross distortions in the wall motion waveform, possibly by removal of reflected pressure waves. However, a low amplitude 20 Hz oscillation remained, which is unphysiologic and thought to be caused by the vibration of the distended PVA-C vessel.

  6. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less

  7. Precarious rock and overturned transformer evidence for ground shaking in the Ms 7.7 Kern County earthquake: An analog for disastrous shaking from a major thrust fault in the Los Angeles basin

    USGS Publications Warehouse

    Brune, J.N.; Anooshehpoor, A.; Shi, B.; Zheng, Yen

    2004-01-01

    Precariously balanced rocks and overturned transformers in the vicinity of the White Wolf fault provide constraints on ground motion during the 1952 Ms 7.7 Kern County earthquake, a possible analog for an anticipated large earthquake in the Los Angeles basin (Shaw et al., 2002; Dolan et al., 2003). On the northeast part of the fault preliminary estimates of ground motion on the footwall give peak accelerations considerably lower than predicted by standard regression curves. On the other hand, on the hanging-wall, there is evidence of intense ground shattering and lack of precarious rocks, consistent with the intense hanging-wall accelerations suggested by foam-rubber modeling, numerical modeling, and observations from previous thrust fault earthquakes. There is clear evidence of the effects of rupture directivity in ground motions on the hanging-wall side of the fault (from both precarious rocks and numerical simulations). On the southwest part of the fault, which is covered by sediments, the thrust fault did not reach the surface ("blind" thrust). Overturned and damaged transformers indicate significant transfer of energy from the hanging wall to the footwall, an effect that may not be as effective when the rupture reaches the surface (is not "blind"). Transformers near the up-dip projection of the fault tip have been damaged or overturned on both the hanging-wall and footwall sides of the fault. The transfer of energy is confirmed in a numerical lattice model and could play an important role in a similar situation in Los Angeles. We suggest that the results of this study can provide important information for estimating the effects of a large thrust fault rupture in the Los Angeles basin, specially given the fact that there is so little instrumental data from large thrust fault earthquakes.

  8. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-07-08

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), andmore » 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.« less

  9. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    PubMed

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  10. Remarkably enhanced current-driven 360° domain wall motion in nanostripe by tuning in-plane biaxial anisotropy.

    PubMed

    Su, Yuanchang; Weng, Lianghao; Dong, Wenjun; Xi, Bin; Xiong, Rui; Hu, Jingguo

    2017-10-17

    By micromagnetic simulations, we study the current-driven 360° domain wall (360DW) motion in ferromagnetic nanostripe with an in-plane biaxial anisotropy. We observe the critical annihilation current of 360° domain wall can be enhanced through such a type of anisotropy, the reason of which is the suppression of out-of-plane magnetic moments generated simultaneously with domain-wall motion. In details, We have found that the domain-wall width is only related to K y  - K x , with K x(y) the anisotropy constant in x(y) direction. Taking domain-wall width into consideration, a prior choice is to keep K y  ≈ K x with large enough K. The mode of domain-wall motion has been investigated as well. The traveling-wave-motion region increases with K, while the average DW velocity is almost unchanged. Another noteworthy feature is that a Walker-breakdown-like motion exists before annihilation. In this region, though domain wall moves with an oscillating behavior, the average velocity does not reduce dramatically, but even rise again for a large K.

  11. Characterization of the Test Section Walls at the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Lunsford, Charles B.; Graves, Sharon S.

    2003-01-01

    The test section walls of the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel are known to move under thermal and pressure loads. Videogrammetry was used to measure wall motion during the summer of 2002. In addition, a laser distancemeter was used to measure the relative distance between the test section walls at a single point. Distancemeter and videogrammetry results were consistent. Data were analyzed as a function of temperature and pressure to determine their effects on wall motion. Data were collected between 50 and 100 F, 0 and 0.315 Mach, and dynamic pressures of 0 and 120 psf. The overall motion of each wall was found to be less than 0.25 in. and less than facility personnel anticipated. The results show how motion depends on the temperature and pressure inside the test section as well is the position of the boundary layer vane. The repeatability of the measurements was +/-0.06 in. This report describes the methods used to record the motion of the test section walls and the results of the data analysis. Future facility plans include the development of a suitable wall restraint system and the determination of the effects of the wall motion on tunnel calibration.

  12. Brownian motion as a new probe of wettability.

    PubMed

    Mo, Jianyong; Simha, Akarsh; Raizen, Mark G

    2017-04-07

    Understanding wettability is crucial for optimizing oil recovery, semiconductor manufacturing, pharmaceutical industry, and electrowetting. In this letter, we study the effects of wettability on Brownian motion. We consider the cases of a sphere in an unbounded fluid medium, as well as a sphere placed in the vicinity of a plane wall. For the first case, we show the effects of wettability on the statistical properties of the particles' motion, such as velocity autocorrelation, velocity, and thermal force power spectra over a large range of time scales. We also propose a new method to measure wettability based on the particles' Brownian motion. In addition, we compare the boundary effects on Brownian motion imposed by both no-slip and perfect-slip flat walls. We emphasize the surprising boundary effects on Brownian motion imposed by a perfect-slip wall in the parallel direction, such as a higher particle mobility parallel to a perfect flat wall compared to that in the absence of the wall, as well as compared to a particle near a no-slip flat wall.

  13. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation.

    PubMed

    Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo

    2014-12-01

    Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.

  14. Clustering Of Left Ventricular Wall Motion Patterns

    NASA Astrophysics Data System (ADS)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  15. The unidirectional motion of two heat-conducting liquids in a flat channel

    NASA Astrophysics Data System (ADS)

    Andreev, V. K.; Cheremnykh, E. N.

    2017-10-01

    The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and given total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

  16. Temporal analysis of regional wall motion from cine cardiac MRI

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Didier, Dominique; Chretien, Anne; Rosset, Antoine; Magnin, Isabelle E.; Ligier, Yves

    1996-04-01

    The purpose of this work is to develop and to evaluate an automatic analysis technique for quantitative assessment of cardiac function from cine MRI and to identify regional alterations in synchronicity based on Fourier analysis of ventricular wall motion (WM). A temporal analysis technique of left ventricular wall displacement was developed for quantitative analysis of temporal delays in wall motion and applied to gated cine 'dark blood' cardiac MRI. This imaging technique allows the user to saturate the blood both above and below the imaging slice simultaneously by using a specially designed rf presaturation pulse. The acquisition parameters are: TR equals 25 - 60 msec, TE equals 5 - 7 msec, 0 equals 25 degrees, slice thickness equals 10 mm, 16 to 32 frames/cycle. Automatic edge detection was used to outline the ventricular cavities on all frames of a cardiac cycle. Two different segmentation techniques were applied to all studies and lead to similar results. Further improvement in edge detection accuracy was achieved by temporal interpolation of individual contours on each image of the cardiac cycle. Radial analysis of the ventricular wall motion was then performed along 64 radii drawn from the center of the ventricular cavity. The first harmonic of the Fourier transform of each radial motion curve is calculated. The phase of the fundamental Fourier component is used as an index of synchrony (delay) of regional wall motion. Results are displayed in color-coded maps of regional alterations in the amplitude and synchrony of wall motion. The temporal delays measured from individual segments are evaluated through a histogram of phase distribution, where the width of the main peak is used as an index of overall synchrony of wall motion. The variability of this technique was validated in 10 normal volunteers and was used to identify regions with asynchronous WM in 15 patients with documented CAD. The standard deviation (SD) of phase distribution measured in short axis views was calculated and used to identify regions with asynchronous wall motion in patients with coronary artery disease. Results suggest that this technique is more sensitive than global functional parameters such as ejection fraction for the detection of ventricular dysfunction. Color coded parametric display offers a more convenient way for the identification and localization of regional wall motion asynchrony. Data obtained from endocardial wall motion analysis were not significantly different from wall thickening measurements. The innovative approach of evaluating the temporal behavior of regional wall motion anomalies is expected to provide clinically relevant data about subtle alteration that cannot be detected through simple analysis of the extent (amplitude) of wall motion or myocardial thickening. Temporal analysis of regional WM abnormality from cine MRI offers an innovative and promising means for objective quantitative evaluation of subtle regional abnormalities. Color coded parametric maps allowed a better identification and localization of regional WM asynchrony.

  17. Influence of left ventricular hypertrophy and geometry on diagnostic accuracy of wall motion and perfusion magnetic resonance during dobutamine stress.

    PubMed

    Gebker, Rolf; Mirelis, Jesus G; Jahnke, Cosima; Hucko, Thomas; Manka, Robert; Hamdan, Ashraf; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-09-01

    The purpose of this study was to determine the influence of left ventricular (LV) hypertrophy and geometry on the diagnostic accuracy of wall motion and additional perfusion imaging during high-dose dobutamine/atropine stress magnetic resonance for the detection of coronary artery disease. Combined dobutamine stress magnetic resonance (DSMR)-wall motion and DSMR-perfusion imaging was performed in a single session in 187 patients scheduled for invasive coronary angiography. Patients were classified into 4 categories on the basis of LV mass (normal, ≤ 81 g/m(2) in men and ≤ 62 g/m(2) in women) and relative wall thickness (RWT) (normal, <0.45) as follows: normal geometry (normal mass, normal RWT), concentric remodeling (normal mass, increased RWT), concentric hypertrophy (increased mass, increased RWT), and eccentric hypertrophy (increased mass, normal RWT). Wall motion and perfusion images were interpreted sequentially, with observers blinded to other data. Significant coronary artery disease was defined as ≥ 70% stenosis. In patients with increased LV concentricity (defined by an RWT ≥ 0.45), sensitivity and accuracy of DSMR-wall motion were significantly reduced (63% and 73%, respectively; P<0.05) compared with patients without increased LV concentricity (90% and 88%, respectively; P<0.05). Although accuracy of DSMR-perfusion was higher than that of DSMR-wall motion in patients with concentric hypertrophy (82% versus 71%; P < 0.05), accuracy of DSMR-wall motion was superior to DSMR-perfusion (90% versus 85%; P < 0.05) in patients with eccentric hypertrophy. The accuracy of DSMR-wall motion is influenced by LV geometry. In patients with concentric remodeling and concentric hypertrophy, additional first-pass perfusion imaging during high-dose dobutamine stress improves the diagnostic accuracy for the detection of coronary artery disease.

  18. Evaluation of left ventricular function using electrocardiographically gated myocardial SPECT with (123)I-labeled fatty acid analog.

    PubMed

    Nanasato, M; Ando, A; Isobe, S; Nonokawa, M; Hirayama, H; Tsuboi, N; Ito, T; Hirai, M; Yokota, M; Saito, H

    2001-12-01

    Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.

  19. Time-evolving of very large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  20. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR

    NASA Astrophysics Data System (ADS)

    Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong

    2017-01-01

    PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P  <  0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed without (with) PSF modeling (P  <  0.01). For dynamic PET, mean MBF across all segments were comparable for MoCo (0.72  ±  0.21 ml/min/ml) and Gating (0.69  ±  0.18 ml/min/ml). Ungated data yielded significantly lower mean MBF (0.59  ±  0.16 ml/min/ml). Mean MBF for MoCo-PSF was 0.80  ±  0.22 ml/min/ml, which was 37.9% (25.0%) higher than that obtained from Ungated data without (with) PSF correction (P  <  0.01). The developed methodology holds promise to improve the image quality and sensitivity of PET MPI studies performed using PET-MR.

  1. Clinical applications of a quantitative analysis of regional lift ventricular wall motion

    NASA Technical Reports Server (NTRS)

    Leighton, R. F.; Rich, J. M.; Pollack, M. E.; Altieri, P. I.

    1975-01-01

    Observations were summarized which may have clinical application. These were obtained from a quantitative analysis of wall motion that was used to detect both hypokinesis and tardokinesis in left ventricular cineangiograms. The method was based on statistical comparisons with normal values for regional wall motion derived from the cineangiograms of patients who were found not to have heart disease.

  2. Chest Wall Motion during Speech Production in Patients with Advanced Ankylosing Spondylitis

    ERIC Educational Resources Information Center

    Kalliakosta, Georgia; Mandros, Charalampos; Tzelepis, George E.

    2007-01-01

    Purpose: To test the hypothesis that ankylosing spondylitis (AS) alters the pattern of chest wall motion during speech production. Method: The pattern of chest wall motion during speech was measured with respiratory inductive plethysmography in 6 participants with advanced AS (5 men, 1 woman, age 45 plus or minus 8 years, Schober test 1.45 plus or…

  3. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  4. Evaluation of segmental left ventricular wall motion by equilibrium gated radionuclide ventriculography.

    PubMed

    Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A

    1979-01-01

    The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.

  5. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  6. Driving chiral domain walls in antiferromagnets using rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, Keming; Xing, Lingdi; Yuan, H. Y.; Wang, Weiwei

    2018-05-01

    We show theoretically and numerically that an antiferromagnetic domain wall can be moved by a rotating magnetic field in the presence of Dzyaloshinskii-Moriya interaction (DMI). Two motion modes are found: rigid domain wall motion at low frequency (corresponding to the perfect frequency synchronization) and the oscillating motion at high frequency. In the full synchronized region, the steady velocity of the domain wall is universal, in the sense that it depends only on the frequency of the rotating field and the ratio between DMI strength and exchange constant. The domain wall velocity is independent of the Gilbert damping and the rotating field strength. Moreover, a rotating field in megahertz is sufficient to move the antiferromagnetic domain wall.

  7. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models.

    PubMed

    Alimohammadi, Mona; Sherwood, Joseph M; Karimpour, Morad; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa

    2015-04-15

    The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified.

  8. Interventional endocardial motion estimation from electroanatomical mapping data: application to scar characterization.

    PubMed

    Porras, Antonio R; Piella, Gemma; Berruezo, Antonio; Hoogendoorn, Corne; Andreu, David; Fernandez-Armenta, Juan; Sitges, Marta; Frangi, Alejandro F

    2013-05-01

    Scar presence and its characteristics play a fundamental role in several cardiac pathologies. To accurately define the extent and location of the scar is essential for a successful ventricular tachycardia ablation procedure. Nowadays, a set of widely accepted electrical voltage thresholds applied to local electrograms recorded are used intraoperatively to locate the scar. Information about cardiac mechanics could be considered to characterize tissues with different viability properties. We propose a novel method to estimate endocardial motion from data obtained with an electroanatomical mapping system together with the endocardial geometry segmented from preoperative 3-D magnetic resonance images, using a statistical atlas constructed with bilinear models. The method was validated using synthetic data generated from ultrasound images of nine volunteers and was then applied to seven ventricular tachycardia patients. Maximum bipolar voltages, commonly used to intraoperatively locate scar tissue, were compared to endocardial wall displacement and strain for all the patients. The results show that the proposed method allows endocardial motion and strain estimation and that areas with low-voltage electrograms also present low strain values.

  9. Mapping-guided characterization of mechanical and electrical activation patterns in patients with normal systolic function using a sensor-based tracking technology.

    PubMed

    Piorkowski, Christopher; Breithardt, Ole-A; Razavi, Hedi; Nabutovsky, Yelena; Rosenberg, Stuart P; Markovitz, Craig D; Arya, Arash; Rolf, Sascha; John, Silke; Kosiuk, Jedrzej; Olson, Eric; Eitel, Charlotte; Huo, Yan; Döring, Michael; Richter, Sergio; Ryu, Kyungmoo; Gaspar, Thomas; Prinzen, Frits W; Hindricks, Gerhard; Sommer, Philipp

    2017-10-01

    In times of evolving cardiac resynchronization therapy, intra-procedural characterization of left ventricular (LV) mechanical activation patterns is desired but technically challenging with currently available technologies. In patients with normal systolic function, we evaluated the feasibility of characterizing LV wall motion using a novel sensor-based, real-time tracking technology. Ten patients underwent simultaneous motion and electrical mapping of the LV endocardium during sinus rhythm using electroanatomical mapping and navigational systems (EnSite™ NavX™ and MediGuide™, SJM). Epicardial motion data were also collected simultaneously at corresponding locations from accessible coronary sinus branches. Displacements at each mapping point and times of electrical and mechanical activation were combined over each of the six standard LV wall segments. Mechanical activation timing was compared with that from electrical activation and preoperative 2D speckle tracking echocardiography (echo). MediGuide-based displacement data were further analysed to estimate LV chamber volumes that were compared with echo and magnetic resonance imaging (MRI). The lateral and septal walls exhibited the largest (12.5 [11.6-15.0] mm) and smallest (10.2 [9.0-11.3] mm) displacement, respectively. Radial displacement was significantly larger endocardially than epicardially (endo: 6.7 [5.0-9.1] mm; epi: 3.8 [2.4-5.6] mm), while longitudinal displacement was significantly larger epicardially (endo: 8.0 [5.0-10.6] mm; epi: 10.3 [7.4-13.8] mm). Most often, the anteroseptal/anterior and lateral walls showed the earliest and latest mechanical activations, respectively. 9/10 patients had concordant or adjacent wall segments of latest mechanical and electrical activation, and 6/10 patients had concordant or adjacent wall segments of latest mechanical activation as measured by MediGuide and echo. MediGuide's LV chamber volumes were significantly correlated with MRI (R2= 0.73, P < 0.01) and echo (R2= 0.75, P < 0.001). The feasibility of mapping-guided intra-procedural characterization of LV wall motion was established. http://www.clinicaltrials.gov; Unique identifier: CT01629160. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  10. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE PAGES

    Short, Mark; Jackson, Scott I.

    2015-01-23

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  11. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Jackson, Scott I.

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  12. Intraventricular flow alterations due to dyssynchronous wall motion

    NASA Astrophysics Data System (ADS)

    Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind

    2015-11-01

    Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  13. Aging near the wall in colloidal glasses

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  14. [Evaluation of left ventricular perfusion and regional wall motion in myocardial infarction: using 201Tl myocardial SPECT and 99mTc-HSAD multigated cardiac blood pool emission computed tomography].

    PubMed

    Nanjyo, S

    1994-09-01

    In order to evaluate left ventricular regional wall motion and regional myocardial perfusion, 99mTc-HSAD multigated cardiac blood pool emission computed tomography (cardiac pool SPECT) and 201Tl myocardial SPECT (Tl) were performed on 12 patients with acute myocardial infarction (AMI), 6 patients had treated with only thrombolysis in group I and 6 patients had treated with thrombolysis and selective PTCA in group II, 17 patients with old myocardial infarction (OMI) in group III and 5 normal volunteers (controls). The relationship between left ventricular regional wall motion and regional myocardial perfusion was estimated. The relationship between % length shortening (%LS) by cardiac pool SPECT and %Tl uptake (%TU) was good (r = 0.820) in group III. The value for %TU in the segments of akinesia was low (35%) and in the those of severe hypokinesia was higher (48%). In all phases, two groups showed significant relationships between %LS and %TU in group I and II. The %TU was unchanged in the akinetic segment, the %LS changed 30% in group I and the %LS changed to 49% in group II. If the %TU is more than 50% (AMI) or 40% (OMI), we would observe viable muscle. The combination of Tl and cardiac pool SPECT are useful for evaluating myocardial viability in the patients with AMI.

  15. Two-dimensional simulation of red blood cell motion near a wall under a lateral force

    NASA Astrophysics Data System (ADS)

    Hariprasad, Daniel S.; Secomb, Timothy W.

    2014-11-01

    The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.

  16. Swimming trajectories of a three-sphere microswimmer near a wall

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut

    2018-04-01

    The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.

  17. Domain wall and interphase boundary motion in (1-x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Chen, Jun; Fan, Longlong

    Electric field-induced changes in the domain wall motion of (1-x)Bi(Mg 0.5Ti 0.5)O 3–xPbTiO 3 (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x =0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phasesmore » for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less

  18. The dynamics of domain walls and strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Haws, David; Garfinkle, David

    1989-01-01

    The leading order finite-width corrections to the equation of motion describing the motion of a domain wall are derived. The regime in which this equation of motion is invalid is discussed. Spherically and cylindrically symmetric solutions to this equation of motion are found. A misconception that has arisen in recent years regarding the rigidity (or otherwise) of cosmic strings is also clarified.

  19. Elasticity of the living abdominal wall in laparoscopic surgery.

    PubMed

    Song, Chengli; Alijani, Afshin; Frank, Tim; Hanna, George; Cuschieri, Alfred

    2006-01-01

    Laparoscopic surgery requires inflation of the abdominal cavity and this offers a unique opportunity to measure the mechanical properties of the living abdominal wall. We used a motion analysis system to study the abdominal wall motion of 18 patients undergoing laparoscopic surgery, and found that the mean Young's modulus was 27.7+/-4.5 and 21.0+/-3.7 kPa for male and female, respectively. During inflation, the abdominal wall changed from a cylinder to a dome shape. The average expansion in the abdominal wall surface was 20%, and a working space of 1.27 x 10(-3)m(3) was created by expansion, reshaping of the abdominal wall and diaphragmatic movement. For the first time, the elasticity of human abdominal wall was obtained from the patients undergoing laparoscopic surgery, and a 3D simulation model of human abdominal wall has been developed to analyse the motion pattern in laparoscopic surgery. Based on this study, a mechanical abdominal wall lift and a surgical simulator for safe/ergonomic port placements are under development.

  20. 3-D simulation of hanging wall effect at dam site

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, Y.

    2017-12-01

    Hanging wall effect is one of the near fault effects. This paper focuses on the difference of the ground motions on the hanging wall side between the footwall side of the fault at dam site considering the key factors, such as actual topography, the rupture process. For this purpose, 3-D ground motions are numerically simulated by the spectrum element method (SEM), which takes into account the physical mechanism of generation and propagation of seismic waves. With the SEM model of 548 million DOFs, excitation and propagation of seismic waves are simulated to compare the difference between the ground motion on the hanging wall side and that on the footwall side. Take Dagangshan region located in China as an example, several seismogenic finite faults with different dip angle are simulated to investigate the hanging wall effect. Furthermore, by comparing the ground motions of the receiving points, the influence of several factors on hanging wall effect is investigated, such as the dip of the fault and the fault type (strike slip fault or dip-slip fault). The peak acceleration on the hanging wall side is obviously larger than those on the footwall side, which numerically evidences the hanging wall effect. Besides, the simulation shows that only when the dip is less than 70° does the hanging wall effect deserve attention.

  1. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    PubMed

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET-CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.

  2. Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.

    PubMed

    Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D

    2016-12-01

    Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.

  3. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method.

    PubMed

    Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla

    2017-03-27

    Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.

  4. Domain wall and interphase boundary motion in (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Chen, Jun; Fan, Longlong

    Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT ismore » larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less

  5. Local Nanomechanical Motion In Single Cells.

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew; Gimzewski, James

    2004-03-01

    We present new evidence that the nanoscale motion of the cell wall of Saccharomyces cerevisiae exhibits local bionanomechanical motion at characteristic frequencies and which is not caused by random or Brownian processes. This motion is measured with the AFM tip which acts as a nanomechanical sensor, permitting the motion of the cell wall to be recorded as a function of time, applied force, etc. We present persuasive evidence which shows that the local nanomechanical motion is characteristic of metabolic processes taking place inside the cell. This is demonstrated by clear differences between living cells and living cells treated with a metabolic inhibitor. This inhibitor specifically targets cytochrome oxidase inside the mitochondria and inhibits ATP production. The cells observed in this study display characteristic local cell wall motion with amplitudes between 1 and 3 nm and frequencies between 500 and 1700 Hz. The motion is temperature dependant which also suggests the mechanism for the observed motion has biological origins. In addition to a stringent series of control experiments we also discuss local measurements of the cell's mechanical properties and their influence on the observed bionanomechanical motion.

  6. The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Peng-Bin, E-mail: hepengbin@hnu.edu.cn; Yan, Han; Cai, Meng-Qiu

    The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot bemore » efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.« less

  7. Spin-orbit-torque-induced magnetic domain wall motion in Ta/CoFe nanowires with sloped perpendicular magnetic anisotropy.

    PubMed

    Zhang, Yue; Luo, Shijiang; Yang, Xiaofei; Yang, Chang

    2017-05-17

    In materials with the gradient of magnetic anisotropy, spin-orbit-torque-induced magnetization behaviour has attracted attention because of its intriguing scientific principle and potential application. Most of the magnetization behaviours microscopically originate from magnetic domain wall motion, which can be precisely depicted using the standard cooperative coordinate method (CCM). However, the domain wall motion in materials with the gradient of magnetic anisotropy using the CCM remains lack of investigation. In this paper, by adopting CCM, we established a set of equations to quantitatively depict the spin-orbit-torque-induced motion of domain walls in a Ta/CoFe nanotrack with weak Dzyaloshinskii-Moriya interaction and magnetic anisotropy gradient. The equations were solved numerically, and the solutions are similar to those of a micromagnetic simulation. The results indicate that the enhanced anisotropy along the track acts as a barrier to inhibit the motion of the domain wall. In contrast, the domain wall can be pushed to move in a direction with reduced anisotropy, with the velocity being accelerated by more than twice compared with that for the constant anisotropy case. This substantial velocity manipulation by anisotropy engineering is important in designing novel magnetic information devices with high reading speeds.

  8. Rotational Fourier tracking of diffusing polygons.

    PubMed

    Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G

    2011-11-01

    We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.

  9. Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas.

    PubMed

    Schires, Elliott; Georgiou, Pantelis; Lande, Tor Sverre

    2018-04-01

    Radar devices can be used in nonintrusive situations to monitor vital sign, through clothes or behind walls. By detecting and extracting body motion linked to physiological activity, accurate simultaneous estimations of both heart rate (HR) and respiration rate (RR) is possible. However, most research to date has focused on front monitoring of superficial motion of the chest. In this paper, body penetration of electromagnetic (EM) wave is investigated to perform back monitoring of human subjects. Using body-coupled antennas and an ultra-wideband (UWB) pulsed radar, in-body monitoring of lungs and heart motion was achieved. An optimised location of measurement in the back of a subject is presented, to enhance signal-to-noise ratio and limit attenuation of reflected radar signals. Phase-based detection techniques are then investigated for back measurements of vital sign, in conjunction with frequency estimation methods that reduce the impact of parasite signals. Finally, an algorithm combining these techniques is presented to allow robust and real-time estimation of both HR and RR. Static and dynamic tests were conducted, and demonstrated the possibility of using this sensor in future health monitoring systems, especially in the form of a smart car seat for driver monitoring.

  10. Annealing effect on current-driven domain wall motion in Pt/[Co/Ni] wire

    NASA Astrophysics Data System (ADS)

    Furuta, Masaki; Liu, Yang; Sepehri-Amin, Hossein; Hono, Kazuhiro; Zhu, Jian-Gang Jimmy

    2017-09-01

    The annealing effect on the efficiency of current-driven domain wall motion governed by the spin Hall effect in perpendicularly magnetized Pt/[Co/Ni] wires is investigated experimentally. Important physical parameters, such as the Dzyaloshinskii-Moriya Interaction (DMI), spin Hall angle, and perpendicular anisotropy field strength, for the domain wall motion are all characterized at each annealing temperature. It is found that annealing of wires at temperatures over 120 °C causes significant reduction of the domain wall velocity. Energy dispersive X-ray spectroscopy analysis shows pronounced Co diffusion across the Pt/Co interface resulted from annealing at relatively high temperatures. The combined modeling study shows that the reduction of DMI caused by annealing is mostly responsible for the domain wall velocity reduction due to annealing.

  11. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE PAGES

    Fancher, C. M.; Brewer, S.; Chung, C. C.; ...

    2016-12-27

    Here, the contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectricmore » permittivity of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  12. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, C. M.; Brewer, S.; Chung, C. C.

    2017-03-01

    The contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectric permittivitymore » of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  13. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 11: Quantification of chest wall motion during deep inspiration breast hold treatments using cine EPID images and a physics based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpuche Aviles, Jorge E.; VanBeek, Timothy

    Purpose: This work presents an algorithm used to quantify intra-fraction motion for patients treated using deep inspiration breath hold (DIBH). The algorithm quantifies the position of the chest wall in breast tangent fields using electronic portal images. Methods: The algorithm assumes that image profiles, taken along a direction perpendicular to the medial border of the field, follow a monotonically and smooth decreasing function. This assumption is invalid in the presence of lung and can be used to calculate chest wall position. The algorithm was validated by determining the position of the chest wall for varying field edge positions in portalmore » images of a thoracic phantom. The algorithm was used to quantify intra-fraction motion in cine images for 7 patients treated with DIBH. Results: Phantom results show that changes in the distance between chest wall and field edge were accurate within 0.1 mm on average. For a fixed field edge, the algorithm calculates the position of the chest wall with a 0.2 mm standard deviation. Intra-fraction motion for DIBH patients was within 1 mm 91.4% of the time and within 1.5 mm 97.9% of the time. The maximum intra-fraction motion was 3.0 mm. Conclusions: A physics based algorithm was developed and can be used to quantify the position of chest wall irradiated in tangent portal images with an accuracy of 0.1 mm and precision of 0.6 mm. Intra-fraction motion for patients treated with DIBH at our clinic is less than 3 mm.« less

  14. Linear motion feed through with thin wall rubber sealing element

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. P.; Deulin, E. A.

    2017-07-01

    The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.

  15. Comparison of Current and Field Driven Domain Wall Motion in Beaded Permalloy Nanowires

    NASA Astrophysics Data System (ADS)

    Lage, Enno; Dutta, Sumit; Ross, Caroline A.

    2015-03-01

    Domain wall based devices are promising candidates for non-volatile memory devices with no static power consumption. A common approach is the use of (field assisted) current driven domain wall motion in magnetic nanowires. In such systems local variations in linewidth act as obstacles for propagating domain walls. In this study we compare simulated field driven and current driven domain wall motion in permalloy nanowires with anti-notches. The simulations were obtained using the Object Oriented MicroMagnetics Framework (OOMMF). The wires with a constant thickness of 8 nm exhibit linewidths ranging from 40 nm to 300 nm. Circular shaped anti-notches extend the linewidth locally by 10% to 30% and raise information about the domain wall propagation in such beaded nanowires. The results are interpreted in terms of the observed propagation behavior and summarized in maps indicating ranges of different ability to overcome the pinning caused by anti-notches of different sizes. Furthermore, regimes of favored domain wall type (transverse walls or vortex walls) and complex propagation effects like walker breakdown behavior or dynamic change between domain wall structures are identified The authors thank the German Academic Exchange Service (DAAD) for funding.

  16. Large-scale influences in near-wall turbulence.

    PubMed

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  17. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca; Klein, Ran

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers wasmore » resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET–CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Conclusions: Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.« less

  18. [Evaluation of echocardiography for determining left ventricular function].

    PubMed

    Wu, H; Zhu, W; Xu, J

    1994-02-01

    Left ventricular ejection fraction (LVEF) was calculated by echocardiography and gate blood pool (GBP) in 33 patients including those with coronary heart disease, acute and old myocardiac infarction, cardiomyopathy or mitral prolapse. Fourteen of the 33 had segmental wall motion abnormalities and 19 had non-segmental wall motion abnormalities. The results of comparing echocardiography and GBP showed that the former could substitute for other invasive and expensive examinations to determine LVEF (r = 0.804-0.964 in the 5 echocardiography methods used). Mod-Simpsons method of cross-sectioned echocardiography was the most accurate echocardiographic method (r = 0.964, sensitivity 90.9%) in all patients. The Teich method of M-mode echocardiography was useful in patients who had non-segmental wall motion abnormalities only (r = 0.957, sensitivity 94.7%) but not in patients who had segmental wall motion abnormalities (r = 0.703, sensitivity 42.9%).

  19. Coexistence of bounded and unbounded motions in a bouncing ball model

    NASA Astrophysics Data System (ADS)

    Marò, Stefano

    2013-05-01

    We consider the model describing the vertical motion of a ball falling with constant acceleration on a wall and elastically reflected. The wall is supposed to move in the vertical direction according to a given periodic function f. We apply the Aubry-Mather theory to the generating function in order to prove the existence of bounded motions with prescribed mean time between the bounces. As the existence of unbounded motions is known, it is possible to find a class of functions f that allow both bounded and unbounded motions.

  20. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  1. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon

    2015-03-01

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  2. Electric field control of magnon-induced magnetization dynamics in multiferroics.

    PubMed

    Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob

    2016-08-24

    We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves.

  3. Motion and ranging sensor system for through-the-wall surveillance system

    NASA Astrophysics Data System (ADS)

    Black, Jeffrey D.

    2002-08-01

    A portable Through-the-Wall Surveillance System is being developed for law enforcement, counter-terrorism, and military use. The Motion and Ranging Sensor is a radar that operates in a frequency band that allows for surveillance penetration of most non-metallic walls. Changes in the sensed radar returns are analyzed to detect the human motion that would typically be present during a hostage or barricaded suspect scenario. The system consists of a Sensor Unit, a handheld Remote Display Unit, and an optional laptop computer Command Display Console. All units are battery powered and a wireless link provides command and data communication between units. The Sensor Unit is deployed close to the wall or door through which the surveillance is to occur. After deploying the sensor the operator may move freely as required by the scenario. Up to five Sensor Units may be deployed at a single location. A software upgrade to the Command Display Console is also being developed. This software upgrade will combine the motion detected by multiple Sensor Units and determine and track the location of detected motion in two dimensions.

  4. Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity In Silico

    PubMed Central

    Shahmirzadi, Danial; Konofagou, Elisa E.

    2012-01-01

    Monitoring of the regional stiffening of the arterial wall may prove important in the diagnosis of various vascular pathologies. The pulse wave velocity (PWV) along the aortic wall has been shown to be dependent on the wall stiffness and has played a fundamental role in a range of diagnostic methods. Conventional clinical methods involve a global examination of the pulse traveling between two remote sites, e.g. femoral and carotid arteries, to provide an average PWV estimate. However, the majority of vascular diseases entail regional vascular changes and therefore may not be detected by a global PWV estimate. In this paper, a fluid-structure interaction study of straight-geometry aortas was carried out to examine the effects of regional stiffness changes on PWV. Five homogeneous aortas with increasing wall stiffness as well as two aortas with soft and hard inclusions were considered. In each case, spatio-temporal maps of the wall motion were used to analyze the regional pulse wave propagation. On the homogeneous aortas, increasing PWVs were found to increase with the wall moduli (R2 = 0.9988), indicating the reliability of the model to accurately represent the wave propagation. On the inhomogeneous aortas, formation of reflected and standing waves was observed at the site of the hard and soft inclusions, respectively. Neither the hard nor the soft inclusion had a significant effect on the velocity of the traveling pulse beyond the inclusion site, which supported the hypothesis that a global measurement of the average PWV could fail to detect regional abnormalities. PMID:24235978

  5. Does quantitative left ventricular regional wall motion change after fibrous tissue resection in endomyocardial fibrosis?

