Sample records for wall mountain tuff

  1. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, thesemore » tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange.« less

  2. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  3. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, I.C.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions ofmore » Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.« less

  4. Batch sorption results for neptunium transport through Yucca Mountain tuffs. Yucca Mountain Site Characterization Program milestone 3349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Huddleston, M.H.

    1996-09-01

    We studied the sorption of neptunium onto tuffs characteristic of the proposed nuclear waste repository at Yucca Mountain, Nevada. The neptunium was in the Np(V) oxidation state under oxidizing conditions in groundwaters from two wells located close to the repository site (J-13 and UE-25 p No.1). We used devitrified, vitric, zeolitic (with emphasis on clinoptilolite-rich samples), and calcite-rich tuffs characteristic of the geology of the site. Neptunium sorbed well onto calcite and calcite-rich tuffs, indicating that a significant amount of neptunium retardation can be expected under fractured-flow scenarios because of calcite coating of the fractures. Neptunium sorption onto clinoptilolite-rich zeoliticmore » tuffs in J-13 well water (pH from 7 to 8.5) was moderate, increased with decreasing pH, and correlated to surface area and amount of clinoptilolite. Neptunium sorbed poorly onto zeolitic tuffs from UE-25 p No.1 groundwater (pH from 7 to 9) and onto devitrified and vitric tuffs from J-13 and UE-25 p No.1 waters (pH from 7 to 9). Iron oxides appeared to be passivated in tuffs, not seeming to contribute to the observed neptunium sorption, even though neptunium sorption onto synthetic iron oxide is significant.« less

  5. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  6. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less

  7. Nonmarine facies in the Late Triassic(?) to Early Jurassic Horn Mountain Tuff member of the Talkeetna Formation, Horn Mountain, lower Cook Inlet basin, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Stanley, Richard G.; Helmold, K.P.

    2016-01-01

    The Talkeetna Formation is a prominent lithostratigraphic unit in south-central Alaska. In the Iniskin–Tuxedni area, Detterman and Hartsock (1966) divided the formation into three mappable units including, from oldest to youngest, the Marsh Creek Breccia, the Portage Creek Agglomerate, and the Horn Mountain Tuff Members. The Horn Mountain Tuff Member was thought to include rocks deposited in a nonmarine setting based on the presence of “tree stumps in an upright position” (Detterman and Hartsock, 1966, p. 19) near the top of the type section at Horn Mountain. Bull (2015) recognized possible nonmarine volcaniclastic rocks in the member during the 2014 field season in a saddle on the north side of Horn Mountain (figs. 2-1 and 2-2). The authors visited this location in 2015 and measured a short stratigraphic section to document facies, interpret depositional setting, and constrain age. This report summarizes our field observations and presents preliminary interpretations.

  8. Petrographic and geochemical characteristics of a section through the Tiva Canyon Tuff at Antler Ridge, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, F.R.; Widmann, B.L.; Dickerson, R.P.

    1994-12-31

    The Tiva Canyon Tuff of the Paintbrush Group of Miocene age caps much of Yucca Mountain, Nevada and is a compositionally zoned, compound cooling, pyroclastic flow that ranges from a dominantly high-silica rhyolitic base to a quartz-latitic caprock. Petrographic and geochemical studies have focused on rigorously defining the internal stratigraphy of this unit to support the detailed mapping of the Ghost Dance fault and other structures in the central fault block of Yucca Mountain. This study shows that devitrification textures and vapor phase mineralogy, in addition to other physical attributes such as pumice variability (flattening) and crystal content, can bemore » used as distinguishing criteria to better define lithologic zones within the Tiva Canyon Tuff. In addition, the study also shows that the petrographic textures and chemistry of the groundmass vary systematically within recognizable lithologic zones and may be used to characterize and vertically divide litho-stratigraphic zones within the Tiva Canyon Tuff.« less

  9. The distribution and mobility of uranium in glassy and zeolitized tuff, Keg Mountain area, Utah, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Lindsey, D.A.; Rosholt, J.N.

    1980-01-01

    The distribution and mobility of uranium in a diagenetically altered, 8 Ma old tuff in the Keg Mountain area, Utah, are modelled in this study. The modelling represents an improvement over similar earlier studies in that it: (1) considers a large number of samples (76) collected with good geologic control and exhibiting a wide range of alteration; (2) includes radiometric data for Th, K and RaeU (radium equivalent uranium) as well as U; (3) considers mineralogic and trace-element data for the same samples; and (4) analyzes the mineral and chemical covariation by multivariate statistical methods. The variation of U in the tuff is controlled mainly by its primary abundance in glass and by the relative abundance of non-uraniferous detritus and uraniferous accessory minerals. Alteration of glass to zeolite, even though extensive, caused no large or systematic change in the bulk concentration of U in the tuff. Some redistribution of U during diagenesis is indicated by association of U with minor alteration products such as opal and hydrous Fe-Mn oxide minerals. Isotopic studies indicate that the zeolitized tuff has been open to migration of U decay products during the last 0.8 Ma. The tuff of Keg Mountain has not lost a statistically detectable fraction of its original U, even though it has a high (??? 9 ppm) trace U content and has been extensively altered to zeolite. Similar studies in a variety of geological environments are required in order to identify the particular combination of conditions most favorable for liberation and migration of U from tuffs. ?? 1980.

  10. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, Richard W.; Peterman, Zell E.; ,

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.

  11. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of the joints found in the field. 14 references, 1 table.« less

  12. Geoengineering characterization of welded tuffs from laboratory and field investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, R.M.; Nimick, F.B.; Board, M.P.

    1984-12-31

    Welded tuff beneath Yucca Mountain adjacent to the Nevada Test Site (NTS) is being considered for development as a high-level radioactive waste repository by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Because access into Yucca Mountain has been limited to borehole explorations, early geoengineering materials characterizations have been derived from laboratory tests on cores from Yucca Mountain and from laboratory and field tests on welded tuffs located in G-Tunnel on the NTS. G-Tunnel contains welded tuffs that have similar properties and stress states to those at Yucca Mountain and has been the location for in situ rock mechanics testing.more » The purpose of this paper is to summarize the geoengineering material property data obtained to date and to compare appropriate laboratory and field data from G-Tunnel to findings from Yucca Mountain. Geomechanical and thermal data are provided and are augmented by limited geological and hydrological data. A comparison of results of laboratory measurements on tuffs from Yucca Mountain and G-Tunnel indicates good agreement between the bulk densities, saturations, moduli of elasticity, Poisson`s ratios, and P-wave velocities. The G-Tunnel tuff has slightly lower thermal conductivity, tensile strength, compressive strength and slightly higher matrix permeability than does the welded tuff near the proposed repository horizon at Yucca Mountain. From a laboratory-to-field scaling perspective, the modulus of deformation shows the most sensitivity to field conditions because of the presence of joints found in the field. 14 refs., 1 tab.« less

  13. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do notmore » sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz.« less

  14. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  15. Recurrent eruption and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field, Colorado: New tales from old tuffs

    USGS Publications Warehouse

    Lipman, P.W.; Dungan, M.A.; Brown, L.L.; Deino, A.

    1996-01-01

    Reinterpretation of a voluminous regional ash-flow sheet (Masonic Park Tuff) as two separate tuff sheets of similar phenocryst-rich dacite erupted from separate source calderas has important implications for evolution of the multicyclic Platoro caldera complex and for caldera-forming processes generally. Masonic Park Tuff in central parts of the San Juan field, including the type area, was erupted from a concealed source at 28.6 Ma, but widespread tuff previously mapped as Masonic Park Tuff in the southeastern San Juan Mountains is the product of the youngest large-volume eruption of the Platoro caldera complex at 28.4 Ma. This large unit, newly named the "Chiquito Peak Tuff," is the last-erupted tuff of the Treasure Mountain Group, which consists of at least 20 separate ash-flow sheets of dacite to low-silica rhyolite erupted from the Platoro complex during a 1 m.y. interval (29.5-28.4 Ma). Two Treasure Mountain tuff sheets have volumes in excess of 1000 km3 each, and five more have volumes of 50-150 km3. The total volume of ash-flow tuff exceeds 2500 km3, and caldera-related lavas of dominantly andesitic composition make up 250-500 km3 more. A much greater volume of intermediate-composition magma must have solidified in subcaldera magma chambers. Most preserved features of the Platoro complex - including postcollapse asymmetrical trap-door resurgent uplift of the ponded intracaldera tuff and concurrent infilling by andesitic lava flows - postdate eruption of the Chiquito Peak Tuff. The numerous large-volume pre-Chiquito Peak ash-flow tuffs document multiple eruptions accompanied by recurrent subsidence; early-formed caldera walls nearly coincide with margins of the later Chiquito Peak collapse. Repeated syneruptive collapse at the Platoro complex requires cumulative subsidence of at least 10 km. The rapid regeneration of silicic magmas requires the sustained presence of an andesitic subcaldera magma reservoir, or its rapid replenishment, during the 1 m.y. life

  16. Absolute Paleointensity Study of Miocene Tiva Canyon Tuff, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Patiman, A.; Bowles, J.

    2014-12-01

    Unoriented samples from the ~12.7 Ma Tiva Canyon (TC) tuff from Yucca Mountain, Nevada are studied in terms of magnetic properties and geomagnetic paleointensity. The magnetic mineralogy and magnetic properties of the TC tuff have previously been well documented, and the remanence-carrier in ~15-m thick zones at the top and bottom of the unit is dominantly is single domain (SD) to superparamagnetic (SP) magnetite, which may be considered ideal for absolute paleointensity studies. Among one of the several episodic volcanic eruptions of the Southwestern Nevada Volcanic Field (SWNVF), the welded TC tuff belongs to the Paintbrush Group. Here we present magnetic properties from two previously unreported sections of the TC tuff, as well as Thellier-type absolute paleointensity estimates. Samples were collected from the lower ~7 m at the base of the flow. Magnetic properties studied include hysteresis, bulk magnetic susceptibility, frequency-dependent susceptibility, and anhysteretic remanent magnetization acquisition. Magnetic property results are consistent with earlier work, showing that the main magnetic mineral is magnetite. SP samples are dominant from the lower ~1 m to ~3.6 m basal unit while the middle unit of ~3.7 m to 7.0 m mainly consists of SD samples. The paleointensity results are closely tied to the stratigraphic height and magnetic properties linked to domain state. The SD samples have consistent absolute paleointensity values 32.40±0.22 uT, VADM 5.74*1022 A.m2 and behaved ideally during paleointensity experiments. The SP samples have consistently higher paleointensity and less ideal behavior, but would likely pass many traditional quality-control tests. Since the magnetite has been interpreted to form by precipitation out of the glass post-emplacement, but at temperatures higher than the Curie temperature, we tentatively interpret the SD remanence to be a primary thermal remanent magnetization and the paleointensity result to be a valid estimate of

  17. Stratigraphy, correlation, depositional setting, and geophysical characteristics of the Oligocene Snowshoe Mountain Tuff and Creede Formation in two cored boreholes

    USGS Publications Warehouse

    Larsen, Daniel; Nelson, Philip H.

    2000-01-01

    Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.

  18. Ash-flow tuffs of the Galiuro Volcanics in the northern Galiuro Mountains, Pinal County, Arizona

    USGS Publications Warehouse

    Krieger, Medora Louise Hooper

    1979-01-01

    The upper Oligocene and lower Miocene Galiuro Volcanics in the northern part of the Galiuro Mountains contains two distinctive major ash-flow tuff sheets, the Holy Joe and Aravaipa Members. These major ash-flows illustrate many features of ash-flow geology not generally exposed so completely. The Holy Joe Member, composed of a series of densely welded flows of quartz latite composition that make up a simple cooling unit. is a rare example of a cooling unit that has a vitrophyre at the top as well as at the base. The upper vitrophyre does not represent a cooling break. The Aravaipa Member. a rhyolite, is completely exposed in Aravaipa and other canyons and on Table Mountain. Remarkable exposures along Whitewash Canyon exhibit the complete change from a typical stacked-up interior zonation of an ash flow to a non welded distal margin. Vertical and horizontal changes in welding, crystallization, specific gravity, and lithology are exposed. The ash flow can be divided into six lithologic zones. The Holy Joe and Aravaipa Members of the Galiuro Volcanics are so well exposed and so clearly show characteristic features of ash-flow tuffs that they could be a valuable teaching aid and a source of theses for geology students.

  19. Major element and oxygen isotope geochemistry of vapour-phase garnet from the Topopah Spring Tuff at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Moscati, Richard J.; Johnson, Craig A.

    2014-01-01

    Twenty vapour-phase garnets were studied in two samples of the Topopah Spring Tuff of the Paintbrush Group from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350 m thick, devitrified, moderately to densely welded ash-flow tuff that is zoned compositionally from high-silica rhyolite to latite. During cooling of the tuff, escaping vapour produced lithophysae (former gas cavities) lined with an assemblage of tridymite (commonly inverted to cristobalite or quartz), sanidine and locally, hematite and/or garnet. Vapour-phase topaz and economic deposits associated commonly with topaz-bearing rhyolites (characteristically enriched in F) were not found in the Topopah Spring Tuff at Yucca Mountain. Based on their occurrence only in lithophysae, the garnets are not primary igneous phenocrysts, but rather crystals that grew from a F-poor magma-derived vapour trapped during and after emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter and fractured. The garnets also contain inclusions of tridymite. Electron microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol.%, respectively), have an average composition of (Fe1.46Mn1.45Mg0.03Ca0.10)(Al1.93Ti0.02)Si3.01O12 and are comparatively homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have δ18O values of 7.2 and 7.4‰. The associated quartz (after tridymite) has δ18O values of 17.4 and 17.6‰, values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a δ18O of 11.1‰ which, when coupled with the garnet δ18O values in a quartz-garnet fractionation equation, indicates isotopic equilibration (vapour-phase crystallization) at temperatures of ~600°C. This high-temperature mineralization, formed during cooling of the tuffs, is distinct from the later and commonly recognized

  20. Transient calcite fracture fillings in a welded tuff, Snowshoe Mountain, Colorado

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Heymans, M.J.

    2000-01-01

    The core from two boreholes (13.1 and 19.2 m depth) drilled 500 m apart in the fractured, welded tuff near the summit of the Snowshoe Mountain, Colorado (47??30'N, 106??55'W) had unique petrographic and hydrodynamic properties. Borehole SM-4 had highly variable annual water levels, in contrast to SM-1a, whose water level remained near the land surface. Core samples from both boreholes (n = 10 and 11) were examined petrographically in thin sections impregnated with epoxy containing rhodamine to mark the pore system features, and were analyzed for matrix porosity and permeability. Core from the borehole sampling the vadose zone was characterized by open fractures with enhanced porosity around phenocrysts due to chemical weathering. Fractures within the borehole sampling the phreatic zone were mineralized with calcite and had porosity characteristics similar to Unweathered and unfractured rock. At the top of the phreatic zone petrography indicates that calcite is dissolving, thereby changing the hydrogeochemical character of the rock (i.e. permeability, porosity, reactive surface area, and mineralogy). Radiocarbon ages and C and O stable isotopes indicate that calcite mineralization occurred about 30 to 40 ka ago and that there was more than one mineralization event. Results of this study also provide some relationships between primary porosity development from 3 types of fracture in a welded tuff. (C) 2000 Elsevier Science Ltd.

  1. Physical and hydrologic properties of outcrop samples from a nonwelded to welded tuff transition, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rautman, C.A.; Flint, L.E.; Flint, A.L.; Istok, J.D.

    1995-01-01

    Quantitative material-property data are needed to describe lateral and vertical spatial variability of physical and hydrologic properties and to model ground-water flow and radionuclide transport at the potential Yucca Mountain nuclear-waste repository site in Nevada. As part of ongoing site characterization studies of Yucca Mountain directed toward this understanding of spatial variability, laboratory measurements of porosity, bull* and particle density, saturated hydraulic conductivity, and sorptivity have been obtained for a set of outcrop samples that form a systematic,two dimensional grid that covers a large exposure of the basal Tiva Canyon Tuff of the Paintbrush Group of Miocene age at Yucca Mountain. The samples form a detailed vertical grid roughly parallel to the transport direction of the parent ash flows, and they exhibit material-property varia- tions in an interval of major lithologic change overlying a potential nuclear-waste repository at Yucca Mountain. The observed changes in hydrologic properties were systematic and consistent with the changes expected for the nonwelded to welded transition at the base of a major ash-flow sequence. Porosity, saturated hydraulic conductivity, and sorptivity decreased upward from the base of the Tiva Canyon Tuff, indicating the progressive compaction of ash- rich volcanic debris and the onset of welding with increased overburden pressure from the accumulating ash-flow sheet. The rate of decrease in the values of these material properties varied with vertical position within the transition interval. In contrast, bulk-density values increased upward, a change that also is consistent with progressive compaction and the onset of welding. Particle-density values remained almost constant throughout the transition interval, probably indicating compositional (chemical) homogeneity.

  2. Geology and Geochemistry of the 25.0 Ma Underdown Caldera Tuffs and tuff of Clipper Gap, Western Nevada Volcanic Field caldera belt, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Klausen, K. B.; Henry, C.