    PubMed

    Salemi, Vera Maria Cury; Fernandes, Fabio; Sirvente, Raquel; Nastari, Luciano; Rosa, Leonardo Vieira; Ferreira, Cristiano A; Pena, José Luiz Barros; Picard, Michael H; Mady, Charles

    2009-01-01

    We compared left ventricular regional wall motion, the global left ventricular ejection fraction, and the New York Heart Association functional class pre- and postoperatively. Endomyocardial fibrosis is characterized by fibrous tissue deposition in the endomyocardium of the apex and/or inflow tract of one or both ventricles. Although left ventricular global systolic function is preserved, patients exhibit wall motion abnormalities in the apical and inferoapical regions. Fibrous tissue resection in New York Heart Association FC III and IV endomyocardial fibrosis patients has been shown to decrease morbidity and mortality. We prospectively studied 30 patients (20 female, 30+/-10 years) before and 5+/-8 months after surgery. The left ventricular ejection fraction was determined using the area-length method. Regional left ventricular motion was measured by the centerline method. Five left ventricular segments were analyzed pre- and postoperatively. Abnormality was expressed in units of standard deviation from the mean motion in a normal reference population. Left ventricular wall motion in the five regions did not differ between pre- and postoperative measurements. Additionally, the left ventricular ejection fraction did not change after surgery (0.45+/-0.13% x 0.43+/-0.12% pre- and postoperatively, respectively). The New York Heart Association functional class improved to class I in 40% and class II in 43% of patients postoperatively (p<0.05). Although endomyocardial fibrosis patients have improved clinical symptoms after surgery, the global left ventricular ejection fraction and regional wall motion in these patients do not change. This finding suggests that other explanations, such as improvements in diastolic function, may be operational.

  6. On steady motion of viscoelastic fluid of Oldroyd type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranovskii, E. S., E-mail: esbaranovskii@gmail.com

    2014-06-01

    We consider a mathematical model describing the steady motion of a viscoelastic medium of Oldroyd type under the Navier slip condition at the boundary. In the rheological relation, we use the objective regularized Jaumann derivative. We prove the solubility of the corresponding boundary-value problem in the weak setting. We obtain an estimate for the norm of a solution in terms of the data of the problem. We show that the solution set is sequentially weakly closed. Furthermore, we give an analytic solution of the boundary-value problem describing the flow of a viscoelastic fluid in a flat channel under a slipmore » condition at the walls. Bibliography: 13 titles. (paper)« less

  7. Brownian motion and entropic torque driven motion of domain walls in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming

    2018-02-01

    We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.

  8. Robust intravascular optical coherence elastography driven by acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.

    2007-07-01

    High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.

  9. Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography.

    PubMed

    Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut

    2006-01-01

    Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.

  10. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  11. Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2010-11-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

  12. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  13. Electric field control of magnon-induced magnetization dynamics in multiferroics

    PubMed Central

    Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob

    2016-01-01

    We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves. PMID:27554064

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasehi Tehrani, J; Wang, J; McEwan, A

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used tomore » detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.« less

  15. Correlation between spin structure oscillations and domain wall velocities

    PubMed Central

    Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2013-01-01

    Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. PMID:23978905

  16. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.

    PubMed

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W

    2010-03-31

    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (p<0.05), chest wall shape (p<0.05) and motion during breathing differed between postures. Compared to a reference posture, movement at the 9th rib lateral diameter increased in the thoracolumbar extension posture (p<0.008). In slumped posture movement at the AP diameters at T1 and axilla increased (p<0.00001). Rotation postures decreased movement in the lateral diameter at the axilla (p<0.0007). The data show that single plane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Abanov, Artem; Tretiakov, Oleg; Liu, Yang

    2011-03-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).

  18. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    NASA Astrophysics Data System (ADS)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  19. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  20. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films.

    PubMed

    Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  1. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    PubMed Central

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-01-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields. PMID:26130159

  2. SU-E-T-571: Prostate IMRT QA: Prediction of the Range of Rectal NTCP Using a 2D Field Approach Based on Variations of the Rectal Wall Motion and Thickness.

    PubMed

    Grigorov, G; Chow, J; Foster, K

    2012-06-01

    The aims of this study is to (1) introduce a 2D field of possible rectal normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) plan, so that based on a given prescribed dose the rectal NTCP is merely a function of the rectal wall thickness and rectal motion; and (2) separate the 2D field of rectal NTCP into area of low risk and area of high risk for rectal toxicity < Grade II, based on the threshold rectal NTCP. The 2D field of NTCP model was developed using ten randomly selected prostate IMRT plans. The clinical rectal geometry was initially represented by the cylindrical contour in the treatment planning system. Different combinations of rectal motions, rectal wall thicknesses, planning target volume margins and prescribed doses were used to determine the NTCP in prostate IMRT plans. It was found that the functions bordering the 2D field for the given AP, LR and SI direction can be described as exponential, quadratic and linear equations, respectively. A ratio of the area of 2D field containing data of the low risk NTCP to the entire area of the field was introduced and calculated. Although our method is based on the Kutcher's dose response model and published tissue parameters, other mathematical models can be used in our approach. The 2D field of rectal NTCP is useful to estimate the rectal NTCP range in the prostate pre-treatment and treatment QA. Our method can determine the patient's threshold immobilization for a given rectal wall thickness so that prescribed dose can be delivered to the prostate to avoid rectal complication. Our method is also applicable to multi-phase prostate IMRT, and can be adapted to any treatment planning systems. © 2012 American Association of Physicists in Medicine.

  3. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    PubMed Central

    Hwang, Yongyun

    2017-01-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167581

  4. Self-sustaining processes at all scales in wall-bounded turbulent shear flows.

    PubMed

    Cossu, Carlo; Hwang, Yongyun

    2017-03-13

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  5. Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules.

    PubMed Central

    Pierres, A; Benoliel, A M; Zhu, C; Bongrand, P

    2001-01-01

    The rate and distance-dependence of association between surface-attached molecules may be determined by monitoring the motion of receptor-bearing spheres along ligand-coated surfaces in a flow chamber (Pierres et al., Proc. Natl. Acad. Sci. U.S.A. 95:9256-9261, 1998). Particle arrests reveal bond formation, and the particle-to-surface distance may be estimated from the ratio between the velocity and the wall shear rate. However, several problems are raised. First, data interpretation requires extensive computer simulations. Second, the relevance of standard results from fluid mechanics to micrometer-size particles separated from surfaces by nanometer distances is not fully demonstrated. Third, the wall shear rate must be known with high accuracy. Here we present a simple derivation of an algorithm permitting one to simulate the motion of spheres near a plane in shear flow. We check that theoretical predictions are consistent with the experimental dependence of motion on medium viscosity or particle size, and the requirement for equilibrium particle height distribution to follow Boltzman's law. The determination of the statistical relationship between particle velocity and acceleration allows one to derive the wall shear rate with 1-s(-1) accuracy and the Hamaker constant of interaction between the particle and the wall with a sensitivity better than 10(-21) J. It is demonstrated that the correlation between particle height and mean velocity during a time interval Deltat is maximal when Deltat is about 0.1-0.2 s for a particle of 1.4-microm radius. When the particle-to-surface distance ranges between 10 and 40 nm, the particle height distribution may be obtained with a standard deviation ranging between 8 and 25 nm, provided the average velocity during a 160-ms period of time is determined with 10% accuracy. It is concluded that the flow chamber allows one to detect the formation of individual bonds with a minimal lifetime of 40 ms in presence of a disruptive force of approximately 5 pN and to assess the distance dependence within the tens of nanometer range. PMID:11423392

  6. Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers

    NASA Astrophysics Data System (ADS)

    Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong

    2017-04-01

    Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.

  7. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  8. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  9. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility.

    PubMed

    Izumi, N; Meezan, N B; Divol, L; Hall, G N; Barrios, M A; Jones, O; Landen, O L; Kroll, J J; Vonhof, S A; Nikroo, A; Jaquez, J; Bailey, C G; Hardy, C M; Ehrlich, R B; Town, R P J; Bradley, D K; Hinkel, D E; Moody, J D

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  10. Schematic construction of flanged nanobearings from double-walled carbon nanotubes.

    PubMed

    Shenai, Prathamesh Mahesh; Zhao, Yang

    2010-08-01

    The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.

  11. Experimental Study of Short-Time Brownian Motion

    NASA Astrophysics Data System (ADS)

    Mo, Jianyong; Simha, Akarsh; Riegler, David; Raizen, Mark

    2015-03-01

    We report our progress on the study of short-time Brownian motion of optically-trapped microspheres. In earlier work, we observed the instantaneous velocity of microspheres in gas and in liquid, verifying a prediction by Albert Einstein from 1907. We now report a more accurate test of the energy equipartition theorem for a particle in liquid. We also observe boundary effects on Brownian motion in liquid by setting a wall near the trapped particle, which changes the dynamics of the motion. We find that the velocity autocorrelation of the particle decreases faster as the particle gets closer to the wall.

  12. On the theory of compliant wall drag reduction in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Ash, R. L.

    1974-01-01

    A theoretical model has been developed which can explain how the motion of a compliant wall reduces turbulent skin friction drag. Available experimental evidence at low speeds has been used to infer that a compliant surface selectively removes energy from the upper frequency range of the energy containing eddies and through resulting surface motions can produce locally negative Reynolds stresses at the wall. The theory establishes a preliminary amplitude and frequency criterion as the basis for designing effective drag reducing compliant surfaces.

  13. Correlation between the viscoelastic heterogeneity and the domain wall motion of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Song, L. J.; Liu, Y. H.; Huo, J. T.; Wang, J. Q.; Xu, W.; Li, J. L.; Wang, C. T.; Wang, X. M.; Li, R. W.

    2018-06-01

    The soft magnetic properties of Fe-based metallic glasses are reduced significantly by external and residual stresses, e.g., the susceptibility decreases and coercivity increases, which limits their application severely. Unraveling the micromechanism of how the stress influences the soft magnetic properties is of great help for enhancing the performance of Fe-based metallic glasses. In this work, we investigate the effect of viscoelastic heterogeneity on the motion of magnetic domain wall surrounding nanoindentations. Compared to the matrix, dissipation of the viscoelastic heterogeneity increases toward the nanoindentation. Meanwhile, the motion of domain wall under external magnetic field becomes more difficult toward the nanoindentations. A correlation between the viscoelastic dissipation and the moving ability of magnetic domain walls is observed, which can be well fitted using magnetoelastic coupling theory. This suggests that manipulating the microscale viscoelastic heterogeneity is probably a helpful strategy for enhancing the soft magnetic properties of metallic glasses.

  14. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion.

    PubMed

    Korosoglou, Grigorios; Elhmidi, Yacine; Steen, Henning; Schellberg, Dieter; Riedle, Nina; Ahrens, Johannes; Lehrke, Stephanie; Merten, Constanze; Lossnitzer, Dirk; Radeleff, Jannis; Zugck, Christian; Giannitsis, Evangelos; Katus, Hugo A

    2010-10-05

    This study sought to determine the prognostic value of wall motion and perfusion assessment during high-dose dobutamine stress (DS) cardiac magnetic resonance imaging (MRI) in a large patient cohort. DS-MRI offers the possibility to integrate myocardial perfusion and wall motion analysis in a single examination for the detection of coronary artery disease (CAD). A total of 1,493 consecutive patients with suspected or known CAD underwent DS-MRI, using a standard protocol in a 1.5-T magnetic resonance scanner. Wall motion and perfusion were assessed at baseline and during stress, and outcome data including cardiac death, nonfatal myocardial infarction ("hard events"), and "late" revascularization performed >90 days after the MR scans were collected during a 2 ± 1 year follow-up period. Fifty-three hard events, including 14 cardiac deaths and 39 nonfatal infarctions, occurred during the follow-up period, whereas 85 patients underwent "late" revascularization. Using multivariable regression analysis, an abnormal result for wall motion or perfusion during stress yielded the strongest independent prognostic value for both hard events and late revascularization, clearly surpassing that of clinical and baseline magnetic resonance parameters (for wall motion: adjusted hazard ratio [HR] of 5.9 [95% confidence interval (CI): 2.5 to 13.6] for hard events and of 3.1 [95% CI: 1.7 to 5.6] for late revascularization, and for perfusion: adjusted HR of 5.4 [95% CI: 2.3 to 12.9] for hard events and of 6.2 [95% CI: 3.3 to 11.3] for late revascularization, p < 0.001 for all). DS-MRI can accurately identify patients who are at increased risk for cardiac death and myocardial infarction, separating them from those with normal findings, who have very low risk for future cardiac events. (Prognostic Value of High Dose Dobutamine Stress Magnetic Resonance Imaging; NCT00837005). Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Short-term effect of volume recruitment-derecruitment manoeuvre on chest-wall motion in Duchenne muscular dystrophy.

    PubMed

    Meric, Henri; Falaize, Line; Pradon, Didier; Lacombe, Matthieu; Petitjean, Michel; Orlikowski, David; Prigent, Hélène; Lofaso, Frédéric

    2017-05-01

    Because progressive respiratory muscle weakness leads to decreased chest-wall motion with eventual ribcage stiffening, the purpose was to compare vital capacity (VC) and contributions of chest-wall compartments before and after volume recruitment-derecruitment manoeuvres (VRDM) in Duchenne muscular dystrophy (DMD). We studied nine patients with DMD and VC lower than 30% of predicted. VRDM was performed using 15 insufflations-exsufflations of +30 to -30 cmH 2 O. VC and three-dimensional chest-wall motion were measured, as well as oxygen saturation, transcutaneous partial pressure of carbon dioxide and the rapid shallow breathing index (respiratory rate/tidal volume) before (baseline) and immediately and 1 hour after VRDM. VC increased significantly immediately after VRDM (108% ± 7% of baseline, p = 0.018) but returned to baseline within 1 hour, and the rapid shallow breathing index increased significantly. The non-dominant side systematically increased immediately after VRDM ( p = 0.0077), and in the six patients with abnormal breathing asymmetry (difference >10% of VC) at baseline, this asymmetry was corrected immediately and/or 1 hour after VRDM. VRDM improved VC and reduced chest-wall motion asymmetry, but this beneficial effect waned rapidly with respiratory muscle fatigue, suggesting that VRDM may need to be repeated during the day to produce lasting benefits.

  16. Inspiratory flow rate, not type of incentive spirometry device, influences chest wall motion in healthy individuals.

    PubMed

    Chang, Angela T; Palmer, Kerry R; McNaught, Jessie; Thomas, Peter J

    2010-08-01

    This study investigated the effect of flow rates and spirometer type on chest wall motion in healthy individuals. Twenty-one healthy volunteers completed breathing trials to either two times tidal volume (2xV(T)) or inspiratory capacity (IC) at high, low, or natural flow rates, using a volume- or flow-oriented spirometer. The proportions of rib cage movement to tidal volume (%RC/V(T)), chest wall diameters, and perceived level of exertion (RPE) were compared. Low and natural flow rates resulted in significantly lower %RC/V(T) compared to high flow rate trials (p=0.001) at 2xV(T). Low flow trials also resulted in significantly less chest wall motion in the upper anteroposterior direction than high and natural flow rates (p<0.001). At IC, significantly greater movement occurred in the abdominal lateral direction during low flow compared to high and natural flow trials (both p<0.003). RPE was lower for the low flow trials compared to high flow trials at IC and 2xV(T) (p<0.01). In healthy individuals, inspiratory flow (not device type) during incentive spirometry determines the resultant breathing pattern. High flow rates result in greater chest wall motion than low flow rates.

  17. [Segmental wall movement of the left ventricle in healthy persons and myocardial infarct patients studied by a catheter-less nuclear medical method (camera-cinematography of the heart)].

    PubMed

    Geffers, H; Sigel, H; Bitter, F; Kampmann, H; Stauch, M; Adam, W E

    1976-08-01

    Camera-Kinematography is a nearly noninvasive method to investigate regional motion of the myocard, and allows evaluation of the function of the heart. About 20 min after injection of 15-20 mCi of 99mTC-Human-Serum-Albumin, when the tracer is distributed homogenously within the bloodpool, data acquisition starts. Myocardial wall motion is represented in an appropriate quasi three-dimensional form. In this representation scars can be revealed as "silent" (akinetic) regions, aneurysms by asynchronic motion. Time activity curves for arbitrarily chosen regions can be calculated and give an equivalent for regional volume changes. 16 patients with an old infarction have been investigated. In fourteen cases the location and extent of regions with abnormal motion could be evaluated. Only two cases of a small posterior wall infarction did not show deviations from normal contraction pattern.

  18. Safety Harness For Work Under Suspended Load

    NASA Technical Reports Server (NTRS)

    Sunoo, Su Young

    1994-01-01

    Safety device protects worker under suspended engine or other heavy load. Mechanically linked with load so if load should fall, worker yanked safely away. Worker wears chest-plate vest with straps crossing eye on back. Lower safety cable connected to eye extends horizontally away from worker to nearby wall, wrapped on pulley and extends upward to motion amplifier or reducer. Safety cables transform any sudden downward motion of overhanging load into rapid sideways motion of worker. Net catches worker, preventing worker from bumping against wall.

  19. Motion of a Spherical Domain Wall and the Large-Scale Structure Formation

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Tomita, K.

    1991-11-01

    The evolution of a wall-like structure in the universe is investigated by assuming a simplified model of a domain wall. The domain wall is approximated as a thin spherical shell with domain wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic manner, and its motion in an expanding universe is numerically studied in the general-relativistic treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic age, in order that the walls avoid the collapse to the present time and play an important role in the structure formation of the universe. It is shown that, in spite of the above interaction, the strong restriction is imposed on the surface density of the domain walls and the allowed values are too small to have any influences on the background model.

  20. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE PAGES

    Izumi, N.; Meezan, N. B.; Divol, L.; ...

    2016-08-12

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  1. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the techniquemore » of spectrally selective x-ray imaging are discussed.« less

  2. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N.; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  3. Dynamic radionuclide determination of regional left ventricular wall motion using a new digital imaging device

    NASA Technical Reports Server (NTRS)

    Steele, P.; Kirch, D.

    1975-01-01

    In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.

  4. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  5. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  6. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  7. An investigation of the effects of spanwise wall oscillation on the structure of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Trujillo, Steven Mathew

    Transition of a fluid boundary layer from a laminar to a turbulent regime is accompanied by a large increase in skin friction drag. The ability to manipulate the flow or its bounding geometry to reduce this drag effectively has been a long-sought goal in contemporary fluid mechanics. Recently, workers have demonstrated that continuous lateral oscillation of the flow's bounding surface is one means to this goal, producing significant drag reduction. The present study was performed to understand better the mechanism by which such a flow achieves drag reduction. An oscillating wall section was installed in a water channel facility, and the resulting flow was studied using laser Doppler velocimetry, hot-film anemometry, and visualization techniques. Traditional mean and fluctuating statistics were examined, as well as statistics computed from conditionally-sampled turbulent events. The dependence of these quantities on the phase of the oscillating surface's motion was also studied. Visualization-based studies were employed to provide insight into the structural changes brought on by the wall oscillation. The most dramatic changes effected by the wall motion were seen as reductions in frequency of bursts and sweeps, events which concentrate large production of Reynolds stress and which ultimately augment wall skin friction. These Reynolds-stress reductions were reflected in reductions in mean and fluctuating quantifies in the lower regions of the boundary layer. Other velocity measurements confirmed earlier workers' speculations that the secondary flow induced by the oscillating wall is comparable to Stokes' solution for an oscillating plate in a quiescent fluid. Other than this secondary flow, however, the boundary layer displayed essentially no dependence on the phase of the wall motion. A simple cost analysis showed that, in general, the energy cost required to implement this technique is greater than the savings it produces. The visualizations of the flow revealed a more uniform flow in the near-wall region resulting from wall oscillation. Quantitative analyses of the visualizations supported the velocity-based Reynolds-stress reductions; the same data also revealed that the quasi-streamwise vortical structures above the wall did not appear to be altered significantly by the wall motion.

  8. Myocardial Extracellular Volume Estimation by CMR Predicts Functional Recovery Following Acute MI.

    PubMed

    Kidambi, Ananth; Motwani, Manish; Uddin, Akhlaque; Ripley, David P; McDiarmid, Adam K; Swoboda, Peter P; Broadbent, David A; Musa, Tarique Al; Erhayiem, Bara; Leader, Joshua; Croisille, Pierre; Clarysse, Patrick; Greenwood, John P; Plein, Sven

    2017-09-01

    In the setting of reperfused acute myocardial infarction (AMI), the authors sought to compare prediction of contractile recovery by infarct extracellular volume (ECV), as measured by T1-mapping cardiac magnetic resonance (CMR), with late gadolinium enhancement (LGE) transmural extent. The transmural extent of myocardial infarction as assessed by LGE CMR is a strong predictor of functional recovery, but accuracy of the technique may be reduced in AMI. ECV mapping by CMR can provide a continuous measure associated with the severity of tissue damage within infarcted myocardium. Thirty-nine patients underwent acute (day 2) and convalescent (3 months) CMR scans following AMI. Cine imaging, tissue tagging, T2-weighted imaging, modified Look-Locker inversion T1 mapping natively and 15 min post-gadolinium-contrast administration, and LGE imaging were performed. The ability of acute infarct ECV and acute transmural extent of LGE to predict convalescent wall motion, ejection fraction (EF), and strain were compared per-segment and per-patient. Per-segment, acute ECV and LGE transmural extent were associated with convalescent wall motion score (p < 0.01; p < 0.01, respectively). ECV had higher accuracy than LGE extent to predict improved wall motion (area under receiver-operating characteristics curve 0.77 vs. 0.66; p = 0.02). Infarct ECV ≤0.5 had sensitivity 81% and specificity 65% for prediction of improvement in segmental function; LGE transmural extent ≤0.5 had sensitivity 61% and specificity 71%. Per-patient, ECV and LGE correlated with convalescent wall motion score (r = 0.45; p < 0.01; r = 0.41; p = 0.02, respectively) and convalescent EF (p < 0.01; p = 0.04). ECV and LGE extent were not significantly correlated (r = 0.34; p = 0.07). In multivariable linear regression analysis, acute infarct ECV was independently associated with convalescent infarct strain and EF (p = 0.03; p = 0.04), whereas LGE was not (p = 0.29; p = 0.24). Acute infarct ECV in reperfused AMI can complement LGE assessment as an additional predictor of regional and global LV functional recovery that is independent of transmural extent of infarction. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr 0.2Ti 0.8)O 3-x(Ba 0.7Ca 0.3)TiO 3 using in situ high-energy X-ray diffraction during application of electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith

    The piezoelectric compositions (1 - x)Ba(Zr 0.2Ti 0.8)O 3–x(Ba 0.7Ca 0.3)TiO 3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributedmore » to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less

  10. Living on the edge: transfer and traffic of E. coli in a confined flow.

    PubMed

    Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke

    2015-08-21

    We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.

  11. Assessment of seismic design response factors of concrete wall buildings

    NASA Astrophysics Data System (ADS)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  12. Intraventricular Flow Velocity Vector Visualization Based on the Continuity Equation and Measurements of Vorticity and Wall Shear Stress

    NASA Astrophysics Data System (ADS)

    Itatani, Keiichi; Okada, Takashi; Uejima, Tokuhisa; Tanaka, Tomohiko; Ono, Minoru; Miyaji, Kagami; Takenaka, Katsu

    2013-07-01

    We have developed a system to estimate velocity vector fields inside the cardiac ventricle by echocardiography and to evaluate several flow dynamical parameters to assess the pathophysiology of cardiovascular diseases. A two-dimensional continuity equation was applied to color Doppler data using speckle tracking data as boundary conditions, and the velocity component perpendicular to the echo beam line was obtained. We determined the optimal smoothing method of the color Doppler data, and the 8-pixel standard deviation of the Gaussian filter provided vorticity without nonphysiological stripe shape noise. We also determined the weight function at the bilateral boundaries given by the speckle tracking data of the ventricle or vascular wall motion, and the weight function linear to the distance from the boundary provided accurate flow velocities not only inside the vortex flow but also around near-wall regions on the basis of the results of the validation of a digital phantom of a pipe flow model.

  13. Domain wall dynamics driven by spin transfer torque and the spin-orbit field.

    PubMed

    Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo

    2012-01-18

    We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

  14. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  15. CFD simulation of flow through heart: a perspective review.

    PubMed

    Khalafvand, S S; Ng, E Y K; Zhong, L

    2011-01-01

    The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework.

  16. Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering.

    PubMed

    Uspal, W E; Popescu, M N; Dietrich, S; Tasinkevych, M

    2015-01-21

    Micron-sized particles moving through a solution in response to self-generated chemical gradients serve as model systems for studying active matter. Their far-reaching potential applications will require the particles to sense and respond to their local environment in a robust manner. The self-generated hydrodynamic and chemical fields, which induce particle motion, probe and are modified by that very environment, including confining boundaries. Focusing on a catalytically active Janus particle as a paradigmatic example, we predict that near a hard planar wall such a particle exhibits several scenarios of motion: reflection from the wall, motion at a steady-state orientation and height above the wall, or motionless, steady "hovering." Concerning the steady states, the height and the orientation are determined both by the proportion of catalyst coverage and the interactions of the solutes with the different "faces" of the particle. Accordingly, we propose that a desired behavior can be selected by tuning these parameters via a judicious design of the particle surface chemistry.

  17. Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging

    PubMed Central

    Atkinson, David; Henningsson, Markus; Botnar, Rene M.; Prieto, Claudia

    2016-01-01

    Purpose To develop a respiratory motion correction framework to accelerate free‐breathing three‐dimensional (3D) whole‐heart coronary lumen and coronary vessel wall MRI. Methods We developed a 3D flow‐independent approach for vessel wall imaging based on the subtraction of data with and without T2‐preparation prepulses acquired interleaved with image navigators. The proposed method corrects both datasets to the same respiratory position using beat‐to‐beat translation and bin‐to‐bin nonrigid corrections, producing coregistered, motion‐corrected coronary lumen and coronary vessel wall images. The proposed method was studied in 10 healthy subjects and was compared with beat‐to‐beat translational correction (TC) and no motion correction for the left and right coronary arteries. Additionally, the coronary lumen images were compared with a 6‐mm diaphragmatic navigator gated and tracked scan. Results No significant differences (P > 0.01) were found between the proposed method and the gated and tracked scan for coronary lumen, despite an average improvement in scan efficiency to 96% from 59%. Significant differences (P < 0.01) were found in right coronary artery vessel wall thickness, right coronary artery vessel wall sharpness, and vessel wall visual score between the proposed method and TC. Conclusion The feasibility of a highly efficient motion correction framework for simultaneous whole‐heart coronary lumen and vessel wall has been demonstrated. Magn Reson Med 77:1894–1908, 2017. © 2016 International Society for Magnetic Resonance in Medicine PMID:27221073

  18. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  19. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Cossu, Carlo; Hwang, Yongyun

    2017-03-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.

  20. Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom.

    PubMed

    Bhaskaran, Abhishek; Barry, M A Tony; Al Raisi, Sara I; Chik, William; Nguyen, Doan Trang; Pouliopoulos, Jim; Nalliah, Chrishan; Hendricks, Roger; Thomas, Stuart; McEwan, Alistair L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-10-01

    Magnetic navigation system (MNS) ablation was suspected to be less effective and unstable in highly mobile cardiac regions compared to radiofrequency (RF) ablations with manual control (MC). The aim of the study was to compare the (1) lesion size and (2) stability of MNS versus MC during irrigated RF ablation with and without simulated mechanical heart wall motion. In a previously validated myocardial phantom, the performance of Navistar RMT Thermocool catheter (Biosense Webster, CA, USA) guided with MNS was compared to manually controlled Navistar irrigated Thermocool catheter (Biosense Webster, CA, USA). The lesion dimensions were compared with the catheter in inferior and superior orientation, with and without 6-mm simulated wall motion. All ablations were performed with 40 W power and 30 ml/ min irrigation for 60 s. A total of 60 ablations were performed. The mean lesion volumes with MNS and MC were 57.5 ± 7.1 and 58.1 ± 7.1 mm(3), respectively, in the inferior catheter orientation (n = 23, p = 0.6), 62.8 ± 9.9 and 64.6 ± 7.6 mm(3), respectively, in the superior catheter orientation (n = 16, p = 0.9). With 6-mm simulated wall motion, the mean lesion volumes with MNS and MC were 60.2 ± 2.7 and 42.8 ± 8.4 mm(3), respectively, in the inferior catheter orientation (n = 11, p = <0.01*), 74.1 ± 5.8 and 54.2 ± 3.7 mm(3), respectively, in the superior catheter orientation (n = 10, p = <0.01*). During 6-mm simulated wall motion, the MC catheter and MNS catheter moved 5.2 ± 0.1 and 0 mm, respectively, in inferior orientation and 5.5 ± 0.1 and 0 mm, respectively, in the superior orientation on the ablation surface. The lesion dimensions were larger with MNS compared to MC in the presence of simulated wall motion, consistent with greater catheter stability. However, similar lesion dimensions were observed in the stationary model.

  1. Simulation of Oscillatory Domain Wall Motion Driven by Spin Waves in Nanostrip with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Shang Fan; Chang, Liang Juan; Spintronics Laboratory Team

    2014-03-01

    We numerically investigate the spin waves (SW) induced domain wall (DW) oscillatory motion in a nanostrip with perpendicular magnetic anisotropy by means of micromagnetic simulation. SW carries spin angular momentum and can interact with DWs via Spin Transfer Torque (STT). Propagating SW can drive a DW motion depending on the in-plane tilt angle φ of the wall magnetization. We calculate the instantaneous velocity of DWs as a function of φwith different SW frequency f. We find that the DW motion under propagating SW depends not only on the frequencies f, but also on the in-plane tilt angle φ. The nanostrip considered is 50 nm wide and 4000 nm long. A DW at the center is subjected to a SW source 500 nm apart on the left with amplitude in the transverse direction and varying frequency f. The motions of the DW induced by the SW are accompanied by in-plane rotation of magnetization of DW. Once rotated by 90 degrees, the DW shows a backward motion towards the SW source. The oscillatory amplitude and frequency of the DW motion is analyzed. A phase diagram will be presented. This study provides new perspectives for the control and manipulation of DW in a nanostrip. Financial supports by Academia Sinica and National Science Council are acknowledged

  2. Assessment of LVEF using a new 16-segment wall motion score in echocardiography.

    PubMed

    Lebeau, Real; Serri, Karim; Lorenzo, Maria Di; Sauvé, Claude; Le, Van Hoai Viet; Soulières, Vicky; El-Rayes, Malak; Pagé, Maude; Zaïani, Chimène; Garot, Jérôme; Poulin, Frédéric

    2018-06-01

    Simpson biplane method and 3D by transthoracic echocardiography (TTE), radionuclide angiography (RNA) and cardiac magnetic resonance imaging (CMR) are the most accepted techniques for left ventricular ejection fraction (LVEF) assessment. Wall motion score index (WMSI) by TTE is an accepted complement. However, the conversion from WMSI to LVEF is obtained through a regression equation, which may limit its use. In this retrospective study, we aimed to validate a new method to derive LVEF from the wall motion score in 95 patients. The new score consisted of attributing a segmental EF to each LV segment based on the wall motion score and averaging all 16 segmental EF into a global LVEF. This segmental EF score was calculated on TTE in 95 patients, and RNA was used as the reference LVEF method. LVEF using the new segmental EF 15-40-65 score on TTE was compared to the reference methods using linear regression and Bland-Altman analyses. The median LVEF was 45% (interquartile range 32-53%; range from 15 to 65%). Our new segmental EF 15-40-65 score derived on TTE correlated strongly with RNA-LVEF ( r  = 0.97). Overall, the new score resulted in good agreement of LVEF compared to RNA (mean bias 0.61%). The standard deviations (s.d.s) of the distributions of inter-method difference for the comparison of the new score with RNA were 6.2%, indicating good precision. LVEF assessment using segmental EF derived from the wall motion score applied to each of the 16 LV segments has excellent correlation and agreement with a reference method. © 2018 The authors.

  3. Frequency of Inverted Electrocardiographic T Waves (Cerebral T Waves) in Patients With Acute Strokes and Their Relation to Left Ventricular Wall Motion Abnormalities.

    PubMed

    Stone, Jeremy; Mor-Avi, Victor; Ardelt, Agnieszka; Lang, Roberto M

    2018-01-01

    Transient, symmetric, and deep inverted electrocardiogram (ECG) T waves in the setting of stroke, commonly referred to as cerebral T waves, are rare, and the underlying mechanism is unclear. Our study aimed to test the hypothesis that cerebral T waves are associated with transient cardiac dysfunction. This retrospective study included 800 patients admitted with the primary diagnosis of hemorrhagic or ischemic stroke. ECGs were examined for cerebral T waves, defined as T-wave inversion of ≥5 mm depth in ≥4 contiguous precordial leads. Echocardiograms of those meeting these criteria were examined for the presence of left ventricular (LV) wall motion abnormalities. Follow-up evaluation included both ECG and echocardiogram. Of the 800 patients, 17 had cerebral T waves on ECG (2.1%). All 17 patients had ischemic strokes, of which 11 were in the middle cerebral artery distribution (65%), and 2 were cerebellar (12%), whereas the remaining 4 involved other locations. Follow-up ECG showed resolution of the T-wave changes in all 17 patients. Of these patients, 14 (82%) had normal wall motion, and 3 had transient wall motion abnormalities (18%). Two of these patients had Takotsubo-like cardiomyopathy with apical ballooning, and the third had globally reduced LV function. Coronary angiography showed no significant disease to explain the LV dysfunction. In summary, in our cohort of patients with acute stroke, cerebral T waves were rare and occurred only in ischemic stroke. Eighteen percent of patients with cerebral T waves had significant transient wall motion abnormalities. Patients with stroke with cerebral T waves, especially in those with ischemic strokes, should be assessed for cardiac dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Estimation of optimal pivot point for remote center of motion alignment in surgery.

    PubMed

    Rosa, Benoît; Gruijthuijsen, Caspar; Van Cleynenbreugel, Ben; Sloten, Jos Vander; Reynaerts, Dominiek; Poorten, Emmanuel Vander

    2015-02-01

    The determination of an optimal pivot point ([Formula: see text]) is important for instrument manipulation in minimally invasive surgery. Such knowledge is of particular importance for robotic-assisted surgery where robots need to rotate precisely around a specific point in space in order to minimize trauma to the body wall while maintaining position control. Remote center of motion (RCM) mechanisms are commonly used, where the RCM point is manually and visually aligned. If not positioned appropriately, this misalignment might lead to intolerably high forces on the body wall with increased risk of postoperative complications or instrument damage. An automated method to align the RCM with the [Formula: see text] was developed and tested. Computer vision and a lightweight calibration procedure are used to estimate the optimal pivot point. One or two pre-calibrated cameras viewing the surgical scene are employed. The surgeon is asked to make short pivoting movements, applying as little torque as possible, with an instrument of choice passing through the insertion point while camera images are being recorded. The physical properties of an instrument rotating around a pivot point are exploited in a random sample consensus scheme to robustly estimate the ideal position of the RCM in the image planes. Triangulation is used to estimate the RCM position in 3D. Experiments were performed on a specially designed mockup to test the method. The position of the pivot point is estimated with an average error less than 1.85 mm using two webcams placed from approximately 30 cm to 1 m away from the scene. The entire procedure was completed in a few seconds. In automated method to estimate the ideal position of the RCM was shown to be reliable. The method can be implemented within a visual servoing approach to automatically place the RCM point, or the results can be displayed on a screen to provide guidance to the surgeon. Further work includes the development of an image-guided alignment method and validation with in vivo experiments.

  5. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.

    PubMed

    Garner, Ethan C; Bernard, Remi; Wang, Wenqin; Zhuang, Xiaowei; Rudner, David Z; Mitchison, Tim

    2011-07-08

    Rod-shaped bacteria elongate by the action of cell wall synthesis complexes linked to underlying dynamic MreB filaments. To understand how the movements of these filaments relate to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-precision particle tracking in Bacillus subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.

  6. Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires

    NASA Astrophysics Data System (ADS)

    Le Gall, S.; Vernier, N.; Montaigne, F.; Thiaville, A.; Sampaio, J.; Ravelosona, D.; Mangin, S.; Andrieu, S.; Hauet, T.

    2017-05-01

    The combined effect of magnetic field and current on domain wall motion is investigated in epitaxial [Co/Ni] microwires. Both thermally activated and flow regimes are found to be strongly affected by current. All experimental data can be understood by taking into account both adiabatic and nonadiabatic components of the spin transfer torque, the parameters of which are extracted. In the precessional flow regime, it is shown that the domain wall can move in the electron flow direction against a strong applied field, as previously observed. In addition, for a large range of applied magnetic field and injected current, a stochastic domain wall displacement after each pulse is observed. Two-dimensional micromagnetic simulations, including some disorder, show a random fluctuation of the domain wall position that qualitatively matches the experimental results.

  7. Real-Time Three-Dimensional Echocardiography: Characterization of Cardiac Anatomy and Function-Current Clinical Applications and Literature Review Update.

    PubMed

    Velasco, Omar; Beckett, Morgan Q; James, Aaron W; Loehr, Megan N; Lewis, Taylor G; Hassan, Tahmin; Janardhanan, Rajesh

    2017-01-01

    Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.

  8. α-Information Based Registration of Dynamic Scans for Magnetic Resonance Cystography

    PubMed Central

    Han, Hao; Lin, Qin; Li, Lihong; Duan, Chaijie; Lu, Hongbing; Li, Haifang; Yan, Zengmin; Fitzgerald, John

    2015-01-01

    To continue our effort on developing magnetic resonance (MR) cystography, we introduce a novel non–rigid 3D registration method to compensate for bladder wall motion and deformation in dynamic MR scans, which are impaired by relatively low signal–to–noise ratio in each time frame. The registration method is developed on the similarity measure of α–information, which has the potential of achieving higher registration accuracy than the commonly-used mutual information (MI) measure for either mono-modality or multi-modality image registration. The α–information metric was also demonstrated to be superior to both the mean squares and the cross-correlation metrics in multi-modality scenarios. The proposed α–registration method was applied for bladder motion compensation via real patient studies, and its effect to the automatic and accurate segmentation of bladder wall was also evaluated. Compared with the prevailing MI-based image registration approach, the presented α–information based registration was more effective to capture the bladder wall motion and deformation, which ensured the success of the following bladder wall segmentation to achieve the goal of evaluating the entire bladder wall for detection and diagnosis of abnormality. PMID:26087506

  9. Cross-stream distribution of red blood cells in sickle-cell disease

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Lam, Wilbur; Graham, Michael

    2017-11-01

    Experiments revealed that in blood flow, red blood cells (RBCs) tend to migrate away from the vessel walls, leaving a cell-free layer near the walls, while leukocytes and platelets tend to marginate towards the vessel walls. This segregation behavior of different cellular components in blood flow can be driven by their differences in stiffness and shape. An alteration of this segregation behavior may explain endothelial dysfunction and pain crisis associated with sickle-cell disease (SCD). It is hypothesized that the sickle RBCs, which are considerably stiffer than the healthy RBCs, may marginate towards the vessel walls and exert repeated damage to the endothelial cells. Direct simulations are performed to study the flowing suspensions of deformable biconcave discoids and stiff sickles representing healthy and sickle cells, respectively. It is observed that the sickles exhibit a strong margination towards the walls. The biconcave discoids in flowing suspensions undergo a so-called tank-treading motion, while the sickles behave as rigid bodies and undergo a tumbling motion. The margination behavior and tumbling motion of the sickles may help substantiate the aforementioned hypothesis of the mechanism for the SCD complications and shed some light on the design of novel therapies.

  10. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree.

    PubMed

    Huo, Yunlong; Choy, Jenny Susana; Svendsen, Mark; Sinha, Anjan Kumar; Kassab, Ghassan S

    2009-03-26

    The compliance of the vessel wall affects hemodynamic parameters which may alter the permeability of the vessel wall. Based on experimental measurements, the present study established a finite element (FE) model in the proximal elastic vessel segments of epicardial right coronary arterial (RCA) tree obtained from computed tomography. The motion of elastic vessel wall was measured by an impedance catheter and the inlet boundary condition was measured by an ultrasound flow probe. The Galerkin FE method was used to solve the Navier-Stokes and Continuity equations, where the convective term in the Navier-Stokes equation was changed in the arbitrary Lagrangian-Eulerian (ALE) framework to incorporate the motion due to vessel compliance. Various hemodynamic parameters (e.g., wall shear stress-WSS, WSS spatial gradient-WSSG, oscillatory shear index-OSI) were analyzed in the model. The motion due to vessel compliance affects the time-averaged WSSG more strongly than WSS at bifurcations. The decrease of WSSG at flow divider in elastic bifurcations, as compared to rigid bifurcations, implies that the vessel compliance decreases the permeability of vessel wall and may be atheroprotective. The model can be used to predict coronary flow pattern in subject-specific anatomy as determined by noninvasive imaging.

  11. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S; Charpentier, P; Sayler, E

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less

  12. Field driven magnetic racetrack memory accompanied with the interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol

    2018-06-01

    The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.

  13. Giant Permittivity in Epitaxial Ferroelectric Heterostructures

    NASA Astrophysics Data System (ADS)

    Erbil, A.; Kim, Y.; Gerhardt, R. A.

    1996-08-01

    A giant permittivity associated with the motion of domain walls is reported in epitaxial hetero- structures having alternating layers of ferroelectric and nonferroelectric oxides. At low frequencies, permittivities as high as 420 000 are found. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field correlated with the dc bias-field dependence of ac permittivities. We interpret the observations as a result of the motion of a pinned domain wall lattice at low electric fields and sliding-mode motion at high electric fields.

  14. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  15. Earthquake Resilient Tall Reinforced Concrete Buildings at Near-Fault Sites Using Base Isolation and Rocking Core Walls

    NASA Astrophysics Data System (ADS)

    Calugaru, Vladimir

    This dissertation pursues three main objectives: (1) to investigate the seismic response of tall reinforced concrete core wall buildings, designed following current building codes, subjected to pulse type near-fault ground motion, with special focus on the relation between the characteristics of the ground motion and the higher-modes of response; (2) to determine the characteristics of a base isolation system that results in nominally elastic response of the superstructure of a tall reinforced concrete core wall building at the maximum considered earthquake level of shaking; and (3) to demonstrate that the seismic performance, cost, and constructability of a base-isolated tall reinforced concrete core wall building can be significantly improved by incorporating a rocking core-wall in the design. First, this dissertation investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher-modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near-fault seismic ground motions as well as simple close-form pulses, which represented distinct pulses within the ground motions. Euler-Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. Next, this dissertation investigates numerically the seismic response of six seismically base-isolated (BI) 20-story reinforced concrete buildings and compares their response to that of a fixed-base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three-story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low-friction tension-resistant cross-linear bearings, lead-rubber bearings, and NFVDs. Finally, this dissertation investigates the seismic response of four 20-story buildings hypothetically located in the San Francisco Bay Area, 0.5 km from the San Andreas fault. One of the four studied buildings is fixed-base (FB), two are base-isolated (BI), and one uses a combination of base isolation and a rocking core wall (BIRW). Above the ground level, a reinforced concrete core wall provides the majority of the lateral force resistance in all four buildings. The FB and BI buildings satisfy requirements of ASCE 7-10. The BI and BIRW buildings use the same isolation system, which combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers. The rocking core-wall includes post-tensioning steel, buckling-restrained devices, and at its base is encased in a steel shell to maximize confinement of the concrete core. The total amount of longitudinal steel in the wall of the BIRW building is 0.71 to 0.87 times that used in the BI buildings. Response history two-dimensional analysis is performed, including the vertical components of excitation, for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). While the FB building at MCE level of shaking develops inelastic deformations and shear stresses in the wall that may correspond to irreparable damage, the BI and the BIRW buildings experience nominally elastic response of the wall, with floor accelerations and shear forces which are 0.36 to 0.55 times those experienced by the FB building. The response of the four buildings to two historical and two simulated near-fault ground motions is also studied, demonstrating that the BIRW building has the largest deformation capacity at the onset of structural damage. (Abstract shortened by UMI.).

  16. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} using in situ high-energy X-ray diffraction during application of electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith

    The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90°more » domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less

  17. Detection and tracking of human targets in indoor and urban environments using through-the-wall radar sensors

    NASA Astrophysics Data System (ADS)

    Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua

    2017-05-01

    Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.

  18. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery.

    PubMed

    Singh, S D; Xu, X Y; Pepper, J R; Izgi, C; Treasure, T; Mohiaddin, R H

    2016-07-05

    Aortic root motion was previously identified as a risk factor for aortic dissection due to increased longitudinal stresses in the ascending aorta. The aim of this study was to investigate the effects of aortic root motion on wall stress and strain in the ascending aorta and evaluate changes before and after implantation of personalised external aortic root support (PEARS). Finite element (FE) models of the aortic root and thoracic aorta were developed using patient-specific geometries reconstructed from pre- and post-PEARS cardiovascular magnetic resonance (CMR) images in three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied. Cardiovascular MR cine images were used to quantify aortic root motion, which was imposed at the aortic root boundary of the FE model, with zero-displacement constraints at the distal ends of the aortic branches and descending aorta. Measurements of the systolic downward motion of the aortic root revealed a significant reduction in the axial displacement in all three patients post-PEARS compared with its pre-PEARS counterparts. Higher longitudinal stresses were observed in the ascending aorta when compared with models without the root motion. Implantation of PEARS reduced the longitudinal stresses in the ascending aorta by up to 52%. In contrast, the circumferential stresses at the interface between the supported and unsupported aorta were increase by up to 82%. However, all peak stresses were less than half the known yield stress for the dilated thoracic aorta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Translational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions Using CorpsWallSlip (CWSlip)

    DTIC Science & Technology

    2007-06-01

    corresponding software developed for the translational response of rock- founded retaining walls buttressed at their toe by a reinforced concrete slab...by a Reinforced Concrete Slab ...........................................................................................................32 2.1...2.5 New translational analysis model of a wall retaining a partially submerged backfill and buttressed by a reinforced concrete slab

  20. Magnetic domain wall creep and depinning: A scalar field model approach

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Ferrero, Ezequiel E.; Kolton, Alejandro B.; Curiale, Javier; Jeudy, Vincent; Bustingorry, Sebastian

    2018-06-01

    Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.

  1. Evolution of hairpin vortices in a shear flow

    NASA Technical Reports Server (NTRS)

    Hon, T.-L.; Walker, J. D. A.

    1988-01-01

    Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations.

  2. An investigation of the cratering-induced motions occurring during the formation of bowl-shaped craters. [using high explosive charges as the cratering source

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.

    1980-01-01

    The effects of the dynamic processes which occur during crater formation were examined using small hemispherical high-explosive charges detonated in a tank which had one wall constructed of a thick piece of clear plexiglas. Crater formation and the motions of numerous tracer particles installed in the cratering medium at the medium-wall interface were viewed through the wall of this quarter-space tank and recorded with high-speed cameras. Subsequent study and analysis of particle motions and events recorded on the film provide data needed to develop a time-sequence description of the formation of a bowl-shaped crater. Tables show the dimensions of craters produced in a quarter-space tank compared with dimensions of craters produced in normal half-space tanks. Crater growth rate summaries are also tabulated.

  3. Temporal Fourier analysis applied to equilibrium radionuclide cineangiography. Importance in the study of global and regional left ventricular wall motion.

    PubMed

    Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P

    1982-01-01

    Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).

  4. Magnetic translator bearings

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  5. Characterization of the mechanical behavior and pathophysiological state of abdominal aortic aneurysms based on 4D ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Wittek, Andreas; Blase, Christopher; Derwich, Wojciech; Schmitz-Rixen, Thomas; Fritzen, Claus-Peter

    2017-06-01

    Abdominal aortic aneurysms (AAA) are a degenerative disease of the human aortic wall that may lead to weakening and eventually rupture of the wall with high mortality rates. Since the currently established criterion for surgical or endovascular treatment of the disease is imprecise in the individual case and treatment is not free of complications, the need for additional patient-individual biomarkers for short-term AAA rupture risk as basis for improved clinical decision making. Time resolved 3D ultrasound combined with speckle tracking algorithms is a novel non-invasive medical imaging technique that provides full-field displacement and strain measurements of aortic and aneurysmal wall motion. This is patient-individual information that has not been used so far to assess wall strength and rupture risk. The current study uses simple statistical indices of the heterogeneous spatial distribution of in-plane strain components as biomarkers for the pathological state of the aortic and aneurysmal wall. The pathophysiological rationale behind this approach are the known changes in microstructural composition of the aortic wall with progression of AAA development that results in increased stiffening and heterogeneity of the walls mechanical properties and in decreased wall strength. In a comparative analysis of the aortic wall motion of young volunteers without known cardiovascular diseases, aged arteriosclerotic patients without AAA, and AAA patients, mean values of all in-plane strain components were significantly reduced, and the heterogeneity of circumferential strain was significantly increased in the AAA group compared to both other groups. The capacity of the proposed method to differentiate between wall motion of aged, arteriosclerotic patients and AAA patients is a promising step towards a new method for in vivo assessment of AAA wall strength or stratification of AAA rupture risk as basis for improved clinical decision making on surgical or endovascular treatment of AAA.

  6. Feasibility of pulse wave velocity estimation from low frame rate US sequences in vivo

    NASA Astrophysics Data System (ADS)

    Zontak, Maria; Bruce, Matthew; Hippke, Michelle; Schwartz, Alan; O'Donnell, Matthew

    2017-03-01

    The pulse wave velocity (PWV) is considered one of the most important clinical parameters to evaluate CV risk, vascular adaptation, etc. There has been substantial work attempting to measure the PWV in peripheral vessels using ultrasound (US). This paper presents a fully automatic algorithm for PWV estimation from the human carotid using US sequences acquired with a Logic E9 scanner (modified for RF data capture) and a 9L probe. Our algorithm samples the pressure wave in time by tracking wall displacements over the sequence, and estimates the PWV by calculating the temporal shift between two sampled waves at two distinct locations. Several recent studies have utilized similar ideas along with speckle tracking tools and high frame rate (above 1 KHz) sequences to estimate the PWV. To explore PWV estimation in a more typical clinical setting, we used focused-beam scanning, which yields relatively low frame rates and small fields of view (e.g., 200 Hz for 16.7 mm filed of view). For our application, a 200 Hz frame rate is low. In particular, the sub-frame temporal accuracy required for PWV estimation between locations 16.7 mm apart, ranges from 0.82 of a frame for 4m/s, to 0.33 for 10m/s. When the distance is further reduced (to 0.28 mm between two beams), the sub-frame precision is in parts per thousand (ppt) of the frame (5 ppt for 10m/s). As such, the contributions of our algorithm and this paper are: 1. Ability to work with low frame-rate ( 200Hz) and decreased lateral field of view. 2. Fully automatic segmentation of the wall intima (using raw RF images). 3. Collaborative Speckle Tracking of 2D axial and lateral carotid wall motion. 4. Outlier robust PWV calculation from multiple votes using RANSAC. 5. Algorithm evaluation on volunteers of different ages and health conditions.

  7. Light effects in the atomic-motion-induced Ramsey narrowing of dark resonances in wall-coated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breschi, E.; Schori, C.; Di Domenico, G.

    2010-12-15

    We report on light shift and broadening in the atomic-motion-induced Ramsey narrowing of dark resonances prepared in alkali-metal vapors contained in wall-coated cells without buffer gas. The atomic-motion-induced Ramsey narrowing is due to the free motion of the polarized atomic spins in and out of the optical interaction region before spin relaxation. As a consequence of this effect, we observe a narrowing of the dark resonance linewidth as well as a reduction of the ground states' light shift when the volume of the interaction region decreases at constant optical intensity. The results can be intuitively interpreted as a dilution ofmore » the intensity effect similar to a pulsed interrogation due to the atomic motion. Finally the influence of this effect on the performance of compact atomic clocks is discussed.« less

  8. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  9. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local means and local magnitudes that facilitate a more natural decomposition than that using the cubic spline approach of EMD. In this paper, we apply the UWB radar system in through-wall human detections and present a method to characterize human's motions. We start with a walker's motion model and periodic motion features are given the analysis of the experimental data based on the combination of the LMT and fast Fourier Transform (FFT). The characteristics of human's motions including respiration, swing arms and legs, and fluctuations of the torso are extracted. At last, we calculate the actual distance between the human and the wall. This work was supported in part by National Natural Science Foundation of China under Grant 41574109 and 41430322.

  10. Evaluation of left ventricular wall motion and function in patients with previous myocardial infarction by three-dimensional 99mTc-HSAD multigated cardiac pool imaging.

    PubMed

    Yamazaki, J; Naitou, K; Ishida, S; Uno, N; Saisho, K; Munakata, T; Morishita, T; Takano, M; Yabe, Y

    1997-05-01

    To evaluate left ventricular (LV) wall motion stereoscopically from all directions and to calculate the LV volume by three-dimensional (3D) imaging. 99mTc-DTPA human serum albumin-multigated cardiac pool-single photon emission computed tomography (99mTc-MUGA-SPECT) was performed. A new data processing program was developed with the Application Visualization System-Medical Viewer (AVS-MV) based on images obtained from 99mTc-MUGA-SPECT. In patients with previous myocardial infarction, LV function and LV wall motion were evaluated by 3D-99mTc-MUGA imaging. The LV end-diastolic volume (LVEDV) and end-systolic volume (LVESV) were obtained from 3D-99mTc-MUGA images by the surface rendering method, and the left ventricular ejection fraction (LVEF) was calculated at thresholds of 35% (T1), 40% (T2), 45% (T3), and 50% (T4). There was a strong correlation between the LV volume calculated by 3D-99mTc-MUGA imaging at a threshold of 40% and that determined by contrast left ventriculography (LVEDV: 194.7 +/- 36.0 ml vs. 198.7 +/- 39.1 ml, r = 0.791, p < 0.001; LVESV: 91.6 +/- 44.5 ml vs. 93.3 +/- 41.3 ml, r = 0.953, p < 0.001), respectively. When compared with the LVEF data obtained by left ventriculography, significant correlations were found for 3D images reconstructed at each threshold (T1: r = 0.966; T2: r = 0.962; T3: r = 0.958; and T4: r = 0.955). In addition, when LV wall motion obtained by 3D-99mTc-MUGA imaging (LAT and LAO views) was compared with the results obtained by left ventriculography (RAO and LAO views), there was good agreement. 3D-99mTc-MUGA imaging was superior in allowing evaluation of LV wall motion in all directions and in assessment of LV function, since data acquisition and image reconstruction could be done within a short time with the three-detector imaging system and AVS-MV. This method appears to be very useful for the observation of both LV wall motion and LV function in patients with ischemic heart disease, because it is a noninvasive examination.

  11. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A. B.; Lemaître, A.; Jamet, J.-P.

    2016-07-01

    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

  12. Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii–Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li

    2018-04-01

    Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.

  13. Corrections to the thin wall approximation in general relativity

    NASA Technical Reports Server (NTRS)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  14. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  15. Self-propelled colloidal particle near a planar wall: A Brownian dynamics study

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ali; Sharifi-Mood, Nima; Koplik, Joel; Maldarelli, Charles

    2018-01-01

    Miniaturized, self-propelled locomotors use chemo-mechanical transduction mechanisms to convert fuel in the environment to autonomous motion. Recent experimental and theoretical studies demonstrate that these autonomous engines can passively follow the contours of solid boundaries they encounter. Boundary guidance, however, is not necessarily stable: Mechanical disturbances can cause the motor to hydrodynamically depart from the passively guided pathway. Furthermore, given the scaled-down size of micromotors (typically 100 nm to10 μ m ), Brownian thermal fluctuation forces are necessarily important, and these stochastic forces can randomize passively steered trajectories. Here we examine theoretically the stability of boundary-guided motion of micromotors along infinite planar walls to mechanical disturbances and to Brownian forces. Our aim is to understand under what conditions this passively guided motion is stable. We choose a locomotor design in which spherical colloids are partially coated with a catalytic cap that reacts with solute to produce a product. The product is repelled from the particle surface, causing the particle to move with the inert face at the front (autonomous motion via self-diffusiophoresis). When propelled towards a planar wall, deterministic hydrodynamic studies demonstrate that these locomotors can exhibit, for large enough cap sizes, steady trajectories in which the particle either skims unidirectionally along the surface at a constant distance from the wall or becomes stationary. We first investigate the linear hydrodynamic stability of these states by expanding the equations of motion about the states, and we find that linear perturbations decay exponentially in time. We then study the effects of thermal fluctuations by formulating a Langevin equation for the particle motion which includes the Brownian stochastic force. The Péclet number scales the ratio of deterministic to Brownian forces, where Pe =π μ a2v˜c/kBT and a denotes the colloid radius, μ the continuous phase viscosity, v˜c the characteristic diffusiophoretic velocity, and kBT the thermal energy. The skimming and stationary states are found to persist for Pe above 103. At Pe below 200, the trajectory of a locomotor approaching the wall is unpredictable. We present representative individual trajectories along with probability distributions for statistical ensembles of particles, quantifying the effects of thermal fluctuations and illustrating the transition from unpredictable to passively guided motion.

  16. Gated blood pool tomography for the evaluation of global and regional left ventricular function in comparison to planar techniques and echocardiography.

    PubMed

    Canclini, S; Terzi, A; Rossini, P; Vignati, A; La Canna, G; Magri, G C; Pizzocaro, C; Giubbini, R

    2001-01-01

    Multigated radionuclide ventriculography (MUGA) is a simple and reliable tool for the assessment of global systolic and diastolic function and in several studies it is still considered a standard for the assessment of left ventricular ejection fraction. However the evaluation of regional wall motion by MUGA is critical due to two-dimensional imaging and its clinical use is progressively declining in favor of echocardiography. Tomographic MUGA (T-MUGA) is not widely adopted in clinical practice. The aim of this study was to compare T-MUGA to planar MUGA (P-MUGA) for the assessment of global ejection fraction and to transthoracic echocardiography for the evaluation of regional wall motion. A 16-segment model was adopted for the comparison with echo regional wall motion. For each one of the 16 segments the normal range of T-MUGA ejection fraction was quantified and a normal data file was defined; the average value -2.5 SD was used as the lower threshold to identify abnormal segments. In addition, amplitude images from Fourier analysis were quantified and considered abnormal according to three different thresholds (25, 50 and 75% of the maximum). In a study group of 33 consecutive patients the ejection fraction values of T-MUGA highly correlated with those of P-MUGA (r = 0.93). The regional ejection fraction (according to the normal database) and the amplitude analysis (50% threshold) allowed for the correct identification of 203/226 and 167/226 asynergic segments by echocardiography, and of 269/302 and 244/302 normal segments, respectively. Therefore sensitivity, specificity and overall accuracy to detect regional wall motion abnormalities were 90, 89, 89% and 74, 81, 79% for regional ejection fraction and amplitude analysis, respectively. T-MUGA is a reliable tool for regional wall motion evaluation, well correlated with echocardiography, less subjective and able to provide quantitative data.

  17. A Locally Adaptive Regularization Based on Anisotropic Diffusion for Deformable Image Registration of Sliding Organs

    PubMed Central

    Pace, Danielle F.; Aylward, Stephen R.; Niethammer, Marc

    2014-01-01

    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall. PMID:23899632

  18. A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs.

    PubMed

    Pace, Danielle F; Aylward, Stephen R; Niethammer, Marc

    2013-11-01

    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall.

  19. Dynamical properties of epitaxial ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Gerhardt, R. A.; Erbil, A.

    1997-04-01

    The dynamical properties of epitaxial ferroelectric heterostructures have been investigated by studying the dielectric behavior under external electric field. A phenomenon with a giant permittivity was observed. At low frequencies, real permittivities as high as 420 000 have been measured. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field, correlating with the dc bias-field dependence of ac permittivities. We model these observations as a result of the motion of pinned domain-wall lattices, having sliding-mode motion at high electric fields. The good agreement between the experimental and theoretical results suggests that the deposited interdigitated electrode pattern plays a crucial role in controlling domain-wall dynamics. The pinning of the domain wall comes from a nucleation barrier to the creation of new domain walls.

  20. Impact of a drop onto a wetted wall: description of crown formation and propagation

    NASA Astrophysics Data System (ADS)

    Roisman, I. V.; Tropea, C.

    2002-12-01

    The impact of a drop onto a liquid film with a relatively high impact velocity, leading to the formation of a crown-like ejection, is studied theoretically. The motion of a kinematic discontinuity in the liquid film on the wall due to the drop impact, the formation of the upward jet at this kinematic discontinuity and its elevation are analysed. Four main regions of the drop and film are considered: the perturbed liquid film on the wall inside the crown, the unperturbed liquid film on the wall outside the crown, the upward jet forming a crown, and the free rim bounding this jet. The theory of Yarin & Weiss (1995) for the propagation of the kinematic discontinuity is generalized here for the case of arbitrary velocity vectors in the inner and outer liquid films on the wall. Next, the mass, momentum balance and Bernoulli equations at the base of the crown are considered in order to obtain the velocity and the thickness of the jet on the wall. Furthermore, the dynamic equations of motion of the crown are developed in the Lagrangian form. An analytical solution for the crown shape is obtained in the asymptotic case of such high impact velocities that the surface tension and the viscosity effects can be neglected in comparison to inertial effects. The edge of the crown is described by the motion of a rim, formed due to the surface tension.

  1. Stability of cosmological deflagration fronts

    NASA Astrophysics Data System (ADS)

    Mégevand, Ariel; Membiela, Federico Agustín

    2014-05-01

    In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated with their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.

  2. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  3. A numerical simulation of peristaltic motion in the ureter using fluid structure interactions.

    PubMed

    Vahidi, Bahman; Fatouraee, Nasser

    2007-01-01

    An axisymmetric model with fluid-structure interactions (FSI) is introduced and solved to perform ureter flow and stress analysis. The Navier-Stokes equations are solved for the fluid and a linear elastic model for ureter is used. The finite element equations for both the structure and the fluid were solved by the Newton-Raphson iterative method. Our results indicated that shear stresses were high around the throat of moving contracted wall. The pressure gradient magnitude along the ureter wall and the symmetry line had the maximum value around the throat of moving contracted wall which decreased as the peristalsis propagates toward the bladder. The flow rate at the ureter outlet at the end of the peristaltic motion was about 650 mm3/s. During propagation of the peristalsis toward the bladder, the inlet backward flow region was limited to the areas near symmetry line but the inner ureter backward flow regions extended to the whole ureter contraction part. The backward flow was vanished after 1.5 seconds of peristalsis propagation start up and after that time the urine flow was forward in the whole ureter length, so reflux is more probable to be present at the beginning of the wall peristaltic motion.

  4. Validation of an image registration and segmentation method to measure stent graft motion on ECG-gated CT using a physical dynamic stent graft model

    NASA Astrophysics Data System (ADS)

    Koenrades, Maaike A.; Struijs, Ella M.; Klein, Almar; Kuipers, Henny; Geelkerken, Robert H.; Slump, Cornelis H.

    2017-03-01

    The application of endovascular aortic aneurysm repair has expanded over the last decade. However, the long-term performance of stent grafts, in particular durable fixation and sealing to the aortic wall, remains the main concern of this treatment. The sealing and fixation are challenged at every heartbeat due to downward and radial pulsatile forces. Yet knowledge on cardiac-induced dynamics of implanted stent grafts is sparse, as it is not measured in routine clinical follow-up. Such knowledge is particularly relevant to perform fatigue tests, to predict failure in the individual patient and to improve stent graft designs. Using a physical dynamic stent graft model in an anthropomorphic phantom, we have evaluated the performance of our previously proposed segmentation and registration algorithm to detect periodic motion of stent grafts on ECG-gated (3D+t) CT data. Abdominal aortic motion profiles were simulated in two series of Gaussian based patterns with different amplitudes and frequencies. Experiments were performed on a 64-slice CT scanner with a helical scan protocol and retrospective gating. Motion patterns as estimated by our algorithm were compared to motion patterns obtained from optical camera recordings of the physical stent graft model in motion. Absolute errors of the patterns' amplitude were smaller than 0.28 mm. Even the motion pattern with an amplitude of 0.23 mm was measured, although the amplitude of motion was overestimated by the algorithm with 43%. We conclude that the algorithm performs well for measurement of stent graft motion in the mm and sub-mm range. This ultimately is expected to aid in patient-specific risk assessment and improving stent graft designs.

  5. A head motion estimation algorithm for motion artifact correction in dental CT imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol

    2018-03-01

    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  6. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  7. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series

    PubMed Central

    Magalhães, Cristiana M.; Fregonezi, Guilherme A.; Vidigal-Lopes, Mauro; Vieira, Bruna S. P. P.; Vieira, Danielle S. R.; Parreira, Verônica F.

    2016-01-01

    ABSTRACT Background The effects of non-invasive ventilation (NIV) on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS) are unknown. Objectives 1) To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2) to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV). Method Nine ALS patients were evaluated in the supine position using NIV. In addition, the ALS patients and nine healthy individuals were evaluated in both sitting and supine positions. Statistical analysis was performed using the paired Student t-test or Wilcoxon test and the Student t-test for independent samples or Mann-Whitney U test. Results Chest wall volume increased significantly with NIV, mean volume=0.43 (SD=0.16)L versus 0.57 (SD=0.19)L (p=0.04). No significant changes were observed for the pulmonary rib cage, abdominal rib cage, or abdominal contribution. The index of the shortening velocity of the diaphragmatic muscle, mean=0.15 (SD=0.05)L/s versus 0.21 (SD=0.05)L/s (p<0.01), and abdominal muscles, mean=0.09 (SD=0.02)L/s versus 0.14 (SD=0.06)L/s (p<0.01), increased during NIV. Comparisons between the supine and sitting positions showed similar changes in chest wall motion in both groups. However, the ALS patients presented a significantly lower contribution of the abdomen in the supine position compared with the controls, mean=56 (SD=13) versus 69 (SD=10) (p=0.02). Conclusions NIV improved chest wall volumes without changing the contribution of the chest wall compartment in ALS patients. In the supine position, ALS patients had a lower contribution of the abdomen, which may indicate early diaphragmatic dysfunction. PMID:27556390

  8. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series.

    PubMed

    Magalhães, Cristiana M; Fregonezi, Guilherme A; Vidigal-Lopes, Mauro; Vieira, Bruna S P P; Vieira, Danielle S R; Parreira, Verônica F

    2016-01-01

    The effects of non-invasive ventilation (NIV) on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS) are unknown. 1) To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2) to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV). Nine ALS patients were evaluated in the supine position using NIV. In addition, the ALS patients and nine healthy individuals were evaluated in both sitting and supine positions. Statistical analysis was performed using the paired Student t-test or Wilcoxon test and the Student t-test for independent samples or Mann-Whitney U test. Chest wall volume increased significantly with NIV, mean volume=0.43 (SD=0.16)L versus 0.57 (SD=0.19)L (p=0.04). No significant changes were observed for the pulmonary rib cage, abdominal rib cage, or abdominal contribution. The index of the shortening velocity of the diaphragmatic muscle, mean=0.15 (SD=0.05)L/s versus 0.21 (SD=0.05)L/s (p<0.01), and abdominal muscles, mean=0.09 (SD=0.02)L/s versus 0.14 (SD=0.06)L/s (p<0.01), increased during NIV. Comparisons between the supine and sitting positions showed similar changes in chest wall motion in both groups. However, the ALS patients presented a significantly lower contribution of the abdomen in the supine position compared with the controls, mean=56 (SD=13) versus 69 (SD=10) (p=0.02). NIV improved chest wall volumes without changing the contribution of the chest wall compartment in ALS patients. In the supine position, ALS patients had a lower contribution of the abdomen, which may indicate early diaphragmatic dysfunction.

  9. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry

    NASA Astrophysics Data System (ADS)

    Stovall, Stephanie; Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2016-11-01

    Abnormal blood flow during early cardiovascular development has been identified as a key factor in the pathogenesis of congenital heart disease; however, the mechanisms by which altered hemodynamics induce cardiac malformations are poorly understood. This study used outflow tract (OFT) banding to model increased afterload, pressure, and blood flow velocities at tubular stages of heart development and characterized the immediate changes in cardiac wall motion due to banding in chicken embryo models with light microscopy-based video densitometry. Optical videos were used to acquire two-dimensional heart image sequences over the cardiac cycle, from which intensity data were extracted along the heart centerline at several locations in the heart ventricle and OFT. While no changes were observed in the synchronous contraction of the ventricle with banding, the peristaltic-like wall motion in the OFT was significantly affected. Our data provide valuable insight into early cardiac biomechanics and its characterization using a simple light microscopy-based imaging modality.

  10. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields

    PubMed Central

    Uma, B.; Swaminathan, T. N.; Radhakrishnan, R.; Eckmann, D. M.; Ayyaswamy, P. S.