    2016-12-01

    The 25.0 Ma Underdown Caldera of the Shoshone Mountains near Austin, Nevada, is part of the Ignimbrite Flare-up suite of calderas in north-central Nevada. Our goal is to characterize the geochemistry and geochronology of the tuffs, determine magma sources, and contrast Underdown with nearby contemporaneous caldera suites. The caldera is contained within a single, mildly west-tilted fault block (Bonham, 1970). The basement rocks are altered intermediate volcanic rocks, rarely intruded by rhyolite veins. The lowermost caldera unit, exposed only on the east side of the fault block, is the sparsely qtz-feld-phyric Underdown Tuff, a high-silica rhyolite (Bonham, 1970) that is columnar-jointed, densely welded, commonly includes aphyric pumice, but locally includes porphyritic pumice. Stretched pumice, flow folds, and foliations that reach nearly vertical demonstrate significant rheomorphism. A densely-welded porphyritic tuff is also present along the southeast side of the exposed caldera, and may be either blocks of an older tuff or a porphyritic phase of the Underdown Tuff. Correlative outflow, the tuff of Clipper Gap, emplaced east of the caldera, is petrographically similar with the same two pumice types. Overlying the Underdown Tuff is the Bonita Canyon Formation, which is moderately welded, commonly lithic- and pumice-rich with minor biotite, quartz and feldspar crystals, and contains reworked lenses; megabreccia of intermediate volcanic rocks and abundantly porphyritic tuff are common. This formation may be an upper part of the Underdown Tuff. On the west side of the Shoshone Mountains, the Bonita Canyon units are overlain by a more porphyritic, variably pumiceous, commonly vitrophyric, and densely welded tuff. At 24.7 Ma, this tuff is petrographically similar to and may be a younger part of the 25.2 Ma tuff of Arc Dome exposed to the east in the Toiyabe Range. Ongoing dating and geochemical analyses will constrain the timing and relationships between the tuffs.

  3. Stratigraphic and volcano-tectonic relations of Crater Flat Tuff and some older volcanic units, Nye County, Nevada

    USGS Publications Warehouse

    Carr, W.J.; Byers, F.M.; Orkild, Paul P.

    1984-01-01

    The Crater Flat Tuff is herein revised to include a newly recognized lowest unit, the Tram Member, exposed at scattered localities in the southwest Nevada Test Site region, and in several drill holes in the Yucca Mountain area. The overlying Bullfrog and Prow Pass Members are well exposed at the type locality of the formation near the southeast edge of Crater Flat, just north of U.S. Highway 95. In previous work, the Tram Member was thought to be the Bullfrog Member, and therefore was shown as Bullfrog or as undifferentiated Crater Flat Tuff on published maps. The revised Crater Flat Tuff is stratigraphically below the Topopah Spring Member of the Paintbrush Tuff and above the Grouse Canyon Member of the Belted Range Tuff, and is approximately 13.6 m.y. old. Drill holes on Yucca Mountain and near Fortymile Wash penetrate all three members of the Crater Flat as well as an underlying quartz-poor unit, which is herein defined as the Lithic Ridge Tuff from exposures on Lithic Ridge near the head of Topopah Wash. In outcrops between Calico Hills and Yucca Flat, the Lithic Ridge Tuff overlies a Bullfrog-like unit of reverse magnetic polarity that probably correlates with a widespread unit around and under Yucca Flat, referred to previously as Crater Flat Tuff. This unit is here informally designated as the tuff of Yucca Flat. Although older, it may be genetically related to the Crater Flat Tuff. Although the rocks are poorly exposed, geophysical and geologic evidence to date suggests that (1) the source of the Crater Flat Tuff is a caldera complex in the Crater Flat area between Yucca Mountain and Bare Mountain, and (2) there are at least two cauldrons within this complex--one probably associated with eruption of the Tram, the other with the Bullfrog and Prow Pass Members. The complex is named the Crater Flat-Prospector Pass caldera complex. The northern part of the Yucca Mountain area is suggested as the general location of the source of pre-Crater Flat tuffs, but a

  4. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place sealsmore » are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.« less

  5. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    USGS Publications Warehouse

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  6. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites

  7. Secondary Mineral Deposits and Evidence of Past Seismicity and Heating of the Proposed Repository Horizon at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, Josheph F.

    2004-01-01

    The Drift Degradation Analysis (DDA) (BSC, 2003) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, describes model simulations of the effects of pre- and post-closure seismicity and waste-induced heating on emplacement drifts. Based on probabilistic seismic hazard analyses of the intensity and frequency of future seismic events in the region (CRWMS M&O, 1998), the DDA concludes that future seismicity will lead to substantial damage to emplacement drifts, particularly those in the lithophysal tuffs, where some simulations predict complete collapse of the drift walls. Secondary mineral studies conducted by the U.S. Geological Survey since 1995 indicate that secondary calcite and silica have been deposited in some fractures and lithophysal cavities in the unsaturated zone (UZ) at Yucca Mountain during at least the past 10 million years (m.y.), and probably since the tuffs cooled to less than 100?C. Tuff fragments, likely generated by past seismic activity, have commonly been incorporated into the secondary mineral depositional sequences. Preliminary observations indicate that seismic activity has generated few, if any, tuff fragments during the last 2 to 4 m.y., which may be inconsistent with the predictions of drift-wall collapse described in the DDA. Whether or not seismicity-induced tuff fragmentation occurring at centimeter to decimeter scales in the fracture and cavity openings relates directly to failure of tuff walls in the 5.5-m-diameter waste emplacement drifts, the deposits do provide a potential record of the spatial and temporal distribution of tuff fragments in the UZ. In addition, the preservation of weakly attached coatings and (or) delicate, upright blades of calcite in the secondary mineral deposits provides an upper limit for ground motion during the late stage of deposition that might be used as input to future DDA simulations. Finally, bleaching and alteration at a few of the secondary mineral sites indicate that

  8. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, R.P.; Drake, R.M. II

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less

  9. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  10. Specific surface area of a crushed welded tuff before and after aqueous dissolution

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.

    1994-01-01

    Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.

  11. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    USGS Publications Warehouse

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  12. In Situ Measurement of Permeability in the Vicinity of Faulted Nonwelded Bishop Tuff, Bishop, CA

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Fedors, R. W.; Ferrill, D. A.; Bradbury, K. K.

    2002-12-01

    first fault and perpendicularly away from it within the hanging wall to a distance of 6 m [20 ft] along one transect, and perpendicular to the fault from the foot wall to the hanging wall for a distance of 6 m [20 ft] along a second transect. Additionally, eight water-permeameter tests were conducted in order to augment the gas-permeability data. Gas-permeability measurements were collected along two transects at the main fault of the second fault system and perpendicularly away from it within the foot wall to a distance of 10.5 m [34 ft], crossing several secondary faults in the process. Data were also collected within the fault gouge of the main fault, and were found to vary therein by an order of magnitude. This Bishop Tuff study supports the U.S. Nuclear Regulatory Commission (NRC) review of hydrologic property studies at Yucca Mountain, Nevada, which are conducted by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.

  13. A Remotely Sensed and Paleomagnetic Perspective on the Bonelli Tuff of NW AZ and SE CA

    NASA Astrophysics Data System (ADS)

    Gomez, C. D.

    2015-12-01

    The southern Black and Cerbat Mountains of NW AZ and the Sacramento Mountains of SE CA preserve ignimbrites associated with multiple episodes of volcanic activity that span at least a million years. Unraveling the stratrigraphy of these deposits, as well as their eruptive centers, is critical for constraining the volcanic history of this ignimbrite, the 18.8 Ma Peach Spring Tuff, is the recently identified 17.7 Ma Tuff of Bonelli House (TB) (Ferguson & Cook 2015) and may also occur in the southern Black and Sacramento Mountains. To help determine the extent and possible source of the TB, we have performed a combined remote sensing and paleomagnetic study of this unit, including possible correlatives. Paleomagnetic work involved Remanence and anisotropic magnetic susceptibility methods. Drill samples were collected and processed at Scripps Institute of Oceanography & Pomona College. An AC current was run to obtain the Paleomag current, as opposed to the traditional of heating up the cores at specific intervals. Sacramento Mountains samples produced an average direction of 200.9 / -26.4, which contrasts the Peach Spring Tuff paleodirection of 036.4/33 (Wells & Hillhouse, 1989). An AMS direction was determined using a MFK1 Kappabridge instrument and consistently showed similar flow direction to that of the PST. In compiling our data on a map, we took into account the Whipple Detachment Fault, ~40 km westward (Lister & Davis, 1989). We were able to identify a spectral signature and remnant paleomagnetic direction for the TB and identify potential additional outcrops in the southern Black mountains. AMS showed us that the ignimbrites originated from a source in the Silver Creek Caldera, which may indicate the PST at TB were produced from a similar source. The remnant paleomagnetic direction allows us to closely correlate these tuff units as occurring within a similar timeframe. The contrasting paleodirection of the TB and the PST allows us to confidently say that the

  14. Lithostratigraphy and shear-wave velocity in the crystallized Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Buesch, D.C.; Stokoe, K.H.; Won, K.C.; Seong, Y.J.; Jung, J.L.; Schuhen, M.D.

    2006-01-01

    Evaluation of the potential future response to seismic events of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities; rims on lithophysae and some fractures; spots (which are similar to rims but without an associated cavity or aperture); amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization; and fractures. Seismic properties, including shear-wave velocity (Vs), have been measured on 38 pieces of core, and there is a good "first order" correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger Vs values compared to samples from lithophysal zones. Some samples have Vs values that are outside the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, "large" lithophysal cavities, or "missing pieces" relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as Vs data from small-scale samples (typical and "flawed" core) to larger scale transects in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties.

  15. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  16. Eruption and deposition of the Fisher Tuff (Alaska)--Evidence for the evolution of pyroclastic flows

    USGS Publications Warehouse

    Burgisser, Alain; Gardner, J.E.; Stelling, P.

    2007-01-01

    Recognition that the Fisher Tuff (Unimak Island, Alaska) was deposited on the leeside of an ∼500–700‐m‐high mountain range (Tugamak Range) more than 10 km away from its source played a major role in defining pyroclastic flows as momentum‐driven currents. We reexamined the Fisher Tuff to evaluate whether deposition from expanded turbulent clouds can better explain its depositional features. We studied the tuff at 89 sites and sieved bulk samples from 27 of those sites. We find that the tuff consists of a complex sequence of deposits that record the evolution of the eruption from a buoyant plume (22 km) that deposited ∼0.2 km3 of dacite magma as a pyroclastic fall layer to erupting ∼10–100 km3 of andesitic magma as Scoria‐rich pyroclastic falls and flows that were mainly deposited to the north and northwest of the caldera, including those in valleys within the Tugamak Range. The distribution of the flow deposits and their welding, internal stratification, and the occurrence of lithic breccia all suggest that the pyroclastic flows were fed from a fountaining column that vented from an inclined conduit, the first time such a conduit has been recognized during a large‐volume caldera eruption. Pyroclastic flow deposits before and after the mountain range and thin veneer deposits high in the range are best explained by a flow that was stratified into a dense undercurrent and an overriding dilute turbulent cloud, from which deposition before the range was mainly from the undercurrent. When the flow ran into the mountain range, however, the undercurrent was blocked, but the turbulent cloud continued on. As the flow continued north, it restratified, forming another undercurrent. The Fisher Tuff thus records the passing of a flow that was significantly higher (800–1100 m thick) than the mountain range and thus did not require excessive momentum.

  17. Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years

    USGS Publications Warehouse

    Gascoyne, M.; Miller, N.H.; Neymark, L.A.

    2002-01-01

    Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U

  18. Petrology and geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Mansker, W.L.; Hicks, R.

    1983-04-01

    G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site.more » This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain.« less

  19. Miocene calc-alkaline magmatism, calderas, and crustal extension in the Kofa and Castle Dome Mountains, southwestern Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubensky, M.J.; Bagby, W.C.

    1990-11-10

    Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less

  20. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mower, T.E.; Higgins, J.D.; Yang, In C.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less

  1. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    USGS Publications Warehouse

    Christopher D. Henry,; John, David A.

    2013-01-01

    Sierra Nevada, which was not a barrier to westward flow of ash flows at that time. At least three tuffs flowed eastward across a north-south paleodivide through central Nevada. That tuffs could flow significant distances apparently uphill raises questions about the absolute elevation of the region and the elevation, relief, and location of the paleodivide.Calderas are equant to slightly elongate, at least 12 km in diameter, and as much as 35 km in longest dimension. Exceptional exposure of two caldera complexes that resulted from extensional faulting and tilting show that calderas subsided as much as 5 km as large piston-like blocks; caldera walls were vertical to steeply inward dipping to depths ≥4–5 km, and topographic walls formed by slumping of wall rock into the caldera were only slightly outboard (≤1 km) of structural margins.Most calderas show abundant post-collapse magmatism expressed as resurgent intrusions, ring-fracture intrusions, or intracaldera lavas that are closely related temporally (∼0–0.5 Ma younger) to caldera formation. Granitoid intrusions, which were emplaced at paleodepths ranging from <1 to ∼7 km, are compositionally similar to both intracaldera ash-flow tuffs and post-caldera lavas. Therefore in the western Nevada volcanic field, erupted caldera-forming tuffs commonly were the upper parts of large magma chambers that retained considerable volumes of magma after tuff eruption.Several calderas in the western Nevada volcanic field hosted large hydrothermal systems and underwent extensive hydrothermal alteration. Different types of hydrothermal systems (neutral-pH alkali-chloride and acid or low-pH magmatic-hydrothermal) may reflect proximity to (depth of) large resurgent intrusions. With the exception of the giant Round Mountain epithermal gold deposit, few known caldera-related hydrothermal systems are strongly mineralized. Major middle Cenozoic precious and base metal mineral deposits in and along the margins of the western Nevada

  2. Hydrology of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Bodvarsson, G.S.; Fabryka-Martin, J. M.

    2001-01-01

    Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr-1 under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (~300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominately through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

  3. Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.

    2006-12-01

    At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux

  4. Multiple episodes of zeolite deposition in fractured silicic tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos, B.A.; Chipera, S.J.; Snow, M.G.

    Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.

  5. Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2010-12-01

    The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.

  6. Flow-path textures and mineralogy in tuffs of the unsaturated zone

    USGS Publications Warehouse

    Levy, Schön; Chipera, Steve; WoldeGabriel, Giday; Fabryka-Martin, June; Roach, Jeffrey; Sweetkind, Donald S.; Haneberg, William C.; Mozley, Peter S.; Moore, J. Casey; Goodwin, Laurel B.

    1999-01-01

    The high concentration of chlorine-36 (36Cl) produced by above-ground nuclear tests (bomb-pulse) provides a fortuitous tracer for infiltration during the last 50 years, and is used to detect fast flow in the unsaturated zone at Yucca Mountain, Nevada, a thick deposit of welded and nonwelded tuffs. Evidence of fast flow as much as 300 m into the mountain has been found in several zones in a 7.7-km tunnel. Many zones are associated with faults that provide continuous fracture flow paths from the surface. In the Sundance fault zone, water with the bomb-pulse signature has moved into subsidiary fractures and breccia zones. We found no highly distinctive mineralogic associations of fault and fracture samples containing bomb-pulse 36Cl. Bomb-pulse sites are slightly more likely to have calcite deposits than are non-bomb-pulse sites. Most other mineralogic and textural associations of fast-flow paths reflect the structural processes leading to locally enhanced permeability rather than the effects of ground-water percolation. Water movement through the rock was investigated by isotopic analysis of paired samples representing breccia zones and fractured wall rock bounding the breccia zones. Where bomb-pulse 36Cl is present, the waters in bounding fractures and intergranular pores of the fast pathways are not in equilibrium with respect to the isotopic signal. In structural domains that have experienced extensional deformation, fluid flow within a breccia is equivalent to matrix flow in a particulate rock, whereas true fracture flow occurs along the boundaries of a breccia zone. Where shearing predominated over extension, the boundary between wall rock and breccia is rough and irregular with a tight wallrock/breccia contact. The absence of a gap between the breccia and the wall rock helps maintain fluid flow within the breccia instead of along the wallrock/breccia boundary, leading to higher 36Cl/Cl values in the breccia than in the wall rock.

  7. Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.

    1994-01-01

    Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.

  8. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  9. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.

    1998-01-01

    up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.

  10. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7

  11. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range ofmore » temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.« less

  12. Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona

    USGS Publications Warehouse

    du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.

    2004-01-01

    Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In

  13. Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.

  14. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  15. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Maldonado, Florian; Koether, S.L.

    1983-01-01

    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic

  16. Magnetic properties and emplacement of the Bishop tuff, California

    USGS Publications Warehouse

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  17. Volcano-tectonic evolution of the Castle Mountains: 22 to 14 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capps, R.C.

    1993-04-01

    The alkali-calcic Castle Mountains Volcanic rocks (CMV) are host to major gold mineralization. They are located about 100 km south of Las Vegas, Nevada and are on the boundary between the Basin and Range Province and Colorado River extensional corridor (35[degree]18 minutes 45 seconds N, 115[degree]05 minutes 10 seconds W). New data show the following chronology. 22 Ma. A regional rhyolite ash-flow tuff, the Castle Mountain Tuff member, was deposited on a Proterozoic-Paleozoic basement of low relief. <22 Ma - > 17 Ma. Normal faulting (N30--60[degree]W, 60--65[degree]NE) formed half-grabens. Latite and basalt flows, minor ash-flow tuffs, lahars and sediments (Jacksmore » Well member - JW) were deposited unconformably. JW magmas are enriched in light REE compared to the younger CMV. <17 Ma to 15.5 Ma. Oxidizing upper portions (796 C) of a shallowly emplaced silicic melt erupted to form the high-silica rhyolite dome complexes and intrusives (Linder Peak member - LP) of the NNE-striking Castle Mountains. NW-striking transverse structures caused discontinuities in strike direction of the subvolcanic intrusive and domes and helped form a synvolcanic depression. During a hiatus in volcanism, early Hart Peak member (HP) sediments were deposited marginal to the Castle Mountains. Major gold mineralization and widespread hydrothermal alteration occurred at about 15.5 Ma. 16 Ma to 14 Ma. Early HP volcaniclastic sediments, rhyolite pyroclastic-surge tuff, and basaltic flows, were deposited during late hydrothermal alteration and then fractured and displaced by NNE-striking normal faults, especially in the eastern and northeastern CMV. < 14 Ma. Tectonically significant flat-lying boulder conglomerate and unconformably overlying, largely andesitic flows fill depressions in the Castle Mountains and the Piute Range to the east.« less

  18. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    NASA Astrophysics Data System (ADS)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  19. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  20. Hydrology of the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Lecain, Gary D.; Stuckless, John S.