    2011-01-01

    We consider the Brownian motion of a nanoparticle in an incompressible Newtonian fluid medium (quiescent or fully developed Poiseuille flow) with the fluctuating hydrodynamics approach. The formalism considers situations where both the Brownian motion and the hydrodynamic interactions are important. The flow results have been modified to account for compressibility effects. Different nanoparticle sizes and nearly neutrally buoyant particle densities are also considered. Tracked particles are initially located at various distances from the bounding wall to delineate wall effects. The results for thermal equilibrium are validated by comparing the predictions for the temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical and experimental results where available. The equipartition theorem for a Brownian particle in Poiseuille flow is verified for a range of low Reynolds numbers. Numerical predictions of wall interactions with the particle in terms of particle diffusivities are consistent with results, where available. PMID:21918592

  11. Sedimentation of a sphere in a fluid channel

    NASA Astrophysics Data System (ADS)

    Pitois, Olivier; Fritz, Christelle; Pasol, Laurentiu; Vignes-Adler, Michèle

    2009-10-01

    We studied both experimentally and numerically the sedimentation velocity of small solid particles through liquid channels merging at the intersection of three soap films. The wall mobility induces a nontrivial behavior for the particle drag coefficient, providing particular transport properties that are not observed for channels with rigid walls. It is shown that for sufficiently small particles, slow and fast motions are observed for the particle along the channel, depending on the particle position within the channel cross section and the sphere/channel size ratio. The velocity corresponding to fast motions can be as high as twice the Stokes velocity in an unbounded fluid. Moreover, the fast motions are not observed anymore when the size ratio exceeds a critical value, which has been found to be approximately equal to 0.5. As another major difference with the solid wall channel, the sphere velocity does not vanish when the size ratio reaches unity. Instead, the smallest value is found to be 1/4 of the Stokes velocity.

  12. Renewed interest in preejectional isovolumic phase: new applications of tissue Doppler indexes: implications to ventricular dyssynchrony.

    PubMed

    Veyrat, Colette; Larrazet, Fabrice; Pellerin, Denis

    2005-10-01

    There is renewed interest in isovolumic contraction (IC) in tissue Doppler echocardiography of the myocardial walls, which is revisited in this editorial with new regional velocity data. The aims are to recall traditional background information and to emphasize the need to master the rapidly evolving tissue Doppler procedures for the accurate display of brief IC. IC, a preejectional component of great physiologic interest, is very demanding in terms of ultrasound technology. The onset and end of its motion velocities should be unambiguously defined versus the QRS complex and ejection wall motion. This is a prerequisite for exploiting the new information as guidance toward new therapeutic strategies from a practical viewpoint. However, IC preload dependence should be kept in mind, because of its limited potential for contractility studies. Finally, when only duration measurements are made in the assessment of ventricular dyssynchrony, regional preejectional duration is the pertinent tool to single out the onset of ejection local wall motion.

  13. Single particle nonlocality, geometric phases and time-dependent boundary conditions

    NASA Astrophysics Data System (ADS)

    Matzkin, A.

    2018-03-01

    We investigate the issue of single particle nonlocality in a quantum system subjected to time-dependent boundary conditions. We discuss earlier claims according to which the quantum state of a particle remaining localized at the center of an infinite well with moving walls would be specifically modified by the change in boundary conditions due to the wall’s motion. We first prove that the evolution of an initially localized Gaussian state is not affected nonlocally by a linearly moving wall: as long as the quantum state has negligible amplitude near the wall, the boundary motion has no effect. This result is further extended to related confined time-dependent oscillators in which the boundary’s motion is known to give rise to geometric phases: for a Gaussian state remaining localized far from the boundaries, the effect of the geometric phases is washed out and the particle dynamics shows no traces of a nonlocal influence that would be induced by the moving boundaries.

  14. Control of self-motion in dynamic fluids: fish do it differently from bees.

    PubMed

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Rotational Motion of Axisymmetric Marangoni Swimmers

    NASA Astrophysics Data System (ADS)

    Rothstein, Jonathan; Uvanovic, Nick

    2017-11-01

    A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.

  16. Broadband boundary effects on Brownian motion.

    PubMed

    Mo, Jianyong; Simha, Akarsh; Raizen, Mark G

    2015-12-01

    Brownian motion of particles in confined fluids is important for many applications, yet the effects of the boundary over a wide range of time scales are still not well understood. We report high-bandwidth, comprehensive measurements of Brownian motion of an optically trapped micrometer-sized silica sphere in water near an approximately flat wall. At short distances we observe anisotropic Brownian motion with respect to the wall. We find that surface confinement not only occurs in the long time scale diffusive regime but also in the short time scale ballistic regime, and the velocity autocorrelation function of the Brownian particle decays faster than that of a particle in bulk fluid. Furthermore, at low frequencies the thermal force loses its color due to the reflected flow from the no-slip boundary. The power spectrum of the thermal force on the particle near a no-slip boundary becomes flat at low frequencies. This detailed understanding of boundary effects on Brownian motion opens a door to developing a 3D microscope using particles as remote sensors.

  17. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging.

    PubMed

    Kuijpers, Dirkjan; Ho, Kai Yiu J A M; van Dijkman, Paul R M; Vliegenthart, Rozemarijn; Oudkerk, Matthijs

    2003-04-01

    The purpose of this study was to assess the value of high-dose dobutamine cardiovascular magnetic resonance (CMR) with myocardial tagging for the detection of wall motion abnormalities as a measure of myocardial ischemia in patients with known or suspected coronary artery disease. Two hundred eleven consecutive patients with chest pain underwent dobutamine-CMR 4 days after antianginal medication was stopped. Dobutamine-CMR was performed at rest and during increasing doses of dobutamine. Cine-images were acquired during breath-hold with and without myocardial tagging at 3 short-axis levels. Regional wall motion was assessed in a 16-segment short-axis model. Patients with new wall motion abnormalities (NWMA) were examined by coronary angiography. Dobutamine-CMR was successfully performed in 194 patients. Dobutamine-CMR without tagging detected NWMA in 58 patients, whereas NWMA were detected in 68 patients with tagging (P=0.002, McNemar). Coronary angiography showed coronary artery disease in 65 (96%) of these 68 patients. All but 3 of the 65 patients needed revascularization. In the 112 patients with a negative dobutamine-CMR study, without baseline wall motion abnormalities, the cardiovascular occurrence-free survival rate was 98.2% during the mean follow-up period of 17.3 months (range, 7 to 31). Dobutamine-CMR with myocardial tagging detected more NWMA compared with dobutamine-CMR without tagging and reliably separated patients with a normal life expectancy from those at increased risk of major adverse cardiac events.

  18. Prognostic value of dobutamine stress echocardiography in patients referred because of suspected coronary artery disease.

    PubMed

    Kamaran, M; Teague, S M; Finkelhor, R S; Dawson, N; Bahler, R C

    1995-11-01

    To determine whether dobutamine stress echocardiography (DSE) provides prognostic information beyond that available from routine clinical data, we reviewed the outcome of 210 consecutive patients referred for DSE to evaluate chest pain, perioperative risk, and myocardial viability. Dobutamine was infused in increments of 10 micrograms/kg/min in 5-minute stages to a maximum of 40 micrograms/kg/min. The dobutamine stress echocardiogram was considered abnormal only if dobutamine induced a new wall motion abnormality as determined by review of the digitized echocardiographic images in a quad screen format and on videotape. Thirty percent of tests were abnormal. An abnormal test was more common (p < or = 0.02) in men and patients with angina pectoris, in patients taking nitrate therapy, or those with prior myocardial infarction or abnormal left ventricular wall motion at rest. Twenty-two deaths, 17 of which were cardiac, occurred over a median follow-up of 240 days (range 30 to 760). Sixteen cardiac deaths occurred in the 63 patients with versus 1 cardiac death among the 147 without a new wall motion abnormality (p < or = 0.0001). Other variables associated with cardiac death (p < or = 0.05) were age > 65 years, nitrate therapy, ventricular ectopy during DSE, suspected angina pectoris, and hospitalization at the time of DSE. When cardiac death, myocardial infarction, and revascularization procedures were all considered as adverse outcomes, a new wall motion abnormality continued to be the most powerful predictor of an adverse cardiac event.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  20. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other forms of ordered phases such as antiferromagnetism and ferroelectricity. We would like to thank the scientists from all over the world who happily agreed to contribute their latest results to this special issue, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. In such a fast-moving field it is not possible to give a definitive account, and this special issue can be no more than a snapshot of the current state of knowledge regarding this topic. Nevertheless, we hope that this collection of papers is a useful resource for experienced workers in the field, forms a useful introduction to researchers early in their careers and inspires others in related areas of nanotechnology to enter into the study of domain dynamics in nanostructures. Domain wall dynamics in nanostructures contents Temperature estimation in a ferromagnetic Fe-Ni nanowire involving a current-driven domain wall motionA Yamaguchi, A Hirohata, T Ono and H Miyajima Magnetization reversal in magnetic nanostripes via Bloch wall formation M Zeisberger and R Mattheis Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowiresMi-Young Im, Lars Bocklage, Guido Meier and Peter Fischer Domain wall propagation in meso- and nanoscale ferroelectrics R G P McQuaid, M McMillen, L-W Chang, A Gruverman and J M Gregg Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropyM T Bryan, S Bance, J Dean, T Schrefl and D A Allwood The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness Eduardo Martinez Temperature-dependent dynamics of stochastic domain-wall depinning in nanowiresClemens Wuth, Peter Lendecke and Guido Meier Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropyTheo Gerhardt, André Drews and Guido Meier The interaction of transverse domain wallsBenjamin Krüger The increase of the spin-transfer torque threshold current density in coupled vortex domain wallsS Lepadatu, A P Mihai, J S Claydon, F Maccherozzi, S S Dhesi, C J Kinane, S Langridge and C H Marrows Large RF susceptibility of transverse domain wallsO Rousseau, S Petit-Watelot and M Viret Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer couplingP J Metaxas, R L Stamps, J-P Jamet, J Ferré, V Baltz and B Rodmacq Current-induced domain wall motion and magnetization dynamics in CoFeB/Cu/Co nanostripesV Uhlíř, J Vogel, N Rougemaille, O Fruchart, Z Ishaque, V Cros, J Camarero, J C Cezar, F Sirotti and S Pizzini Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropySatoru Emori and Geoffrey S D Beach Electrical domain morphologies in compositionally graded ferroelectric filmsM B Okatan, A L Roytburd, V Nagarajan and S P Alpay Domain-wall pinning by local control of anisotropy in Pt/Co/Pt strips J H Franken, M Hoeijmakers, R Lavrijsen and H J M Swagten Experimental detection of domain wall propagation above the Walker field Kouta Kondou, Norikazu Ohshima, Daichi Chiba, Shinya Kasai, Kensuke Kobayashi and Teruo Ono Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurationsG Duerr, R Huber and D Grundler Domain wall motion in perpendicular anisotropy nanowires with edge roughness Maximilian Albert, Matteo Franchin, Thomas Fischbacher, Guido Meier and Hans Fangohr Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowiresJ Heinen, D Hinzke, O Boulle, G Malinowski, H J M Swagten, B Koopmans, C Ulysse, G Faini, B Ocker, J Wrona and M Kläui Domain wall dynamics driven by spin transfer torque and the spin-orbit field Masamitsu Hayashi, Yoshinobu Nakatani, Shunsuke Fukami, Michihiko Yamanouchi, Seiji Mitani and Hideo Ohno Dynamic propagation and nucleation in domain wall nanowire devicesL O'Brien, D E Read, D Petit and R P Cowburn Influence of a transport current on a domain wall in an antiferromagnetic metalA C Swaving and R A Duine

  1. Excess velocity of magnetic domain walls close to the depinning field

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Fernández Aguirre, Iván; Albornoz, Lucas J.; Kolton, Alejandro B.; Rojas-Sánchez, Juan Carlos; Collin, Sophie; George, Jean Marie; Diaz Pardo, Rebeca; Jeudy, Vincent; Bustingorry, Sebastian; Curiale, Javier

    2017-12-01

    Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field Hd, the depinning temperature Td, and the characteristic velocity scale v0 for each sample.

  2. Is the great attractor really a great wall

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Turner, Michael S.

    1988-01-01

    Some of the cosmological consequences are discussed of a late time phase transition which produces light domain walls. The observed peculiar velocity field of the Universe and the observed isotropy of the microwave background radiation severely constrain the wall surface density in such a scenario. The most interesting consequence of such a phase transition is the possibility that the local, coherent streaming motion reported by the Seven Samurai could be explained by the repulsive effect of a relic domain wall with the Hubble volume (the Great Wall).

  3. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.

    PubMed

    Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H

    2013-11-01

    We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.

  4. The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall

    NASA Astrophysics Data System (ADS)

    Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.

    2015-03-01

    We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.

  5. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  6. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  7. Energy-efficient writing scheme for magnetic domain-wall motion memory

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Yoshimura, Yoko; Ham, Woo Seung; Ernst, Rick; Hirata, Yuushou; Li, Tian; Kim, Sanghoon; Moriyama, Takahiro; Nakatani, Yoshinobu; Ono, Teruo

    2017-04-01

    We present an energy-efficient magnetic domain-writing scheme for domain wall (DW) motion-based memory devices. A cross-shaped nanowire is employed to inject a domain into the nanowire through current-induced DW propagation. The energy required for injecting the magnetic domain is more than one order of magnitude lower than that for the conventional field-based writing scheme. The proposed scheme is beneficial for device miniaturization because the threshold current for DW propagation scales with the device size, which cannot be achieved in the conventional field-based technique.

  8. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  9. Dynamic Echo Information Guides Flight in the Big Brown Bat

    PubMed Central

    Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.

    2016-01-01

    Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690

  10. Spinmotive force due to domain wall motion in high field regime

    NASA Astrophysics Data System (ADS)

    Ieda, Jun'ichi; Yamane, Yuta; Maekawa, Sadamichi

    2012-02-01

    Spinmotive force associated with a moving vortex domain wall is investigated numerically. Dynamics of magnetization textures such as a domain wall exerts a non-conservative spin-force on conduction electrons [1], offering a new concept of magnetic devices [2]. This spinmotive force in permalloy nanowires has been detected by voltage measurement [3] where magnitude of the signal is limited less than 500 nV. Theoretically it is suggested that the spinmotive force signal increases as a function of external magnetic fields. At higher magnetic fields, however, the wall propagation mode becomes rather chaotic involving transformations of the wall structure and it remains to be seen how the spinmotive force appears. Numerical simulations show that the spinmotive force scales with the field even in a field range where the wall motion is no longer associated coherent precession. This feature has been tested in a recent experiment [4]. Further enhancement of the spinmotive force is explored by designing ferromagnetic nanostructures [5] and materials. [1] S. Barnes and S. Maekawa, PRL (2007). [2] S. Barnes, J. Ieda, and S. Maekawa, APL (2006). [3] S. A. Yang et al., PRL (2009). [4] M. Hayashi, J. Ieda et al., submitted. [5] Y. Yamane, J. Ieda et al., APEX (2011).

  11. Domain wall motion in ferroelectrics: Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Shur, V.; Rumyantsev, E.; Kozhevnikov, V.; Nikolaeva, E.; Shishkin, E.

    2002-03-01

    The switching current noise has been recorded during polarization reversal in single-crystalline gadolinium molybdate (GMO) and lithium tantalate (LT). Analysis of Barkhausen noise (BN) data allows to classify the noise types by determination of the critical indexes and fractal dimensions. BN is manifested as the short pulses during the polarization reversal. We have analyzed the BN data recorded in GMO and LT with various types of controlled domain structure. The data treatment in terms of probability distribution of duration, area and energy of individual pulses reveals the critical behavior typical for the fractal records in time. We used the Fourier transform and Hurst's rescaled range analysis for obtaining the Hurst factor, fractal dimension and classifying the noise types. We investigated by computer simulation the mechanism of sideways motion of 180O domain wall by nucleation at the wall taking into account the nuclei-nuclei interaction. It was shown that the moving domain walls display the fractal shape and their motion is accompanied by Flicker noise, which is in accord with experimental data. The research was made possible in part by Programs "Basic Research in Russian Universities" and "Priority Research in High School. Electronics", by Grant No. 01-02-17443 of RFBR, by Award No.REC-005 of CRDF.

  12. Processive motions of MreB micro-filaments coordinate cell wall growth

    NASA Astrophysics Data System (ADS)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  13. Wall strains produced by waves in water filled latex tubes. Part 1: Tethered tubes

    NASA Astrophysics Data System (ADS)

    Gerrard, J. H.

    1992-05-01

    A progress report on measurements of wall strain is presented. The experimental aim is to produce data with which to compare the results of numerical analysis of pulsatile flow in a deformable tube. The computation is a difficult job requiring the solution of the wall and fluid equations and matching them at the interface which moves. The simplest arrangement of a straight distensible tube attached to a rigid tube of the same internal diameter in which a piston starts from rest was consequently chosen. The rubber tube is of finite length and closed and fixed at the far end. Two forms of motion are examined, sinusoidal motion from rest and impulsive motion in which the piston moves a short distance and stops. The simpler case considered is a tethered tube which only executes radial motion; in the second case the horizontal tube is suspended by cotton threads so that it is free to move longitudinally as well. Measurements of the longitudinal and circumferential strains as a function of distance along the tube were made. The measurements were made at low and high frequency and with short and long tubes. With long tubes the end effect can be investigated. The treatment of shorter tubes by numerical analysis present less of a storage problem.

  14. RLC model of visco-elastic properties of the chest wall

    NASA Astrophysics Data System (ADS)

    Aliverti, Andrea; Ferrigno, Giancarlo

    1996-04-01

    The quantification of the visco-elastic properties (resistance (R), inertia (L) and compliance (C)) of the different chest wall compartments (pulmonary rib cage,diaphragmatic rib cage and abdomen) is important to study the status of the passive components of the respiratory system, particularly in selected pathologies. Applying the viscoelastic-electrical analogy to the chest wall, we used an identification method in order to estimate the R, L and C parameters of the different parts of the chest, basing on different models; the input and output measured data were constituted by the volume variations of the different chest wall compartments and by the nasal pressure during controlled intermittent positive pressure ventilation by nasal mask, while the parameters of the system (R, L and C of the different compartments) were to be estimated. Volumes were measured with a new method, recently validated, based on an opto-electronic motion analyzer, able to compute with high accuracy and null invasivity the absolute values and the time variations of the volumes of each of the three compartments. The estimation of the R, L and C parameters has been based on a least-squared criterion, and the minimization has been based on a robustified iterative Gauss-Newton algorithm. The validation of the estimation procedure (fitting) has ben performed computing the percentage root mean square value of the error between the output real data and the output estimated data. The method has been applied to 2 healthy subjects. Also preliminary results have been obtained from 20 subjects affected by neuromuscular diseases (Duchenne Muscular Dystrophy (DMD) and Spinal Muscle Atrophy (SMA)). The results show that: (a) the best-fitting electrical models of the respiratory system are made up by one or three parallel RLC branches supplied by a voltage generator (so considering inertial properties, particularly in the abdominal compartment, and not considering patient/machine connection); (b) there is a significant difference between DMD and SMA groups (the value of resistance and rigidity of the thorax is much higher in SMA patients); (c) the inclusion of the connection patient-ventilator make the models ill-conditioned. We conclude that this method allows a quantitative evaluation of rib cage and abdominal passive characteristics with a good accuracy and through a dynamic measurement and that it could give significant data in physiology and clinics.

  15. SU-E-T-639: Proton Dose Calculation for Irregular Motion Using a Sliding Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, J; Gueorguiev, G; Grassberger, C

    2015-06-15

    Purpose: While many techniques exist to evaluate dose to regularly moving lung targets, there are few available to calculate dose at tumor positions not present in the 4DCT. We have previously developed a method that extrapolates an existing dose to a new tumor location. In this abstract, we present a novel technique that accounts for relative anatomical shifts at the chest wall interface. We also utilize this procedure to simulate breathing motion functions on a cohort of eleven patients. Amplitudes exceeding the original range of motion were used to evaluate coverage using several aperture and smearing beam settings. Methods: Themore » water-equivalent depth (WED) technique requires an initial dose and CT image at the corresponding tumor position. Each dose volume was converted from its Cartesian geometry into a beam-specific radiological depth space. The sliding chest wall interface was determined by converting the lung contour into this same space. Any dose proximal to the initial boundary of the warped lung contour was held fixed, while the remaining distal dose was moved in the direction of motion along the interface. Results: V95 coverage was computed for each patient using the updated algorithm. Incorporation of the sliding motion yielded large dose differences, with gamma pass rates as low as 69.7% (3mm, 3%) and V95 coverage differences up to 2.0%. Clinical coverage was maintained for most patients with 5 mm excess simulated breathing motion, and up to 10 mm of excess motion was tolerated for a subset of patients and beam settings. Conclusion: We have established a method to determine the maximum allowable excess breathing motion for a given plan on a patient-by-patient basis. By integrating a sliding chest wall interface into our dose calculation technique, we have analyzed the robustness of breathing patterns that differ during treatment from at the time of 4DCT acquisition.« less

  16. Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions

    NASA Astrophysics Data System (ADS)

    Virella, Juan C.; Prato, Carlos A.; Godoy, Luis A.

    2008-05-01

    The influence of nonlinear wave theory on the sloshing natural periods and their modal pressure distributions are investigated for rectangular tanks under the assumption of two-dimensional behavior. Natural periods and mode shapes are computed and compared for both linear wave theory (LWT) and nonlinear wave theory (NLWT) models, using the finite element package ABAQUS. Linear wave theory is implemented in an acoustic model, whereas a plane strain problem with large displacements is used in NLWT. Pressure distributions acting on the tank walls are obtained for the first three sloshing modes using both linear and nonlinear wave theory. It is found that the nonlinearity does not have significant effects on the natural sloshing periods. For the sloshing pressures on the tank walls, different distributions were found using linear and nonlinear wave theory models. However, in all cases studied, the linear wave theory conservatively estimated the magnitude of the pressure distribution, whereas larger pressures resultant heights were obtained when using the nonlinear theory. It is concluded that the nonlinearity of the surface wave does not have major effects in the pressure distribution on the walls for rectangular tanks.

  17. Strain-Encoded Cardiac Magnetic Resonance Imaging as an Adjunct for Dobutamine Stress Testing. Incremental Value to Conventional Wall Motion Analysis

    PubMed Central

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A.; Osman, Nael F.

    2009-01-01

    Background High-dose dobutamine stress magnetic resonance imaging (DS-MRI) is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, Strain-Encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC to that provided by conventional wall motion analysis for the detection of inducible ischemia during DS-MRI. Methods and Results Stress induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent DS-MRI in a clinical 1.5T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (≥50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86/101 versus 71/101 diseased coronary vessels (p<0.01 versus cine), and showed normal strain response in 189/202 versus 194/202 vessels with <50% stenosis (p=NS versus cine). On a patient level, SENC detected inducible ischemia in 63/64 versus 55/64 patients with CAD (p<0.05 versus cine), and showed normal strain response in 32/37 versus 34/37 patients without CAD (p=NS versus cine).Quantification analysis demonstrated a significant correlation between strain rate reserve (SRreserve) and coronary artery stenosis severity (r²=0.56, p<0.001), and a cut-off value of SRreserve=1.64 deemed as a highly accurate marker for the detection of stenosis≥50% (AUC=0.96, SE=0.01, 95% CI = 0.94–0.98, p<0.001). Conclusions The direct color-coded visualization of strain on MR-images is a useful adjunct for DS-MRI, which provides incremental value for the detection of CAD compared to conventional wall motion readings on cine images. PMID:19808579

  18. Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis.

    PubMed

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A; Osman, Nael F

    2009-03-01

    High-dose dobutamine stress MRI is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, strain-encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC with that provided by conventional wall motion analysis for the detection of inducible ischemia during dobutamine stress MRI. Stress-induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent dobutamine stress MRI in a clinical 1.5-T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (> or =50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86 of 101 versus 71 of 101 diseased coronary vessels (P<0.01 versus cine) and showed normal strain response in 189 of 202 versus 194 of 202 vessels with <50% stenosis (P=NS versus cine). On a patient level, SENC detected inducible ischemia in 63 of 64 versus 55 of 64 patients with CAD (P<0.05 versus cine) and showed normal strain response in 32 of 37 versus 34 of 37 patients without CAD (P=NS versus cine). Quantification analysis demonstrated a significant correlation between strain rate reserve and coronary artery stenosis severity (r(2)=0.56, P<0.001), and a cutoff value of strain rate reserve of 1.64 was deemed as a highly accurate marker for the detection of > or =50% stenosis (area under the curve, 0.96; SE, 0.01; 95% CI, 0.94 to 0.98; P<0.001). The direct color-coded visualization of strain on MR images is a useful adjunct for dobutamine stress MRI, which provides incremental value for the detection of CAD compared with conventional wall motion readings on cine images.

  19. Linearized motion estimation for articulated planes.

    PubMed

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  20. How to push a block along a wall

    NASA Technical Reports Server (NTRS)

    Mason, Matthew T.

    1989-01-01

    Some robot tasks require manipulation of objects that may be touching other fixed objects. The effects of friction and kinematic constraint must be anticipated, and may even be exploited to accomplish the task. An example task, a dynamic analysis, and appropriate effector motions are presented. The goal is to move a rectangular block along a wall, so that one side of the block maintains contact with the wall. Two solutions that push the block along the wall are discussed.

  1. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  2. Chasing the reflected wave back into the heart: a new hypothesis while the jury is still out

    PubMed Central

    Codreanu, Ion; Robson, Matthew D; Rider, Oliver J; Pegg, Tammy J; Jung, Bernd A; Dasanu, Constantin A; Clarke, Kieran; Holloway, Cameron J

    2011-01-01

    Background: Arterial stiffness directly influences cardiac function and is independently associated with cardiovascular risk. However, the influence of the aortic reflected pulse pressure wave on left ventricular function has not been well characterized. The aim of this study was to obtain detailed information on regional ventricular wall motion patterns corresponding to the propagation of the reflected aortic wave on ventricular segments. Methods: Left ventricular wall motion was investigated in a group of healthy volunteers (n = 14, age 23 ± 3 years), using cardiac magnetic resonance navigator-gated tissue phase mapping. The left ventricle was divided into 16 segments and regional wall motion was studied in high temporal detail. Results: Corresponding to the expected timing of the reflected aortic wave reaching the left ventricle, a characteristic “notch” of regional myocardial motion was seen in all radial, circumferential, and longitudinal velocity graphs. This notch was particularly prominent in septal segments adjacent to the left ventricular outflow tract on radial velocity graphs and in anterior and posterior left ventricular segments on circumferential velocity graphs. Similarly, longitudinal velocity graphs demonstrated a brief deceleration in the upward recoil motion of the entire ventricle at the beginning of diastole. Conclusion: These results provide new insights into the possible influence of the reflected aortic waves on ventricular segments. Although the association with the reflected wave appears to us to be unambiguous, it represents a novel research concept, and further studies enabling the actual recording of the pulse wave are required. PMID:21731888

  3. The effects of temperature on the lattice barrier for twin wall motion

    NASA Astrophysics Data System (ADS)

    Zreihan, Noam; Faran, Eilon; Shilo, Doron

    2015-07-01

    The sideways motion of twin walls in ferroic materials requires overcoming an intrinsic energy barrier that originates from the periodicity of the crystal structure. Here, we measure the temperature dependence of the lattice barrier in a ferromagnetic Ni-Mn-Ga crystal using the pulsed magnetic field method. Our results reveal a monotonic decrease in the lattice barrier with increasing temperature. Yet, the barrier does not vanish as the temperature approaches the temperature of the martensite to austenite transformation. These findings enable the formulation of an analytical expression that correlates the lattice barrier to the physical properties of the twin wall, such as its thickness and the associated transformation strain. The derived relation provides a good quantitative description of the data measured in Ni-Mn-Ga.

  4. Fractional Brownian motion with a reflecting wall

    NASA Astrophysics Data System (ADS)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α <1 , in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  5. Tissue Doppler, strain, and strain rate echocardiography for the assessment of left and right systolic ventricular function

    PubMed Central

    Pellerin, D; Sharma, R; Elliott, P; Veyrat, C

    2003-01-01

    Tissue Doppler (TDE), strain, and strain rate echocardiography are emerging real time ultrasound techniques that provide a measure of wall motion. They offer an objective means to quantify global and regional left and right ventricular function and to improve the accuracy and reproducibility of conventional echocardiography studies. Radial and longitudinal ventricular function can be assessed by the analysis of myocardial wall velocity and displacement indices, or by the analysis of wall deformation using the rate of deformation of a myocardial segment (strain rate) and its deformation over time (strain). A quick and easy assessment of left ventricular ejection fraction is obtained by mitral annular velocity measurement during a routine study, especially in patients with poor endocardial definition or abnormal septal motion. Strain rate and strain are less affected by passive myocardial motion and tend to be uniform throughout the left ventricle in normal subjects. This paper reviews the underlying principles of TDE, strain, and strain rate echocardiography and discusses currently available quantification tools and clinical applications. PMID:14594870

  6. Collective motion of squirmers in a quasi-2D geometry

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2013-03-01

    Microorganisms like bacteria, algae or spermatozoa typically move in an aqueous environment where they interact via hydrodynamic flow fields. Recent experiments studied the collective motion of dense suspensions of bacteria where swarming and large-scale turbulence emerged. Moreover, spherical artificial microswimmers, so-called squirmers, have been constructed and studied in a quasi-2D geometry. Here we present a numerical study of the collective dynamics of squirmers confined in quasi-2D between two parallel walls. Because of their spherical shape the reorientation of squirmers is solely due to noise and hydrodynamic interactions via induced flow fields. This is in contrast to elongated swimmers like bacteria which locally align due to steric interactions. We study the collective motion of pushers, pullers and potential swimmers at different densities. At small densities the squirmers are oriented parallel to the walls and pairwise collisions determine the reorientation rate. In dense suspensions rotational diffusion is greatly enhanced and pushers, in particular, tend to orient perpendicular to the walls. This effects the dynamics of the emerging clusters. In very dense suspensions we observe active jamming and long-lived crystalline structures.

  7. Estimation of bladder wall location in ultrasound images.

    PubMed

    Topper, A K; Jernigan, M E

    1991-05-01

    A method of automatically estimating the location of the bladder wall in ultrasound images is proposed. Obtaining this estimate is intended to be the first stage in the development of an automatic bladder volume calculation system. The first step in the bladder wall estimation scheme involves globally processing the images using standard image processing techniques to highlight the bladder wall. Separate processing sequences are required to highlight the anterior bladder wall and the posterior bladder wall. The sequence to highlight the anterior bladder wall involves Gaussian smoothing and second differencing followed by zero-crossing detection. Median filtering followed by thresholding and gradient detection is used to highlight as much of the rest of the bladder wall as was visible in the original images. Then a 'bladder wall follower'--a line follower with rules based on the characteristics of ultrasound imaging and the anatomy involved--is applied to the processed images to estimate the bladder wall location by following the portions of the bladder wall which are highlighted and filling in the missing segments. The results achieved using this scheme are presented.

  8. Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra

    2012-09-01

    Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.

  9. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  10. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  11. Patient training in respiratory-gated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.

    2003-03-31

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chestmore » or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy.« less

  12. Intermittent nature of acceleration in near wall turbulence.

    PubMed

    Lee, Changhoon; Yeo, Kyongmin; Choi, Jung-Il

    2004-04-09

    Using direct numerical simulation of a fully developed turbulent channel flow, we investigate the behavior of acceleration near a solid wall. We find that acceleration near the wall is highly intermittent and the intermittency is in large part associated with the near wall organized coherent turbulence structures. We also find that acceleration of large magnitude is mostly directed towards the rotation axis of the coherent vortical structures, indicating that the source of the intermittent acceleration is the rotational motion associated with the vortices that causes centripetal acceleration.

  13. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  14. Reproducibility of The Abdominal and Chest Wall Position by Voluntary Breath-Hold Technique Using a Laser-Based Monitoring and Visual Feedback System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Katsumasa; Shioyama, Yoshiyuki; Nomoto, Satoru

    2007-05-01

    Purpose: The voluntary breath-hold (BH) technique is a simple method to control the respiration-related motion of a tumor during irradiation. However, the abdominal and chest wall position may not be accurately reproduced using the BH technique. The purpose of this study was to examine whether visual feedback can reduce the fluctuation in wall motion during BH using a new respiratory monitoring device. Methods and Materials: We developed a laser-based BH monitoring and visual feedback system. For this study, five healthy volunteers were enrolled. The volunteers, practicing abdominal breathing, performed shallow end-expiration BH (SEBH), shallow end-inspiration BH (SIBH), and deep end-inspirationmore » BH (DIBH) with or without visual feedback. The abdominal and chest wall positions were measured at 80-ms intervals during BHs. Results: The fluctuation in the chest wall position was smaller than that of the abdominal wall position. The reproducibility of the wall position was improved by visual feedback. With a monitoring device, visual feedback reduced the mean deviation of the abdominal wall from 2.1 {+-} 1.3 mm to 1.5 {+-} 0.5 mm, 2.5 {+-} 1.9 mm to 1.1 {+-} 0.4 mm, and 6.6 {+-} 2.4 mm to 2.6 {+-} 1.4 mm in SEBH, SIBH, and DIBH, respectively. Conclusions: Volunteers can perform the BH maneuver in a highly reproducible fashion when informed about the position of the wall, although in the case of DIBH, the deviation in the wall position remained substantial.« less

  15. Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids

    NASA Astrophysics Data System (ADS)

    Soroush, F.; Moosavi, A.

    2018-05-01

    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.

  16. Velocity relaxation of a particle in a confined compressible fluid

    NASA Astrophysics Data System (ADS)

    Tatsumi, Rei; Yamamoto, Ryoichi

    2013-05-01

    The velocity relaxation of an impulsively forced spherical particle in a fluid confined by two parallel plane walls is studied using a direct numerical simulation approach. During the relaxation process, the momentum of the particle is transmitted in the ambient fluid by viscous diffusion and sound wave propagation, and the fluid flow accompanied by each mechanism has a different character and affects the particle motion differently. Because of the bounding walls, viscous diffusion is hampered, and the accompanying shear flow is gradually diminished. However, the sound wave is repeatedly reflected and spreads diffusely. As a result, the particle motion is governed by the sound wave and backtracks differently in a bulk fluid. The time when the backtracking of the particle occurs changes non-monotonically with respect to the compressibility factor ɛ = ν/ac and is minimized at the characteristic compressibility factor. This factor depends on the wall spacing, and the dependence is different at small and large wall spacing regions based on the different mechanisms causing the backtracking.

  17. Dual rotating shaft seal apparatus

    DOEpatents

    Griggs, J.E.; Newman, H.J.

    1983-06-16

    The report is directed to apparatus suitable for transferring torque and rotary motion through a wall in a manner which is essentially gas impermeable. The apparatus can be used for pressurizing, agitating, and mixing fluids and features two ferrofluidic, i.e., ferrometic seals. Each seal is disposed on one of two supported shafts and each shaft is operably connected at one end to a gear mechanism and at its other end to an adjustable coupling means which is to be connected to a rotatable shaft extending through a wall through which torque and rotary motion are to be transferred.

  18. The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovascular graft.

    PubMed

    Corbett, T J; Molony, D S; Callanan, A; McGloughlin, T M

    2011-01-01

    Migration is a serious failure mechanism associated with endovascular abdominal aortic aneurysm (AAA) repair (EVAR). The effect of vessel material properties and pulsatile wall motion on stent fixation has not been previously investigated. A proximal stent from a commercially available stent graft was implanted into the proximal neck of silicone rubber abdominal aortic aneurysm models of varying proximal neck stiffness (β=25.39 and 20.44). The stent was then dislodged by placing distal force on the stent struts. The peak force to completely dislodge the stent was measured using a loadcell. Dislodgment was performed at ambient pressure with no flow (NF) and during pulsatile flow (PF) at pressures of 120/80 mmHg and 140/100 mmHg to determine if pulsatile wall motions affected the dislodgement force. An imaging analysis was performed at ambient pressure and at pressures of 120 mmHg and 140 mmHg to investigate diameter changes on the model due to the radial force of the stent and internal pressurisation. Stent displacement forces were ~50% higher in the stiffer model (7.16-8.4 N) than in the more compliant model (3.67-4.21 N). The mean displacement force was significantly reduced by 10.95-12.83% from the case of NF to the case of PF at 120/80 mmHg. A further increase in pressure to 140/120 mmHg had no significant effect on the displacement force. The imaging analysis showed that the diameter in the region of the stent was 0.37 mm greater in the less stiff model at all the pressures which could reduce the fixation of the stent. The results suggest that the fixation of passively fixated aortic stents could be comprised in more compliant walls and that pulsatile motions of the wall can reduce the maximum stent fixation. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig

    2013-11-01

    To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (∼1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.

  20. Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy.

    PubMed

    Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig

    2013-11-07

    To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (~1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.

  1. Coordination Between Ribs Motion and Thoracoabdominal Volumes in Swimmers During Respiratory Maneuvers

    PubMed Central

    Sarro, Karine J.; Silvatti, Amanda P.; Barros, Ricardo M. L.

    2008-01-01

    This work aimed to verify if swimmers present better chest wall coordination during breathing than healthy non-athletes analyzing the correlation between ribs motion and the variation of thoracoabdominal volumes. The results of two up-to-date methods based on videogrammetry were correlated in this study. The first one measured the volumes of 4 separate compartments of the chest wall (superior thorax, inferior thorax, superior abdomen and inferior abdomen) as a function of time. The second calculated the rotation angle of the 2nd to the 10th ribs around the quasi-transversal axis also in function of time. The chest wall was represented by 53 markers, attached to the ribs, vertebrae, thorax and abdomen of 15 male swimmers and of 15 non- athletes. A kinematical analysis system equipped with 6 digital video cameras (60Hz) was used to obtain the 3D coordinates of the markers. Correlating the curves of ribs rotation angles with the curves of the separate volumes, swimmers presented higher values than non-athletes when the superior and inferior abdomen were considered and the highest correlation values were found in swimmers for the inferior thorax. These results suggest a better coordination between ribs motion and thoracoabdominal volumes in swimmers, indicating the prevalent and coordinated action of the diaphragm and abdominal muscles to inflate and deflate the chest wall. The results further suggest that swimming practice leads to the formation of an optimized breathing pattern and can partially explain the higher lung volumes found in these athletes reported in literature. Key pointsThe study revealed that swimmers present higher correlation between the ribs motion and the variation of abdominal volumes than non-swimmers, suggesting that swimming practice might lead to the formation of an optimized breathing pattern, increasing the coordination between the thoracoabdominal volumes and the ribs motion.No previous work was found in the literature reporting this optimized breathing pattern in swimmers.The higher coordination between the thoracoabdominal volumes and the ribs motion found in swimmers can partially explain the higher lung volumes reported in literature for these athletes. PMID:24149449

  2. Universal current-velocity relation of skyrmion motion in chiral magnets

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto

    2013-02-01

    Current-driven motion of the magnetic domain wall in ferromagnets is attracting intense attention because of potential applications such as racetrack memory. There, the critical current density to drive the motion is ~109-1012 A m-2. The skyrmions recently discovered in chiral magnets have much smaller critical current density of ~105-106 A m-2, but the microscopic mechanism is not yet explored. Here we present a numerical simulation of Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the skyrmion motion driven by the spin-transfer-torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix. Simulation results are analysed using a theory based on Thiele’s equation, and it is concluded that this behaviour is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal, which enable them to avoid pinning centres.

  3. Characteristics of sources and sinks of momentum in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Ganapathisubramani, B.

    2018-05-01

    In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.

  4. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  5. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  6. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  7. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.

    PubMed

    Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter

    2017-06-01

    To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2  = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2  = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Control and manipulation of antiferromagnetic skyrmions in racetrack

    NASA Astrophysics Data System (ADS)

    Xia, Haiyan; Jin, Chendong; Song, Chengkun; Wang, Jinshuai; Wang, Jianbo; Liu, Qingfang

    2017-12-01

    Controllable manipulations of magnetic skyrmions are essential for next-generation spintronic devices. Here, the duplication and merging of skyrmions, as well as logical AND and OR functions, are designed in antiferromagnetic (AFM) materials with a cusp or smooth Y-junction structures. The operational time are in the dozens of picoseconds, enabling ultrafast information processing. A key factor for the successful operation is the relatively complex Y-junction structures, where domain walls propagate through in a controlled manner, without significant risks of pinning, vanishing or unwanted depinning of existing domain walls, as well as the nucleation of new domain walls. The motions of a multi-bit, namely the motion of an AFM skyrmion-chain in racetrack, are also investigated. Those micromagnetic simulations may contribute to future AFM skyrmion-based spintronic devices, such as nanotrack memory, logic gates and other information processes.

  9. Comparison between spin-orbit torques measured by domain-wall motions and harmonic measurements

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Sung; Nam, Yune-Seok; Kim, Dae-Yun; Park, Yong-Keun; Park, Min-Ho; Choe, Sug-Bong

    2018-05-01

    Here we report the comparison of the spin torque efficiencies measured by three different experimental schemes for Pt/Co/X stacks with material X (= Pt, Ta, Ti, Al, Au, Pd, and Ru. 7 materials). The first two spin torque efficiencies ɛDW (1 ) and ɛDW (2 ) are quantified by the measurement of spin-torque-induced effective field for domain-wall depinning and creeping motions, respectively. The last one—longitudinal spin torque efficiency ɛL—is measured by harmonic signal measurement of the magnetization rotation with uniform magnetization configuration. The results confirm that, for all measured Pt/Co/X stacks, ɛDW (1 ) and ɛDW (2 ) are exactly consistent to each other and these two efficiencies are roughly proportional to ɛL with proportionality constant π/2, which comes from the integration over the domain-wall configuration.

  10. Measurement of viscoelastic properties of in vivo swine myocardium using Lamb Wave Dispersion Ultrasound Vibrometry (LDUV)

    PubMed Central

    Urban, Matthew W.; Pislaru, Cristina; Nenadic, Ivan Z.; Kinnick, Randall R.; Greenleaf, James F.

    2012-01-01

    Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50–400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ1, and viscosity, μ2 as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle. PMID:23060325

  11. Acoustoelasticity. [sound-structure interaction

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1977-01-01

    Sound or pressure variations inside bounded enclosures are investigated. Mathematical models are given for determining: (1) the interaction between the sound pressure field and the flexible wall of a Helmholtz resonator; (2) coupled fluid-structural motion of an acoustic cavity with a flexible and/or absorbing wall; (3) acoustic natural modes in multiple connected cavities; and (4) the forced response of a cavity with a flexible and/or absorbing wall. Numerical results are discussed.

  12. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Ishimoto, Kenta

    2017-10-01

    The motions of an unsteady circular-disk squirmer and a spherical squirmer have been investigated in the presence of a no-slip infinite wall and a background shear flow in order to clarify the similarities and differences between two- and three-dimensional motions. Despite the similar bifurcation structure of the dynamical system, the stability of the fixed points differs due to the Hamiltonian structure of the disk squirmer. Once the unsteady oscillating surface velocity profile is considered, the disk squirmer can behave in a chaotic manner and cease to be confined in a near-wall region. In contrast, in an unsteady spherical squirmer, the dynamics is well attracted by a stable fixed point. Additional wall contact interactions lead to stable fixed points for the disk squirmer, and, in turn, the surface entrapment of the disk squirmer can be stabilized, regardless of the existence of the background flow. Finally, we consider spherical motion under a background flow. The separated time scales of the surface entrapment (thigmotaxis) and the turning toward the flow direction (rheotaxis) enable us to reduce the dynamics to two-dimensional phase space, and simple weather-vane mechanics can predict squirmer rheotaxis. The analogous structure of the phase plane with the wall contact in two and three dimensions implies that the two-dimensional disk swimmer successfully captures the nonlinear interactions, and thus two-dimensional approximation could be useful in designing microfluidic devices for the guidance of microswimmers and for clarifying the locomotions in a complex geometry.

  13. Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, J. H.; Miao, B. F.; Sun, L.

    2011-11-01

    We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabaticmore » spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.« less

  14. Segmental front line dynamics of randomly pinned ferroelastic domain walls

    NASA Astrophysics Data System (ADS)

    Puchberger, S.; Soprunyuk, V.; Schranz, W.; Carpenter, M. A.

    2018-01-01

    Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004), 10.1103/PhysRevB.69.144101] found evidence for dynamic phase transitions of ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ɛ =1.7 ±0.1 . Also, the distribution of waiting times between events follows a power law N (tw) ∝tw-(n +1 ) with an exponent n =0.9 , which transforms to a power law of susceptibility S (ω ) ∝ω-n . The present dynamic susceptibility data can be well fitted with a power law, with the same exponent (n =0.9 ) up to a characteristic frequency ω ≈ω* , where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004), 10.1103/PhysRevB.70.224104].

  15. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  16. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection.

    PubMed

    Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex

    2017-01-01

    Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).

  17. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection

    PubMed Central

    Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex

    2017-01-01

    Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888

  18. Improved frame-based estimation of head motion in PET brain imaging.

    PubMed

    Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R

    2016-05-01

    Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  19. Fractional Brownian motion with a reflecting wall.

    PubMed

    Wada, Alexander H O; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior 〈x^{2}〉∼t^{α}, the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α>1, the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α<1, in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  20. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  1. Simultaneous Assessment of Myocardial Perfusion, Wall Motion, and Deformation during Myocardial Contrast Echocardiography: A Feasibility Study.

    PubMed

    Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy

    2016-06-01

    Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.

  2. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant

    NASA Astrophysics Data System (ADS)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan

    2017-07-01

    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  3. [Evaluation of echocardiographic left ventricular wall motion analysis supported by internet picture viewing system].

    PubMed

    Hirano, Yutaka; Ikuta, Shin-Ichiro; Nakano, Manabu; Akiyama, Seita; Nakamura, Hajime; Nasu, Masataka; Saito, Futoshi; Nakagawa, Junichi; Matsuzaki, Masashi; Miyazaki, Shunichi

    2007-02-01

    Assessment of deterioration of regional wall motion by echocardiography is not only subjective but also features difficulties with interobserver agreement. Progress in digital communication technology has made it possible to send video images from a distant location via the Internet. The possibility of evaluating left ventricular wall motion using video images sent via the Internet to distant institutions was evaluated. Twenty-two subjects were randomly selected. Four sets of video images (parasternal long-axis view, parasternal short-axis view, apical four-chamber view, and apical two-chamber view) were taken for one cardiac cycle. The images were sent via the Internet to two institutions (observer C in facility A and observers D and E in facility B) for evaluation. Great care was taken to prevent disclosure of patient information to these observers. Parasternal long-axis images were divided into four segments, and the parasternal short-axis view, apical four-chamber view, and apical two-chamber view were divided into six segments. One of the following assessments, normokinesis, hypokinesis, akinesis, or dyskinesis, was assigned to each segment. The interobserver rates of agreement in judgments between observers C and D, observers C and E, and intraobserver agreement rate (for observer D) were calculated. The rate of interobserver agreement was 85.7% (394/460 segments; Kappa = 0.65) between observers C and D, 76.7% (353/460 segments; Kappa = 0.39) between observers D and E, and 76.3% (351/460 segments; Kappa = 0.36)between observers C and E, and intraobserver agreement was 94.3% (434/460; Kappa = 0.86). Segments of difference judgments between observers C and D were normokinesis-hypokinesis; 62.1%, hypokinesis-akinesis; 33.3%, akinesis-dyskinesis; 3.0%, and normokinesis-akinesis; 1.5%. Wall motion can be evaluated at remote institutions via the Internet.

  4. Comparison of Quantitative Wall Motion Analysis and Strain For Detection Of Coronary Stenosis With Three-Dimensional Dobutamine Stress Echocardiography

    PubMed Central

    Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.

    2015-01-01

    Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588

  5. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V

    2018-05-17

    The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. MapSentinel: Can the Knowledge of Space Use Improve Indoor Tracking Further?

    PubMed Central

    Jia, Ruoxi; Jin, Ming; Zou, Han; Yesilata, Yigitcan; Xie, Lihua; Spanos, Costas

    2016-01-01

    Estimating an occupant’s location is arguably the most fundamental sensing task in smart buildings. The applications for fine-grained, responsive building operations require the location sensing systems to provide location estimates in real time, also known as indoor tracking. Existing indoor tracking systems require occupants to carry specialized devices or install programs on their smartphone to collect inertial sensing data. In this paper, we propose MapSentinel, which performs non-intrusive location sensing based on WiFi access points and ultrasonic sensors. MapSentinel combines the noisy sensor readings with the floormap information to estimate locations. One key observation supporting our work is that occupants exhibit distinctive motion characteristics at different locations on the floormap, e.g., constrained motion along the corridor or in the cubicle zones, and free movement in the open space. While extensive research has been performed on using a floormap as a tool to obtain correct walking trajectories without wall-crossings, there have been few attempts to incorporate the knowledge of space use available from the floormap into the location estimation. This paper argues that the knowledge of space use as an additional information source presents new opportunities for indoor tracking. The fusion of heterogeneous information is theoretically formulated within the Factor Graph framework, and the Context-Augmented Particle Filtering algorithm is developed to efficiently solve real-time walking trajectories. Our evaluation in a large office space shows that the MapSentinel can achieve accuracy improvement of 31.3% compared with the purely WiFi-based tracking system. PMID:27049387

  7. MapSentinel: Can the Knowledge of Space Use Improve Indoor Tracking Further?

    PubMed

    Jia, Ruoxi; Jin, Ming; Zou, Han; Yesilata, Yigitcan; Xie, Lihua; Spanos, Costas

    2016-04-02

    Estimating an occupant's location is arguably the most fundamental sensing task in smart buildings. The applications for fine-grained, responsive building operations require the location sensing systems to provide location estimates in real time, also known as indoor tracking. Existing indoor tracking systems require occupants to carry specialized devices or install programs on their smartphone to collect inertial sensing data. In this paper, we propose MapSentinel, which performs non-intrusive location sensing based on WiFi access points and ultrasonic sensors. MapSentinel combines the noisy sensor readings with the floormap information to estimate locations. One key observation supporting our work is that occupants exhibit distinctive motion characteristics at different locations on the floormap, e.g., constrained motion along the corridor or in the cubicle zones, and free movement in the open space. While extensive research has been performed on using a floormap as a tool to obtain correct walking trajectories without wall-crossings, there have been few attempts to incorporate the knowledge of space use available from the floormap into the location estimation. This paper argues that the knowledge of space use as an additional information source presents new opportunities for indoor tracking. The fusion of heterogeneous information is theoretically formulated within the Factor Graph framework, and the Context-Augmented Particle Filtering algorithm is developed to efficiently solve real-time walking trajectories. Our evaluation in a large office space shows that the MapSentinel can achieve accuracy improvement of 31.3% compared with the purely WiFi-based tracking system.

  8. Data-driven spectral filters for decomposing the streamwise turbulent kinetic energy in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2017-11-01

    An organization in wall-bounded turbulence is evidenced by the classification of distinctly different flow structures, including large-scale motions such as hairpin packets and very large-scale motions or superstructures. In conjunction with less organized turbulence, these flow structures all contribute to the streamwise turbulent kinetic energy . Since different class structures comprise dissimilar scalings of their overlapping imprints in the streamwise velocity spectra, their coexistence complicates the interpretation of the wall-normal trend in and its Reynolds number dependence. Via coherence analyses of two-point data in boundary layers we derive spectral filters for stochastically decomposing the streamwise spectra into sub-components, representing different types of statistical flow structures. It is also explored how the decomposition reflects the spectral break-down following the modeling attempts of Perry et al. 1986 and Marusic & Perry 1995. In the process we reveal a universal wall-scaling for a portion of the outer-region turbulence that is coherent with the near-wall region for Reτ O(103) to O(106) , which is described as a wall-attached self-similar structure embedded within the logarithmic region.

  9. Effects of Incentive Spirometry on Respiratory Motion in Healthy Subjects Using Cine Breathing Magnetic Resonance Imaging.

    PubMed

    Kotani, Toshiaki; Akazawa, Tsutomu; Sakuma, Tsuyoshi; Nagaya, Shigeyuki; Sonoda, Masaru; Tanaka, Yuji; Katogi, Takehide; Nemoto, Tetsuharu; Minami, Shohei

    2015-06-01

    To investigate the effectiveness of incentive spirometry on respiratory motion in healthy subjects using cine breathing magnetic resonance imaging (MRI). Ten non-smoking healthy subjects without any history of respiratory disease were studied. Subjects were asked to perform pulmonary training using incentive spirometry every day for two weeks. To assess the effectiveness of this training, pulmonary function tests and cine breathing MRI were performed before starting pulmonary training and two weeks after its completion. After training, there were significant improvements in vital capacity (VC) from 3.58±0.8 L to 3.74±0.8 L and in %VC from 107.4±10.8 to 112.1±8.2. Significant changes were observed in the right diaphragm motion, right chest wall motion, and left chest wall motion, which were increased from 55.7±9.6 mm to 63.4±10.2 mm, from 15.6±6.1 mm to 23.4±10.4 mm, and from 16.3±7.6 mm to 22.0±9.8 mm, respectively. Two weeks of training using incentive spirometry provided improvements in pulmonary function and respiratory motion, which suggested that incentive spirometry may be a useful preoperative modality for improving pulmonary function during the perioperative period.

  10. Estimating satellite pose and motion parameters using a novelty filter and neural net tracker

    NASA Technical Reports Server (NTRS)

    Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne

    1989-01-01

    A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.

  11. Expermental Investigation of Supercavitating Motion of Bodies

    DTIC Science & Technology

    2001-02-01

    information is ensured by studying of the model motion kinematics and photo- cinematography of its flow pictures. 4-9 Synchronization of work of the...on the depth 0.5 m along the flume axis. Photo- cinematography of the flow pictures was realized through the glass windows in walls of the flume and

  12. Myocardial motion estimation of tagged cardiac magnetic resonance images using tag motion constraints and multi-level b-splines interpolation.

    PubMed

    Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng

    2016-05-01

    Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Streak instability as an initiating mechanism of the large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    de Giovanetti, Matteo; Sung, Hyung Jin; Hwang, Yongyun

    2016-11-01

    The large-scale motions (or bulges) have often been believed to be formed via merge and/or growth of the near-wall hairpin vortical structures. Here, we report our observation that they can be directly generated by an instability of the amplified streaky motions in the outer region (i.e. very-large-scale motions) through the self-sustaining process. We design a LES-based numerical experiment in turbulent channel flow for Reτ = 2000 where a body forcing is implemented to artificially drive an infinitely long streaky motion in the outer layer. As the forcing amplitude is increased, it is found that a new energetic structure emerges at λx 3 4 h of the streamwise length (h is the half height of channel) particularly in the wall-normal and spanwise velocities. A careful statistical examination reveals that this structure is likely to be linked with the sinuous-mode streak instability of the amplified streak, consistent with previous theoretical studies. Application of dynamic mode decomposition to this instability further shows that the phase speed of this structure scales with the outer velocity and it is initiated around the critical layer of the streaky flow.

  14. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  15. Materials for Adaptive Structural Acoustic Controls

    DTIC Science & Technology

    1994-01-31

    non -184T walls are possibly active under a weak cternial driving field. I. INTRODUCTION sic and extrinsic contributions from tile experimental data...increased activity in non - I 8Or wall in PZT-500, The experimental methods presented in this however, the disproportionate increase in e. may refiect be...Electromechanical Nonlinearity of Ferroelecuic Ceramic and Related non 180" Domain Wall Motion. Feaoelectrics 139,25- 49 (1993). 14. Jiang, Q., W. Cao, and L E

  16. Algebraic motion of vertically displacing plasmas

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  17. Neutrophil-inspired propulsion in a combined acoustic and magnetic field.

    PubMed

    Ahmed, Daniel; Baasch, Thierry; Blondel, Nicolas; Läubli, Nino; Dual, Jürg; Nelson, Bradley J

    2017-10-03

    Systems capable of precise motion in the vasculature can offer exciting possibilities for applications in targeted therapeutics and non-invasive surgery. So far, the majority of the work analysed propulsion in a two-dimensional setting with limited controllability near boundaries. Here we show bio-inspired rolling motion by introducing superparamagnetic particles in magnetic and acoustic fields, inspired by a neutrophil rolling on a wall. The particles self-assemble due to dipole-dipole interaction in the presence of a rotating magnetic field. The aggregate migrates towards the wall of the channel due to the radiation force of an acoustic field. By combining both fields, we achieved a rolling-type motion along the boundaries. The use of both acoustic and magnetic fields has matured in clinical settings. The combination of both fields is capable of overcoming the limitations encountered by single actuation techniques. We believe our method will have far-reaching implications in targeted therapeutics.Devising effective swimming and propulsion strategies in microenvironments is attractive for drug delivery applications. Here Ahmed et al. demonstrate a micropropulsion strategy in which a combination of magnetic and acoustic fields is used to assemble and propel colloidal particles along channel walls.

  18. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  19. Assessment of dyssynchronous wall motion during acute myocardial ischemia using velocity vector imaging.

    PubMed

    Masuda, Kasumi; Asanuma, Toshihiko; Taniguchi, Asuka; Uranishi, Ayumi; Ishikura, Fuminobu; Beppu, Shintaro

    2008-03-01

    The purpose of this study was to investigate the diagnostic value of velocity vector imaging (VVI) for detecting acute myocardial ischemia and whether VVI can accurately demonstrate the spatial extent of ischemic risk area. Using a tracking algorithm, VVI can display velocity vectors of regional wall motion overlaid onto the B-mode image and allows the quantitative assessment of myocardial mechanics. However, its efficacy for diagnosing myocardial ischemia has not been evaluated. In 18 dogs with flow-limiting stenosis and/or total occlusion of the coronary artery, peak systolic radial velocity (V(SYS)), radial velocity at mitral valve opening (V(MVO)), peak systolic radial strain, and the percent change in wall thickening (%WT) were measured in the normal and risk areas and compared to those at baseline. Sensitivity and specificity for detecting the stenosis and occlusion were analyzed in each parameter. The area of inward velocity vectors at mitral valve opening (MVO) detected by VVI was compared to the risk area derived from real-time myocardial contrast echocardiography (MCE). Twelve image clips were randomly selected from the baseline, stenosis, and occlusions to determine the intra- and inter-observer agreement for the VVI parameters. The left circumflex coronary flow was reduced by 44.3 +/- 9.0% during stenosis and completely interrupted during occlusion. During coronary artery occlusion, inward motion at MVO was observed in the risk area. Percent WT, peak systolic radial strain, V(SYS), and V(MVO) changed significantly from values at baseline. During stenosis, %WT, peak systolic radial strain, and V(SYS) did not differ from those at baseline; however, V(MVO) was significantly increased (-0.12 +/- 0.60 cm/s vs. -0.96 +/- 0.55 cm/s, p = 0.015). Sensitivity and specificity of V(MVO) for detecting ischemia were superior to those of other parameters. The spatial extent of inward velocity vectors at MVO correlated well with that of the risk area derived from MCE (r = 0.74, p < 0.001 with a linear regression). The assessment of VVI at MVO permits easy detection of dyssynchronous wall motion during acute myocardial ischemia that cannot be diagnosed by conventional measurement of systolic wall thickness. The spatial extent of inward motion at MVO suggests the size of the risk area.

  20. High-speed schlieren videography of vortex-ring impact on a wall

    NASA Astrophysics Data System (ADS)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  1. Low field domain wall dynamics in artificial spin-ice basis structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.; School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Goolaup, S.

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure stronglymore » influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.« less

  2. Large eddy simulation of incompressible turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Reynolds, W. C.; Ferziger, J. H.

    1978-01-01

    The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.

  3. Improved frame-based estimation of head motion in PET brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less

  4. Improved frame-based estimation of head motion in PET brain imaging

    PubMed Central

    Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355

  5. Motion compensation for cone-beam CT using Fourier consistency conditions

    NASA Astrophysics Data System (ADS)

    Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.

    2017-09-01

    In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.

  6. Microwave fields driven domain wall motions in antiferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Yan, Z. R.; Zhang, Y. L.; Qin, M. H.; Fan, Z.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2018-06-01

    In this work, we study the microwave field driven domain wall (DW) motion in an antiferromagnetic nanowire, using the numerical calculations based on a classical Heisenberg spin model with the biaxial magnetic anisotropy. We show that a proper combination of a static magnetic field plus an oscillating field perpendicular to the nanowire axis is sufficient to drive the DW propagation along the nanowire. More importantly, the drift velocity at the resonance frequency is comparable to that induced by temperature gradients, suggesting that microwave field can be a very promising tool to control DW motions in antiferromagnetic nanostructures. The dependences of resonance frequency and drift velocity on the static and oscillating fields, the axial anisotropy, and the damping constant are discussed in details. Furthermore, the optimal orientations of the field are also numerically determined and explained. This work provides useful information for the spin dynamics in antiferromagnetic nanostructures for spintronics applications.

  7. Spanwise vorticity and wall normal velocity structure in the inertial region of turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph

    2017-11-01

    The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.

  8. First clinical implementation of audiovisual biofeedback in liver cancer stereotactic body radiation therapy.

    PubMed

    Pollock, Sean; Tse, Regina; Martin, Darren; McLean, Lisa; Cho, Gwi; Hill, Robin; Pickard, Sheila; Aston, Paul; Huang, Chen-Yu; Makhija, Kuldeep; O'Brien, Ricky; Keall, Paul

    2015-10-01

    This case report details a clinical trial's first recruited liver cancer patient who underwent a course of stereotactic body radiation therapy treatment utilising audiovisual biofeedback breathing guidance. Breathing motion results for both abdominal wall motion and tumour motion are included. Patient 1 demonstrated improved breathing motion regularity with audiovisual biofeedback. A training effect was also observed. © 2015 The Authors. Journal of Medical Imaging and Radiation Oncology published by Wiley Publishing Asia Pty Ltd on behalf of The Royal Australian and New Zealand College of Radiologists.

  9. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  10. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  11. Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagar, Timothy M., E-mail: zagar@med.unc.edu; Kaidar-Person, Orit; Tang, Xiaoli

    Purpose: To evaluate early cardiac single photon computed tomography (SPECT) findings after left breast/chest wall postoperative radiation therapy (RT) in the setting of deep inspiration breath hold (DIBH). Methods and Materials: We performed a prospective single-institution single-arm study of patients who were planned for tangential RT with DIBH to the left breast/chest wall (± internal mammary nodes). The DIBH was done by use of a controlled surface monitoring technique (AlignRT, Vision RT Ltd, London, UK). The RT was given with tangential fields and a heart block. Radiation-induced cardiac perfusion and wall motion changes were assessed by pre-RT and 6-month post-RTmore » SPECT scans. A cumulative SPECT summed-rest score was used to quantify perfusion in predefined left ventricle segments. The incidence of wall motion abnormalities was assessed in each of these same segments. Results: A total of 20 patients with normal pre-RT scans were studied; their median age was 56 years (range, 39-72 years). Seven (35%) patients also received irradiation to the left internal mammary chain, and 5 (25%) received an additional RT field to supraclavicular nodes. The median heart dose was 94 cGy (range, 56-200 cGy), and the median V25{sub Gy} was zero (range, 0-0.1). None of the patients had post-RT perfusion or wall motion abnormalities. Conclusions: Our results suggest that DIBH and conformal cardiac blocking for patients receiving tangential RT for left-sided breast cancer is an effective means to avoid early RT-associated cardiac perfusion defects.« less

  12. Wide sternal retraction may impede internal mammary artery graft flow and reduce myocardial function during off-pump coronary artery bypass grafting: presentation of two cases

    PubMed Central

    Espinoza, Andreas; Bergsland, Jacob; Lundblad, Runar; Fosse, Erik

    2012-01-01

    The internal mammary artery (IMA) is routinely used for grafting of the left anterior descending coronary artery (LAD), providing good flow to the anterior left ventricle (LV) wall. Impeded IMA-to-LAD flow may result in myocardial ischaemia and haemodynamic deterioration. From a study population, we describe two incidents where myocardial ischaemia was observed during off-pump coronary artery bypass surgery (CABG), with a confirmed reduction in the IMA-to-LAD flow in one patient. In patient no. 1, normal IMA flow was assessed by transit-time flow measurement after a complete IMA-to-LAD anastomosis. The anterior LV wall thickening was monitored continuously by epicardial ultrasonic transducers. Normal wall thickening was confirmed after IMA grafting. During a wide sternal opening for circumflex grafting the anterior wall motion displayed an ischaemic pattern, with reduced systolic and increased post-systolic wall thickening. IMA flow was reduced simultaneously. When easing the sternal opening, IMA flow normalized, as did the motion pattern in the anterior LV wall. In patient no. 2, similar changes in wall thickening occurred during a wide sternal opening after IMA-to-LAD grafting. When easing the retractor, the wall thickening normalized. It is important for the surgeon to be aware of this possible cause of myocardial ischaemia, with a risk of subsequent haemodynamic deterioration. This may not only be of great importance during off-pump CABG, but can also be significant for successful weaning from the cardiopulmonary bypass machine. PMID:22499803

  13. Depinning of the transverse domain wall trapped at magnetic impurities patterned in planar nanowires: Control of the wall motion using low-intensity and short-duration current pulses

    NASA Astrophysics Data System (ADS)

    Paixão, E. L. M.; Toscano, D.; Gomes, J. C. S.; Monteiro, M. G.; Sato, F.; Leonel, S. A.; Coura, P. Z.

    2018-04-01

    Understanding and controlling of domain wall motion in magnetic nanowires is extremely important for the development and production of many spintronic devices. It is well known that notches are able to pin domain walls, but their pinning potential strength are too strong and it demands high-intensity current pulses to achieve wall depinning in magnetic nanowires. However, traps of pinning can be also originated from magnetic impurities, consisting of located variations of the nanowire's magnetic properties, such as exchange stiffness constant, saturation magnetization, anisotropy constant, damping parameter, and so on. In this work, we have performed micromagnetic simulations to investigate the depinning mechanism of a transverse domain wall (TDW) trapped at an artificial magnetic defect using spin-polarized current pulses. In order to create pinning traps, a simplified magnetic impurity model, only based on a local reduction of the exchange stiffness constant, have been considered. In order to provide a background for experimental studies, we have varied the parameter related to the pinning potential strength of the magnetic impurity. By adjusting the pinning potential of magnetic impurities and choosing simultaneously a suitable current pulse, we have found that it is possible to obtain domain wall depinning by applying low-intensity and short-duration current pulses. Furthermore, it was considered a planar magnetic nanowire containing a linear distribution of equally-spaced magnetic impurities and we have demonstrated the position control of a single TDW by applying sequential current pulses; that means the wall movement from an impurity to another.

  14. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  15. The physiological basis of Glottal electromagnetic micropower sensors (GEMS) and their use in defining an excitation function for the human vocal tract

    NASA Astrophysics Data System (ADS)

    Burnett, Gregory Clell

    1999-10-01

    The definition, use, and physiological basis of Glottal Electromagnetic Micropower Sensors (GEMS) is presented. These sensors are a new type of low power (<20 milliwatts radiated) microwave regime (900 MHz to 2.5 GHz) multi-purpose motion sensor developed at the Lawrence Livermore National Laboratory. The GEMS are sensitive to movement in an adjustable field of view (FOV) surrounding the antennae. In this thesis, the GEMS has been utilized for speech research, targeted to receive motion signals from the subglottal region of the trachea. The GEMS signal is analyzed to determine the physiological source of the signal, and this information is used to calculate the subglottal pressure, effectively an excitation function for the human vocal tract. For the first time, an excitation function may be calculated in near real time using a noninvasive procedure. Several experiments and models are presented to demonstrate that the GEMS signal is representative of the motion of the subglottal posterior wall of the trachea as it vibrates in response to the pressure changes caused by the folds as they modulate the airflow supplied by the lungs. The vibrational properties of the tracheal wall are modeled using a lumped-element circuit model. Taking the output of the vocal tract to be the audio pressure captured by a microphone and the input to be the subglottal pressure, the transfer function of the vocal tract (including the nasal cavities) can be approximated every 10-30 milliseconds using an autoregressive moving-average model. Unlike the currently utilized method of transfer function approximation, this new method only involves noninvasive GEMS measurements and digital signal processing and does not demand the difficult task of obtaining precise physical measurements of the tract and subsequent estimation of the transfer function using its cross-sectional area. The ability to measure the physical motion of the trachea enables a significant number of potential applications, ranging from very accurate pitch detection to speech synthesis, speaker verification, and speech recognition.

  16. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Matthies, Larry H.

    1998-01-01

    Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.

  17. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    NASA Astrophysics Data System (ADS)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  18. Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kazoe, Yutaka; Sato, Yohei

    A nanoscale laser induced fluorescence imaging was proposed by using fluorescent dye and the evanescent wave with total internal reflection of a laser beam. The present study focused on the two-dimensional measurement of zeta-potential at the microchannel wall, which is an electrostatic potential at the wall surface and a dominant parameter of electroosmotic flow. The evanescent wave, which decays exponentially from the wall, was used as an excitation light of the fluorescent dye. The fluorescent intensity detected by a CCD camera is closely related to the zeta-potential. Two kinds of fluorescent dye solution at different ionic concentrations were injected into a T-shaped microchannel, and formed a mixing flow field in the junction area. The two-dimensional distribution of zeta-potential at the microchannel wall in the pressure-driven flow field was measured. The obtained zeta-potential distribution has a transverse gradient toward the mixing flow field and was changed by the difference in the averaged velocity of pressure-driven flow. To understand the ion motion in the mixing flow field, the three-dimensional flow structure was analyzed by the velocity measurement using micron-resolution particle image velocimetry and the numerical simulation. It is concluded that the two-dimensional distribution of zeta-potential at the microchannel wall was dependent on the ion motion in the flow field, which was governed by the convection and molecular diffusion.