    2012-01-01

    The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico

  1. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA

    NASA Astrophysics Data System (ADS)

    Sliwinski, J. T.; Bachmann, O.; Dungan, M. A.; Huber, C.; Deering, C. D.; Lipman, P. W.; Martin, L. H. J.; Liebske, C.

    2017-05-01

    Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up ( 50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic ( 62-65 wt% SiO2) ignimbrite with an estimated erupted volume of 500 km3 and an average of 45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from 750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U-Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location 0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures ( 710-760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.

  2. Magnetic properties and emplacement of the Bishop tuff, California

    NASA Astrophysics Data System (ADS)

    Palmer, H. C.; MacDonald, W. D.; Gromme, C. S.; Ellwood, B. B.

    1996-09-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525 570 °C Curie temperatures, and maghemite with 610° 640 °C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic

  3. A Systematic Comparison of the Anisotropy of Magnetic Susceptibility (AMS) and Anisotropy of Remanence (ARM) Fabrics of Ignimbrites: Examples from the Quaternary Bandelier Tuff, Jemez Mountains, New Mexico and Miocene Ignimbrites Near Gold Point, Nevada

    NASA Astrophysics Data System (ADS)

    Lycka, Ranyah

    Anisotropy of magnetic susceptibility (AMS) has been widely used to define petrofabrics in silicic, elevated-temperature pyroclastic deposits (i.e., ignimbrites) and these fabrics have been successfully utilized to infer pyroclastic emplacement, or transport, directions in many cases. Selected exposures of the Quaternary Bandelier Tuff, exposed in the Jemez Mountains, New Mexico, have been studied to systematically compare anisotropy of remanence (mainly anhysteretic remanent magnetization, AARM) with AMS data from the same sites. In addition, as part of a broad study to understand the Neogene history of deformation associated with a displacement transfer system in the western Great Basin, paleomagnetic and magnetic fabric data have been collected from ignimbrites that originated from the Timber Mountain Caldera complex, active from about 14 to 11.5 Ma. Here, AMS and AARM are compared for 21 (9-12 samples per site) sites in the Quaternary Bandelier Tuff, and 15 (9-10 samples per site) sites in Timber Mountain ignimbrites, with each chosen to examine the effects of varying degrees of welding and crystal content on the fabrics obtained. The relationships between AARM and AMS fabrics for the selected sites are not uniform, and include normal, intermediate, reverse, and oblique fabrics. The differences may be controlled by the degree of welding and/or crystal content, which requires further explanation. Ultimately, the fabrics identified in both suites of rocks are compared with anisotropy of isothermal remanent magnetization (AIRM) data, along with other rock magnetic data, to more fully evaluate the domain state control on the fabrics.

  4. Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thamir, F.; McBride, C.M.

    1985-12-31

    Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inabilitymore » to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs.« less

  5. Thermohydrologic modeling of the large-block test in partially saturated fractured tuff at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Lee, K.; Buscheck, T. A.; Glascoe, L. G.; Gansemer, J.; Sun, Y.

    2002-12-01

    In support of the characterization of Yucca Mountain as a potential site for as a geologic repository for high-level nuclear waste, the US Department of Energy conducted the Large Block Test (LBT) at nearby Fran Ridge. The LBT was conducted in an excavated 3x 3x 4.5m block of partially saturated, fractured nonlithophysal Topopah Spring tuff, which is one of the host-rock units for the potential repository at Yucca Mountain. The LBT was one of a series of field-scale thermohydrologic tests conducted in the repository host-rock units. The LBT was heated by line heaters installed in five boreholes lying in a horizontal plane 2.75 m below the upper surface of the block. The field-scale thermal tests were designed to help investigators better understand the coupled thermohydrologic-mechanical-chemical processes that would occur in the host rock in response to the radioactive heat of decay from emplaced waste packages. The tests also provide data for the calibration and validation of numerical models used to analyze the thermohydrologic response of the near-field host rock and Engineered Barrier System (EBS). Using the NUFT code and the dual-permeability approach to representing fracture-matrix interaction, we simulated the thermohydrologic response of the block to a heating and cooling cycle. The primary goals of the analysis were to study the heat-flow mechanisms and water redistribution patterns in the boiling and sub-boiling zones, and to compare model results with measured temperature and liquid saturation data, and thereby evaluate two rock property data sets available for modeling thermohydrologic behavior in the rock. Model results were also used for model calibration and validation. We obtained a good to excellent match between model and observed temperatures, and found that the distinct dryout and condensation zones modeled above and below the heater level agreed fairly well with the liquid-saturation measurements. We identified the best-fit data set by using a

  6. Tuff of Bridge Spring: A mid-Miocene ash-flow tuff, northern Colorado River extensional corridor, Nevada and Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, E.I.; Morikawa, S.A.; Martin, M.W.

    1993-04-01

    The Tuff of Bridge Spring (TBS) (15.19[+-]0.02 Ma; Gans, 1991) is a compositionally variable dacite to rhyolite ash-flow tuff that crops out over 1800 sq. km in the northern Colorado River extensional corridor. The TBS varies in composition from 59.5 to 74 wt. % SiO[sub 2] and typically contains phenocrysts of sanidine, plagioclase, biotite, clinopyroxene, [+-] sphene, [+-] apatite, [+-] zircon, and [+-] hornblende. The TBS is thickest and displays its greatest compositional range in the center of its area of exposure. The McCullough Range section contains at least three chemically distinct flow units that vary in composition from dacitemore » to rhyolite. The basal and uppermost units are normally zoned and the middle unit is reversely zoned. The complex chemical zonation and zoning reversals in the TBS indicate that it erupted from a magma chamber that was periodically injected by both mafic and felsic magmas. Sections at the edge of the exposure area are thin, contain only one or two chemically definable flow units and have a limited compositional range. To the west at Sheep Mountain, TBS is 2.9 m thick and ranges from 70.2--71.7 wt % SiO[sub 2]. To the east in the White Hills, TBS is 14 m thick and ranges from 59.5--65.3 wt % SiO[sub 2]. This chemical and field data indicate that although the TBS is regionally extensive, individual flow units are not. Isotopic data and chemistry suggest that all sections of the TBS are cogenetic. Comparisons of chemical, geochronological and isotopic data between the TBS and nearby coeval plutons indicate that the Aztec Wash (Eldorado Mts., Nevada) and Mt. Perkins (Black Mountain, Arizona) plutons are possible source for the TBS. Both plutons exhibit ample evidence of magma mixing and commingling, processes that may produce compositional zonation such as that observed in the TBS.« less

  7. Graphite in the Bishop Tuff and its effect on postcaldera oxygen fugacity

    USGS Publications Warehouse

    Hildreth, Edward; Ryan-Davis, Juliet; Harlow, Benjamin

    2017-01-01

    Several cubic kilometers of Paleozoic graphite-bearing argillitic country rocks are present as lithic fragments in Bishop Tuff ignimbrite and fallout. The lithics were entrained by the 650 km3 of rhyolite magma that vented during the 5- to 6-day-long, caldera-forming eruption at Long Valley, California. The caldera is floored by a 350 km2 roof plate that collapsed during the eruption and consists in large part of the Paleozoic strata that provided the abundant hornfelsed metapelitic lithic clasts in the tuff. Graphite has been identified by Raman spectroscopy, electron-dispersive spectroscopy, and X-ray diffraction as an irregularly dispersed component in the small fraction of Bishop Tuff pumice that is dark-colored. Carbon concentration has been determined in pumice, lithics, and wall rocks. Values of δ13C range from –21‰ to –29‰ Vienna Peedee Belemnite (VPDB) for pumice, lithics, and argillitic wall rocks, reflecting the biogenic origin of the reduced carbon in oxygen-limited black Paleozoic marine mudrocks. Carbonate contents, measured separately, are negligible in fresh pumice and lithics. Microprobe analyses of titanomagnetite-ilmenite pairs show that oxygen-fugacity values of numerous batches of postcaldera Early Rhyolite (750–640 ka; ~100 km3) are up to one log unit more reduced than those of the temperature–oxygen fugacity (T-fO2) array of the Bishop Tuff (767 ka), despite similar major-element compositions and Fe-Ti–oxide temperature ranges. All of the many batches of Early Rhyolite, which erupted episodically over an interval of ~125,000 years, yield the reduced fO2 values, indicating that reaction with graphite lowered magmatic fO2 after the caldera-forming eruption but before the first eruption of Early Rhyolite. It is inferred that reaction of postcaldera rhyolite magma with the reduced carbon in a great mass of subsided roof rocks lowered its fO2. It is suggested that comparable effects could have attended caldera collapse of other

  8. An investigation of volcanic depressions. Part 3: Maars, tuff-rings, tuff-cones, and diatremes

    NASA Technical Reports Server (NTRS)

    Lorenz, V.; Mcbirney, A. R.; Williams, H.

    1970-01-01

    A classification of maars, tuff-rings, tuff-cones, and diatremes is given along with a summary of their lithologic and structural characteristics at the surface and at depth, and their probable manner of formation. Particular emphasis is placed on the roles of fluidization and groundwater.

  9. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less

  10. Geologic map of the Yucca Mountain region, Nye County, Nevada

    USGS Publications Warehouse

    Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.

    2002-01-01

    , southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt

  11. Age, composition, and areal distribution of the Pliocene Lawlor Tuff, and three younger Pliocene tuffs, California and Nevada

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Deino, Alan L.; Fleck, Robert J.; McLaughlin, Robert J.; Wagner, David; Wan, Elmira; Wahl, David B.; Hillhouse, John W.; Perkins, Michael

    2011-01-01

    The Lawlor Tuff is a widespread dacitic tephra layer produced by Plinian eruptions and ash flows derived from the Sonoma Volcanics, a volcanic area north of San Francisco Bay in the central Coast Ranges of California, USA. The younger, chemically similar Huichica tuff, the tuff of Napa, and the tuff of Monticello Road sequentially overlie the Lawlor Tuff, and were erupted from the same volcanic field. We obtain new laser-fusion and incremental-heating 40Ar/39Ar isochron and plateau ages of 4.834 ± 0.011, 4.76 ± 0.03, ≤4.70 ± 0.03, and 4.50 ± 0.02 Ma (1 sigma), respectively, for these layers. The ages are concordant with their stratigraphic positions and are significantly older than those determined previously by the K-Ar method on the same tuffs in previous studies.Based on offsets of the ash-flow phase of the Lawlor Tuff by strands of the eastern San Andreas fault system within the northeastern San Francisco Bay area, total offset east of the Rodgers Creek–Healdsburg fault is estimated to be in the range of 36 to 56 km, with corresponding displacement rates between 8.4 and 11.6 mm/yr over the past ∼4.83 Ma.We identify these tuffs by their chemical, petrographic, and magnetic characteristics over a large area in California and western Nevada, and at a number of new localities. They are thus unique chronostratigraphic markers that allow correlation of marine and terrestrial sedimentary and volcanic strata of early Pliocene age for their region of fallout. The tuff of Monticello Road is identified only near its eruptive source.

  12. Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?

    USGS Publications Warehouse

    Lipman, P.W.; McIntosh, W.C.

    2008-01-01

    The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass

  13. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less

  14. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    USGS Publications Warehouse

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the

  15. Fracture and matrix hydrologic characteristics of tuffaceous materials from Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.R.; Klavetter, E.A.; Hall, I.J.

    1984-12-01

    The geological formations in the unsaturated zone at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS), are currently being studied for consideration as the host for a radioactive-waste repository; the US Department of Energy is carrying out these studies through the Nevada Nuclear Waste Storage Investigations project. The formations are composed of tuffaceous (tuff) materials that must be evaluated to estimate the rate at which radionuclides would migrate to the accessible environment. According to the available evidence, the flux of water in the unsaturated zone beneath the Yucca Mountain site is low; quantifying such low flow ratesmore » through direct measurements is difficult. To help provide data that can be used to assess unsaturated flow, Pacific Northwest Laboratory (PNL), under contract to Sandia National Laboratories (SNL), performed hydrologic tests on tuffaceous samples from 48 different locations in Yucca Mountain. This report contains the entire set of psychrometer measurements of desaturation curves for tuffs from Yucca Mountain as well as a substantial number of saturated conductivity measurements. 19 references, 132 figures, 23 tables.« less

  16. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon

  17. Physical and Thermal Structure of the Bishop Tuff, California

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Hildreth, W.

    2001-12-01

    The 0.76 Ma Bishop Tuff, California, includes an ignimbrite constructed from a series of overlapping packages of material erupted sequentially and simultaneously from multiple sources around the ring fracture of Long Valley caldera (Wilson, C.J.N., Hildreth, W., 1997, Journal of Geology 105, 407-439). Exceptionally good continuous exposures of the ignimbrite in the walls of Owens Gorge to the east of Long Valley provide a cross-section through the east-side packages (Ig1E and Ig2E). We have measured 10 sections up the gorge walls to draw up a cross section of the ignimbrite down Owens Gorge, using lithic abundances and lithologies to define the physical eruptive packages and their subdivisions, and measurements of tuff bulk density (as an easily measured proxy for welding intensity) to define the thermal eruptive packages. The physically emplaced bodies of ignimbrite represent an overlapping, shingling suite of material such that successively later ignimbrite occurs most prominently farther away from source. Two major and two lesser zones of maximum density (welding) are present, the lower two (in Ig1Ea and lower Ig1Eb) in upper Owens Gorge, and the two most prominent (upper Ig1Eb and Ig2Eb) in middle and lower parts of the gorge. Welding fluctuations are controlled by bulk temperatures of individual batches of hotter and cooler material, but the intensity of the welding also depends on deposit thickness (i.e. load stress). Physically defined contacts between ignimbrite packages show that time breaks inferred to be of hours may not result in formation of any visible parting or flow unit boundary. Furthermore, positions of density (welding) minima between zones of higher density tuff do not coincide with horizons of stratigraphic significance. These observations lead to two conclusions. (1) The absence of clear partings or flow unit boundaries in an ignimbrite sequence is not diagnostic either of the material representing a single flow unit, or of the material being

  18. Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event

    USGS Publications Warehouse

    Lanphere, M.A.; Champion, D.E.; Christiansen, R.L.; Izett, G.A.; Obradovich, J.D.

    2002-01-01

    40Ar/39Ar ages were determined on the three major ash-flow tuffs of the Yellowstone Plateau volcanic field in the region of Yellowstone National Park in order to improve the precision of previously determined ages. Total-fusion and incremental-heating ages of sanidine yielded the following mean ages: Huckleberry Ridge Tuff-2.059 ?? 0.004 Ma; Mesa Falls Tuff-1.285 ?? 0.004 Ma; and Lava Creek Tuff-0.639 ?? 0.002 Ma. The Huckleberry Ridge Tuff has a transitional magnetic direction and has previously been related to the Reunion Normal-Polarity Subchron. Dating of the Reunion event has been reviewed and its ages have been normalized to a common value for mineral standards. The age of the Huckleberry Ridge Tuff is significantly younger than lava flows of the Reunion event on Re??union Island, supporting other evidence for a normal-polarity event younger than the Reunion event.

  19. Surface complexation modeling of americium sorption onto volcanic tuff.

    PubMed

    Ding, M; Kelkar, S; Meijer, A

    2014-10-01

    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.

  20. Post-middle Miocene Tuffs of Bodie Hills and Mono Basin, California: Paleomagnetic Reference Directions and Vertical Axis Rotation

    NASA Astrophysics Data System (ADS)

    Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.

    2013-12-01

    The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since

  1. Paleomagnetism and tectonic rotation of the lower Miocene Peach Springs Tuff: Colorado Plateau, Arizona, to Barstow, California

    USGS Publications Warehouse

    Wells, Ray E.; Hillhouse, John W.

    1989-01-01

    We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in

  2. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, K.; Galloway, D.

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes ismore » such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.« less

  3. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used

  4. Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2003-05-01

    Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However

  5. Preliminary hydrogeologic assessment of boreholes UE-25c #1, UE-25c #2, and UE-25c #3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Geldon, A.L.