  19. Shoulder kinematics during the wall push-up plus exercise.

    PubMed

    Lunden, Jason B; Braman, Jonathan P; Laprade, Robert F; Ludewig, Paula M

    2010-03-01

    The push-up plus exercise is a common therapeutic exercise for improving shoulder function and treating shoulder pathology. To date, the kinematics of the push-up plus exercise have not been studied. Our hypothesis was that the wall push-up plus exercise would demonstrate increased scapular internal rotation and increased humeral anterior translation during the plus phase of the exercise, thereby potentially impacting the subacromial space. Bone pins were inserted in the humerus and scapula in 12 healthy volunteers with no history of shoulder pathology. In vivo motion during the wall push-up plus exercise was tracked using an electromagnetic tracking system. During the wall push-up plus exercise, from a starting position to the push-up plus position, there was a significant increase in scapular downward rotation (P < .05) and internal rotation (P < .05). The pattern of glenohumeral motion was humeral elevation (P < .05) and movement anterior to the scapular plane (P < .05), with humeral external rotation remaining relatively constant. We found that during a wall push-up plus exercise in healthy volunteers, the scapula was placed in a position potentially associated with shoulder impingement. Because of the shoulder kinematics of the wall push-up plus exercise, utilization of this exercise without modification early on in shoulder rehabilitation, especially in patients with subacromial impingement, should be considered cautiously. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  20. Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.

    2016-12-01

    Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.

  1. Comparison of diagnostic quality of motion picture experts group-2 digital video with super VHS videotape for echocardiographic imaging.

    PubMed

    Harris, Kevin M; Schum, Kevin R; Knickelbine, Thomas; Hurrell, David G; Koehler, Jodi L; Longe, Terrence F

    2003-08-01

    Motion Picture Experts Group-2 (MPEG2) is a broadcast industry standard that allows high-level compression of echocardiographic data. Validation of MPEG2 digital images compared with super VHS videotape has not been previously reported. Simultaneous super VHS videotape and MPEG2 digital images were acquired. In all, 4 experienced echocardiographers completed detailed reporting forms evaluating chamber size, ventricular function, regional wall-motion abnormalities, and measures of valvular regurgitation and stenosis in a blinded fashion. Comparisons between the 2 interpretations were then performed and intraobserver concordance was calculated for the various categories. A total of 80 paired comparisons were made. The overall concordance rate was 93.6% with most of the discrepancies being minor (4.1%). Concordance was 92.4% for left ventricle, 93.2% for right ventricle, 95.2% for regional wall-motion abnormalities, and 97.8% for valve stenosis. The mean grade of valvular regurgitation was similar for the 2 techniques. MPEG2 digital imaging offers excellent concordance compared with super VHS videotape.

  2. Estimation of two-dimensional motion velocity using ultrasonic signals beamformed in Cartesian coordinate for measurement of cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki

    2018-07-01

    Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.

  3. Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies.

    PubMed

    Medrano-Gracia, Pau; Cowan, Brett R; Bluemke, David A; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Suinesiaputra, Avan; Young, Alistair A

    2013-09-13

    Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies. A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols. Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias. Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.

  4. Fluid dynamics during Random Positioning Machine micro-gravity experiments

    NASA Astrophysics Data System (ADS)

    Leguy, Carole A. D.; Delfos, René; Pourquie, Mathieu J. B. M.; Poelma, Christian; Westerweel, Jerry; van Loon, Jack J. W. A.

    2017-06-01

    A Random Positioning Machine (RPM) is a device used to study the role of gravity on biological systems. This is accomplished through continuous reorientation of the sample such that the net influence of gravity is randomized over time. The aim of this study is to predict fluid flow behavior during such RPM simulated microgravity studies, which may explain differences found between RPM and space flight experiments. An analytical solution is given for a cylinder as a model for an experimental container. Then, a dual-axis rotating frame is used to mimic the motion characteristics of an RPM with sinusoidal rotation frequencies of 0.2 Hz and 0.1 Hz while Particle Image Velocimetry is used to measure the velocity field inside a flask. To reproduce the same experiment numerically, a Direct Numerical Simulation model is used. The analytical model predicts that an increase in the Womersley number leads to higher shear stresses at the cylinder wall and decrease in fluid angular velocity inside the cylinder. The experimental results show that periodic single-axis rotation induces a fluid motion parallel to the wall and that a complex flow is observed for two-axis rotation with a maximum wall shear stress of 8.0 mPa (80 mdyne /cm2). The experimental and numerical results show that oscillatory motion inside an RPM induces flow motion that can, depending on the experimental samples, reduce the quality of the simulated microgravity. Thus, it is crucial to determine the appropriate oscillatory frequency of the axes to design biological experiments.

  5. Direction-dependent regularization for improved estimation of liver and lung motion in 4D image data

    NASA Astrophysics Data System (ADS)

    Schmidt-Richberg, Alexander; Ehrhardt, Jan; Werner, René; Handels, Heinz

    2010-03-01

    The estimation of respiratory motion is a fundamental requisite for many applications in the field of 4D medical imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done using non-linear registration of time frames of the sequence without further modelling of physiological motion properties. In this context, the accurate calculation of liver und lung motion is especially challenging because the organs are slipping along the surrounding tissue (i.e. the rib cage) during the respiratory cycle, which leads to discontinuities in the motion field. Without incorporating this specific physiological characteristic, common smoothing mechanisms cause an incorrect estimation along the object borders. In this paper, we present an extended diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while preventing gaps and ensuring smooth motion fields inside. We evaluate our model for the estimation of lung and liver motion on the basis of publicly accessible 4D CT and 4D MRI data. The results show a considerable increase of registration accuracy with respect to the target registration error and a more plausible motion estimation.

  6. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    NASA Astrophysics Data System (ADS)

    Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.

    2009-02-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.

  7. Effects of Incentive Spirometry on Respiratory Motion in Healthy Subjects Using Cine Breathing Magnetic Resonance Imaging

    PubMed Central

    Akazawa, Tsutomu; Sakuma, Tsuyoshi; Nagaya, Shigeyuki; Sonoda, Masaru; Tanaka, Yuji; Katogi, Takehide; Nemoto, Tetsuharu; Minami, Shohei

    2015-01-01

    Objective To investigate the effectiveness of incentive spirometry on respiratory motion in healthy subjects using cine breathing magnetic resonance imaging (MRI). Methods Ten non-smoking healthy subjects without any history of respiratory disease were studied. Subjects were asked to perform pulmonary training using incentive spirometry every day for two weeks. To assess the effectiveness of this training, pulmonary function tests and cine breathing MRI were performed before starting pulmonary training and two weeks after its completion. Results After training, there were significant improvements in vital capacity (VC) from 3.58±0.8 L to 3.74±0.8 L and in %VC from 107.4±10.8 to 112.1±8.2. Significant changes were observed in the right diaphragm motion, right chest wall motion, and left chest wall motion, which were increased from 55.7±9.6 mm to 63.4±10.2 mm, from 15.6±6.1 mm to 23.4±10.4 mm, and from 16.3±7.6 mm to 22.0±9.8 mm, respectively. Conclusion Two weeks of training using incentive spirometry provided improvements in pulmonary function and respiratory motion, which suggested that incentive spirometry may be a useful preoperative modality for improving pulmonary function during the perioperative period. PMID:26161341

  8. Estimation of slipping organ motion by registration with direction-dependent regularization.

    PubMed

    Schmidt-Richberg, Alexander; Werner, René; Handels, Heinz; Ehrhardt, Jan

    2012-01-01

    Accurate estimation of respiratory motion is essential for many applications in medical 4D imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done by non-linear registration of image scans at different states of the breathing cycle but without further modeling of specific physiological motion properties. In this context, the accurate computation of respiration-driven lung motion is especially challenging because this organ is sliding along the surrounding tissue during the breathing cycle, leading to discontinuities in the motion field. Without considering this property in the registration model, common intensity-based algorithms cause incorrect estimation along the object boundaries. In this paper, we present a model for incorporating slipping motion in image registration. Extending the common diffusion registration by distinguishing between normal- and tangential-directed motion, we are able to estimate slipping motion at the organ boundaries while preventing gaps and ensuring smooth motion fields inside and outside. We further present an algorithm for a fully automatic detection of discontinuities in the motion field, which does not rely on a prior segmentation of the organ. We evaluate the approach for the estimation of lung motion based on 23 inspiration/expiration pairs of thoracic CT images. The results show a visually more plausible motion estimation. Moreover, the target registration error is quantified using manually defined landmarks and a significant improvement over the standard diffusion regularization is shown. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    NASA Astrophysics Data System (ADS)

    Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.

    2016-04-01

    Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  10. Losses to single-family housing from ground motions in the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.; Leyendecker, E.V.; Roth, R.J.; Petersen, M.D.

    2004-01-01

    The distributions of insured losses to single-family housing following the 1994 Northridge, California, earthquake for 234 ZIP codes can be satisfactorily modeled with gamma distributions. Regressions of the parameters in the gamma distribution on estimates of ground motion, derived from ShakeMap estimates or from interpolated observations, provide a basis for developing curves of conditional probability of loss given a ground motion. Comparison of the resulting estimates of aggregate loss with the actual aggregate loss gives satisfactory agreement for several different ground-motion parameters. Estimates of loss based on a deterministic spatial model of the earthquake ground motion, using standard attenuation relationships and NEHRP soil factors, give satisfactory results for some ground-motion parameters if the input ground motions are increased about one and one-half standard deviations above the median, reflecting the fact that the ground motions for the Northridge earthquake tended to be higher than the median ground motion for other earthquakes with similar magnitude. The results give promise for making estimates of insured losses to a similar building stock under future earthquake loading. ?? 2004, Earthquake Engineering Research Institute.

  11. Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6

    NASA Technical Reports Server (NTRS)

    Vickers, Dean; Mahrt, L.

    2005-01-01

    Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.

  12. Subatomic movements of a domain wall in the Peierls potential.

    PubMed

    Novoselov, K S; Geim, A K; Dubonos, S V; Hill, E W; Grigorieva, I V

    2003-12-18

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.

  13. Time-dependent bubble motion through a liquid filled compliant channel

    NASA Astrophysics Data System (ADS)

    Halpern, David; Gaver, Donald; Jensen, Oliver

    2000-11-01

    Pulmonary airway closure occurs when the liquid lining layer occludes the airway and obstructs airflow. Meniscus formation is the result of a surface-tension driven instability within the liquid layer. Airway 'compliant collapse' may result, which leads to tube buckling with airway walls held in apposition. Airway closure is common in premature neonates who do not produce sufficient surfactant and those suffering from emphysema. To model the reopening of a collapsed airway flooded with fluid, we consider the time-dependent motion of an air-bubble driven by a positive bubble pressure Pb through a liquid filled compliant channel. The governing Stokes equations are solved using the boundary element method near the bubble tip, and lubrication theory sufficiently far ahead of the buble where the channel walls have a gentle taper. Results show that for Pb > P_crit, the bubble moves forward and converges to a steady velocity as the airway walls 'peel' open. For Pb < P_crit, no steady solutions are found because fluid continuously accummulates ahead of the bubble tip. This result validates the stability analysis of the previously steady wall peeling solution branch. The impact of the flow field on transport of surfactant and the applied shear and normal stresses on the wall as they relate to pulmonary reopening are also discussed.

  14. Simulation of High-Speed Droplet Impact Against Dry Substrates with Partial Velocity Slip

    NASA Astrophysics Data System (ADS)

    Kondo, Tomoki; Ando, Keita

    2017-11-01

    High-speed droplet impact can be used to clean substrates such as silicon wafers. Radially spreading shear flow after the impact may allow for mechanically removing contaminant particles at substrate surfaces. Since it is a big challenge to experimentally explore such complicated flow that exhibits contact line motion and water hammer, its flow feature is not well understood. Here, we aim to numerically evaluate shear flow caused by the impact of a spherical water droplet (of submillimeter sizes) at high speed (up to 50 m/s) against a dry rigid wall. We model the flow based on compressible Navier-Stokes equations with Stokes' hypothesis and solve them by a high-order-accurate finite volume method equipped with shock and interface capturing. To treat the motion of a contact line between the three phases (the droplet, the rigid wall, and the ambient air) in a robust manner, we permit velocity slip at the wall with Navier's model, for wall slip is known to come into play under steep velocity gradients that can arise from high-speed droplet impact. In our presentation, we will examine radially spreading flow after the droplet impact and the resulting wall shear stress generation from the simulation. This work was supported by JSPS KAKENHI Grant Number JP17J02211.

  15. Current induced domain wall dynamics in the presence of spin orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulle, O., E-mail: Olivier.boulle@cea.fr; Buda-Prejbeanu, L. D.; Jué, E.

    2014-05-07

    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached bymore » a proper tuning of both torques.« less

  16. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  17. Effect of neutron irradiation on magnetic properties in the low alloy Ni-Mo steel SA508-3

    NASA Astrophysics Data System (ADS)

    Park, D. G.; Kim, C. G.; Kim, H. C.; Hong, J. H.; Kim, I. S.

    1997-04-01

    The B-H hysteresis loop and Barkhausen noise have been measured in the neutron irradiated SA508 steel of 45 μm thickness. The coercive force of B-H loop showed a slow change up to a neutron dose of 1014 n/cm2 and increased by 15.4% for a 1016 n/cm2 dose sample compared with that of the unirradiated one, related to the domain wall motion hindered by the increased defects. However, the amplitude of Barkhausen noise reflecting the wall motion decreased slowly up to 1014 n/cm2 irradiation, followed by a rapid decrease of 37.5% at 1016 n/cm2.

  18. Theoretical study on the constricted flow phenomena in arteries

    NASA Astrophysics Data System (ADS)

    Sen, S.; Chakravarty, S.

    2012-12-01

    The present study is dealt with the constricted flow characteristics of blood in arteries by making use of an appropriate mathematical model. The constricted artery experiences the generated wall shear stress due to flow disturbances in the presence of constriction. The disturbed flow in the stenosed arterial segment causes malfunction of the cardiovascular system leading to serious health problems in the form of heart attack and stroke. The flowing blood contained in the stenosed artery is considered to be non-Newtonian while the flow is treated to be two-dimensional. The present pursuit also accounts for the motion of the arterial wall and its effect on local fluid mechanics. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluid representing blood. An extensive quantitative analysis presented at the end of the paper based on large scale numerical computations of the quantities of major physiological significance enables one to estimate the constricted flow characteristics in the arterial system under consideration which deviates significantly from that of normal physiological flow conditions.

  19. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120-160 eV

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.; Bowers, R. L.; Matuska, W.

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ˜40% with only a 3%-5% decrease in peak temperature, in agreement with measurements.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Sisniega, A; Zbijewski, W

    Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected asmore » the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.« less

  1. Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000

    NASA Astrophysics Data System (ADS)

    Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.

    2018-04-01

    The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.

  2. Shock Tunnel Tests of Arched Wall Panels

    DTIC Science & Technology

    1974-07-01

    NCNOR « LOT S/W ETC lOLT ANCMO« NOO IEE DETAIL* / tELOW , , METAL TIE* / I*" 0. C. VERT -HAiONRT «ALL...same as shown in Table 2-1. 2-6 m^ Table 2-1 SPACING OF WALL TIES i Moiimuffl Dittonc« Moiimum Spocing ef No 4 Gogt Wall Typ. I K«twHn Lot ...sides free to move), the flexural cracking occurs at the top, botton \\ and center, and the resistance to motion, induced by ’ wedging"or geometric

  3. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  4. A novel Bayesian respiratory motion model to estimate and resolve uncertainty in image-guided cardiac interventions.

    PubMed

    Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P

    2013-05-01

    In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Identification of Piecewise Linear Uniform Motion Blur

    NASA Astrophysics Data System (ADS)

    Patanukhom, Karn; Nishihara, Akinori

    A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.

  6. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends on the thickness, viscosity, and dynamic yield strength of the shear zone. Our model predicts a linear increase in slip with time during the landward motion and an exponential decrease in slip magnitude during the trenchward motion.

  7. Comparison between collective coordinate models for domain wall motion in PMA nanostrips in the presence of the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.; Nasseri, S. A.; Van de Wiele, B.; Durin, G.; Van Waeyenberge, B.; Dupré, L.

    2018-03-01

    Lagrangian-based collective coordinate models for magnetic domain wall (DW) motion rely on an ansatz for the DW profile and a Lagrangian approach to describe the DW motion in terms of a set of time-dependent collective coordinates: the DW position, the DW magnetization angle, the DW width and the DW tilting angle. Another approach was recently used to derive similar equations of motion by averaging the Landau-Lifshitz-Gilbert equation without any ansatz, and identifying the relevant collective coordinates afterwards. In this paper, we use an updated version of the semi-analytical equations to compare the Lagrangian-based collective coordinate models with micromagnetic simulations for field- and STT-driven (spin-transfer torque-driven) DW motion in Pt/CoFe/MgO and Pt/Co/AlOx nanostrips. Through this comparison, we assess the accuracy of the different models, and provide insight into the deviations of the models from simulations. It is found that the lack of terms related to DW asymmetry in the Lagrangian-based collective coordinate models significantly contributes to the discrepancy between the predictions of the most accurate Lagrangian-based model and the micromagnetic simulations in the field-driven case. This is in contrast to the STT-driven case where the DW remains symmetric.

  8. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  9. On the interaction of a vibrating plate with an acoustic medium

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Koval, L. R.

    1974-01-01

    The interaction of a vibrating plate with an adjacent acoustic medium is important in problems involving the radiation of sound from panels, in problems involving the transmission of sound through walls of buildings, aircraft, or launch vehicles; and in problems involving the estimation of damping and the stress amplitude of vibration for panel-fatigue predictions. There appear to have been no systematic studies of the effects on the plate of fluid coupling for an arbitrary fluid-mass/plate-mass loading ratio. An attempt is made to determine this effect for a wide range of fluid-plate mass ratios without resorting to the usual simplifications of light or heavy fluid loading. Emphasis is with the plate motion rather than the radiation of sound.

  10. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less

  11. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    PubMed

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  12. Algebraic motion of vertically displacing plasmas

    DOE PAGES

    Pfefferle, D.; Bhattacharjee, A.

    2018-02-27

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  13. Algebraic motion of vertically displacing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferle, D.; Bhattacharjee, A.

    In this paper, the vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to comemore » in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear “sinking” behaviour shown to be algebraic and decelerating. Finally, the acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.« less

  14. Subtle exchange model of flow depended on the blood cell shape to enhance the micro-circulation in capillary

    NASA Astrophysics Data System (ADS)

    Chan, Iatneng

    2012-02-01

    In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.

  15. Facial motion parameter estimation and error criteria in model-based image coding

    NASA Astrophysics Data System (ADS)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  16. The application of mean field theory to image motion estimation.

    PubMed

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  17. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZr xTi 1-xO 3 (PZT)/rhombohedral (R) PbZr xTi 1-xO 3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface.more » Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.« less

  18. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    DOE PAGES

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.; ...

    2016-10-31

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZr xTi 1-xO 3 (PZT)/rhombohedral (R) PbZr xTi 1-xO 3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface.more » Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.« less

  19. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    USGS Publications Warehouse

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  20. Comparison of Hyperemic Impedance Echocardiography with Dobutamine Stress Echocardiography to Detect Inducible Myocardial Ischemia: A Pilot Study.

    PubMed

    Patel, Jijibhoy J; Gupta, Ankur; Nanda, Navin C

    2016-03-01

    Stress echocardiography using exercise or pharmacological stressors is either contraindicated or associated with significant side effects in some patients. This pilot study was designed to evaluate a new technique, hyperemic impedance echocardiography (HIE). It is based on reactive coronary hyperemia when transient limb ischemia is induced by tourniquet inflation. We hypothesized that this physiologic coronary hyperemia can identify inducible myocardial ischemia by assessment of regional wall motion abnormalities on echocardiography when compared with dobutamine stress echocardiography (DSE). Twenty consecutive outpatients with suspected stable coronary artery disease (CAD) who underwent clinically indicated DSE were recruited for performance of HIE after informed consent was obtained. Standard graded dobutamine infusion protocol from 5 to 40 μg/kg per min was used for DSE. HIE was performed by inflating tourniquets at a pressure of 10 mmHg below the systolic blood pressure for 1 minute in three of four extremities at a time for total of four cycles. Echocardiography was performed immediately after the last rotating tourniquet deflation. DSE and HIE were classified as abnormal for development of new or worsening wall motion abnormality in at least one myocardial segment. Test characteristics were also determined for a subset of these patients (n = 12) who underwent clinically indicated coronary angiography. Hyperemic impedance echocardiography showed 86% sensitivity, 67% specificity, 86% positive predictive value, and 67% negative predictive value with a test accuracy of 80% to detect inducible myocardial wall motion abnormalities when compared with DSE. HIE also showed 83% sensitivity, 75% negative predictive value with a test accuracy of 66.7% for detection of significant (≥50% diameter stenosis) CAD on coronary angiography. In this pilot study, HIE was a feasible, safe, and promising method for detection of inducible myocardial ischemia by assessment of regional wall motion abnormalities when compared to DSE and coronary angiography. Larger studies are needed to confirm these findings. © 2016, Wiley Periodicals, Inc.

  1. [Stress echocardiography--a new test for evaluating the anti-ischemic effect of medication].

    PubMed

    Leischik, R; Adamczewski, O; Pötter, S; Erbel, R; Lösse, B

    1995-08-01

    Exercise echocardiography and exercise electrocardiography were performed to test the anti-ischemic effects of isosorbide dinitrates (2 x 40 mg) und nisoldipine (2 x 10 mg) using a randomized, double-blind, placebo-controlled crossover trial. A total of 24 patients with symptomatic coronary artery disease and exercise-induced ST segment depression underwent 144 investigations (6 in each patient) at the first placebo treatment, 1st and 8th day during treatment with the first drug and the second placebo treatment 1st and 8th day during treatment with the second drug. A wall motion score (sum of 14 segments; wall motion grading: normal = 1, hypokinetic = 2, akinetic = 3, dyskinetic = 4) and ST depression at the exercise were used to assess the anti-ischemic effects. Both drugs reduced the number of exercise-induced wall motion abnormalities on the maximal comparable exercise level in comparison to placebo treatment. The wall motion score on the maximal comparable exercise level during placebo treatment was 25.5 +/- 6.9, during isosorbide dinitrate treatment (1 day) 23.5 +/- 7.2 and 23 +/- 6.7 (8th day; for both treatment days, p < or = 0.001 vs. placebo treatment), and during nisoldipine treatment (1st day) 23.6 +/- 5.9 and 23 +/- 6.8 (8th day; p < or = 0.001). ST segment depression changed at exercise during first placebo treatment to 0.153 +/- 0.068 mV, during ISDN treatment to 0.102 +/- 0.055 (1st day, p < 0.001) and to 0.117 +/- 0.056 (8th day, p < 0.001). ST segment depression during nisoldipine treatment was 0.121 +/- 0.075 mV on the 1st day (p < or = 0.002) and 0.120 +/- 0.071 mV on the 8th day (p < 0.001). Exercise echocardiography can be used to test anti-ischemic drug effects. There were no differences in the reduction of exercise-induced ischemia between the two drugs.

  2. Advanced Respiratory Motion Compensation for Coronary MR Angiography

    PubMed Central

    Henningsson, Markus; Botnar, Rene M.

    2013-01-01

    Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271

  3. Adaptive temporal compressive sensing for video with motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2018-04-01

    In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.

  4. Test suite for image-based motion estimation of the brain and tongue

    NASA Astrophysics Data System (ADS)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield "ghost" shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation.

  5. Test Suite for Image-Based Motion Estimation of the Brain and Tongue

    PubMed Central

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-01-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an “image synthesis” test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head-brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield “ghost” shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation. PMID:28781414

  6. Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis.

    PubMed

    Kaniewska, Malwina; Schuetz, Georg M; Willun, Steffen; Schlattmann, Peter; Dewey, Marc

    2017-04-01

    To compare the diagnostic accuracy of computed tomography (CT) in the assessment of global and regional left ventricular (LV) function with magnetic resonance imaging (MRI). MEDLINE, EMBASE and ISI Web of Science were systematically reviewed. Evaluation included: ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and left ventricular mass (LVM). Differences between modalities were analysed using limits of agreement (LoA). Publication bias was measured by Egger's regression test. Heterogeneity was evaluated using Cochran's Q test and Higgins I 2 statistic. In the presence of heterogeneity the DerSimonian-Laird method was used for estimation of heterogeneity variance. Fifty-three studies including 1,814 patients were identified. The mean difference between CT and MRI was -0.56 % (LoA, -11.6-10.5 %) for EF, 2.62 ml (-34.1-39.3 ml) for EDV and 1.61 ml (-22.4-25.7 ml) for ESV, 3.21 ml (-21.8-28.3 ml) for SV and 0.13 g (-28.2-28.4 g) for LVM. CT detected wall motion abnormalities on a per-segment basis with 90 % sensitivity and 97 % specificity. CT is accurate for assessing global LV function parameters but the limits of agreement versus MRI are moderately wide, while wall motion deficits are detected with high accuracy. • CT helps to assess patients with coronary artery disease (CAD). • MRI is the reference standard for evaluation of left ventricular function. • CT provides accurate assessment of global left ventricular function.

  7. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  8. Low-frequency creep in CoNiFe films.

    NASA Technical Reports Server (NTRS)

    Bartran, D. S.; Bourne, H. C., Jr.; Chow, L. G.

    1972-01-01

    Domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films from 1500 to 2000 A thick is studied. The results are consistent with those of comparable NiFe films. Furthermore, the wall coercivity is found to be the most significant sample property correlated to the low-frequency creep properties of all the samples.

  9. Dynamics of a Sliding Ladder Leaning against a Wall

    ERIC Educational Resources Information Center

    Oliveira, J. B.; Simeão Carvalho, P.; Mota, M. F.; Quintas, M. J.

    2015-01-01

    This study is about the dynamics of a sliding ladder leaning against a vertical wall. The results are understood by considering the motion divided in two parts: (i) for 0 = t = t[subscript s] with one degree of freedom, and (ii) for t > t[subscript s] with two degrees of freedom, where the separation is determined by the instance t[subscript…

  10. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  11. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A revised ground-motion and intensity interpolation scheme for shakemap

    USGS Publications Warehouse

    Worden, C.B.; Wald, D.J.; Allen, T.I.; Lin, K.; Garcia, D.; Cua, G.

    2010-01-01

    We describe a weighted-average approach for incorporating various types of data (observed peak ground motions and intensities and estimates from groundmotion prediction equations) into the ShakeMap ground motion and intensity mapping framework. This approach represents a fundamental revision of our existing ShakeMap methodology. In addition, the increased availability of near-real-time macroseismic intensity data, the development of newrelationships between intensity and peak ground motions, and new relationships to directly predict intensity from earthquake source information have facilitated the inclusion of intensity measurements directly into ShakeMap computations. Our approach allows for the combination of (1) direct observations (ground-motion measurements or reported intensities), (2) observations converted from intensity to ground motion (or vice versa), and (3) estimated ground motions and intensities from prediction equations or numerical models. Critically, each of the aforementioned data types must include an estimate of its uncertainties, including those caused by scaling the influence of observations to surrounding grid points and those associated with estimates given an unknown fault geometry. The ShakeMap ground-motion and intensity estimates are an uncertainty-weighted combination of these various data and estimates. A natural by-product of this interpolation process is an estimate of total uncertainty at each point on the map, which can be vital for comprehensive inventory loss calculations. We perform a number of tests to validate this new methodology and find that it produces a substantial improvement in the accuracy of ground-motion predictions over empirical prediction equations alone.

  13. A mechanical simulator of cardiac wall kinematics.

    PubMed

    Cutrì, Elena; Bagnoli, Paola; Marcelli, Emanuela; Biondi, Federico; Cercenelli, Laura; Costantino, Maria Laura; Plicchi, Gianni; Fumero, Roberto

    2010-01-01

    Aim of this study is to develop a mechanical simulator (MS) reproducing cardiac wall kinematics [i.e., radial (R), longitudinal (L) and rotational (RT) motions] to test piezoelectric gyroscopic sensors (GS) that are able to measure cardiac torsion that has proved to be a sensitive index of cardiac performance. The MS consists of three brushless motors controlled by a dedicated software either separately or simultaneously reproducing the three main cardiac wall movements (R, L, RT) obtained by implementing different physiologic or pathologic velocity profiles derived from in vivo data. GS accuracy (max % error) was experimentally tested by connecting it to the MS driven in velocity in different working conditions [i.e., cardiac period (515-1030 ms), RT angle (4-16 degrees), GS axis inclination (0-90 degrees) with respect to the cardiac rotation axis]. The MS reproduced the tested velocity profiles well. The GS showed high accuracy in measuring both physiologic and pathologic RT velocity profiles, whereas they proved insensitive to R and L motions. GS axis inclination influenced measurements; however, it was possible to correct this taking the inclination angle cosine into account. The MS proved to be a useful tool to study cardiac wall kinematics and test GS reliability with a view to in vivo application.

  14. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Yazdi, Shahrzad; Ardekani, Arezoo M.; Borhan, Ali

    2014-10-01

    Locomotion of microorganisms plays a vital role in most of their biological processes. In many of these processes, microorganisms are exposed to complex fluids while swimming in confined domains, such as spermatozoa in mucus of mammalian reproduction tracts or bacteria in extracellular polymeric matrices during biofilm formation. Thus, it is important to understand the kinematics of propulsion in a viscoelastic fluid near a no-slip boundary. We use a squirmer model with a time-reversible body motion to analytically investigate the swimming kinematics in an Oldroyd-B fluid near a wall. Analysis of the time-averaged motion of the swimmer shows that both pullers and pushers in a viscoelastic fluid swim towards the no-slip boundary if they are initially located within a small domain of "attraction" in the vicinity of the wall. In contrast, neutral swimmers always move towards the wall regardless of their initial distance from the wall. Outside the domain of attraction, pullers and pushers are both repelled from the no-slip boundary. Time-averaged locomotion is most pronounced at a Deborah number of unity. We examine the swimming trajectories of different types of swimmers as a function of their initial orientation and distance from the no-slip boundary.

  15. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, Raymond

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.

  16. Responses of a 58-story RC dual core shear wall and outrigger frame building inferred from two earthquakes

    USGS Publications Warehouse

    Çelebi, Mehmet

    2016-01-01

    Responses of a dual core shear-wall and outrigger-framed 58-story building recorded during the Mw6.0 Napa earthquake of 24 August 2014 and the Mw3.8 Berkeley earthquake of 20 October 2011 are used to identify its dynamic characteristics and behavior. Fundamental frequencies are 0.28 Hz (NS), 0.25 Hz (EW), and 0.43 Hz (torsional). Rigid body motions due to rocking are not significant. Average drift ratios are small. Outrigger frames do not affect average drift ratios or mode shapes. Local site effects do not affect the response; however, response associated with deeper structure may be substantial. A beating effect is observed from data of both earthquakes but beating periods are not consistent. Low critical damping ratios may have contributed to the beating effect. Torsion is relatively larger above outriggers as indicated by the time-histories of motions at the roof, possibly due to the discontinuity of the stiffer shear walls above level 47.

  17. Controlled motion of domain walls in submicron amorphous wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less

  18. Steady motion of skyrmions and domains walls under diffusive spin torques

    NASA Astrophysics Data System (ADS)

    Elías, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurélien

    2017-03-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β'. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0) 2(1 +2 α β') .

  19. Notch-Boosted Domain Wall Propagation in Magnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Yuan, Hauiyang

    Magnetic domain wall (DW) motion along a nanowire underpins many proposals of spintronic devices. High DW propagation velocity is obviously important because it determines the device speed. Thus it is interesting to search for effective control knobs of DW dynamics. We report a counter-intuitive finding that notches in an otherwise homogeneous magnetic nanowire can boost current-induced domain wall (DW) propagation. DW motion in notch-modulated wires can be classified into three phases: 1) A DW is pinned around a notch when the current density is below the depinning current density. 2) DW propagation velocity above the depinning current density is boosted by notches when non-adiabatic spin-transfer torque strength is smaller than the Gilbert damping constant. The boost can be many-fold. 3) DW propagation velocity is hindered when non-adiabatic spin-transfer torque strength is larger than the Gilbert damping constant. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 605413) and the Grant from NNSF of China (No. 11374249).

  20. Recorded motions of the 6 April 2009 Mw 6.3 L'Aquila, Italy, earthquake and implications for building structural damage: Overview

    USGS Publications Warehouse

    Celebi, M.; Bazzurro, P.; Chiaraluce, L.; Clemente, P.; Decanini, L.; Desortis, A.; Ellsworth, W.; Gorini, A.; Kalkan, E.; Marcucci, S.; Milana, G.; Mollaioli, F.; Olivieri, M.; Paolucci, R.; Rinaldis, D.; Rovelli, A.; Sabetta, F.; Stephens, C.

    2010-01-01

    The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuriesold buildings of significant cultural importance and to modern reinforcedconcrete- framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of shortduration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforcedconcrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures. ?? 2010, Earthquake Engineering Research Institute.

  1. An Experimental Investigation of the Flow Structure of Supersonic Impinging Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2002-01-01

    An experimental investigation into the jet structure associated with sound production by a supersonic impinging jet is presented. Large plate impinging tones are investigated for a nozzle pressure ratio (NPR) of 4 and nozzle-to-plate spacings between 1 and 5 nozzle exit diameters, where NPR is equal to the ratio of the stagnation pressure to the pressure at the nozzle lip. Results from phase-locked shadowgraph and phase-averaged digital particle image velocimetry (DPIV) studies indicate that, during the oscillation cycle, the Mach disk oscillates axially, a well defined recirculation zone is created in the subsonic impingement region and moves toward the plate, and the compression and expansion regions in the outer supersonic flow move downstream, Sound appears to be generated in the wall jet at approximately 2.6R from the jet axis, where R is the nozzle exit radius. The oscillatory motion in the wall jet is the result of the periodic fluid motion in the near wall region.

  2. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  3. Revised motion estimation algorithm for PROPELLER MRI.

    PubMed

    Pipe, James G; Gibbs, Wende N; Li, Zhiqiang; Karis, John P; Schar, Michael; Zwart, Nicholas R

    2014-08-01

    To introduce a new algorithm for estimating data shifts (used for both rotation and translation estimates) for motion-corrected PROPELLER MRI. The method estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise. The heads of three volunteers were scanned using a PROPELLER acquisition while they exhibited various amounts of motion. All data were reconstructed twice, using motion estimates from the original and new algorithm. Two radiologists independently and blindly compared 216 image pairs from these scans, ranking the left image as substantially better or worse than, slightly better or worse than, or equivalent to the right image. In the aggregate of 432 scores, the new method was judged substantially better than the old method 11 times, and was never judged substantially worse. The new algorithm compared favorably with the old in its ability to estimate bulk motion in a limited study of volunteer motion. A larger study of patients is planned for future work. Copyright © 2013 Wiley Periodicals, Inc.