    1993-01-01

    Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were

  6. Slanic Tuff and associated Miocene evaporite deposits, Eastern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Barbu, Victor; Bojar, Hans-Peter; Wojtowicz, Artur; Duliu, Octavian

    2017-04-01

    Miocene tuffs of calcalkaline composition are widespread in the Carpathians, Pannonian and Eastern Alpine realm. Their occurrences are described in outcrops as well as in the subsurface. The presence of such tuffs may offer important criteria for stratigraphic correlations and help to establish the absolute age of deposits and associated climatic and environmental changes. The Green Stone Hill (Muntele Piatra Verde) is situated to the north of Slanic-Prahova salt mine, in the bend region of the Eastern Carpathians, Romania. From bottom to top the section is composed of: marls with Globigerina followed by the so called Slanic tuff, gypsum and salt breccia and, on the top, radiolarian bearing shales. The stratigraphic age of the section is Middle to Upper Badenian (nannoplankton zones NN5 to NN6). XRD investigations of the green Slanic tuff show that the main mineralogical component is clinoptilolite (zeolite) followed by quartz and plagioclase. For this type of tuff there is no crystalline phase, which may be used for radiometric dating. In the middle part of the green tuff interval, we found discrete layers of a much coarser white tuff, with mineralogy consisting of quartz, plagioclase, biotite and clinoptilolite. The white tuff forming distinct layers within the green tuff, has an andesitic composition. 40Ar/39Ar dating of biotite concentrates from the white tuff gives an age of 13.6±0.2Ma, the dated layer being situated below the gypsum and salt breccia. We consider that the age is well constraining the time when the green tuffs were formed at the border of the basin. From this level upwards discrete gypsum layers occurs within the green tuffs, the age may be considered as indicating the base of the evaporitic sequence. To the south-east, from this level upwards evaporites, mainly salt formed. The age suggests that evaporitic deposits formed after the Mid Badenian climatic optimum, evaporitic formation being related to restricted circulation due the drop of sea

  7. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design,more » waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely.« less

  8. Deep installations of monitoring instrumentation in unsaturated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.

    1985-12-31

    The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less

  9. Degraded dryland rehabilitation: boosting seedling survival using zeolitic tuff

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrbabah, Mohammad; Athamneh, Hana

    2016-04-01

    More than 90% of Jordan is broadly defined as rangelands. Most rangelands are located within the arid zone of the country. Extensive grazing occurs across much of the natural pastures resulting in serious environmental degradation of natural resources in these rangelands. Several programs were carried out for rangeland conservation and rehabilitation in the country. However, these programs face a major challenge of the low survival rate of transplanted shrub seedlings. Seeking innovative approaches to assure healthy establishment of seedling is a big challenge to achieve successful rehabilitation programs. Drought is considered one of the major problems in rehabilitation. Promoting survival and growth, using zeolitic tuff added to planting holes is suggested to be a possible solution. The experiment was conducted on a factorial arrangement within RCBD design. Two shrub species (Atriplex halimus, Atriplex nummularia) were transplanted into holes prepared with three levels of tuff treatments (mulching, mixing and control) under rainfed condition. The result showed insignificant effect of tuff on seedling survival percentage, when mixing tuff with plantation soil or adding tuff as mulch. Also, the two species showed similar survival percentages over two measured dates. However, mixing tuff with soil during hole preparation significantly enhanced seedling heights. Furthers, The Australian atriplex (Atriplex nummularia) species significantly grow higher than Atriplex halimus. The study results suggested that mixing zeoltic tuff with soil during transplantation of seedling is promising in improving the success of rangeland rehabilitation in dry areas in Jordan.

  10. Regional geology and geophysics of the Jemez Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, F.G.

    1973-08-01

    The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

  11. Paleomagnetism and Lithostratigraphy of the Miocene Tuff of Huntoon Creek Type Section

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Pluhar, C. J.; Lindeman, J. R.

    2014-12-01

    Here we define the Tuff of Huntoon Creek (THC), previously identified and mapped in Mono Basin, CA by Gilbert et al. (1968) as "latite ignimbrite" (K-Ar date of 11.1-11.9 Ma). Formally defining this formation and its paleomagnetic characteristics, can help reveal the spatial and temporal relationships of the Walker Lane and Mina Deflection structural features, including distribution of vertical axis rotation. THC is composed of four tuffs with an intercalated volcaniclastic sandstone giving a total stratigraphic thickness of ~300 m. We define THC in a gorge of Huntoon Creek, where the stratigraphic section is capped by Pliocene basalt. The lowest and most extensive stratigraphic unit, the Huntoon Valley member of THC, is ~243 m thick and can be distinguished from other units by the presence of sanidine and biotite phenocrysts and normal polarity. A 7-meter-thick volcaniclastic sandstone overlies the Huntoon Valley member, straddling a magnetic polarity reversal within the section. The 3 overlying members of THC are reversed-polarity, biotite-bearing, sanidine-free tuffs of variable degrees of welding. Their paleomagnetic directions are each statistically distinguishable from the others, indicating that the deposition of each tuff is separated by a significant amount of time and can be used as a geologically instantaneous measure of Earth's magnetic field for purposes of averaging out secular variation. The capping Pliocene olivine basalt was emplaced over an erosional unconformity of significant relief, as evidenced by the complete absence at some locations of the uppermost biotite-bearing THC member. The tilt corrected mean paleomagnetic direction for the 4 members of THC indicate a clockwise rotation magnitude of 77.5°±40.3°. The absolute rotation results of this locality are statistically indistinguishable from the relative rotation results of this locality compared to Cowtrack Mountain (Lindeman et al. 2013). The corroboration of these data suggests that

  12. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard

  13. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variationsmore » of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  14. Geohydrologic data from test hole USW UZ-7, Yucca Mountain area, Nye County, Nevada

    USGS Publications Warehouse

    Kume, Jack; Hammermeister, D.P.

    1990-01-01

    This report contains a description of the methods used in drilling and coring of the test-hole USW UZ-7, a description of the methods used in collecting, handling, and testing of test-hole samples; Lithologic information from the test hole; and water-content, water-potential, bulk-density, grain-density, porosity, and tritium data for the test hole. Test-hole USW UZ-7 was drilled and cored to a total depth of 62.94 m. The drilling was done using air as a drilling fluid to minimize disturbance to the water content of cores, drill-bit cuttings, and borehole wall-rock. Beginning at the land surface, the unsaturated-zone rock that was penetrated consisted of alluvium; welded and partially to nonwelded ash-flow tuff; bedded and reworked ash-fall tuff; nonwelded ash-flow tuff; and welded ash-flow tuff. Values of gravimetric water content and water potential of alluvium were intermediate between the extreme values in welded and nonwelded units of tuff. Gravimetric water content was largest in bedded and nonwelded ash-fall tuffs and was smallest in welded ash-flow tuff. Values of water potential were more negative in densely welded ash-flow tuffs and were less negative in bedded and nonwelded ash-fall tuffs. Bulk density was largest in densely welded ash-flow tuffs and smallest in nonwelded and bedded ash-fall tuffs. Grain density was uniform but was slightly larger in nonwelded and bedded ash-fall tuffs than in welded ash-flow tuffs. Porosity trends were opposite to bulk-density trends. Tritium content in alluvium was smallest near the alluvium-bedrock contact, markedly increased in the middle of the deposit, and decreased in the near-surface zone of the deposit. (Author 's abstract)

  15. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  16. Paleogeographic insights based on new U-Pb dates for altered tuffs in the Miocene Barstow Formation, California

    USGS Publications Warehouse

    Miller, David; Rosario, Jose E.; Leslie, Shannon R.; Vazquez, Jorge A.

    2013-01-01

    The type section of the Barstow Formation in the Mud Hills, north of Barstow, is a reference section for early to middle Miocene paleontology, magnetostratigraphy, and dated volcanic episodes. Thanks to this robust chronologic framework, much of the interpretation of the paleogeography of the region from about 18 Ma to 13 Ma is based on study of the rocks in the Mud Hills. Eastward from the type section, the Barstow Formation typically is altered and structurally complex, and therefore it is hard to fit into the patterns inferred for sedimentation at the type section. We have studied ten tuff beds in five locations, extracting zircons that are partly eruptive components of the volcanic ash and partly detrital. Ion microprobe dating of the zircons associated with the ashes allows us to improve stratigraphic correlations. Dated tuffs range from 19.3 Ma to ~14.8 Ma. In several of the sections, we dated tuffs in the range 16.2-16.5 Ma, about the same age as the ~16.3 Ma Rak Tuff in the type section. The beginning of lacustrine limestone, shale, and siltstone deposition varies significantly, from ~16.3 Ma in the type section to ~18.5 Ma in hills to the east and the Calico Mountains, and greater than 19.3 Ma at Harvard Hill. At ~16.3 Ma, the sedimentary rocks ranged (west to east) from silty sandstone and limestone, to mudstone with gypsum, to massive mudstone, and then to sandstone. If the sections have not been greatly shuffled by subsequent faulting, the picture that emerges is one of a broad basin whose center near the Yermo Hills was occupied by a lake that was much longer lived and deeper than to the east and west.

  17. Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    USGS Publications Warehouse

    Crowe, Bruce M.; Sargent, Kenneth A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.

  18. Numerical modeling of perched water under Yucca Mountain, Nevada

    USGS Publications Warehouse

    Hinds, J.J.; Ge, S.; Fridrich, C.J.

    1999-01-01

    The presence of perched water near the potential high-level nuclear waste repository area at Yucca Mountain, Nevada, has important implications for waste isolation. Perched water occurs because of sharp contrasts in rock properties, in particular between the strongly fractured repository host rock (the Topopah Spring welded tuff) and the immediately underlying vitrophyric (glassy) subunit, in which fractures are sealed by clays that were formed by alteration of the volcanic glass. The vitrophyre acts as a vertical barrier to unsaturated flow throughout much of the potential repository area. Geochemical analyses (Yang et al. 1996) indicate that perched water is relatively young, perhaps younger than 10,000 years. Given the low permeability of the rock matrix, fractures and perhaps fault zones must play a crucial role in unsaturated flow. The geologic setting of the major perched water bodies under Yucca Mountain suggests that faults commonly form barriers to lateral flow at the level of the repository horizon, but may also form important pathways for vertical infiltration from the repository horizon down to the water table. Using the numerical code UNSAT2, two factors believed to influence the perched water system at Yucca Mountain, climate and fault-zone permeability, are explored. The two-dimensional model predicts that the volume of water held within the perched water system may greatly increase under wetter climatic conditions, and that perched water bodies may drain to the water table along fault zones. Modeling results also show fault flow to be significantly attenuated in the Paintbrush Tuff non-welded hydrogeologic unit.

  19. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  20. Influence of transitional volcanic strata on lateral diversion at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Selker, John S.

    2003-01-01

    Natural hydraulic barriers exist at Yucca Mountain, Nevada, a potential high‐level nuclear waste repository, that have been identified as possible lateral diversions for reducing deep percolation through the waste storage area. Historical development of the conceptual model of lateral diversion has been limited by available field data, but numerical investigations presented the possibility of significant lateral diversion due to the presence of a thin, porous rock layer, the Paintbrush nonwelded tuffs. Analytical analyses of the influence of transitional changes in properties suggest that minimal lateral diversion is likely at Yucca Mountain. Numerical models, to this point, have not accounted for the gradual transition of properties or the existence of multiple layers that could inadvertently influence the simulation of lateral diversion as an artifact of numerical model discretization. Analyses were made of subsurface matric potential measurements, and comparisons were made of surface infiltration estimates with deeper percolation flux calculations using chloride‐mass‐balance calculations and simulations of measured temperature profiles. These analyses suggest that insignificant lateral diversion has occurred above the repository horizon and that water generally moves vertically through the Paintbrush nonwelded tuffs.

  1. Structural geology of the proposed site area for a high-level radioactive waste repository, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.

    2004-01-01

    Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of

  2. Are there Tuffs from Toba Supereruptions in Singapore?

    NASA Astrophysics Data System (ADS)

    Bergal-Kuvikas, O.; Bouvet de Maisonneuve, C.; Vazquez, J. A.

    2016-12-01

    Singapore is a dense transportation hub and the most highly populated area of SE Asia. In order to assess volcanic hazards for Singapore, we compiled a database of Quaternary eruptions from neighboring volcanoes and we investigated samples from 20 boreholes collected across 11 reservoirs and several natural outcrops in the NW parts of the city. We identified a deposit of white to slightly yellow clay with a visible thickness of 6-8 meters in the western part of Singapore. This deposit of very fine ash is silicic (SiO2 72-75 wt.%) and calk-alkaline (K2O 3.7-4.5 wt.%). The ash layer is clearly weathered as the LOI is around 5 wt.% and SEM images show the presence of clay minerals almost exclusively. Geochemical mapping shows that quartz crystals are characterized by textures similar to volcanic deposits. N-MORB normalized spiderdiagrams of whole-rocks show minimums in Nb and Ti, enrichments in LREE, and depletions of HREE. This suggests a subduction origin. One possible source for this voluminous weathered ash layer is the Toba caldera, which produced several super eruptions in the Quaternary (the Young Toba Tuff at 0.074 Ma, Middle Toba Tuff at 0.5 Ma, Old Toba Tuff at 0.84 Ma, and Haranggoal Dacite Tuff at 1.2 Ma). Recognizing distal Toba tuffs is problematic because most deposits are underwater. Most of the analyzed samples have geochemical compositions that are statistically similar to the Toba tuffs and characterized by high contents of HREE elements (e.g. Y, Er, Yb) and some REE (e.g. Eu, Ba, La, Th). Preliminary dating shows the presence of Triassic zircons, possibly due to geologic contamination. Additional dating is needed to ascertain the source and age of this ash. Our new geochemical data of likely distal Toba deposits will be an important component for tephrochronological and paleoenvironmental studies in addition to being of importance for hazards assessments in Singapore.

  3. Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration and relevance for Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Wright, S. P.; Glotch, T. D.; Schröder, C.; Sklute, E. C.; Dyar, M. D.

    2018-07-01

    Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount of materials produced by these processes that are present in the martian surface layer is unknown, but may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff samples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer spectroscopy. We distinguish three main types of tuff that differ prominently in petrography and VNIR-SWIR reflectance: minimally altered sideromelane tuff, gray to brown colored smectite-bearing tuff, and highly palagonitized tuff. Differences are also observed between the tuffs associated with hydrovolcanic tuff rings and tuff cones and those forming glaciovolcanic hyaloclastite ridges. For the locations sampled, hydrovolcanic palagonite tuffs are more smectite and zeolite rich while the palagonitized hyaloclastites from the sampled glaciovolcanic sites are largely devoid of zeolites and relatively lacking in smectites as well. The gray to brown colored tuffs are only observed in the hydrovolcanic deposits and appear to represent a distinct alteration pathway, with formation of smectites without associated palagonite formation. This is attributed to lower temperatures and possibly longer time scale alteration. Altered hydro- or glaciovolcanic materials might be recognized on the surface of Mars with rover-based instrumentation based on the results of this study.

  4. Salt efflorescence due to water-rock interaction on the surface of tuff cave in the Yoshimi-Hyakuana Historic Site, central Japan

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Kodama, Shogo; Mohammad, Rajib; Tharanga Udagedara, Dashan

    2016-04-01

    Artificial cave walls in Yoshimi Hyakuana Historic Site have been suffering from salt weathering since 1945 when the caves were made. To consider the processes of weathering and subsequent crystallization of secondary minerals, water-rock experiment using tuff from this area was performed. Rocks, surface altered materials, groundwater and rainwater were collected, and chemical and mineralogical characteristics of those samples were investigated. The XRD and SEM-EDS analyses were carried out for the solid samples and ICP-OES analysis was performed for the solution generated from the experiment, groundwater and rainwater. Gypsum is detected in original tuff, and on grey and whiter coloured altered materials. General chemical changes were observed on this rock. However, it is found that purple and black altered materials were mainly made due to microbiological processes.

  5. Long-Term Mechanical Behavior of Yucca Mountain Tuff and its Variability, Final Technical Report for Task ORD-FY04-021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daemen, Jaak J.K.; Ma, Lumin; Zhao, Guohua

    The study of the long term mechanical behavior of Yucca Mountain tuffs is important for several reasons. Long term stability of excavations will affect accessibility (e.g. for inspection purposes), and retrievability. Long term instabilities may induce loading of drip shields and/or emplaced waste, thus affecting drip shield and/or waste package corrosion. Failure of excavations will affect airflow, may affect water flow, and may affect temperature distributions. The long term mechanical behavior of rocks remains an elusive topic, loaded with uncertainties. A variety of approaches have been used to improve the understanding of this complex subject, but it is doubtful thatmore » it has reached a stage where firm predictions can be considered feasible. The long term mechanical behavior of "soft" rocks, especially evaporites, and in particular rock salt, has been the subject of numerous investigations (e.g. Cristescu and Hunsche, 1998, Cristescu et al, 2002), and basic approaches towards engineering taking into account the long term behavior of such materials have long been well established (e.g. Dreyer, 1972, 1982). The same is certainly not true of "hard" rocks. While it long has been recognized that the long term strength of ?hard? rocks almost certainly is significantly less than that measured during "short", i.e. standard (ASTM D 2938), ISRM suggested (Bieniawski et al, 1978) and conventionally used test procedures (e.g. Bieniawski, 1970, Wawersik, 1972, Hoek and Brown, 1980, p. 150), what limited approaches have been taken to develop strategies toward determining the long term mechanical behavior of "hard" rock remain in the early research and investigation stage, at best. One early model developed specifically for time dependent analysis of underground "hard" rock structures is the phenomenological model by Kaiser and Morgenstern (1981). Brady and Brown (1985, p. 93) state that over a wide range of strain rates, from 10^-8 to 10^2/s the difference in strength

  6. Simulation of gas phase transport of carbon-14 at Yucca Mountain, Nevada, USA

    USGS Publications Warehouse

    Lu, N.; Ross, B.

    1994-01-01

    We have simulated gas phase transport of Carbon-14 at Yucca Mountain, Nevada. Three models were established to calculate travel time of Carbon-14 from the potential repository to the mountain surface: a geochemical model for retardation factors, a coupled gas-flow and heat transfer model for temperature and gas flow fields, and a particle tracker for travel time calculation. The simulations used three parallel, east-west cross-sections that were taken from the Sandia National Laboratories Interactive Graphics Information System (IGIS). Assuming that the repository is filled with 30- year-old waste at an initial areal power density of 57 kw/acre, we found that repository temperatures remain above 60??C for more than 10,000 years. For a tuff permeability of 10-7 cm2, Carbon-14 travel times to the surface are mostly less than 1,000 years, for particles starting at any time within the first 10,000 years. If the tuff permeability is 10-8 cm2, however, Carbon- 14 travel times to the surface range from 3,000 to 12,000 years, for particle starting within the 10,000 years.

  7. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  8. Explosive shaped charge penetration into tuff rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  9. Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya

    USGS Publications Warehouse

    Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.

    1976-01-01

    Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.

  10. 32. DETAIL OF WALL SHOWN IN SD231. BEHIND WALL FRAMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF WALL SHOWN IN SD-2-31. BEHIND WALL FRAMING IS SAMPLING ROOM WITH WOOD SAMPLING ELEVATOR. CRUSHED OXIDIZED ORE BIN ON LEFT (SOUTH). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  11. Geology of the Yucca Mountain site area, southwestern Nevada

    USGS Publications Warehouse

    Keefer, W.R.; Whitney, J.W.; Buesch, D.C.

    2007-01-01

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (>10% crystal fragments) member, a more voluminous lower crystal-poor (<5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  12. Paleomagnetism of the Oligocene Kalamazoo Tuff: implications for middle Tertiary extension in east central Nevada

    USGS Publications Warehouse

    Hagstrum, J.T.; Gans, P.B.

    1989-01-01

    The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors

  13. Soils of Agricultural Terraces with Retaining Walls in the Mountains of Dagestan

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Korobov, D. S.; Idrisov, I. A.; Kalinin, P. I.

    2018-01-01

    Soil-archeological studies of agricultural terraces with retaining walls in the area of construction of the Gotsatlinskaya Hydroelectric Power Station in Khunzakh district of the Republic of Dagestan have been performed. The morphogenetic and chemical properties of the anthropogenic soils (Anthrosols) in different parts of the terrace complex are analyzed. It is argued that slope terracing in the mountains ensures the development of thicker soil profiles with pronounced genetic horizons. The soils of agricultural terraces store important information of the paleoenvironmental history and land use. A characteristic feature of the Anthrosols of agricultural terraces is a relatively even distribution of gravelly material of up to 5 cm in diameter in the plow layer. The soils of terraces are characterized by the high variability in their properties within the entire terrace complex and within the particular terraces.

  14. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Wash, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N = 40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6–C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with

  15. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.; Reynolds, Robert E.; Miller, David M.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Walsh, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N=40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6-C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with

  16. Perched Ground Water in Zeolitized-Bedded Tuff, Rainier Mesa and Vicinity, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Thordarson, William

    1965-01-01

    Rainier Mesa--site of the first series of underground nuclear detonations--is the highest of a group of ridges and mesas within the Nevada Test Site. The mesa is about 9.5 square miles in area and reaches a maximum altitude of 7,679 feet. The mesa is underlain by welded tuff, friable-bedded tuff, and zeolitized-bedded tuff of the Piapi Canyon Group and the Indian Trail Formation of Tertiary age. The tuff--2,000 to 9,000 feet thick--rests unconformably upon thrust-faulted miogeosynclinal rocks of Paleozoic age. Zeolitic-bedded tuff at the base of the tuff sequence controls the recharge rate of ground water to the underlying and more permeable Paleozoic aquifers. The zeolitic tuff--600 to 800 feet thick--is a fractured aquitard with high interstitial porosity, but with very low interstitial permeability and fracture transmissibility. The interstitial porosity ranges from 29 to 38 percent, the interstitial permeability is generally less than 0.009 gpd/ft3, and the fracture transmissibility ranges from 10 to 100 gpd/ft for 900 feet of saturated rock. The tuff is generally fully saturated interstitially hundreds of feet above the regional water table, yet no appreciable volume of water moves through the interstices because of the very low permeability. The only freely moving water observed in miles of underground workings occurred in fractures, usually fault zones.

  17. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits

  18. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  19. Lithology, Geochemistry and Paleomagnetism of the Table Mountain Formation at the Little Walker Caldera

    NASA Astrophysics Data System (ADS)

    Schubert, R.; Pluhar, C. J.; Carlson, C. W.; Jones, S. A.

    2015-12-01

    West of Bridgeport Valley near the Central Sierra Nevada crest, the Little Walker Caldera (LWC) erupted Stanislaus Group lavas and tuffs during the Late Miocene. Remnants of these rocks are now distributed from the western Sierra Nevada foothills across the range and into the Walker Lane. This wide distribution is attributed to the lavas flowing down paleochannels, which provide an excellent marker for deformation over the last 10 Ma. Priest (1978) identified a thick section of these lavas along Flatiron Ridge, the southeast margin of the LWC, which our preliminary data suggests may correlate with lavas in the Sweetwater Mountains to the northeast and at Rancheria Mtn near Hetch Hetchy to the southwest. The oldest unit in the Stanislaus group is the Table Mountain Formation, a trachyandesite. At Priest's measured section it is divided into three members. By our measurements, the Lower Member (Tmtl) is 256 meters thick, has a fine-grained groundmass with plagioclase and augite phenocrysts (<0.5 cm), and the presence of augite phenocrysts distinguishes it from the other members. Some Tmtl flows have chalcedony amigdules. Overlying this, the Large Plagioclase member (Tmtp) is 43.5 meters thick. Distinguished by (~1 cm) plagioclase and occasional small olivine phenocrysts. The Upper Member (Tmtu) is 116 meters thick, very fine-grained and often platy. Tmtl has a distinctive northwest-oriented normal polarity and geochemistry, similar to several localities at Rancheria Mtn. Tmtu has a reversed polarity similar to the polarity of Table Mountain Formation in the Sweetwater Mountains and lavas that directly underlie the ~9.5 Ma Tollhouse Flat member of the Eureka Valley Tuff at Rancheria Mtn. Thus, our preliminary data suggest that the lower member at Priest's Measured Section could correlate to the normal polarity samples at Rancheria Mtn. Also, that the upper Member reversed-polarity samples may correlate with lavas both at the Sweetwater Mountains and Rancheria Mtn

  20. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    USGS Publications Warehouse

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    caused by climate shifts between the Miocene and Pleistocene and between Pleistocene glacial-interglacial cycles. Secondary mineral distribution and δ18O profiles indicate that evaporation in the shallower welded tuffs reduces infiltration fluxes. Several near-surface and subsurface processes likely are responsible for diverting or dampening infiltration and percolation, resulting in buffering of percolation fluxes to the deeper unsaturated zone. Cooler and wetter Pleistocene climates resulted in increased recharge in upland areas and higher water tables at Yucca Mountain and throughout the region. Discharge deposits in the Amargosa Desert were active during glacial periods, but only in areas where the modern water table is within 7–30 m of the surface. Published groundwater models simulate water-table rises beneath Yucca Mountain of as much as 150 m during glacial climates. However, most evidence from Fortymile Canyon up gradient from Yucca Mountain limits water-table rises to 30 m or less, which is consistent with evidence from discharge sites in the Amargosa Desert. The isotopic compositions of uranium in tuffs spanning the water table in two Yucca Mountain boreholes indicate that Pleistocene water-table rises likely were restricted to 25–50 m above modern positions and are in approximate agreement with water-table rises estimated from zeolitic-to-vitric transitions in the Yucca Mountain tuffs (less than 60 m in the last 11.6 m.y.).

  1. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    USGS Publications Warehouse

    Spengler, Richard W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.

  2. Geology and Volcanology of Kima'Kho Mountain, Northern British Columbia: A Pleistocene Glaciovolcanic Edifice

    NASA Astrophysics Data System (ADS)

    Turnbull, M.; Porritt, L. A.; Edwards, B. R.; Russell, K.

    2014-12-01

    Kima'Kho Mountain is a 1.8 Ma (40Ar/39Ar of 1.82 +/- 40 ka) Pleistocene an alkali-olivine basaltic tuya situated in northern British Columbia. The volcanic edifice rises 460 m from its base and comprises a central vent, dominated by lapilli-tuff and minor pillow lava and dykes; and a surrounding plateau underlain by a sequence of dipping beds of basaltic tuff-breccia and capped by a series of flat-lying, subaerial lava flows. We present a 1:10,000 geological map for Kima'Kho Mountain building on the preliminary work of Ryane et al. (2010). We use the volcanic stratigraphy to explore the implications of three unique features. (1) The central cone comprises massive to crudely-bedded lapilli tuffs containing abundant armoured lapilli - cores of highly-vesicular pyroclasts coated with blocky to cuspate vitric ash. These units suggest an explosive origin from within an ice-enclosed lake, and deposited by wet, dilute pyroclastic surge events. (2) The entire stratigraphic sequence hosts at least two "passage zones" (cf. Jones, 1969); the presence and geometry of these passage zones constrain ice thicknersses at the time of eruption and inform on the englacial lake dynamics. (3) Lastly, our field-based stratigraphic relationships are at odds with the classic tuya model (i.e. an effusive onset to the eruption, forming pillow basalts, followed by explosive activity). Our field mapping suggests an alternative model of tuya architecture, involving a highly-energetic, sustained explosive onset creating a tephra cone that become emergent followed by effusive eruption to create lavas and a subaqueous lava-fed delta. Jones, J. G. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland-I. Geological Society of London Quarterly Journal 124, 197-211 (1969). Ryane, C., Edwards, B. R. & Russell, J. K. The volcanic stratigraphy of Kima'Kho Mountain: A Pleistocene tuya, northwestern British Columbia. Geological Survey of Canada, Current Research 2011-104, 12p, doi:10

  3. U-Pb ages of secondary silica at Yucca Mountain, Nevada: Implications for the paleohydrology of the unsaturated zone

    USGS Publications Warehouse

    Neymark, L.A.; Amelin, Y.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207PB/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past -0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability

  4. Preliminary assessment of in-situ geomechanical characteristics in drill hole USW G-1, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Ellis, William L.; Swolfs, Henri S.

    1983-01-01

    Observations made during drilling and subsequent testing of the USW G-1 drill hole, Yucca Mountain, Nevada, provide qualitative insights into the in- situ geomechanical characteristics of the layered tuff units penetrated by the hole. Substantial drilling-fluid losses, and the occurrence of drilling-induced fracturing, are understandable in terms of the low, minimum horizontal stress magnitudes interpreted from six hydraulic-fracturing stress measurements conducted between hole depths of 640 and 1,300 meters. Although not confirmed directly by the hydraulic-fracturing data, other observations suggest that the minimum stress magnitudes in the more densely welded and brittle tuff layers may be even smaller than in the less welded and more ductile rocks. Stress-induced borehole ellipticity observed along most of the length of USW G-1 indicates that the horizontal stress components are not equal, and that the concentration of these stresses around the hole is sufficient to locally exceed the yield strength of the rock. The low, minimum horizontal stress magnitudes, perhaps variable with lithology, and the indications from borehole ellipticity of a high in-situ stress/strength ratio, indicate the need for further studies to characterize the structural and geomechanical properties of the rocks at depth in Yucca Mountain.

  5. 2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits

    USGS Publications Warehouse

    Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.

    1993-01-01

    Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite

  6. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  7. HIGH EXPLOSIVE CRATER STUDIES: TUFF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, B.F.

    1961-04-01

    Spherical charges of TNT, each weighing 256 pounds, were exploded at various depths in tuff to determine apparent crater dimensions in a soft rock. No craters were obtained for depths of burst equal to or greater than 13.3 feet. It was deduced that rock fragments were sufficiently large that charges of greater magnitude should be employed for crater experiments intended as models of nuclear explosions. (auth)

  8. Fault evolution in volcanic tuffs and quartz-rich eolian sandstone as mechanical analogs for faulting in Martian pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2014-12-01

    In order to establish a foundation for studies of faulting in Martian rocks and soils in volcanic terrain, the distribution of brittle strain around faults within the North Menan Butte Tuff in the eastern Snake River Plain, Idaho and the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, has been recently described. These studies employed a combination of macroscopic and microscopic observations, including measurements of in situ permeability as a proxy for non-localized brittle deformation of the host rock. In areas where the tuff retained its primary granular nature at the time of deformation, initial plastic yielding in both tuffs occurred along deformation bands. Both compactional and dilational types of deformation bands were observed, and faulting occurred along clusters of deformation bands. Where secondary alteration processes imparted a massive texture to the tuff, brittle deformation was accommodated along fractures. Host-rock permeability exhibits little variation from non-deformed values in the North Menan Butte Tuff, whereas host rock permeability is reduced by roughly an order of magnitude through compaction alone (no alteration) in the Joe Lott Tuff. To create a bridge between these observations in tuff and the more substantial body of work centered on deformation band formation and faulting in quartz-rich sandstones, the same techniques employed in the North Menan Butte Tuff and the Joe Lott Tuff have also been applied to a kilometer-scale fault in the Jurassic Navajo Sandstone in the Waterpocket Fold, Utah. These observations demonstrate that the manifestation of strain and evolution of faulting in the Mars-analog tuffs are comparable to that in quartz-rich sandstones. Therefore, current understanding of brittle deformation in quartz-rich sandstones can be used to inform investigations into fault growth within porous tuffs on Mars. A discussion of these observations, practical limitations, and directions for future work are presented here.

  9. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  10. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand

    PubMed Central

    Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi

    2017-01-01

    In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737

  11. 8. VIEW OF DOWNSTREAM OUTLET CULVERT AND WING RETAINING WALLS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF DOWNSTREAM OUTLET CULVERT AND WING RETAINING WALLS, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Twin Pots Dam, Ashley National Forest, 10.1 miles North of Mountain Home, Mountain Home, Duchesne County, UT

  12. Hydrology of Yucca Mountain and vicinity, Nevada-California : investigative results through mid-1983

    USGS Publications Warehouse

    Waddell, R.K.; Robison, J.H.; Blankennagel, R.K.

    1984-01-01

    Yucca Mountain, Nevada, is one of several sites under consideration for construction of the first repository for high-level nuclear waste. The climate is arid; few perennial streams are present in the region. Flash floods occasionally occur. The site is underlain by at least 1,800 meters of volcanic tuffs of Tertiary age; limestones and dolomites of Paleozoic age underlie much of the surrounding region, and, together with alluvial deposits, comprise the major aquifers. Yucca Mountain is in the Alkali Flat-Furnace Creek Ranch ground-water subbasin, which is part of the Death Valley ground-water basin. Discharge occurs at Alkali Flat almost entirely by evapotranspiration, and at Furnace Creek Ranch from small springs and seeps. Beneath Yucca Mountain, depth to water ranges from about 460 to 700 meters; the rock under consideration for construction of the repository is in the unsaturated zone. Rate of recharge at Yucca Mountain is small, perhaps much less than 5 millimeters per year. Within the saturated zone, water movement is principally along fractures. The hydraulic gradient is small east (downgradient) of Yucca Mountain, and increases to the north and west. Lack of effective-porosity data presently precludes accurate calculation of flow velocity and travel times. (USGS)

  13. Experimental study on the Neapolitan Yellow Tuff: Salt weathering and consolidation

    NASA Astrophysics Data System (ADS)

    La Russa, Mauro Francesco; Ruffolo, Silvestro Antonio; Alvarez de Buergo, Monica; Ricca, Michela; Belfiore, Cristina Maria; Pezzino, Antonino; Mirocle Crisci, Gino

    2016-04-01

    Salt crystallization is one of the major weathering agents in porous building materials due to the crystallization pressure exerted by salt crystals growing in confined pores. The consolidation of such degraded stone materials is a crucial issue in the field of Cultural Heritage restoration. This contribution deals with laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in the Campanian architecture. Several specimens, collected from a historical quarry nearby the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Then, in order to assess the effectiveness of consolidation treatments, both treated and untreated samples underwent accelerated degradation through salt crystallization tests. A multi-analytical approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the examined tuff specimens. In addition, the calculation of the crystallization pressures was also performed in order to make a correlation between the porous structure of the tuff and its susceptivity to salt crystallization. Obtained results show that both the tested products increase the resistance of tuff to salt crystallization, although inducing an increase of crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

  14. Carbonatite tuffs in the Laetolil Beds of Tanzania and the Kaiserstuhl in Germany

    USGS Publications Warehouse

    Hay, R.L.; O'Neil, J.R.

    1983-01-01

    Carbonatite lava and tephra are now well known. The only modern eruptive carbonatites, from Oldoinyo Lengai, Tanzania, are of alkali carbonatite, whereas all of the pre-modern examples are of calcite or dolomite. Chemical and stable isotope analyses were made of separate phases of Pliocene carbonatite tuffs of the Laetolil Beds in Tanzania and of Miocene carbonatite tuffs of the Kaiserstuhl in Germany in order to understand the reasons for this major difference. The Laetolil Beds contain numerous carbonatite and melilitite-carbonatite tuffs. It is proposed that the carbonatite ash was originally of alkali carbonate composition and that the alkali component was dissolved, leaving a residuum of calcium carbonate. The least recrystallized melilitite-carbonatite tuff contains early-deposited calcite cement and calcite pseudomorphs after nyerereite (?) that have contents of strontium and barium and ??18O and ??13C values suggestive of incomplete chemical and isotopic exchange during alteration and replacement of alkali carbonatite ash. Carbonatite tuffs of the Kaiserstuhl contain globules composed of calcite phenocrysts and microphenocrysts in a groundmass of calcite with a small amount of clay, apatite, and magnetite. The SrO contents of phenocrysts, microphenocrysts, and groundmass calcite average 0.90, 1.42, and 0.59 percent, respectively. The average ??18O and ??13C values of globules (+14.3 and -9.0, respectively) fall between those of coarse-grained intrusive Kaiserstuhl carbonatite (avg. +6.6, -5.8) and those of low-temperature calcite cement in the carbonatite tuffs (+21.8, -14.9). The phenocrysts and microphenocrysts are primary magmatic calcite, but several features indicate that the groundmass has been recrystallized and altered in contact with meteoric water, resulting in weathering of silicate to clay, leaching of strontium, and isotopic exchange. The weight of evidence favors an original high content of alkali carbonatite in the groundmass, with

  15. The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement

    NASA Astrophysics Data System (ADS)

    Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi

    2015-04-01

    Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding

  16. Influences of Sedimentary Environments and Volcanic Sources on Diagenetic Alteration of Volcanic Tuffs in South China.