  4. The effect of concurrent hand movement on estimated time to contact in a prediction motion task.

    PubMed

    Zheng, Ran; Maraj, Brian K V

    2018-04-27

    In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.

  5. A synthetic GMPE based on deterministic simulated ground motion data obtained from dynamic rupture models

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Baumann, C.; Cauzzi, C.

    2013-12-01

    Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.

  6. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  7. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl; Salles, Sébastien; Liebgott, Hervé

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time duringmore » image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.« less

  8. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2014-03-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 104 A/cm2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  9. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.

    2010-07-01

    Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

  10. Brownian motion of tethered nanowires.

    PubMed

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  11. Micromagnetic Architectures for On-chip Microparticle Transport

    NASA Astrophysics Data System (ADS)

    Ouk, Minae; Beach, Geoffrey S. D.

    2015-03-01

    Superparamagnetic microbeads (SBs) are widely used to capture and manipulate biological entities in a fluid environment. Chip-based magnetic actuation provides a means to transport SBs in lab-on-a-chip devices. This is usually accomplished using the stray field from patterned magnetic microstructures, or domain walls in magnetic nanowires. Magnetic anti-dot arrays are particularly attractive due to the high-gradient stray fields from their partial domain wall structures. Here we use a self-assembly method to create magnetic anti-dot arrays in Co films, and describe the motion of SBs across the surface by a rotating field. We find a critical field-rotation frequency beyond which bead motion ceases and a critical threshold for both the in-plane and out-of-plane field components that must be exceeded for bead motion to occur. We show that these field thresholds are bead size dependent, and can thus be used to digitally separate magnetic beads in multi-bead populations. Hence these large-area structures can be used to combine long distance transport with novel functionalities.

  12. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis

    PubMed Central

    Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan

    2018-01-01

    MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806

  13. Review of Flight Training Technology

    DTIC Science & Technology

    1976-07-01

    the cockpit. They might be used to train pilots in procedures to cope with NOE-altitude emergencies; howeve-r, a combination of cinematic simulation...airplanes. Although cockpit motion adds realism , thereby i-nproving pilot performanc, in the simulater Fedderqon, Vil; Guercio and Wall, i7?. Ince...operations. Light aircraft, part-task trainers, motion pictures and video tares, cinematic simulators, and digital teaching machines are among the

  14. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  15. Depinning transition of a domain wall in ferromagnetic films

    DOE PAGES

    Xi, Bin; Luo, Meng -Bo; Vinokur, Valerii M.; ...

    2015-09-14

    Here, we report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe non-conventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. In addition, we observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrheniusmore » and conventional Arrhenius-type DW motions.« less

  16. Current induced domain wall motion in antiferromagnetically coupled (Co70Fe30/Pd) multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; He, Shikun; Huang, Lisen; Qiu, Jinjun; Zhou, Tiejun; Panagopoulos, Christos; Han, Guchang; Teo, Kie-Leong

    2016-10-01

    We investigate the current induced domain wall (DW) motion in the ultrathin CoFe/Pd multilayer based synthetically antiferromagnetic (SAF) structure nanowires by anomalous Hall effect measurement. The threshold current density (Jth) for the DW displacement decreases and the DW velocity (v) increases accordingly with the exchange coupling Jex between the top and bottom ferromagnetic CoFe/Pd multilayers. The lowest Jth = 9.3 × 1010 A/m2 and a maximum v = 150 m/s with J = 1.5 × 1012 A/m2 are achieved due to the exchange coupling torque (ECT) generated in the SAF structure. The strength of ECT is dependent on both of Jex and the strong spin-orbit torque mainly generated by Ta layer.

  17. Motion estimation in the frequency domain using fuzzy c-planes clustering.

    PubMed

    Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E

    2001-01-01

    A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

  18. Velocity Enhancement by Synchronization of Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan

    2018-06-01

    Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myronakis, M; Cai, W; Dhou, S

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumormore » motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to acknowledge funding from MRA, VARIAN Medical Systems, Inc.« less

  20. Left ventricle pseudoaneurysm in a transplanted heart from a car crash victim donor.

    PubMed

    Urbanowicz, Tomasz; Katarzyński, Sławomir; Puślecki, Mateusz; Budniak, Wiktor; Araszkiewicz, Aleksander; Łanocha, Magdalena; Pyda, Małgorzata; Straburzyńska-Migaj, Ewa; Jemielity, Marek

    2014-06-26

    Pseudoaneurysm is a very rare and unusual form of myocardial rupture, with complications such as chest trauma, inflammation, acute myocardial infarction, and infection. Although this rare complication has already been reported, it has never been found in a transplanted patient. We present the case of a 54-year-old women waiting on the urgent list who underwent heart transplantation. The donor of the organ died in a car accident. Although preoperative echocardiography had not revealed any signs of heart injury, a superficial small (3 × 3 mm hematoma) was detected on harvesting. After implantation, intraoperative echocardiography was satisfactory, with no signs of wall motion disturbances, and left ventricle ejection fraction was estimated at 50%. The postoperative period was uneventful. Three weeks after surgery, a left ventricle pseudoaneurysm was found on routine MRI. The aneurysm wall consisted of only an epicardial layer. There was an 8-mm-wide gap in the myocardial wall next to the endocardium and with the width of 4 mm beneath the epicardium. On repeated MRI performed 3 months thereafter, the pseudoaneurysm was filled by thrombus. The presented case illustrates the necessity of careful inspection of the organ reported for transplantation from a donor who died from high-speed motor vehicle crash injuries. Additional diagnostic steps like MRI imaging are obligatory after transplantation, especially when the organ was harvested from a motor vehicle crash victim.

  1. Capsule symmetry sensitivity and hohlraum symmetry calculations for the z-pinch driven hohlraum high-yield concept

    NASA Astrophysics Data System (ADS)

    Vesey, Roger; Cuneo, M. E.; Hanson Porter, D. L., Jr.; Mehlhorn, T. A.; Ruggles, L. E.; Simpson, W. W.; Hammer, J. H.; Landen, O.

    2000-10-01

    Capsule radiation symmetry is a crucial issue in the design of the z-pinch driven hohlraum approach to high-yield inertial confinement fusion [1]. Capsule symmetry may be influenced by power imbalance of the two z-pinch x-ray sources, and by hohlraum effects (geometry, time-dependent albedo, wall motion). We have conducted two-dimensional radiation-hydrodynamics calculations to estimate the symmetry sensitivity of the 220 eV beryllium ablator capsule that nominally yields 400 MJ in this concept. These estimates then determine the symmetry requirements to be met by the hohlraum design (for even Legendre modes) and by the top-bottom pinch imbalance and mistiming (for odd Legendre modes). We have used a combination of 2- and 3-D radiosity ("viewfactor"), and 2-D radiation-hydrodynamics calculations to identify hohlraum geometries that meet these symmetry requirements for high-yield, and are testing these models against ongoing Z foam ball symmetry experiments. 1. J. H. Hammer et al., Phys. Plas. 6, 2129 (1999).

  2. Simultaneous measurement of instantaneous heart rate and chest wall plethysmography in short-term, metronome guided heart rate variability studies: suitability for assessment of autonomic dysfunction.

    PubMed

    Perring, S; Jones, E

    2003-08-01

    Instantaneous heart rate and chest wall motion were measured using a 3-lead ECG and an air pressure chest wall plethysmography system. Chest wall plethysmography traces were found to accurately represent the breathing pattern as measured by spirometry (average correlation coefficient 0.944); though no attempt was made to calibrate plethysmography voltage output to tidal volume. Simultaneous measurements of heart rate and chest wall motion were made for short periods under metronome guided breathing at 6 breaths per minute. The average peak to trough heart rate change per breath cycle (AVEMAX) and maximum correlation between heart rate and breathing cycle (HRBRCORR) were measured. Studies of 44 normal volunteers indicated clear inverse correlation of heart rate variability parameters with age (AVEMAX R = -0.502, P < 0.001) but no significant change in HRBRCORR with age (R = -0.115). Comparison of normal volunteers with diabetics with no history of symptoms associated with autonomic failure indicated significant lower heart rate variability in diabetics (P = 0.005 for AVEMAX) and significantly worse correlation between heart rate and breathing (P < 0.001 for HRBRCORR). Simultaneous measurement of heart rate and breathing offers the possibility of more sensitive diagnosis of autonomic failure in a simple bedside test and gives further insight into the nature of cardio-ventilatory coupling.

  3. Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensile-Strained Film

    DOE PAGES

    Li, Linglong; Cao, Ye; Somnath, Suhas; ...

    2017-03-15

    Understanding the dynamic behavior of interfaces in ferroic materials is an important field of research with widespread practical implications, as the motion of domain walls and phase boundaries are associated with substantial increases in dielectric and piezoelectric effects. Although commonly studied in the macroscopic regime, the local dynamics of interfaces have received less attention, with most studies limited to domain growth and/or reversal by piezoresponse force microscopy (PFM). Here, spatial mapping of local domain wall-related relaxation in a tensile-strained PbTiO 3 thin film using time-resolved band-excitation PFM is demonstrated, which allows exploring of the field-induced strain (piezoresponse) as a functionmore » of applied voltage and time. Through multivariate statistical analysis on the resultant 4-dimensional dataset (x,y,V,t) with functional fitting, it is determined that the relaxation is strongly correleated with the distance to the domain walls, and varies based on the type of domain wall present in the probed volume. Phase-field modeling shows the relaxation behavior near and away from the interfaces, and confirms the modulation of the z-component of polarization by wall motion, yielding the observed piezoresponse relaxation. Lastly, these studies shed light on the local dynamics of interfaces in ferroelectric thin films, and are therefore important for the design of ferroelectric-based components in microelectromechanical systems.« less

  4. Vulnerability of Space Station Freedom Modules: A Study of the Effects of Module Perforation on Crew and Equipment. Volume 2; Analytical Modeling of Internal Debris Cloud Effects

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Davenport, Quint

    1995-01-01

    In this part of the report, a first-principles based model is developed to predict the overpressure and temperature effects of a perforating orbital debris particle impact within a pressurized habitable module. While the effects of a perforating debris particles on crew and equipment can be severe, only a limited number of empirical studies focusing on space vehicles have been performed to date. Traditionally, crew loss or incapacitation due to a perforating impact has primarily been of interest to military organizations and as such have focused on military vehicles and systems. The module wall considered in this study is initially assumed to be a standard Whippletype dual-wall system in which the outer wall protects the module and its inhabitants by disrupting impacting particles. The model is developed in a way such that it sequentially characterizes the phenomena comprising the impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the inner wall, the creation and motion of the debris cloud that enters the module interior, and the effects of the debris cloud within the module on module pressure and temperature levels. This is accomplished through the application of elementary shock physics and thermodynamic theory.

  5. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  6. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  7. Method of producing an integral resonator sensor and case

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)

    2005-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Choi, Y.; Love, D. M.

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  9. Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)

    DTIC Science & Technology

    2005-01-01

    tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form

  10. Low frequency creep in CoNiFe films

    NASA Technical Reports Server (NTRS)

    Bartran, D. S.; Bourne, H. C., Jr.; Chow, L. G.

    1972-01-01

    The results of an investigation of domain wall motion excited by slow rise-time, bipolar, hard-axis pulses in vacuum deposited CoNiFe films 1500A to 2000A thick are presented. The results are consistent with those of comparable NiFe films in spite of large differences in film properties. The present low frequency creep data together with previously published results in this and other laboratories can be accounted for by a model which requires that the wall structure change usually associated with low frequency creep be predominately a gyromagnetic process. The correctness of this model is reinforced by the observation that the wall coercive force, the planar wall mobility, and the occurrence of an abrupt wall structure change are the only properties closely correlated to the creep displacement characteristics of a planar wall in low dispersion films.

  11. Statistical evidence of anasymptotic geometric structure to the momentum transporting motions in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Morrill-Winter, Caleb; Philip, Jimmy; Klewicki, Joseph

    2017-03-01

    The turbulence contribution to the mean flow is reflected by the motions producing the Reynolds shear stress (<-uv>) and its gradient. Recent analyses of the mean dynamical equation, along with data, evidence that these motions asymptotically exhibit self-similar geometric properties. This study discerns additional properties associated with the uv signal, with an emphasis on the magnitudes and length scales of its negative contributions. The signals analysed derive from high-resolution multi-wire hot-wire sensor data acquired in flat-plate turbulent boundary layers. Space-filling properties of the present signals are shown to reinforce previous observations, while the skewness of uv suggests a connection between the size and magnitude of the negative excursions on the inertial domain. Here, the size and length scales of the negative uv motions are shown to increase with distance from the wall, whereas their occurrences decrease. A joint analysis of the signal magnitudes and their corresponding lengths reveals that the length scales that contribute most to <-uv> are distinctly larger than the average geometric size of the negative uv motions. Co-spectra of the streamwise and wall-normal velocities, however, are shown to exhibit invariance across the inertial region when their wavelengths are normalized by the width distribution, W(y), of the scaling layer hierarchy, which renders the mean momentum equation invariant on the inertial domain.

  12. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  13. An error-based micro-sensor capture system for real-time motion estimation

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li

    2017-10-01

    A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).

  14. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.

    PubMed

    Guervilly, Céline; Brummell, Nicholas H

    2012-10-01

    We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.

  15. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    PubMed

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  16. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma

    PubMed Central

    Solé, Marta; Sigray, Peter; Lenoir, Marc; van der Schaar, Mike; Lalander, Emilia; André, Michel

    2017-01-01

    Recent findings on cephalopods in laboratory conditions showed that exposure to artificial noise had a direct consequence on the statocyst, sensory organs, which are responsible for their equilibrium and movements in the water column. The question remained about the contribution of the consequent near-field particle motion influence from the tank walls, to the triggering of the trauma. Offshore noise controlled exposure experiments (CEE) on common cuttlefish (Sepia officinalis), were conducted at three different depths and distances from the source and particle motion and sound pressure measurements were performed at each location. Scanning electron microscopy (SEM) revealed injuries in statocysts, which severity was quantified and found to be proportional to the distance to the transducer. These findings are the first evidence of cephalopods sensitivity to anthropogenic noise sources in their natural habitat. From the measured received power spectrum of the sweep, it was possible to determine that the animals were exposed at levels ranging from 139 to 142 dB re 1 μPa2 and from 139 to 141 dB re 1 μPa2, at 1/3 octave bands centred at 315 Hz and 400 Hz, respectively. These results could therefore be considered a coherent threshold estimation of noise levels that can trigger acoustic trauma in cephalopods. PMID:28378762

  17. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma

    NASA Astrophysics Data System (ADS)

    Solé, Marta; Sigray, Peter; Lenoir, Marc; van der Schaar, Mike; Lalander, Emilia; André, Michel

    2017-04-01

    Recent findings on cephalopods in laboratory conditions showed that exposure to artificial noise had a direct consequence on the statocyst, sensory organs, which are responsible for their equilibrium and movements in the water column. The question remained about the contribution of the consequent near-field particle motion influence from the tank walls, to the triggering of the trauma. Offshore noise controlled exposure experiments (CEE) on common cuttlefish (Sepia officinalis), were conducted at three different depths and distances from the source and particle motion and sound pressure measurements were performed at each location. Scanning electron microscopy (SEM) revealed injuries in statocysts, which severity was quantified and found to be proportional to the distance to the transducer. These findings are the first evidence of cephalopods sensitivity to anthropogenic noise sources in their natural habitat. From the measured received power spectrum of the sweep, it was possible to determine that the animals were exposed at levels ranging from 139 to 142 dB re 1 μPa2 and from 139 to 141 dB re 1 μPa2, at 1/3 octave bands centred at 315 Hz and 400 Hz, respectively. These results could therefore be considered a coherent threshold estimation of noise levels that can trigger acoustic trauma in cephalopods.

  18. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  19. Terrain Measurement with SAR/InSAR

    NASA Astrophysics Data System (ADS)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  20. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less

  1. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.

    PubMed

    Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin

    2018-04-25

    Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  2. Effect of personalized external aortic root support on aortic root motion and distension in Marfan syndrome patients.

    PubMed

    Izgi, Cemil; Nyktari, Evangelia; Alpendurada, Francisco; Bruengger, Annina Studer; Pepper, John; Treasure, Tom; Mohiaddin, Raad

    2015-10-15

    Personalized external aortic root support (PEARS) is a novel surgical approach with the aim of stabilizing the aortic root size and decreasing risk of dissection in Marfan syndrome patients. A bespoke polymer mesh tailored to each patient's individual aorta shape is produced by modeling and then surgically implanted. The aim of this study is to assess the mechanical effects of PEARS on the aortic root systolic downward motion (an important determinant of aortic wall stress), aortic root distension and on the left ventricle (LV). A cohort of 27 Marfan patients had a prophylactic PEARS surgery between 2004 and 2012 with 24 having preoperative and follow-up cardiovascular magnetic resonance imaging studies. Systolic downward aortic root motion, aortic root distension, LV volumes/mass and mitral annular systolic excursion before the operation and in the latest follow-up were measured randomly and blinded. After a median follow-up of 50.5 (IQR 25.5-72) months following implantation of PEARS, systolic downward motion of aortic root was significantly decreased (12.6±3.6mm pre-operation vs 7.9±2.9mm latest follow-up, p<0.00001). There was a tendency for a decrease in systolic aortic root distension but this was not significant (median 4.5% vs 2%, p=0.35). There was no significant change in LV volumes, ejection fraction, mass and mitral annular systolic excursion in follow-up. PEARS surgery decreases systolic downward aortic root motion which is an important determinant of longitudinal aortic wall stress. Aortic wall distension and Windkessel function are not significantly impaired in the follow-up after implantation of the mesh which is also supported by the lack of deterioration of LV volumes or mass. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.

  4. Severe respiratory depression and bradycardia before induction of anesthesia and onset of Takotsubo cardiomyopathy after cardiopulmonary resuscitation.

    PubMed

    Furuichi, Yuko; Hamada, Ayaka; Nakazato, Keiko; Kobayashi, Katsuya; Sakamoto, Atsuhiro

    2016-12-01

    A 69-year-old woman undergoing treatment for hypertension and epilepsy was scheduled to undergo cataract surgery. All preoperative examination results were within normal limits. Despite being tense, she walked to the operating room. Approximately 2 minutes after an intravenous line was established by an anesthesia resident, severe hypoxia and bradycardia developed, and she lost consciousness. Cardiopulmonary resuscitation was initiated immediately, and after 1 minute, she regained consciousness, and her breathing and circulation recovered. After admission to the intensive care unit, emergency coronary angiography was performed. The blood flow in all the coronary arteries was normal. However, a decrease in the apical left ventricular wall motion and an increase in the basal wall motion were observed. Based on these findings, Takotsubo cardiomyopathy was diagnosed. The wall motion gradually improved and the patient was discharged from the hospital on postoperative day 15. The respiratory depression and bradycardia were thought to be due to an inadvertent bolus of remifentanil. We surmised that the patient had received a slight amount of retained medication when the anesthesia resident established the intravenous line, which caused severe respiratory depression. It is important to note that adverse effects such as severe respiratory depression and bradycardia can be caused by even small doses of remifentanil. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    USGS Publications Warehouse

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  6. Trajectory characteristics and heating of hypervelocity projectiles having large ballistic coefficients

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.

    1986-01-01

    A simple, approximate equation describing the velocity-density relationship (or velocity-altitude) has been derived from the flight of large ballistic coefficient projectiles launched at high speeds. The calculations obtained by using the approximate equation compared well with results for numerical integrations of the exact equations of motion. The flightpath equation was used to parametrically calculate maximum body decelerations and stagnation pressures for initial velocities from 2 to 6 km/s. Expressions were derived for the stagnation-point convective heating rates and total heat loads. The stagnation-point heating was parametrically calculated for a nonablating wall and an ablating carbon surface. Although the heating rates were very high, the pulse decayed quickly. The total nose-region heat shield weight was conservatively estimated to be only about 1 percent of the body mass.

  7. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2018-02-01

    This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.

  8. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  9. Projection-based motion estimation for cardiac functional analysis with high temporal resolution: a proof-of-concept study with digital phantom experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki

    2017-03-01

    Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.

  10. Respiratory kinematics by optoelectronic analysis of chest-wall motion and ultrasonic imaging of the diaphragm

    NASA Astrophysics Data System (ADS)

    Aliverti, Andrea; Pedotti, Antonio; Ferrigno, Giancarlo; Macklem, P. T.

    1998-07-01

    Although from a respiratory point of view, compartmental volume change or lack of it is the most crucial variable, it has not been possible to measure the volume of chest wall compartments directly. Recently we developed a new method based on a optoelectronic motion analyzer that can give the three-dimensional location of many markers with the temporal and spatial accuracy required for respiratory measurements. Marker's configuration has been designed specifically to measure the volume of three chest wall compartments, the pulmonary and abdominal rib cage compartments and the abdomen, directly. However, it can not track the exact border between the two rib cage compartments (pulmonary and abdominal) which is determined by the cephalic extremity of the area of apposition of the diaphragm to the inner surface of the rib cage, and which can change systematically as a result of disease processes. The diaphragm displacement can be detected by ultrasonography. In the present study, we propose an integrated system able to investigate the relationships between external (chest wall) and internal (diaphragm) movements of the different respiratory structures by simultaneous external imaging with the optoelectronic system combined with internal kinematic imaging using ultrasounds. 2D digitized points belonging to the lower lung margin, taken from ultrasonographic views, are mapped into the 3D space, where chest wall markers are acquired. Results are shown in terms of accuracy of 3D probe location, relative movement between the probe and the body landmarks, dynamic relationships between chest wall volume and position of the diaphragm during quiet breathing, slow inspirations, relaxations and exercise.

  11. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties.

    PubMed

    Long, C C; Hsu, M-C; Bazilevs, Y; Feinstein, J A; Marsden, A L

    2012-05-01

    Children born with single ventricle heart defects typically undergo a staged surgical procedure culminating in a total cavopulmonary connection (TCPC) or Fontan surgery. The goal of this work was to perform physiologic, patient-specific hemodynamic simulations of two post-operative TCPC patients by using fluid-structure interaction (FSI) simulations. Data from two patients are presented, and post-op anatomy is reconstructed from MRI data. Respiration rate, heart rate, and venous pressures are obtained from catheterization data, and inflow rates are obtained from phase contrast MRI data and are used together with a respiratory model. Lumped parameter (Windkessel) boundary conditions are used at the outlets. We perform FSI simulations by using an arbitrary Lagrangian-Eulerian finite element framework to account for motion of the blood vessel walls in the TCPC. This study is the first to introduce variable elastic properties for the different areas of the TCPC, including a Gore-Tex conduit. Quantities such as wall shear stresses and pressures at critical locations are extracted from the simulation and are compared with pressure tracings from clinical data as well as with rigid wall simulations. Hepatic flow distribution and energy efficiency are also calculated and compared for all cases. There is little effect of FSI on pressure tracings, hepatic flow distribution, and time-averaged energy efficiency. However, the effect of FSI on wall shear stress, instantaneous energy efficiency, and wall motion is significant and should be considered in future work, particularly for accurate prediction of thrombus formation. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Developmental nicotine exposure adversely effects respiratory patterning in the barbiturate anesthetized neonatal rat.

    PubMed

    Barreda, Santiago; Kidder, Ian J; Mudery, Jordan A; Bailey, E Fiona

    2015-03-01

    Neonates at risk for sudden infant death syndrome (SIDS) are hospitalized for cardiorespiratory monitoring however, monitoring is costly and generates large quantities of averaged data that serve as poor predictors of infant risk. In this study we used a traditional autocorrelation function (ACF) testing its suitability as a tool to detect subtle alterations in respiratory patterning in vivo. We applied the ACF to chest wall motion tracings obtained from rat pups in the period corresponding to the mid-to-end of the third trimester of human pregnancy. Pups were drawn from two groups: nicotine-exposed and saline-exposed at each age (i.e., P7, P8, P9, and P10). Respiratory-related motions of the chest wall were recorded in room air and in response to an arousal stimulus (FIO2 14%). The autocorrelation function was used to determine measures of breathing rate and respiratory patterning. Unlike alternative tools such as Poincare plots that depict an averaged difference in a measure breath to breath, the ACF when applied to a digitized chest wall trace yields an instantaneous sample of data points that can be used to compare (data) points at the same time in the next breath or in any subsequent number of breaths. The moment-to-moment evaluation of chest wall motion detected subtle differences in respiratory pattern in rat pups exposed to nicotine in utero and aged matched saline-exposed peers. The ACF can be applied online as well as to existing data sets and requires comparatively short sampling windows (∼2 min). As shown here, the ACF could be used to identify factors that precipitate or minimize instability and thus, offers a quantitative measure of risk in vulnerable populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  14. ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment, and Core Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Héctor G.; Mardones, Diego; Cabrit, Sylvie; Dunham, Michael M.; Garay, Guido; Noriega-Crespo, Alberto; Offner, Stella S. R.; Raga, Alejandro C.; Corder, Stuartt A.

    2016-12-01

    We present Atacama Large Millimeter/sub-millimeter Array Cycle 1 observations of the HH 46/47 molecular outflow using combined 12 m array and Atacama Compact Array observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than in previous observations. We use {}13{{CO}} (1-0) and {{{C}}}18{{O}} (1-0) emission to correct for the {}12{{CO}} (1-0) optical depth to accurately estimate the outflow mass, momentum, and kinetic energy. This correction increases the estimates of the mass, momentum, and kinetic energy by factors of about 9, 5, and 2, respectively, with respect to estimates assuming optically thin emission. The new {}13{{CO}} and {{{C}}}18{{O}} data also allow us to trace denser and slower outflow material than that traced by the {}12{{CO}} maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2 {\\text{km s}}-1 with respect to the core’s central velocity). Adding the slower material traced only by {}13{{CO}} and {{{C}}}18{{O}}, there is another factor of three increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000 au of the protostar the {}13{{CO}} and {{{C}}}18{{O}} emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS (2-1) emission reveals tentative evidence of a slowly moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that is launched from relatively large radii from the source.

  15. A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited

    NASA Astrophysics Data System (ADS)

    Vigdorovich, Igor

    2016-08-01

    The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.

  16. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  17. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  18. Efficient low-bit-rate adaptive mesh-based motion compensation technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hanan A.; Bayoumi, Magdy A.

    2001-08-01

    This paper proposes a two-stage global motion estimation method using a novel quadtree block-based motion estimation technique and an active mesh model. In the first stage, motion parameters are estimated by fitting block-based motion vectors computed using a new efficient quadtree technique, that divides a frame into equilateral triangle blocks using the quad-tree structure. Arbitrary partition shapes are achieved by allowing 4-to-1, 3-to-1 and 2-1 merge/combine of sibling blocks having the same motion vector . In the second stage, the mesh is constructed using an adaptive triangulation procedure that places more triangles over areas with high motion content, these areas are estimated during the first stage. finally the motion compensation is achieved by using a novel algorithm that is carried by both the encoder and the decoder to determine the optimal triangulation of the resultant partitions followed by affine mapping at the encoder. Computer simulation results show that the proposed method gives better performance that the conventional ones in terms of the peak signal-to-noise ration (PSNR) and the compression ratio (CR).

  19. The Lattice Dynamics of Colloidal Crystals.

    NASA Astrophysics Data System (ADS)

    Hurd, Alan James

    Colloidal crystals are ordered arrays of highly charged microspheres in water that exhibit spectacular optical diffraction effects by virtue of a large lattice parameter. The microspheres perform Brownian motion that is influenced by the interparticle and fluid forces. The purpose of this study was to understand the nature of the collective motions in colloidal crystals in terms of classical lattice dynamics. In the theoretical analysis, the particle displacements due to Brownian motion were formally decomposed into phonon -like lattice disturbances analogous to the phonons in atomic and molecular solids except that they are heavily damped. The analysis was based on a harmonic solid model with special attention paid to the hydrodynamic interaction between particles. A hydrodynamic model using the Oseen interaction was worked for a three-dimensional lattice but it failed in two important respects: it overestimated the friction factor for long wavelength modes and did not predict a previously observed propagating transverse mode. Both of these failures were corrected by a hydrodynamic model based on periodic solutions to the Stokes equation. In addition, the effects of fluid inertia and constraining walls were considered. Intensity autocorrelation spectroscopy was used to probe the lattice dynamics by measuring the phonon dispersion curves. A thin-film cell was used to reduce multiple scattering to acceptable levels. An experiment to measure wall effects on Brownian motion was necessary to determine the decrease in diffusion rate inherent in the thin-film geometry. The wall effects were found to agree with macroscopic hydrodynamics. An additional experiment measured the elastic anisotropy of the crystal lattice from the thermal diffuse scattering. The theoretical dispersion curves were found to agree well with the measured curves.

  20. Automated classification of LV regional wall motion based on spatio-temporal profiles from cardiac cine magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis

    2013-11-01

    Assessment of the cardiac Left Ventricle (LV) wall motion is generally based on visual inspection or quantitative analysis of 2D+t sequences acquired in short-axis cardiac cine-Magnetic Resonance Imaging (MRI). Most often, cardiac dynamic is globally analized from two particular phases of the cardiac cycle. In this paper, we propose an automated method to classify regional wall motion in LV function based on spatio-temporal pro les and Support Vector Machines (SVM). This approach allows to obtain a binary classi cation between normal and abnormal motion, without the need of pre-processing and by exploiting all the images of the cardiac cycle. In each short- axis MRI slice level (basal, median, and apical), the spatio-temporal pro les are extracted from the selection of a subset of diametrical lines crossing opposites LV segments. Initialized at end-diastole phase, the pro les are concatenated with their corresponding projections into the succesive temporal phases of the cardiac cycle. These pro les are associated to di erent types of information that derive from the image (gray levels), Fourier, Wavelet or Curvelet domains. The approach has been tested on a set of 14 abnormal and 6 healthy patients by using a leave-one-out cross validation and two kernel functions for SVM classi er. The best classi cation performance is yielded by using four-level db4 wavelet transform and SVM with a linear kernel. At each slice level the results provided a classi cation rate of 87.14% in apical level, 95.48% in median level and 93.65% in basal level.

  1. Study of propellant dynamics in a shuttle type launch vehicle

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Feng, G. C.

    1972-01-01

    A method and an associated digital computer program for evaluating the vibrational characteristics of large liquid-filled rigid wall tanks of general shape are presented. A solution procedure was developed in which slosh modes and frequencies are computed for systems mathematically modeled as assemblages of liquid finite elements. To retain sparsity in the assembled system mass and stiffness matrices, a compressible liquid element formulation was incorporated in the program. The approach taken in the liquid finite element formulation is compatible with triangular and quadrilateral structural finite elements so that the analysis of liquid motion can be coupled with flexible tank wall motion at some future time. The liquid element repertoire developed during the course of this study consists of a two-dimensional triangular element and a three-dimensional tetrahedral element.

  2. Ubiquitous human upper-limb motion estimation using wearable sensors.

    PubMed

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  4. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation.

    PubMed

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2018-04-01

    The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be the best option for accurate estimation of dual R&C motion in clinical situation. © 2018 American Association of Physicists in Medicine.

  5. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  6. The Estimation of a Rigid Body Motion in the Presence of Noise.

    DTIC Science & Technology

    1987-07-31

    Rigid Body Motion in the Presence of Noise 12. PERSONAL AUTHOR(S) 1S. AYOFDREPRTy 13b.e ad COVRE C4. 10AOUTE OF FUNPING NUBERSlAE...8217, .,_, .,,.. .\\ ..: ., : ’ *-: ,:,.,,. .’ 4 /. .’.’ ’, ’ ,. 9) 7 TRACT The problem of estimating a rigid body motion from two noisy images of an...SI ... ... Cs . I ,-’ ’".’ 1 -, ED 1, D:;.;i,1q L HARVARD UNIVERSITY DzPAILTMNT OP STATIMCS THE ESTIMATION OF A RIGID BODY MOTION IN THE

  7. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfield, A.

    1977-01-01

    A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.

  8. Feasibility study of an aerial manipulator interacting with a vertical wall

    DTIC Science & Technology

    2017-06-01

    each blade . Some tests are run with different levels of PWM input and the resultant angular acceleration in each case is measured with the motion...Helicopter Near a Vertical Surface ...................29 Figure 15. Near-Wall Moment for a Single Blade Helicopter. Source: [30]. .............30...with canted propellers is proposed, so that each blade applies thrust with components in the vertical and in the horizontal plane. In Figure 10

  9. Seismic Structural Considerations for the Stern and Base of Retaining Walls Subjected to Earthquake Ground Motions

    DTIC Science & Technology

    2005-05-01

    CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Seismic Structural Considerations for the Stem and Base of Retaining Walls...as represented by response spectra are determined. Several modes of vibration are considered. The number of modes included in the analysis is that...response spectrum- modal analysis procedure. Especially important is the number of excursions beyond acceptable displacement. As with the response

  10. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors.

    PubMed

    Varley, Mark C; Markaki, Athina E; Brooks, Roger A

    2017-06-01

    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s -1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).

  11. Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors

    PubMed Central

    Varley, Mark C.; Markaki, Athina E.

    2017-01-01

    Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s−1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05). PMID:28125920

  12. Total Motion Across the East African Rift Viewed From the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Royer, J.; Gordon, R. G.

    2005-05-01

    The Nubian plate is known to have been separating from the Somalian plate along the East African Rift since Oligocene time. Recent works have shown that the spreading rates and spreading directions since 11 Ma along the Southwest Indian Ridge (SWIR) record Nubia-Antarctica motion west of the Andrew Bain Fracture Zone complex (ABFZ; between 25E and 35E) and Somalia-Antarctica motion east of it. Nubia-Somalia motion can be determined by differencing Nubia-Antarctica and Somalia-Antarctica motion. To estimate the total motion across the East African Rift, we estimated and differenced Nubia-Antarctica motion and Somalia-Antarctica motion for times that preceded the initiation of Nubia-Somalia motion. We analyze anomalies 24n.3o (53 Ma), 21o (48 Ma), 18o (40 Ma) and 13o (34 Ma). Preliminary results show that the poles of the finite rotations that describe the Nubia-Somalia motions cluster near 30E, 42S. Angles of rotation range from 2.7 to 4.0 degrees. The uncertainty regions are large. The lower estimate predicts a total extension of 245 km at the latitude of the Ethiopian rift (41E, 9N) in a direction N104, perpendicular to the mean trend of the rift. Assuming an age of 34 Ma for the initiation of rifting, the average rate of motion would be 7 mm/a, near the 9 mm/a deduced from present-day geodetic measurements [e.g. synthesis of Fernandes et al., 2004]. Although these results require further analysis, particularly on the causes of the large uncertainties, they represent the first independent estimate of the total extension across the rift. Among other remaining questions are the following: How significant are the differences between these estimates and those for younger chrons (5 or 6 ; respectively 11 and 20 Ma), i.e. is the start of extension datable? Is the region east of the ABFZ part of the Somalian plate or does it form a distinct component plate of Somalia, as postulated by Hartnady (2004)? How has motion between two or more component plates within the African composite plate affected estimates of India-Eurasia motion and of Pacific-North America motion?