    PubMed

    Gong, Nina; Hong, Hanlie; Huff, Warren D; Fang, Qian; Bae, Christopher J; Wang, Chaowen; Yin, Ke; Chen, Shuling

    2018-05-16

    Permian-Triassic (P-Tr) altered volcanic ashes (tuffs) are widely distributed within the P-Tr boundary successions in South China. Volcanic altered ashes from terrestrial section-Chahe (CH) and marine section-Shangsi (SS) are selected to further understand the influence of sedimentary environments and volcanic sources on diagenetic alterarion on volcanic tuffs. The zircon 206 Pb/ 238 U ages of the corresponding beds between two sections are almost synchronous. Sedimentary environment of the altered tuffs was characterized by a low pH and did not experience a hydrothermal process. The dominant clay minerals of all the tuff beds are illite-smectite (I-S) minerals, with minor chlorite and kaolinite. I-S minerals of CH (R3) are more ordered than SS (R1), suggesting that CH also shows a higher diagenetic grade and more intensive chemical weathering. Besides, the nature of the volcanism of the tuff beds studied is derived from different magma sources. The clay mineral compositions of tuffs have little relation with the types of source volcanism and the depositional environments. Instead, the degree of the mixed-layer clay minerals and the REE distribution are mainly dependent upon the sedimentary environments. Thus, the mixed-layer clay minerals ratio and their geochemical index can be used as the paleoenvironmental indicator.

  17. Geochemistry of rock units at the potential repository level, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Cloke, P.L.

    2002-01-01

    The compositional variability of the phenocryst-poor member of the 12.8 Ma Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults. The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in wt. % or g/100 g is: SiO2, 76.29; Al2O3, 12.55; FeO, 0.14; Fe2O3, 0.97; MgO, 0.13; CaO, 0.50; Na2O, 3.52; K2O, 4.83; TiO2, 0.11; and MnO, 0.07. ?? 2002 Published by Elsevier Science Ltd.

  18. The bishop tuff: New insights from eruptive stratigraphy

    USGS Publications Warehouse

    Wilson, C.J.N.; Hildreth, W.

    1997-01-01

    The 0.76 Ma Bishop Tuff, from Long Valley caldera in eastern California, consists of a widespread fall deposit and voluminous partly welded ignimbrite. The fall deposit (F), exposed over an easterly sector below and adjacent to the ignimbrite, is divided into nine units (F1-F9), with no significant time breaks, except possibly between F8 and F9. Maximum clast sizes are compared with other deposits where accumulation rates are known or inferred to estimate an accumulation time for F1-F8 as ca. 90 hrs. The ignimbrite (Ig) is divided into chronologically and/or geographically distinct packages of material. Earlier packages (Ig1) were emplaced mostly eastward, are wholly intraplinian (coeval with fall units F2-F8), lack phenocrystic pyroxenes, and contain few or no Glass Mountain-derived rhyolite lithic fragments. Later packages (Ig2) were erupted mostly to the north and east, are at least partly intraplinian (interbedded with fall unit F9 to the east), contain pyroxenes, and have lithic fractions rich in Glass Mountain-derived rhyolite or other lithologies exposed on the northern caldera rim. Recognition of the intraplinian nature of Ig1 east of the caldera and use of the fall deposit chronometry yields accumulation estimates of ca. 25 hrs for an earlier, less-welded subpackage and ca. 36 hrs for a later, mostly welded subpackage. Average accumulation rates range up to ???1 mm/s of densewelded massive ignimbrite, equivalent to ???2.5 mm/s of non-welded material. Comparisons of internal stratification in Ig1 and northern Ig2 lobes suggest the thickest northern ignimbrite accumulated in ???35 hrs. Identifiable vent positions migrated from an initial site previously proposed in the south-central part of the caldera (F1-8, Ig1) in complex fashion; one vent set (for eastern Ig2) migrated east and north toward Glass Mountain, while another set (for northern Ig2) opened from west to east across the northern caldera margin. Vent locations for Ig1 and Ig2 southwest of the

  19. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.

    1986-12-31

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less

  20. Two examples of subaqueously welded ash-flow tuffs: the Visean of southern Vosges (France) and the Upper Cretaceous of northern Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Schneider, Jean-Luc; Fourquin, Claude; Paicheler, Jean-Claude

    1992-02-01

    Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial. The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base. In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation

  1. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary

    USGS Publications Warehouse

    Sarna-Wojcicki, A. M.; Pringle, M.S.; Wijbrans, J.

    2000-01-01

    age of the M-B transition at five sites, assuming constant sedimentation rates, the age of the Bishop ash bed and one or more well-dated chronostratigraphic horizons above and below the Bishop Tuff ash bed and M-B transition, and stratigraphic separations between these datum levels. The age of the M-B transition is 774.2 ?? 2.8 ka, based on the average of eight such calculations, close to other recent determinations, and similar to that determined from the astronomically tuned polarity timescale. Our approach provides an alternative and surprisingly precise method for determining the age of the M-B and other chronostratigraphic levels. The above dates, calculated using U.S. Geological Survey values of 27.92 Ma for the Taylor Creek (TC) sanidine can be recalculated to other widely used values for these monitors. For example, using recently published values of 28.34 Ma (TC) and 523.1 Ma (McLure Mountain hornblende, MMhb-1), the resulting ages are ???774 ka for the Bishop Tuff and ash bed and ???789 ka for the M-B transition. Copyright 2000 by the American Geophysical Union.

  2. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  3. Determining the physical and chemical processes behind four caldera-forming eruptions in rapid succession in the San Juan caldera cluster, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Curry, A. C.; Caricchi, L.; Lipman, P. W.

    2017-12-01

    A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE

  4. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah: An analog to faulting in tuff on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2011-12-01

    The equatorial layered deposits on Mars exhibit abundant evidence for the sustained presence of groundwater, and therefore insight into past water-related processes may be gained through the study of these deposits. Pyroclastic and evaporitic sediments are two broad lithologies that are known or inferred to comprise these deposits. Investigations into the effects of faulting on fluid flow potential through such Mars analog lithologies have been limited. Thus a study into the effects of faulting on fluid flow pathways through fine-grained pyroclastic sediments has been undertaken, and the results of this study are presented here. Faults and their damage zones can influence the trapping and migration of fluids by acting as either conduits or barriers to fluid flow. In clastic sedimentary rocks, the conductivity of fault damage zones is primarily a function of the microstructure of the host rock, stress history, phyllosilicate content, and cementation. The chemical composition of the host rock influences the mechanical strength of the grains, the susceptibility of the grains to alteration, and the availability of authigenic cements. The spatial distribution of fault-related damage is investigated within the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. Damage is characterized by measuring fracture densities along the fault, and by mapping the gas permeability of the surrounding rock. The Joe Lott Tuff is a partially welded, crystal-poor, rhyolite ash-flow tuff of Miocene age. While the rhyolitic chemical composition of the Joe Lott Tuff is not analogous to the basaltic compositions expected for Mars, the mechanical behavior of a poorly indurated mixture of fine-grained glass and pumice is pertinent to understanding the fundamental mechanics of faulting in Martian pyroclastic sediments. Results of mapping around two faults are presented here. The first fault is entirely exposed in cross-section and has a down-dip height of ~10 m. The second fault is

  5. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy

  6. Possible Tuff Cones In Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Seabrook, A. M.; Rothery, D. A.; Bridges, J. C.; Wright, I. P.

    The Beagle 2 lander of the ESA Mars Express mission will touch down on the martian surface in December 2003 to conduct a primarily exobiological mission. The landing site will be within Isidis Planitia, an 1100 km diameter impact basin. Isidis contains many sub-kilometre-sized cones. These can be found singly, in clusters, and in straight or arcuate chains extending many kilometres. In some areas of the basin these cones can occupy over 10% of the surface, with the most densely populated areas being in the older western half of the basin. There are few cones around the basin rim. There is also variation in the erosional state of the cones both across the basin, and within smaller areas, implying a range in time of formation for the cones. We currently favour a tuff cone origin as an explanation for these features. Tuff cones on Earth are rooted volcanic features formed at vents by the interaction between magma or magmatic heat and surface or near-surface water. Lava flows likely to be associated with at least some of the cones if they had a cinder cone (rooted eruptions at vents in a dry environment) origin are absent. This suggests the involvement of suffi- cient volatiles both to explosively fragment the erupting magma, and to cool the ejecta enough to prevent the formation of clastogenic flows. If our tuff cone interpretation is correct, this has implications for the presence, abundance and long-term persistence of sub-surface volatiles (water or carbon dioxide) on Mars. An understanding of the mechanism of formation of the Isidis cones will assist the characterisation of the basin in preparation for the landing of Beagle 2, by providing information about the history of volatiles and volcanism in the basin, and the processes that resulted in the surface we see today.

  7. U-Pb (SHRIMP) Ages of Be and U-rich Opal in Tuffaceous Breccia at Spor Mountain, Utah: Interpreting a Record of Continuous Opal Formation, Episodic Be-U Mineralization, and Remobilization Events

    NASA Astrophysics Data System (ADS)

    Ayuso, R. A.; Vazquez, J. A.; Foley, N.; Lederer, G.; Jaskula, B.

    2016-12-01

    The Spor Mountain Fm. (SMF, ca. 21 Ma; Lindsey, 1977, Eco. Geol., v. 72, 219-232; Foley et al., 2012, USGS SIR 2010-5070-F, 1-43) hosts the largest deposit of volcanogenic-epithermal Be in the world (proven reserves 15,700 t/contained Be). Ore occurs mainly in cm-to-m-wide irregularly layered nodules of calcite, chalcedony, opal, fluorite, and bertrandite (Be4Si2O7(OH)2) in tuff breccias. U-Pb SHRIMP dating (adapted from Paces et al., 2004, GCA v. 68, 1591-1606; Neymark and Paces, 2013, EPSL v. 361, 98-109) of opal in nodules from SMF yielded 206Pb/238U ages coupled with multi-element analyses, e.g., Be, F, P, Si, Ti, REE, etc. The ages reveal periods of prolonged massive and fracture-filling opal formation that range from 55 Ma to 2 Ma. Age gaps are not prominent (a previous study of bulk samples identified opal ages of 21.8 Ma, 13-16 Ma, 8-9 Ma in SMF and 3.5 Ma in the overlying 6 Ma Topaz Mountain Fm.; Ludwig et al., 1980, EPSL, v. 46, 221-232). High values of Be/Si ( 5,000-20,000), Be/F, Be/P, and Be/U and oldest ages ( 55 to 28 Ma) occur in opal in nodule cores; outward, younger opal layers ( 28 to 7 Ma) decline in Be/Si but also include spikes of >5,000. A prominent U/Si spike (>300) occurs in opal between 6 Ma and 4 Ma, which may establish the age of U mineralization that occurs immediately east of Spor Mountain (the Yellow Chief U deposit). The occurrence of Be-rich opal older than 25 Ma in nodules within the 21 Ma (K-Ar date) tuff suggests that nodule formation may also be associated with older volcanism in the region. Opal that is younger than 21 Ma is thought to have formed by hydrothermal fluid interacting with Be-rich tuff. Geochemical modeling shows leaching of Be and other elements from volcanic glass and deposition of bertrandite upon reaction of the fluid with carbonate clasts in the tuff are viable mechanisms for the observed assemblages. Be concentrations in late nodular opal (<6 Ma) may reflect redistribution of earlier mineralization. The world

  8. Radioelements and their occurrence with secondary minerals in heated and unheated tuff at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flexser, S.; Wollenberg, H.A.

    1992-06-01

    Samples of devitrified welded tuff near and away from the site of a heater test in Rainier Mesa were examined with regard to whole-rock radioelement abundances, microscopic distribution of U, and oxygen isotope ratios. Wholerock U averages between 4 and 5 ppM, and U is concentrated at higher levels secondary opaque minerals as well as in accessory grains. U in primary and secondary sites is most commonly associated with Mn phases, which average {approximately}30 ppM U in more uraniferous occurrences. This average is consistent and apparently unaffected by proximity to the heater. The Mn phases differ compositionally from Mn mineralsmore » in other NTS tuffs, usually containing abundant Fe, Ti, and sometimes Ce, and are often poorly crystalline. Oxygen isotope ratios show some depletion in {delta}{sup 18}O in tuff samples very close to the heater; this depletion is consistent with isotopic exchange between the tuff and interstitial water, but it may also reflect original heterogeneity in isotopic ratios of the tuff unrelated to the heater test. Seismic properties of several tuff samples were measured. Significant differences correlating with distance from the heater occur in P- and S-wave amplitudes; these may be due to loss of bound water. Seismic velocities are nearly constant and indicate a lack of significant microcracking. The absence of clearer signs of heater-induced U mobilization or isotopic variations may be due to the short duration of the heater test, and to insufficient definition of pre-heater-test heterogeneities in the tuff.« less

  9. Physical properties of Campi Flegrei tuff from variable depths

    NASA Astrophysics Data System (ADS)

    Vinciguerra, Sergio; Del Gaudio, Pierdomenico; Iarocci, Alessandro; Mollo, Silvio; Scarlato, Piergiorgio; Freda, Carmela

    2010-05-01

    A number of measurements on physical properties of volcanic tuff from different volcanic Italian districts (Campi Flegrei, Colli Albani, Lago di Vico) has been performed in the recent years. Petrophysical investigations carried out at increasing/decreasing effective pressure (Vinciguerra et al., 2005; 2008) revealed how, within the same lithology, the different degree of lithification and presence of clasts can affect significantly physical property values. Microstructural analyses revealed that the pressurization and depressurization cycles generate inelastic crack damage/pore collapse and permanent reduction of voids space. When cores from boreholes were investigated, significant variations of physical properties have been found even within the same tuff lithologies (Vinciguerra et al., 2008), which significantly influence the modelling of the overall physics and mechanics, as well as the input parameters for ground deformation and seismicity modelling. In this study we analysed the physical properties of Campi Flegrei tuff (12ka) cores from depths down to 100m, which is the most abundant and widely distributed lithology in the caldera (Rosi and Sbrana, 1987). CF tuff is a strongly heterogeneous pyroclastic flow material, which include cavities, pumice and crystals of sanidine, pyroxene and biotite (Vanorio et al., 2002; Vinciguerra et al., 2005). Total porosity was measured, after drying samples at 80°C for 24 hours, throughout a helium pycnometer (AccuPyc II 1340, Micromeritics Company) with ±0.01% accuracy. Initial total porosity of 52% was found for cores coming from 30m of depth. Total porosity decreases to 46% , when cores from 100m depth are considered. Bench measurements of P-wave and S-wave velocities carried out in dry conditions are of 1.8 and 1.2 km/s respectively for the 30m depth cores and increase up to 2.1 km/s and 1.35 km/s at depth of 100m. Taken together, the measurements of porosity and seismic velocities of P and S wave velocities revealed

  10. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin Barajas, A.

    2013-05-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction, on the scale of hundreds of meters. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  11. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  12. Experimental investigation of time dependent behavior of welded Topopah Spring Tuff

    NASA Astrophysics Data System (ADS)

    Ma, Lumin

    Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode

  13. Green-tuff landslide areas are beneficial for rice nutrition in Japan.

    PubMed

    Tazaki, Kazue

    2006-12-01

    Japanese Islands are covered with weathered volcanic rocks and soils. Terraced rice field are located in green-tuff areas which are very fertile but where landslides occur associated to strong earthquakes. The Xray diffraction and X-ray fluorescence analyses of the soils in landslide area identified predominant smectite and Mg, Al, Si, K, Ti, Mn and Fe are main components. The rice leaf showed that S, Cl, K and Ca play important roles for nutrients in the area. Drainpipe systems have set up in the green- tuff areas to reduce the risks of landslides. Reddish brown microbial mats inhabited bacteria and diatom in the drainpipe outlets. The microbial mats are rich in Fe and PO4(3-). The iron bacteria in the ground water have a high metabolic rate suggesting that the weathering materials were produced by not only physical and chemical influence but also by microorganism. Many microorganisms attach to mineral surfaces and show their high impact in the water mineral chemistry in the landslide area. Bacteria in the green-tuff over landslide area play important roles for sustainable agriculture including rice nutrition.

  14. Paleoflow of the Tuff of San Felipe on Isla Angel de la Guarda

    NASA Astrophysics Data System (ADS)

    Skinner, S. M.; Stock, J. M.; Martin, A.

    2013-12-01

    The Tuff of San Felipe is a widespread 12.5 Ma ignimbrite in northwestern Mexico that has a proven potential in reconstructing the rifting history of the Gulf of California. Previous studies have used the Tuff of San Felipe to correlate Isla Tiburon to the Sierra San Felipe on the Baja California Peninsula, and to correlate central Isla Angel de la Guarda to Baja California in the region of Cataviña. However, because only scattered outcrops are preserved in this latter region, paleoflow directions are an important additional constraint for reconstructing its past position relative to Isla Angel de la Guarda. We have confirmed the presence of the Tuff of San Felipe on Isla Angel de la Guarda and collected rocks from 44 sites for paleomagnetic and AMS analysis. Our work on the Tuff of San Felipe has revealed discrepancies in the magnetic fabric, and resulting flow direction. The azimuth of flow directions observed at 27 sites over 1.5 square kilometers ranges from 8° to 355° with a mean direction of 195° and an α95 of 27°. The lack of a uniform flow direction from a single mesa impairs our ability to correlate offset channelized flows over large distances. To investigate the robustness of the AMS fabric we have performed a spatially dense sampling of the unit. Rigorous rock magnetic experiments will be used to investigate any correlation between changes in the magnetic mineralogy of the samples and any irregularities or constancies in the measured fabrics and flow directions. With this study we aim to characterize the variability of the AMS ellipsoid in natural volcanic samples and the scale at which AMS can be used as a meaningful indicator of paleoflow in the Tuff of San Felipe.

  15. A field method for making a quantitative estimate of altered tuff in sandstone

    USGS Publications Warehouse

    Cadigan, R.A.

    1954-01-01

    The use of benzidine to identify altered tuff in sandstone is practical for field or field laboratory studies associated with stratigraphic correlations, mineral deposit investigations, or paleogeographic interpretations. The method is based on the ability of saturated benzidine (C12H12N2) solution to produce a blue stain on montmorillonite-bearing tuff grains. The method is substantiated by the results of microscopic, X-ray spectrometer, and spectrographic tests which lead to the conclusion that: (1) the benzidine stain test differentiates grains of different composition, (2) the white or gray grains which are stained a uniform blue color are fragments of altered tuff, and (3) white or gray grains which stain in a few small spots are probably silicified tuff. The amount of sand grains taken from a hand specimen or an outcrop which will be held by a penny is spread out on a nonabsorbent white surface and soaked with benzidine for 5 minutes. The approximate number blue grains and the average grain size are used in a chart to determine a reference number which measures relative order of abundance. The chart, based on a volume relationship, corrects for the variation in the number of grains in the sample as the grain size varies. Practical use of the method depends on a knowledge of several precautionary measures as well as an understanding of the limitations of benzidine staining tests.

  16. Energy Dissipation in Calico Hills Tuff due to Pore Collapse

    NASA Astrophysics Data System (ADS)

    Lockner, D. A.; Morrow, C. A.

    2008-12-01

    Laboratory tests indicate that the weakest portions of the Calico Hills tuff formation are at or near yield stress under in situ conditions and that the energy expended during incremental loading can be more than 90 percent irrecoverable. The Calico Hills tuff underlies the Yucca Mountain waste repository site at a depth of 400 to 500 m within the unsaturated zone. The formation is highly variable in the degree of both vitrification and zeolitization. Since 1980, a number of boreholes penetrated this formation to provide site characterization for the YM repository. In the past, standard strength measurements were conducted on core samples from the drillholes. However, a significant sampling bias occurred in that tests were preferentially conducted on highly vitrified, higher-strength samples. In fact, the most recent holes were drilled with a dry coring technique that would pulverize the weakest layers, leaving none of this material for testing. We have re-examined Calico Hills samples preserved at the YM Core Facility and selected the least vitrified examples (some cores exceeded 50 percent porosity) for mechanical testing. Three basic tests were performed: (i) hydrostatic crushing tests (to 350 MPa), (ii) standard triaxial deformation tests at constant effective confining pressure (to 70 MPa), and (iii) plane strain tests with initial conditions similar to in situ stresses. In all cases, constant pore pressure of 10 MPa was maintained using argon gas as a pore fluid and pore volume loss was monitored during deformation. The strongest samples typically failed along discrete fractures in agreement with standard Mohr-Coulomb failure. The weaker, high porosity samples, however, would fail by pure pore collapse or by a combined shear-induced compaction mechanism similar to failure mechanisms described for porous sandstones and carbonates. In the plane-strain experiments, energy dissipation due to pore collapse was determined for eventual input into dynamic wave

  17. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We

  18. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    NASA Astrophysics Data System (ADS)

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< 3 km) for some of the tuffs

  19. The geohydrologic setting of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stuckless, J.S.; Dudley, W.W.

    2002-01-01

    This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although

  20. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Leslie, Shannon R.; Hillhouse, John W.; Wooden, Joseph L.; Vazquez, Jorge A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Barstovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages indicate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 million

  1. Reconnaissance geochronology of tuffs in the Miocene Barstow Formation: implications for basin evolution and tectonics in the central Mojave Desert

    USGS Publications Warehouse

    Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.

    2010-01-01

    Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions

  2. Late Cenozoic tephrochronology, stratigraphy, geomorphology, and neotectonics of the Western Black Mountains Piedmont, Death Valley, California: Implications for the spatial and temporal evolution of the Death Valley fault zone

    NASA Astrophysics Data System (ADS)

    Knott, Jeffrey Rayburn

    This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence

  3. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  4. Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

  5. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    USGS Publications Warehouse

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source

  6. Sonication Enables Effective Iron Leaching from Green Tuff at Low Temperature

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Okawa, Hirokazu; Kawamura, Youhei; Sugawara, Katsuyasu

    2011-07-01

    Ultrasound irradiation (28 and 200 kHz) was applied to iron leaching from green tuff into a low temperature solution (20 °C) using oxalic acid. Ultrasound irradiation increased the amount of iron leached from the green tuff and was greater than that leached by stirring. It is thought that the jet flow caused by the collapse of cavities during ultrasound irradiation prevents and strips the deposits of iron oxalate from the green tuff particles. The extraction of iron at 28 kHz displayed better performance than that at 200 kHz for three reasons. The first is that the jet flow generated by cavitation bubble collapse at 28 kHz is thought to be stronger than that at 200 kHz. The second is that the crushing action of ultrasound irradiation at 28 kHz is greater than that at 200 kHz. The third is that 200 kHz irradiation generates OH radicals, which prevents the generation of FeH(C2O4)+ and oxidizes FeH(C2O4)+ to Fe(C2O4), creating a cover layer on the surface of the stone. Thus, to leach iron from the ore, it is effective to use ultrasound irradiation at 28 kHz, which prevents the creation of radicals and breaks down the grain size.

  7. Influence of long term climate change on net infiltration at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan I.; Flint, Lorraine E.; Hevesi, Joseph A.

    1993-01-01

    Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 8O. Assuming the rock properties, lithologies and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface (250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded Tuff Members, do not appear to act as capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop.

  8. Preliminary evaluation of hydrologic properties of cores of unsaturated tuff, test well USW H-1, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Weeks, E.P.; Wilson, W.E.

    1984-01-01

    Analyses were made on 19 core samples of unsaturated tuff from test well USW H-1. Moisture-characteristic curves relating saturation and moisture tension were developed from results of mercury-injection tests. Ambient moisture tension estimated from these curves generally was 1 to 2 bars. Values of relative permeability ranging from about 0.002 to 0.1 were determined by fitting an analytical expression to eight of the moisture-characteristic curves, and then integrating to solve for relative permeability. These values of relative permeability were applied to values of saturated hydraulic conductivity of core from a nearby test well to obtain effective hydraulic conductivities of about 8 x 10 to the minus twelfth power to 7 x 10 to the minus tenth power centimeter per second. If a unit hydraulic-head gradient is assumed, these values convert to a vertial matrix flux of 0.003 to 0.2 millimeter per year. The validity of this assumption was not verified due to the sparseness of data and uncertainties in their reliability. Consequently, the results of this study are preliminary and need to be used principally as a guide for future studies. (USGS)

  9. Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea)

    NASA Astrophysics Data System (ADS)

    Sohn, Y. K.; Son, M.; Jeong, J. O.; Jeon, Y. M.

    2009-10-01

    The Cretaceous Kusandong Tuff, Korea, is a thin (1-5 m thick) but laterally extensive (~ 200 km) silicic ignimbrite emplaced in a fluviolacustrine basin adjacent to a continental volcanic arc. The tuff has been used as an excellent key bed because of its great lateral continuity and unique lithology, characterized by the virtual absence of juvenile clasts and an abundance of quartz and feldspar crystals (up to 55-73 vol.%). The tuff is mostly massive and ungraded and locally shows crude internal layering, basal inverse grading and near-top normal grading of crystals, either erosional or non-erosional lower surfaces, and flat-lying to imbricated grain fabrics. Fragile intraformational clasts of mudstone and tuff are also included. These features provide only ambiguous information on the properties of the responsible pyroclastic density currents: i.e. whether they were dense and laminar or dilute and turbulent. The overall lateral continuity and sheet-like geometry of the tuff suggests, however, that the transport system of the currents was highly expanded, dilute, and turbulent. A plug-flow or slab-flow model cannot explain the origin of crude internal layering, imbricated grain fabrics, and the high crystal content, which is most likely the result of vigorous sorting processes within a dilute and turbulent current. Features indicative of deposition from a dense and laminar transporting medium are locally present, suggesting that a dense and laminar depositional system could develop locally at the base of the dilute and turbulent transport system. The virtual absence of juvenile clasts in the tuff is interpreted to be due to rapid ascent, sudden decompression, and full fragmentation of silicic magma into fine glass shards and crystals. Scarcity of basement-derived accidental components together with the absence of pumiceous fallout deposits beneath the tuff is interpreted to be due to shallow-level fragmentation of magma followed by immediate generation of

  10. Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Verwoerd, W. J.; Chevallier, L.

    1987-02-01

    Ten surtseyan tuff cones on Marion island (46° 54' S, 37° 46' E) and seven on Prince Edward island (46° 38' S, 37° 57' E) were erupted on shallow submerged coastal plains related to normal faulting. They range from Pleistocene to Holocene in age and exhibit a variable degree of erosion by the sea. Fundamental differences, irrespective of age, exist between two types: Type I cones have diameters of 1 1.5 km, rim heights of about 200 m and steep (27°) outer slopes. Deposits are plastered against nearby cliffs. Beds are thin, including layers of accretionary lapilli and less than 10 % lithic clasts. Numerous bomb sags, soft sediment deformation structures and gravity slides occur. On one of these cones mudflows formed small tunnels which resemble lava tubes, associated with channels sometimes having oversteepened walls. These cones reflect comparatively low energy conditions and probably resulted from extremely wet surges interspersed with mudflows and ballistic falls. Type II cones have smaller diameters (˜0.5 km) but widespread fallout/surge aprons. Rim heights are about 100 m and average slope angles are 18°. Bedding is massive with variable lapilli/matrix ratio and more than 10 % lithic clasts without bomb sags. These cones formed under drier, perhaps hotter and more violently explosive conditions than Type I, though not as energetic as the phreatomagmatic eruptions of terrestrial tuff rings. The two types of surtseyan eruptions are explained by invoking not only different water/magma ratios in the conduit but also different mechanisms of water/magma interaction. The slurry model of Kokelaar is favoured for Type I and a fuel-coolant model for Type II. The decisive factor is considered to be rate of effusion, with rim closure and exclusion of sea water playing a secondary role.

  11. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  12. Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir

    2015-02-01

    Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.

  13. Water chemistry at Snowshoe Mountain, Colorado: mixed processes in a common bedrock

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.

    2001-01-01

    At Snowshoe Mountain the primary bedrock is quite homogeneous, but weathering processes vary as waters moves through the soils, vadose zone and phreatic zone of the subsurface. In the thin soil, physical degradation of tuff facilitates preferential dissolution of potassium ion from glass within the rock matrix, while other silicate minerals remain unaltered. In the vadose zone, in the upper few meters of fractured bedrock, dilute water infiltrates during spring snowmelt and summer storms, leading to preferential dissolution of augite exposed on fracture surfaces. Deeper yet, in the phreatic zone of the fractured bedrock, Pleistocene calcite fracture fillings dissolve, and dioctahedral and trioctahedral clays form as penetrative weathering alters feldspar and pyroxene. Alkalinity is generated and silica concentrations are buffered by mineral alteration reactions.

  14. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-07-08

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), andmore » 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.« less

  15. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  16. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a

  17. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  18. Geochronologic and paleomagnetic evidence defining the relationship between the Miocene Hiko and Racer Canyon tuffs, eccentric outflow lobes from the Caliente caldera complex, southeastern Great Basin, USA

    USGS Publications Warehouse

    Gromme, S.; Deino, A.M.; Best, M.G.; Hudson, M.R.

    1997-01-01

    Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33??0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32??0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities.

  19. Isotopic and trace element variability in altered and unaltered tuffs at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.

    1993-01-01

    Reference stratigraphic sections near Yucca Mountain, Nevada were established and sampled in outcrop areas where the volcanic rocks have been minimally altered. Isotopic and trace element analyses obtained for these reference sections are baseline data for assessing the degree and extent of element mobility attendant with past zonal alteration of the rock mass. In agreement with earlier studies, zeolitization is shown to have occurred under wholesale open-system conditions. Calcium was increased by two three times the baseline values and strontium up to twenty times. In contrast, barium displays less variability, and the high-field strength elements zirconium and titanium were the least mobile during zeolitization. The data reported here establish the usefulness of reference sections of assessing past elements mobility. The information gained will be helpful in predicting possible future element mobility induced by thermally activated fluids in the near field of a potential repository.

  20. Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain

    USGS Publications Warehouse

    Foulger, G.R.; Julian, B.R.; Pitt, A.M.; Hill, D.P.; Malin, P.E.; Shalev, E.

    2003-01-01

    A temporary network of 69 three-component seismic stations captured a major seismic sequence in Long Valley caldera in 1997. We performed a tomographic inversion for crustal structure beneath a 28 km ?? 16 km area encompassing part of the resurgent dome, the south moat, and Mammoth Mountain. Resolution of crustal structure beneath the center of the study volume was good down to ???3 km below sea level (???5 km below the surface). Relatively high wave speeds are associated with the Bishop Tuff and lower wave speeds characterize debris in the surrounding moat. A low-Vp/Vs anomaly extending from near the surface to ???1 km below sea level beneath Mammoth Mountain may represent a CO2 reservoir that is supplying CO2-rich springs, venting at the surface, and killing trees. We investigated temporal variations in structure beneath Mammoth Mountain by differencing our results with tomographic images obtained using data from 1989/1990. Significant changes in both Vp and Vs were consistent with the migration of CO2 into the upper 2 km or so beneath Mammoth Mountain and its depletion in peripheral volumes that correlate with surface venting areas. Repeat tomography is capable of detecting the migration of gas beneath active silicic volcanoes and may thus provide a useful volcano monitoring tool.

  1. Diatreme evolution during the phreatomagmatic eruption of the Songaksan tuff ring, Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Go, S. Y.; Kim, G. B.; Jeong, J. O.; Sohn, Y. K.

    2017-03-01

    The Songaksan tuff ring, Jeju Island, Korea, which erupted ca. 3.7 ka BP in a coastal setting, provides an unusual opportunity to study the processes of phreatomagmatic eruption and the formation of a diatreme because of the exceptionally well-preserved ejecta beds and well-known subsurface geology. The tuff sequence can be divided into four units (A to D), which have distinctly different accidental componentry (quartz-rich vs. quartz-poor), grain surface features (abraded and ash-coated vs. unabraded and uncoated), and chemical compositions of juvenile particles. The basal tephra bed of unit A, which probably erupted after the removal of the relatively hard shallow-level (<120 m deep) substrate by initial cratering, comprises only unabraded and uncoated grains and contains abundant relatively deep-derived (>120 m deep) accidental grains, suggesting that the early erupted tephra had not yet experienced recycling and pre-eruption mixing in the diatreme. On the other hand, the overlying tephra beds of units A, B, and D contain an abundance of abraded and ash-coated juvenile/accidental grains, suggesting that the tephra comprised significant proportions of "recycled" or "premixed" materials from previous eruptions or subsurface explosions, which participated in the explosion-driven mixing in the diatreme before eventual ejection from the diatreme. Unit C is unusual in that it comprises extremely rare accidental grains and ash-coated juvenile/accidental grains. We interpret that the supply of solid materials, either accidental or juvenile, to the diatreme was greatly reduced because of temporary stabilization of the diatreme and the reduction in magma flux to the diatreme. The diatreme is therefore envisaged to have been filled with a water-saturated slurry, in which particle abrasion and adhesion were inhibited. We also infer that the diatreme fill was temporarily removed by a powerful explosion before eruption of unit C on the basis of the near absence of the tephra

  2. On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff: 1. Simulation studies with explicit consideration of fracture effects

    NASA Astrophysics Data System (ADS)

    Pruess, K.; Wang, J. S. Y.; Tsang, Y. W.

    1990-06-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated, fractured porous rock. Formation parameters were chosen as representative of the potential nuclear waste repository site in the Topopah Spring unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects believed to be important in multiphase fluid and heat flow. It has provisions for handling the extreme nonlinearities that arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. Thermohydrologic conditions in the vicinity of the waste packages are found to depend strongly on relative permeability and capillary pressure characteristics of the fractures, which are unknown at the present time. If liquid held on the rough walls of drained fractures is assumed to be mobile, strong heat pipe effects are predicted. Under these conditions the host rock will remain in two-phase conditions right up to the emplacement hole, and formation temperatures will peak near 100°C. If it is assumed that liquid cannot move along drained fractures, the region surrounding the waste packages is predicted to dry up, and formation temperatures will rise beyond 200°C. A substantial fraction of waste heat can be removed if emplacement holes are left open and ventilated, as opposed to backfilled and sealed emplacement conditions. Comparing our model predictions with observations from in situ heater experiments reported by Zimmerman and coworkers, some intriguing similarities are noted. However, for a quantitative evaluation, additional carefully controlled laboratory and field experiments

  3. Compositional zoning of the bishop tuff

    USGS Publications Warehouse

    Hildreth, W.; Wilson, C.J.N.