  13. Prograde evolution of the Scottish Caledonides and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2015-05-01

    Recent thermometric analyses of samples collected in thrust-parallel structural transects across the Scandian (435-415 Ma) orogenic wedge in northwest Scotland provide a comprehensive characterization of the synorogenic retro-wedge thermal architecture. However, the paucity of petrologically-important metamorphic mineral phases (e.g., staurolite, Al-silicates) has limited investigation of pressure-temperature (P-T) histories, which hinders our ability to examine the nature of orogen-scale kinematic and thermal coupling. New data collected along a foreland-to-hinterland transect from the Moine to the Naver thrust sheets provides additional constraints for characterizing the prograde metamorphic evolution. In addition, we characterized Ti diffusion profiles in quartz inclusions in garnet to constrain duration of metamorphic heating. These results are used to develop coupled kinematic-thermal models of Scandian orogenic evolution. Early garnet core growth conditions are constrained by isopleth intersections, with peak P-T estimates determined by conventional exchange and net transfer thermobarometry and thermodynamic calculations. Most samples follow normal prograde heating and burial profiles, with peak conditions of 450 °C and 5.0 kbar in the immediate hanging wall to the Moine thrust, increasing in temperature and pressure to 733 °C and 9.5 kbar in the immediate hanging wall to the Naver thrust. These normal prograde pressure trajectories are interpreted to reflect burial of incipient thrust sheets beneath the overriding wedge at the leading edge of the orogen. Prograde heating coeval with burial is interpreted to result from surface-directed isotherm perturbation due to thrust-related advection in the overriding wedge. One exception to this is a sample from the top of the Moine thrust sheet, where prograde heating occurs during decompression (540 °C and 8.1 kbar to 590 °C and 7.0 kbar). In this case, the short lag times between motion on the Moine and Ben Hope thrusts may have limited advectionary heating until after exhumation associated with motion on the underlying Moine thrust was underway. Ti diffusion profiles in quartz inclusions in garnet suggest the near-peak thermal evolution of these rocks occurred over very short time scales (< 200,000 years). While most of the garnets are inferred to be Scandian in age, we document evidence for pre-Scandian garnet cores in structurally higher (more hinterland positioned) samples that must have grown under higher temperatures. In the hanging wall of the Moine thrust, high grossular garnets with estimated formation conditions > 9 kbar are probably of detrital origin.

  14. Human Age Estimation Method Robust to Camera Sensor and/or Face Movement

    PubMed Central

    Nguyen, Dat Tien; Cho, So Ra; Pham, Tuyen Danh; Park, Kang Ryoung

    2015-01-01

    Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method. PMID:26334282

  15. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  16. A theoretical study for mechanical contact between carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshiteru; Uda, Tsuyoshi; Ohno, Takahisa

    2005-03-01

    We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.

  17. Performance of Automated Software in the Assessment of Segmental Left Ventricular Function in Cardiac CT: Comparison with Cardiac Magnetic Resonance.

    PubMed

    Wang, Rui; Meinel, Felix G; Schoepf, U Joseph; Canstein, Christian; Spearman, James V; De Cecco, Carlo N

    2015-12-01

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. • Cardiac computed tomography (CCT) can accurately assess segmental left ventricular wall function. • A novel automated software permits accurate and fast evaluation of wall function. • The software may improve the clinical implementation of segmental functional analysis.

  18. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    PubMed

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Non-Debye domain-wall-induced dielectric response in Sr0.61-xCexBa0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Kleemann, W.; Dec, J.; Miga, S.; Woike, Th.; Pankrath, R.

    2002-06-01

    Two different non-Debye dielectric spectra are observed in a polydomain relaxor-ferroelectric Sr0.61-xBa0.39Nb2O6:Ce3+x single crystal in the vicinity of its transition temperature, Tc~320 K. At infralow frequencies the susceptibility varies as χ*~ω-β, β~0.2, and is attributed to an irreversible creep-like viscous motion of domain walls, while logarithmic dispersion due to reversible wall relaxation [T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42, 8577 (1990)] occurs at larger ω.

  20. Reversible optical control of macroscopic polarization in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Rubio-Marcos, Fernando; Ochoa, Diego A.; Del Campo, Adolfo; García, Miguel A.; Castro, Germán R.; Fernández, José F.; García, José E.

    2018-01-01

    The optical control of ferroic properties is a subject of fascination for the scientific community, because it involves the establishment of new paradigms for technology1-9. Domains and domain walls are known to have a great impact on the properties of ferroic materials1-24. Progress is currently being made in understanding the behaviour of the ferroelectric domain wall, especially regarding its dynamic control10-12,17,19. New research is being conducted to find effective methodologies capable of modulating ferroelectric domain motion for future electronics. However, the practical use of ferroelectric domain wall motion should be both stable and reversible (rewritable) and, in particular, be able to produce a macroscopic response that can be monitored easily12,17. Here, we show that it is possible to achieve a reversible optical change of ferroelectric domains configuration. This effect leads to the tuning of macroscopic polarization and its related properties by means of polarized light, a non-contact external control. Although this is only the first step, it nevertheless constitutes the most crucial one in the long and complex process of developing the next generation of photo-stimulated ferroelectric devices.

  1. Spatial Distribution Measurement of Heart Wall Vibrations Generated by Remote Perturbation of Inner Pressure

    NASA Astrophysics Data System (ADS)

    Kanai, Hiroshi; Hasegawa, Hideyuki; Imamura, Kohsuke

    2006-05-01

    It is essential for the diagnosis of heart diseases to noninvasively measure instantaneous myocardial movability and transition properties during one cardiac cycle. This study proposes a novel method of noninvasively perturbing left ventricle (LV) internal pressure by remotely actuating the brachium artery with sinusoidal vibration for the diagnosis of myocardial movability. By attaching an actuator to the brachium artery and driving it with a sinusoidal wave of f0 Hz, the internal pressure of the artery is perturbed. The perturbation propagates along the artery to the LV of the heart and the sinusoidal perturbation of the LV internal pressure is induced. Using an ultrasound-based phased tracking method, the resultant minute motion of the heart wall can be noninvasively measured. Because the vibration mode of the heart wall depends on actuation frequency, by phantom experiments using a spherical shell made of silicone rubber, to which a silicone rubber tube is connected, the vibration mode was identified from the measurement of the spatial distribution of the motions by scanning with an ultrasonic beam. From an in vivo experiment, the principle of remote actuation was confirmed.

  2. Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages.

    PubMed

    Huang, Gaoshan; Wang, Jiyuan; Liu, Zhaoqian; Zhou, Dekai; Tian, Ziao; Xu, Borui; Li, Longqiu; Mei, Yongfeng

    2017-12-07

    Controllable locomotion in the micro-/nanoscale is challenging and attracts increasing research interest. Tubular microjets self-propelled by microbubbles are intensively investigated due to their high energy conversion efficiency, but the imperfection of the tubular geometry makes it harder to realize linear motion. Inspired by the macro rocket, we designed a tubular microjet with a grating-structured wall which mimics the guiding empennage of the macro rocket, and we found that the fluid can be effectively guided by the grooves. Both theoretical simulation and experimental work have been carried out, and the obtained results demonstrate that the stability margin of the grating-structured microjet can be enhanced. Compared with microjets with smooth walls, the structured microjets show an enhanced ability of moving linearly. In 10% H 2 O 2 , only 20% of the smooth microjets demonstrate linear trajectories, while 80% of the grating-structured microjets keep moving straight. The grating-structured microjet can maintain linear motion under external disturbance. We further propose to increase the stability by introducing a helical grating structure.

  3. Analysis of intra-uterine fluid motion induced by uterine contractions.

    PubMed

    Eytan, O; Elad, D

    1999-03-01

    Evaluation of the fluid flow pattern in a non-pregnant uterus is important for understanding embryo transport in the uterus. Fertilization occurs in the fallopian tube and the embryo (fertilized ovum) enters the uterine cavity within 3 days of ovulation. In the uterus, the embryo is conveyed by the uterine fluid for another 3 to 4 days to a successful implantation site at the upper part of the uterus. Fluid movements within the uterus may be induced by several mechanisms, but they seem to be dominated by myometrial contractions. Intra-uterine fluid transport in a sagittal cross-section of the uterus was simulated by a model of wall-induced fluid motion within a two-dimensional channel. The time-dependent fluid pattern was studied by employing the lubrication theory. A comprehensive analysis of peristaltic transport resulting from symmetric and asymmetric contractions is presented for various displacement waves on the channel walls. The results provide information on the flow field and possible trajectories by which an embryo may be transported before implantation at the uterine wall.

  4. Decay of the supersonic turbulent wakes from micro-ramps

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.

    2014-02-01

    The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.

  5. Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies

    PubMed Central

    Maso Talou, Gonzalo D.; Blanco, Pablo J.; Ares, Gonzalo D.; Guedes Bezerra, Cristiano; Lemos, Pedro A.; Feijóo, Raúl A.

    2018-01-01

    Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of patient-specific vessel constituents, mechanical material parameters are estimated using in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this approach are exposed and discussed. PMID:29643815

  6. Strain induced parametric pumping of a domain wall and its depinning from a notch

    NASA Astrophysics Data System (ADS)

    Nepal, Rabindra; Gungordu, Utkan; Kovalev, Alexey

    Using Thiele's method and detailed micromagnetic simulations, we study resonant oscillation of a domain wall in a notch of a ferromagnetic nanowire due to the modulation of magnetic anisotropy by external AC strain. Such resonant oscillation results from the parametric pumping of domain wall by AC strain at frequency about double the free domain wall oscillation frequency, which is mainly determined by the perpendicular anisotropy and notch geometry. This effect leads to a substantial reduction in depinning field or current required to depin a domain wall from the notch, and offers a mechanism for efficient domain wall motion in a notched nanowire. Our theoretical model accounts for the pinning potential due to a notch by explicitly calculating ferromagnetic energy as a function of notch geometry parameters. We also find similar resonant domain wall oscillations and reduction in the domain wall depinning field or current due to surface acoustic wave in soft ferromagnetic nanowire without uniaxial anisotropy that energetically favors an in-plane domain wall. DOE Early Career Award DE-SC0014189 and DMR- 1420645.

  7. Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Yang, Xiang

    2017-11-01

    The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.

  8. Crustal deformation associated with east Mediterranean strike-slip earthquakes: The 8 June 2008 Movri (NW Peloponnese), Greece, earthquake (M w6.4)

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Gerassimos A.; Karastathis, Vassilis; Kontoes, Charalambos; Charalampakis, Marinos; Fokaefs, Anna; Papoutsis, Ioannis

    2010-09-01

    The 2008 mainshock ( Mw = 6.4) was the first modern, strong strike-slip earthquake in the Greek mainland. The fault strikes NE-SW, dips ˜ 85°NW while the motion was right-lateral with small reverse component. Historical seismicity showed no evidence that the fault ruptured in the last 300 years. For rectangular planar fault we estimated fault dimensions from aftershock locations. Dimensions are consistent with that a buried fault was activated, lateral expansion occurred only along length and the rupture stopped at depth ˜ 20 km implying that more rupture along length was favoured. We concluded that no major asperities remained unbroken and that the aftershock activity was dominated rather by creeping mechanism than by the presence of locked patches. For Mo = 4.56 × 10 25 dyn cm we calculated average slip of 76 cm and stress drop Δσ ˜ 13 bars. This Δσ is high for Greek strike-slip earthquakes, due rather to increased rigidity because of the relatively long recurrence ( Τ > 300 years) of strong earthquakes in the fault, than to high slip. Values of Δσ and Τ indicated that the fault is neither a typical strong nor a typical weak fault. Dislocation modeling of a buried fault showed uplift of ˜ 8.0 cm in Kato Achaia ( Δ ˜ 20 km) at the hanging wall of the reverse fault component. DInSAR analysis detected co-seismic motion only in Kato Achaia where interferogram fringes pattern showed vertical displacement from 3.0 to 6.0 cm. From field-surveys we estimated maximum intensity of VIII in Kato Achaia. The most important liquefaction spots were also observed there. These observations are attributable neither to surface fault-breaks nor to site effects but possibly to high ground acceleration due to the co-seismic uplift. The causal association between displacement and earthquake damage in the hanging wall described for dip-slip faults in Taiwan, Greece and elsewhere, becomes possible also for strike-slip faults with dip-slip component, as the 2008 earthquake.

  9. Biased Brownian motion in narrow channels with asymmetry and anisotropy

    NASA Astrophysics Data System (ADS)

    To, Kiwing; Peng, Zheng

    2016-11-01

    We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments of tilted channel, is found to be consistent to those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energies transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.

  10. Biased Brownian motion in narrow channels with asymmetry and anisotropy

    NASA Astrophysics Data System (ADS)

    Peng, Zheng; To, Kiwing

    2016-08-01

    We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments on a tilted channel, is found to be consistent with those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energy transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.

  11. Dynamic response of some tentative compliant wall structures to convected turbulence fields

    NASA Technical Reports Server (NTRS)

    Nijim, H. H.; Lin, Y. K.

    1977-01-01

    Some tentative compliant wall structures designed for possible skin friction drag reduction are investigated. Among the structural models considered is a ribbed membrane backed by polyurethane or PVS plastisol. This model is simplified as a beam placed on a viscoelastic foundation as well as on a set of evenly spaced supports. The total length of the beam may be either finite or infinite, and the supports may be either rigid or elastic. Another structural model considered is a membrane mounted over a series of pretensioned wires, also evenly spaced, and the entire membrane is backed by an air cavity. The forcing pressure field is idealized as a frozen random pattern convected downstream at a characteristic velocity. The results are given in terms of the frequency response functions of the system, the spectral density of the structural motion, and the spectral density of the boundary layer pressure including the effect of structural motion. These results are used in a parametric study of structural configurations capable of generating favorable wave lengths, wave amplitudes, and wave speeds in the structural motion for potential drag reduction.

  12. Universal current-velocity relation of skyrmion motion in chiral magnets

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto

    2013-03-01

    Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.

  13. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogrammore » with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.« less

  14. Terrestrial Laser Scanning Applications in Paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Arrowsmith, R.; Haddad, D. E.; Akciz, S. O.; Oldow, J. S.; Mauer, J.; Rhodes, D. D.

    2009-12-01

    Essential information about past earthquakes includes their locations, ages, and magnitudes. Documentation requires high accuracy three-dimensional measurements. We present three examples of recent earthquake geology research using terrestrial laser scanning (TLS): 1) the stratigraphic record and age of earthquakes along the south-central San Andreas Fault at Bidart, 2) geomorphic modification of surface rupture from the 1992 M7.3 Landers, California earthquake, and 3) negative indications of strong ground motion from precariously balanced rocks (PBRs) in an area of relative low seismicity in central Arizona. Sedimentary structures and earthquake-related features exposed in excavations are documented with mosaic photography, a time consuming process. Even carefully prepared mosaics have geometric errors due to edge matching, camera distortion, and non-planar walls. Instead of using photomosaics, we recently scanned the walls of 1-m wide trenches with short range TLS. We projected the resulting point cloud colored by photography acquired by the scanner to vertical planes representing the walls. With only a small overlap between adjacent co-registered scans, the orthophotos have sufficient resolution and superior geometric accuracy compared to the photomosaics. We have monitored the erosional modifications of a prominent ~1-m high fault scarp that formed in the 1992 Landers earthquake. Our repeated observations include photography and topographic survey. In 2008, we scanned the site and co-registered the scans and the prior surveys to document the geometry of the fault scarp. By subtracting the current topography from surface models based on prior surveys, we measured the erosion along the scarp. The largest changes are in the narrow knick channels that cross the scarp at the lower end of 104 m2 drainage basins. The knickpoints are a few 10s of cm wide, ~1 m deep, and a few m long. Separated abruptly from the knickpoint moving upstream, a ~10 m reach of the channel is incised 10-20 cm. PBRs are balanced on bedrock pedestals and formed in upland drainage basins and pediments. They are often used as negative evidence of earthquake-driven ground motions. TLS data provide detailed 3 dimensional geometry of the boulders from which their sensitivity to ground motions can be computed and for which approximate fragility estimation methods can be calibrated. The TLS data also define the surrounding topography and geomorphic context for the PBRs. Those we studied in the Granite Dells near Prescott Arizona are located near hillslope crests ~33 m above the nearest drainage and on hillslope gradients >17°. None were found on gentle slopes adjacent to channels, suggesting that hillslope crests are conducive to developing precarious rocks.

  15. Progressive attenuation of the longitudinal kinetics in the common carotid artery: preliminary in vivo assessment.

    PubMed

    Zahnd, Guillaume; Balocco, Simone; Sérusclat, André; Moulin, Philippe; Orkisz, Maciej; Vray, Didier

    2015-01-01

    Longitudinal kinetics (LOKI) of the arterial wall consists of the shearing motion of the intima-media complex over the adventitia layer in the direction parallel to the blood flow during the cardiac cycle. The aim of this study was to investigate the local variability of LOKI amplitude along the length of the vessel. By use of a previously validated motion-estimation framework, 35 in vivo longitudinal B-mode ultrasound cine loops of healthy common carotid arteries were analyzed. Results indicated that LOKI amplitude is progressively attenuated along the length of the artery, as it is larger in regions located on the proximal side of the image (i.e., toward the heart) and smaller in regions located on the distal side of the image (i.e., toward the head), with an average attenuation coefficient of -2.5 ± 2.0%/mm. Reported for the first time in this study, this phenomenon is likely to be of great importance in improving understanding of atherosclerosis mechanisms, and has the potential to be a novel index of arterial stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  17. SU-D-210-05: The Accuracy of Raw and B-Mode Image Data for Ultrasound Speckle Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, T; Bamber, J; Harris, E

    Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation templatemore » matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion would also be prudent. This work is support by Cancer Research UK Programme Grant C33589/A19727.« less

  18. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion.

    PubMed

    Li, Guanglai; Tang, Jay X

    2009-08-14

    In this Letter we propose a kinematic model to explain how collisions with a surface and rotational Brownian motion give rise to accumulation of microswimmers near a surface. In this model, an elongated microswimmer invariably travels parallel to the surface after hitting it from an oblique angle. It then swims away from the surface, facilitated by rotational Brownian motion. Simulations based on this model reproduce the density distributions measured for the small bacteria E. coli and Caulobacter crescentus, as well as for the much larger bull spermatozoa swimming between two walls.

  19. Immersion Refractometry of Isolated Bacterial Cell Walls

    PubMed Central

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid model. PMID:4201772

  20. Wall shear stress estimates in coronary artery constrictions

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Crawford, D. W.

    1992-01-01

    Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.

  1. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  2. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-07

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  3. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    PubMed Central

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-01-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  4. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  5. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    PubMed

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  6. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  7. Three-Dimensional Motion Estimation Using Shading Information in Multiple Frames

    DTIC Science & Technology

    1989-09-01

    j. Threle-D.imensionai GO Motion Estimation U sing, Shadin g Ilnformation in Multiple Frames- IJean-Pierre Schotf MIT Artifi -cial intelligence...vision 3-D structure 3-D vision- shape from shading multiple frames 20. ABSTRACT (Cofrn11,00 an reysrf* OWd Of Rssss00n7 Ad 4111111& F~ block f)nseq See...motion and shading have been treated as two disjoint problems. On the one hand, researchers studying motion or structure from motion often assume

  8. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  9. Bio-inspired vision based robot control using featureless estimations of time-to-contact.

    PubMed

    Zhang, Haijie; Zhao, Jianguo

    2017-01-31

    Marvelous vision based dynamic behaviors of insects and birds such as perching, landing, and obstacle avoidance have inspired scientists to propose the idea of time-to-contact, which is defined as the time for a moving observer to contact an object or surface if the current velocity is maintained. Since with only a vision sensor, time-to-contact can be directly estimated from consecutive images, it is widely used for a variety of robots to fulfill various tasks such as obstacle avoidance, docking, chasing, perching and landing. However, most of existing methods to estimate the time-to-contact need to extract and track features during the control process, which is time-consuming and cannot be applied to robots with limited computation power. In this paper, we adopt a featureless estimation method, extend this method to more general settings with angular velocities, and improve the estimation results using Kalman filtering. Further, we design an error based controller with gain scheduling strategy to control the motion of mobile robots. Experiments for both estimation and control are conducted using a customized mobile robot platform with low-cost embedded systems. Onboard experimental results demonstrate the effectiveness of the proposed approach, with the robot being controlled to successfully dock in front of a vertical wall. The estimation and control methods presented in this paper can be applied to computation-constrained miniature robots for agile locomotion such as landing, docking, or navigation.

  10. Dense motion estimation using regularization constraints on local parametric models.

    PubMed

    Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein

    2004-11-01

    This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.

  11. On the role of modeling choices in estimation of cerebral aneurysm wall tension.

    PubMed

    Ramachandran, Manasi; Laakso, Aki; Harbaugh, Robert E; Raghavan, Madhavan L

    2012-11-15

    To assess various approaches to estimating pressure-induced wall tension in intracranial aneurysms (IA) and their effect on the stratification of subjects in a study population. Three-dimensional models of 26 IAs (9 ruptured and 17 unruptured) were segmented from Computed Tomography Angiography (CTA) images. Wall tension distributions in these patient-specific geometric models were estimated based on various approaches such as differences in morphological detail utilized or modeling choices made. For all subjects in the study population, the peak wall tension was estimated using all investigated approaches and were compared to a reference approach-nonlinear finite element (FE) analysis using the Fung anisotropic model with regionally varying material fiber directions. Comparisons between approaches were focused toward assessing the similarity in stratification of IAs within the population based on peak wall tension. The stratification of IAs tension deviated to some extent from the reference approach as less geometric detail was incorporated. Interestingly, the size of the cerebral aneurysm as captured by a single size measure was the predominant determinant of peak wall tension-based stratification. Within FE approaches, simplifications to isotropy, material linearity and geometric linearity caused a gradual deviation from the reference estimates, but it was minimal and resulted in little to no impact on stratifications of IAs. Differences in modeling choices made without patient-specificity in parameters of such models had little impact on tension-based IA stratification in this population. Increasing morphological detail did impact the estimated peak wall tension, but size was the predominant determinant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    NASA Astrophysics Data System (ADS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  13. Effect of neutron irradiation on magnetic properties in the low alloy Ni-Mo steel SA508-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.G.; Kim, C.G.; Kim, H.C.

    1997-04-01

    The B-H hysteresis loop and Barkhausen noise have been measured in the neutron irradiated SA508 steel of 45 {mu}m thickness. The coercive force of B-H loop showed a slow change up to a neutron dose of 10{sup 14} n/cm{sup 2} and increased by 15.4{percent} for a 10{sup 16} n/cm{sup 2} dose sample compared with that of the unirradiated one, related to the domain wall motion hindered by the increased defects. However, the amplitude of Barkhausen noise reflecting the wall motion decreased slowly up to 10{sup 14} n/cm{sup 2} irradiation, followed by a rapid decrease of 37.5{percent} at 10{sup 16} n/cm{supmore » 2}. {copyright} {ital 1997 American Institute of Physics.}« less

  14. The predictive value of 201Tl rest-redistribution and 18F-fluorodeoxyglucose SPECT for wall motion recovery after recent reperfused myocardial infarction.

    PubMed

    González, Patricio; Massardo, Teresa; Coll, Claudia; Humeres, Pamela; Sierralta, Paulina; Jofré, M Josefina; Yovanovich, Jorge; Aramburu, Ivonne; Brugère, Solange; Chamorro, Hernán

    2004-04-01

    201Tl and 18F-FDG are useful for acute myocardial infarction (MI) assessment. The goal of this study was to compare their predictive value for wall motion recovery in the culprit area after a recent reperfused MI using SPECT technique. Forty-one patients (mean age: 56 +/- 12 years) were included, 81% of them male; all were studied within 1-24 days post MI. They underwent angioplasty in 27 cases (12 primary); bypass grafting in 10 cases and successful thrombolysis in 4. SPECT 201Tl injected at rest and redistribution (R-R) and also 18F-FDG, were performed on different days. Processed tomograms were interpreted blinded to clinical or angiographic data. Segmental wall motion assessed with echocardiography at baseline was compared with the 3 month follow up. Sensitivity [Confidence Interval] for 201Tl R-R was 74.6% [60.5-84.5], for FDG it was 82.1% [70.8-90.4]; specificities were 73% [64.3-80.5] and 54.8% [45.6-63.7], respectively. 18F-FDG tended to be more sensitive than 201Tl R-R, but the latter was more specific (p < 0.0004). Both 201Tl RR and 18F-FDG presented high negative predictive value (p: ns). In recent MI, SPECT 201Tl R-R is a valuable and widely available technique for viability detection, with similar sensitivity and significant better specificity than SPECT 18F-FDG.

  15. Percutaneous intrapericardial echocardiography during catheter ablation: a feasibility study.

    PubMed

    Horowitz, Barbara Natterson; Vaseghi, Marmar; Mahajan, Aman; Cesario, David A; Buch, Eric; Valderrábano, Miguel; Boyle, Noel G; Ellenbogen, Kenneth A; Shivkumar, Kalyanam

    2006-11-01

    Percutaneous pericardial access, epicardial mapping, and ablation have been used successfully for catheter ablation procedures. The purpose of this study was to evaluate the safety and feasibility of closed-chest direct epicardial ultrasound imaging for aiding cardiac catheter ablation procedures. An intracardiac ultrasound catheter was used for closed-chest epicardial imaging of the heart in 10 patients undergoing percutaneous epicardial access for catheter ablation. All patients underwent concomitant intracardiac echocardiography and preprocedural transesophageal echocardiography. Using a double-wire technique, two sheaths were placed in the pericardium, and a phased-array ultrasound catheter was manipulated within the pericardial sinuses for imaging. Multiple images from varying angles were obtained for catheter navigation. Notably, image stability was excellent, and structures such as the left atrial appendage were seen in great detail. No complications resulting from use of the ultrasound catheter in the pericardium occurred, and no restriction of movement due to the presence of the additional catheter in the pericardial space was observed. Wall motion was correlated to voltage maps in five patients and showed that areas of scars correlated with wall-motion abnormalities. Normal wall-motion score correlated to sensed signals of 4.2 +/- 0.3 mV (normal myocardium >1.5 mV), and scores >1 correlated to areas with signals <0.5 mV in that territory). Intrapericardial imaging using an ultrasound catheter is feasible and safe and has the potential to provide additional valuable information for complex ablation procedures.

  16. Survival and in-vessel redistribution of beryllium droplets after ITER disruptions

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Ratynskaia, S.; Tolias, P.; Pitts, R. A.; De Temmerman, G.; Lehnen, M.; Kiramov, D.

    2018-07-01

    The motion and temperature evolution of beryllium droplets produced by first wall surface melting after ITER major disruptions and vertical displacement events mitigated during the current quench are simulated by the MIGRAINe dust dynamics code. These simulations employ an updated physical model which addresses droplet-plasma interaction in ITER-relevant regimes characterized by magnetized electron collection and thin-sheath ion collection, as well as electron emission processes induced by electron and high-Z ion impacts. The disruption scenarios have been implemented from DINA simulations of the time-evolving plasma parameters, while the droplet injection points are set to the first-wall locations expected to receive the highest thermal quench heat flux according to field line tracing studies. The droplet size, speed and ejection angle are varied within the range of currently available experimental and theoretical constraints, and the final quantities of interest are obtained by weighting single-trajectory output with different size and speed distributions. Detailed estimates of droplet solidification into dust grains and their subsequent deposition in the vessel are obtained. For representative distributions of the droplet injection parameters, the results indicate that at most a few percents of the beryllium mass initially injected is converted into solid dust, while the remaining mass either vaporizes or forms liquid splashes on the wall. Simulated in-vessel spatial distributions are also provided for the surviving dust, with the aim of providing guidance for planned dust diagnostic, retrieval and clean-up systems on ITER.

  17. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  18. Lagrangian speckle model and tissue-motion estimation--theory.

    PubMed

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  19. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick

    2016-12-01

    Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.

  20. The effect of heart motion on parameter bias in dynamic cardiac SPECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, S.G.; Gullberg, G.T.; Huesman, R.H.

    1996-12-31

    Dynamic cardiac SPECT can be used to estimate kinetic rate parameters which describe the wash-in and wash-out of tracer activity between the blood and the myocardial tissue. These kinetic parameters can in turn be correlated to myocardial perfusion. There are, however, many physical aspects associated with dynamic SPECT which can introduce errors into the estimates. This paper describes a study which investigates the effect of heart motion on kinetic parameter estimates. Dynamic SPECT simulations are performed using a beating version of the MCAT phantom. The results demonstrate that cardiac motion has a significant effect on the blood, tissue, and backgroundmore » content of regions of interest. This in turn affects estimates of wash-in, while it has very little effect on estimates of wash-out. The effect of cardiac motion on parameter estimates appears not to be as great as effects introduced by photon noise and geometric collimator response. It is also shown that cardiac motion results in little extravascular contamination of the left ventricle blood region of interest.« less

  1. Inertial sensor-based smoother for gait analysis.

    PubMed

    Suh, Young Soo

    2014-12-17

    An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).

  2. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  3. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  4. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  5. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  6. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  7. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  8. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    PubMed

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  9. Analysis of secondary motions in square duct flow

    NASA Astrophysics Data System (ADS)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rumeng; Wang, Lifeng, E-mail: walfe@nuaa.edu.cn

    The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the periodmore » of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.« less

  11. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-05-20

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.

  12. Steering particles by breaking symmetries

    NASA Astrophysics Data System (ADS)

    Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René

    2018-06-01

    We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.

  13. Cardiac contraction motion compensation in gated myocardial perfusion SPECT: A comparative study.

    PubMed

    Salehi, Narges; Rahmim, Arman; Fatemizadeh, Emad; Akbarzadeh, Afshin; Farahani, Mohammad Hossein; Farzanefar, Saeed; Ay, Mohammad Reza

    2018-05-01

    Cardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy. 50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and image contrast-to noise ratio (CNR) were measured in summed images with no motion compensation (NoMC) and compensated images (MF, LDD and FFD). Total Perfusion Defect (TPD) was derived from Cedars-Sinai software, on the basis of sex-specific normal limits. Left ventricle (LV) lateral wall thickness was reduced after applying motion compensation (p < 0.05). Myocardial to blood pool contrast and CNR in compensated images were greater than NoMC (p < 0.05). TPD_LDD was in good agreement with the corresponding TPD_MF (p = 0.13). All methods have improved image quality and quantitative performance relative to NoMC. LDD and FFD are fully automatic and do not require any manual intervention, while MF is dependent on contour definition. In terms of diagnostic parameters LDD is in good agreement with MF which is a clinically accepted method. Further investigation along with diagnostic reference standards, in order to specify diagnostic value of each technique is recommended. Copyright © 2018 Associazione Italiana di Fisica Medica. All rights reserved.

  14. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    PubMed Central

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-01-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: 1) the reconstruction algorithms do not make full use of projection statistics; and 2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10 to 40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  15. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  16. Estimation of the surface stress near the eye wall of hurricanes using WSR-88D radar data

    NASA Astrophysics Data System (ADS)

    Businger, S.; Morrison, I.; Marks, F.; Dodge, P.; Businger, J. A.

    2003-04-01

    Analysis of Doppler velocity data from the WSR-88D radar during hurricane landfall reveals evidence of organized secondary circulations in the vicinity of the hurricane eye wall at low elevations. A Fourier analysis of the Velocity-Azimuthal Display (VAD) provides estimates of divergence (0th harmonic), wind speed and direction (1st harmonic), and deformation (2nd harmonic). A residual velocity field is obtained by subtracting the mean VAD velocity from the radial Doppler velocity for elevation angles between 0.5 and 5.5 degrees. The wavelength, length, depth, magnitude, and motion of velocity anomalies are then compiled from the residual velocity displays. The resulting statistics suggest the presence of organized secondary circulations or boundary layer (BL) rolls in the marine boundary layer of the hurricanes. To date, three storms have been examined: Fran (1996), Bonnie (1998), and Georges (1998) using WSR-88D data from Wilmington, N.C.; Morehead City, N.C.; and Key West, FL, respectively. The analysis focuses on the period between the time the first BL roll is identified and hurricane landfall. The number of BL rolls tracked in Bonnie, Fran, and Georges was 44, 56, and 24, respectively. BL rolls were less frequent in Georges, and the magnitude of the velocity anomalies was less than those in Fran and Bonnie. The average low-level (800 m--50 m) shear in Georges was substantially less than in the other storms, likely contributing to the fewer number of rolls identified and a lower intensity of the rolls. The wavelength of the observed BL rolls is about twice the horizontal distance between adjacent positive and negative velocity anomalies. Georges had the largest average wavelength (˜1400 m), followed by Fran (˜1320 m) and Bonnie (˜1200 m). The gradient between adjacent positive and negative anomalies corresponds to a horizontal wind shear of ˜14 m s-1 over 660 m, and a vertical shear component of vorticity of 2.0×10-2 s-1. Momentum fluxes associated with the secondary circulations are estimated with reference to mixing length theory. Estimates of the surface stress are obtained from the radar derived wind profiles using a modified momentum budget approach. The impact of secondary circulations on the magnitude of the surface stress in the hurricane eye wall will be discussed and contrasted with other approaches for estimating the stress.

  17. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987

  18. Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  19. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    PubMed

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  20. Continuum analysis of the nucleus growth of reverse domains in large ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Neumeister, Peter; Balke, Herbert; Lupascu, Doru C.

    2009-04-01

    Polarization reversal in ferroelectrics arises due to domain nucleation and domain wall motion. The nucleation of reverse domains at crystal boundaries is the fundamental initiation process observed in single crystals. The classical continuum approach by Landauer determines an insurmountable energy barrier to extrinsic domain nucleation. We rediscuss the continuum approach. Predetermined surface states are found to be a misleading concept. Alternate energy contributions, for example, due to a dead layer or due to charge injection as well as reduced domain wall energy and anisotropy of domain wall energy, have to be included into a convincing picture of domain nucleation.

Top