    2007-01-01

    Compositional data for >400 pumice clasts, organized according to eruptive sequence, crystal content, and texture, provide new perspectives on eruption and pre-eruptive evolution of the >4600 km3 of zoned rhyolitic magma ejected as the BishopTuff during formation of Long Valley caldera. Proportions and compositions of different pumice types are given for each ignimbrite package and for the intercalated plinian pumice-fall layers that erupted synchronously. Although withdrawal of the zoned magma was less systematic than previously realized, the overall sequence displays trends toward greater proportions of less evolved pumice, more crystals (0-5 24 wt %), and higher FeTi-oxide temperatures (714-818??C). No significant hiatus took place during the 6 day eruption of the BishopTuff, nearly all of which issued from an integrated, zoned, unitary reservoir. Shortly before eruption, however, the zoned melt-dominant portion of the chamber was invaded by batches of disparate lower-silica rhyolite magma, poorer in crystals than most of the resident magma but slightly hotter and richer in Ba, Sr, andTi. Interaction with resident magma at the deepest levels tapped promoted growth ofTi-rich rims on quartz, Ba-rich rims on sanidine, and entrapment of near-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber, led to the dark gray and swirly crystal-poor pumices sparsely present in all ashflow packages. As shown by FeTi-oxide geothermometry, the zoned rhyolitic chamber was hottest where crystal-richest, rendering any model of solidification fronts at the walls or roof unlikely.The main compositional gradient (75-195 ppm Rb; 0.8-2.2 ppm Ta; 71-154 ppm Zr; 0.40-1.73% FeO*) existed in the melt, prior to crystallization of the phenocryst suite observed, which included zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned, generally reflect magma temperature and

  4. Neogene Fallout Tuffs from the Yellowstone Hotspot in the Columbia Plateau Region, Oregon, Washington and Idaho, USA

    PubMed Central

    Nash, Barbara P.; Perkins, Michael E.

    2012-01-01

    Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16–4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas. PMID:23071494

  5. Neogene fallout tuffs from the Yellowstone hotspot in the Columbia Plateau region, Oregon, Washington and Idaho, USA.

    PubMed

    Nash, Barbara P; Perkins, Michael E

    2012-01-01

    Sedimentary sequences in the Columbia Plateau region of the Pacific Northwest ranging in age from 16-4 Ma contain fallout tuffs whose origins lie in volcanic centers of the Yellowstone hotspot in northwestern Nevada, eastern Oregon and the Snake River Plain in Idaho. Silicic volcanism began in the region contemporaneously with early eruptions of the Columbia River Basalt Group (CRBG), and the abundance of widespread fallout tuffs provides the opportunity to establish a tephrostratigrahic framework for the region. Sedimentary basins with volcaniclastic deposits also contain diverse assemblages of fauna and flora that were preserved during the Mid-Miocene Climatic Optimum, including Sucker Creek, Mascall, Latah, Virgin Valley and Trout Creek. Correlation of ashfall units establish that the lower Bully Creek Formation in eastern Oregon is contemporaneous with the Virgin Valley Formation, the Sucker Creek Formation, Oregon and Idaho, Trout Creek Formation, Oregon, and the Latah Formation in the Clearwater Embayment in Washington and Idaho. In addition, it can be established that the Trout Creek flora are younger than the Mascall and Latah flora. A tentative correlation of a fallout tuff from the Clarkia fossil beds, Idaho, with a pumice bed in the Bully Creek Formation places the remarkably well preserved Clarkia flora assemblage between the Mascall and Trout Creek flora. Large-volume supereruptions that originated between 11.8 and 10.1 Ma from the Bruneau-Jarbidge and Twin Falls volcanic centers of the Yellowstone hotspot in the central Snake River Plain deposited voluminous fallout tuffs in the Ellensberg Formation which forms sedimentary interbeds in the CRBG. These occurrences extend the known distribution of these fallout tuffs 500 km to the northwest of their source in the Snake River Plain. Heretofore, the distal products of these large eruptions had only been recognized to the east of their sources in the High Plains of Nebraska and Kansas.

  6. Geologic map of south-central Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Dickerson, Robert P.; Drake II, Ronald M.

    2004-01-01

    New 1:6,000-scale geologic mapping in a 20-square-kilometer area near the south end of Yucca Mountain, Nevada, which is the proposed site of an underground repository for the storage of high-level radioactive wastes, substantially supplements the stratigraphic and structural data obtained from earlier, 1:24,000-scale mapping. Principal observations and interpretations resulting from the larger scale, more detailed nature of the recent investigation include: (1) the thickness of the Miocene Tiva Canyon Tuff decreases from north to south within the map area, and the lithophysal zones within the formation have a greater lateral variability than in areas farther north; and (2) fault relations are far more complex than shown on previous maps, with both major (block-bounding) and minor (intrablock) faults showing much lateral variation in (a) the number of splays and (b) the amount, distribution, and width of anastomosing breccia and fracture zones.

  7. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less

  8. Chemical correlation of some late Cenozoic tuffs of Northern and Central California by neutron activation analysis of glass and comparison with X-ray fluorescence analysis

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Bowman, Harry W.; Russell, Paul C.

    1979-01-01

    Glasses separated from several dacitic and rhyolitic late Cenozoic tuffs of northern and central California were analyzed by neutron activation for more than 43 elemental abundances. Eighteen elements--scandiurn, manganese, iron, zinc, rubidium, cesium, barium, lanthanum, cerium, samarium, europium, terbiurn, dysprosiurn, ytterbiurn, hafniurn, tantalurn, thorium and uranium--were selected as most suitable for purposes of chemical correlation on the basis of their natural variability in silicic tuffs and the precision obtainable in analysis. Stratigraphic relations between tuffs and replicate chemical analyses on individual tuffs make it possib1e to calibrate a quantitative parameter, the similarity coefficient, which indicates the degree of correlation for the tuffs studied. The highest similarity coefficient (0.99) was obtained for analyses of two tuffs (potassium-argon dated at about' 6.0 m.y.) exposed in the Merced(?) and Petaluma Formations of Sonoma County, which represent different paleoenvironments, shallow-water marine and fresh water or brackish marine, respectively. Corre1ation of these formations on the basis of criteria other than tephrochronoloqy would be difficult. Results of neutron activation analysis in general confirm earlier correlations made on the basis of analysis by X-ray fluorescence but also make it possible to resolve small compositional differences between chemically simi1ar tuffs in stratigraphic proximity. The Lawlor Tuff (potassium-argon dated at about 4.0 m.y.) is identified at two new localities: in a core sample obtained from a bore hole east of Suisun Bay, and from the Kettleman Hills of western San Joaquin Valley. This identification permits correlation of the uppermost part of the marine Etchegoin Formation in the San Joaquin Valley with the continental Livermore Gravels of Clark, the Tassajara Formation, and the upper part of the Sonoma Volcanics in the cel1tral Coast Ranges of California. A younger tuff near the top of the

  9. Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona

    USGS Publications Warehouse

    Keith, William J.; Theodore, Ted G.

    1979-01-01

    The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.

  10. Geology of the southern Elkhorn Mountains, Jefferson and Broadwater Counties, Montana

    USGS Publications Warehouse

    Klepper, M.R.; Weeks, R.A.; Ruppel, E.T.

    1957-01-01

    section is the Phosphoria formation of Permian age, a thin unit of chert and quartzitic sandstone that contains a few thin phosphate beds. The basal Mesozoic unit is the Swift formation of late Jurassic age, a thin calcareous marine sandstone that overlies the Phosphoria with slight erosional unconformity. It is overlain by nonmarine shale and sandstone of the Morrison formation of late Jurassic age and the Kootenai formation of Early Cretaceous age. The Kootenai is overlain, possibly with slight erosional unconformity, by the Colorado formation an assemblage of marine dark shale and siliceous mudstone and nonmarine quartz-chert sandstone. The Colorado formation as here used includes beds of both Early and Late Cretaceous age. The Colorado in places grades upwards into a sequence of feldspathic sandstone and tuff beds here named the Slim Sam formation. Elsewhere within the area, the Slim Sam formation is absent, probably in part owing to erosion and in part nondeposition. Where present, the Slim Sam grades upward into a thick sequence of andesitic and quartz latitic volcanic rocks, comprising tuffs, lapilli tuffs, breccias, welded tuffs and flows, that are here named the Elkhorn Mountains volclinics and are probably entirely of Cretaceous age. Where the Slim Sam formation is absent, the Elkhorn Mountains volcanics rest with angular unconformity on beds as old as the Morrison. The pre-Tertiary layered rocks, aggregating more than 15,000 feet in thickness, were folded and intruded by igneous rocks of several types, and the area was uplifted and eroded to a terrain of mature relief, similar to that of the present. During the Oligocene epoch, volcanic sediments with interbreds of nonvolcanic gravel accumulated. These beds were in turn moderately eroded, and gravel of Miocene ( ?) age was deposited in channels within them. Subsequently, probably during the Pliocene epoch, the Tertiary beds were weakly deformed locally, and a pediment was cut across the Tertiary and older

  11. Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa

    NASA Astrophysics Data System (ADS)

    Vatin-Perignon, N.; Poupeau, G.; Oliver, R. A.; La Venu, A.; Labrin, F.; Keller, F.; Bellot-Gurlet, L.

    1996-03-01

    Trace-element and REE data of glass and pumices of acidic tuffs and related fall deposits erupted in southern Peru and northern Bolivia between 20 and 0.36 Ma display typical characteristics of subduction related continental arc magmatism of the CVZ with strong LILE/HFSE enrichment and non enrichment of HREE and Y. Geochemical variations of these tuffs are linked to subduction processes and controlled by changes in tectonic regimes which occured with each Quechua tectonic pulse and affected the astenospheric wedge and both the dowgoing and the overriding lithospheres. During Neogene — Pleistocene times, tuffs erupted in northern Bolivia are typically enriched in Zr, Hf, Th, Ba, LREEs and other incompatible elements and incompatible /Yb ratios are much higher relative to those erupted from southern Peru, at a given SiO 2 content (65-67 wt. for dacites, 72-73 wt.% for rhyolites). {Zr}/{Hf} ratios increase eastward from 27 to 30 and {Ce}/{Yb N} ratios from 11 to 19 reflecting the variation of degree of wedge contribution. Fractionation of the LREE over the HREE and fractionation of incompatible elements may be due to their heterogeneous distribution in the magma source. More highly fractionated REE patterns of Bolivian tuffs than Peruvian tuffs are attributed to variable amounts of contamination of magmas by lower crust. After the Quechua compressional event at 7 Ma, {Sr}/{Y} ratios of tuffs of the same age, erupted at 150-250 km or 250-400 km from the Peru-Chile trench, increase from southern Peru to northern Bolivia. These differences may be attributed to the subduction of a swarm oceanic lithosphere under the Bolivian Alti-plano, leading to partial melting of the sudbucted lithosphere. New FT dating of obsidian fragments of the sillar of Arequipa at 2.42 ± 0.11 Ma. This tuff dates the last Quechua compressional upper Pliocene phase ( 2.5 Ma) and confirms that the sillar is not contemporaneous with the Toba 76 tuff or the Perez ignimbrite of northern Bolivia

  12. Comparison of Two Methods for Determination of Strontium Isotopes in Pore Water at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Futa, K.; Scofield, K. M.

    2002-12-01

    The proposed radioactive waste repository at Yucca Mountain, Nevada would be constructed in the high-silica rhyolite member of the Topopah Spring Tuff, an ash-flow tuff within the ~500-m-thick unsaturated zone. Dry-drilled rock cores from this unit have been packaged to preserve their water content. Two methods have been used to extract the strontium contained in the pore water for isotopic measurements. In the first method, samples of dried core were crushed, and the 0.25 to 2.4 mm size fractions were leached with ultra-pure water for about 1 hour to dissolve the salts left behind by the evaporated pore water. Concentrations of strontium in the pore water were calculated from determinations of porosity and saturation on adjacent core and the measured strontium concentration in the leachate. In the second method, pore water was extracted from sealed core using an ultracentrifuge, minimizing evaporation of water from the core at all steps in the process. The centrifugation of 150 to 200 g of welded tuff at 15,000 rpm for 6 hours typically results in the recovery of as much as 3 ml of pore water for analysis. Strontium isotope compositions were determined by thermal ionization mass spectrometry; 87Sr /86Sr ratios have a reproducibility of 0.00005. The ranges of 87Sr/86Sr ratios determined by the two methods are identical: 0.71215 to 0.71267 in the leachates (n = 35) and 0.71214 to 0.71266 in the extracted pore waters (n = 21). However, the calculated strontium concentrations in the leachates average 300 μg/L, whereas those in the extracted pore water average 1440 μg/L, indicating that a substantial portion of the pore-water salts remain in the crushed rock after leaching. The strontium data determined on extracted pore water shows that the leaching of pore-water salts results in accurate 87Sr/86Sr, but that a substantial correction to the strontium concentration is required due to the inefficiency of the leaching procedure and the small pore sizes in the welded

  13. Ore Deposits of the Jerome and Bradshaw Mountains Quadrangles, Arizona

    USGS Publications Warehouse

    Lindgren, Waldemar; Heikes, V.C.

    1926-01-01

    In the summer of 1922, at the request of the Director of the United States Geological Survey, I undertook an examination of the ore deposits in the Jerome and Bradshaw Mountains quadrangles, Ariz. (See fig. 1.) The object of this work was not a detailed investigation of each deposit but rather a coordination and classification of the occurrences and an attempt to ascertain their origin and economic importance. Almost all the deposits occur in pre-Cambrian rocks or in rocks that are not readily differentiated from the pre-Cambrian. In the northern part of the Jerome quadrangle there are large areas of almost horizontal Paleozoic beds, and in both quadrangles there are also large areas of lava flows of Tertiary age. Finally there are wide spaces occupied by Tertiary tuff and limestone, or by Tertiary and Quaternary wash filling the valleys between the mountain ranges. But all these rocks except the pre-Cambrian are practically barren of ore deposits, and the problem therefore narrowed itself to an examination of the pre-Cambrian areas. This task was greatly facilitated by the careful work of Jaggar and Palache, set forth in the Bradshaw Mountains folio,l in which the southern quadrangle of the two under present consideration is mapped geologically and described, and which also includes a comprehensive though brief discussion of the mineral deposits. There is no published geologic map of the Jerome quadrangle, but I had the opportunity through the courtesy of Dr. G. M. Butler, Director of the Arizona Bureau of Mines, to use a manuscript map of this area prepared for the State by Mr. L. E. Reber, jr., and Mr. Olaf Jenkins.

  14. Eruptive history, petrology, and petrogenesis of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Budding, Karin E.

    1982-01-01

    The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of

  15. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  16. 3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope

    NASA Astrophysics Data System (ADS)

    Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping

    2018-05-01

    There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.

  17. Lead isotopes and trace metals in dust at Yucca Mountain

    USGS Publications Warehouse

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  18. In defense of Magnetite-Ilmenite Thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs

    USGS Publications Warehouse

    Evans, Bernard W; Hildreth, Edward; Bachmann, Olivier; Scaillet, Bruno

    2016-01-01

    Despite claims to the contrary, the compositions of magnetite and ilmenite in the Bishop Tuff correctly record the changing conditions of T and fO2 in the magma reservoir. In relatively reduced (∆NNO < 1) siliceous magmas (e.g., Bishop Tuff, Taupo units), Ti behaves compatibly (DTi ≈ 2-3.5), leading to a decrease in TiO2 activity in the melt with cooling and fractionation. In contrast, FeTi-oxides are poorer in TiO2 in more oxidized magmas (∆NNO > 1, e.g., Fish Canyon Tuff, Pinatubo), and the d(aTiO2)/dT slope can be negative. Biotite, FeTi-oxides, liquid, and possibly plagioclase largely maintained equilibrium in the Bishop Tuff magma (unlike the pyroxenes, and cores of quartz, sanidine, and zircon) prior ro and during a mixing event triggered by a deeper recharge, which, based on elemental diffusion profiles in minerals, took place at least several decades before eruption. Equilibrating phases and pumice compositions show evolving chemical variations that correlate well with mutually consistent temperatures based on the FeTi-oxides, sanidine-plagioclase, and ∆18O quartz-magnetite pairs. Early Bishop Tuff (EBT) temperatures are lower (700 to ~780‎°C) than temperatures (780 to >820°C) registered in Late Bishop Tuff (LBT), the latter defined here not strictly stratigraphically, but by the presence of orthopyroxene and reverse-zoned rims on quartz and sanidine. The claimed similarity in compositions, Zr-saturation temperatures and thermodynamically calculated temperatures (730-740°C) between EBT and less evolved LBT reflect the use of glass inclusions in quartz cores in LBT that were inherited from the low temperature rhyolitic part of the reservoir characteristic of the EBT. LBT temperatures as high as 820°C, the preservation of orthopyroxene, and the presence of reverse-zoned minerals (quartz, sanidine, zircons) are consistent with magma recharge at the base of the zoned reservoir, heating the cooler rhyolitic melt, partly remelting cumulate mush

  19. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  20. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brechtel, C.E.; Lin, Ming; Martin, E.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to themore » Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.« less

  1. Distinguishing and correlating deposits from large ignimbrite eruptions using paleomagnetism: The Cougar Point Tuffs (mid-Miocene), southern Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Finn, David R.; Coe, Robert S.; Brown, Ethan; Branney, Michael; Reichow, Marc; Knott, Thomas; Storey, Michael; Bonnichsen, Bill

    2016-09-01

    In this paper, we present paleomagnetic, geochemical, mineralogical, and geochronologic evidence for correlation of the mid-Miocene Cougar Point Tuff (CPT) in southwest Snake River Plain (SRP) of Idaho. The new stratigraphy presented here significantly reduces the frequency and increases the scale of known SRP ignimbrite eruptions. The CPT section exposed at the Black Rock Escarpment along the Bruneau River has been correlated eastward to the Brown's Bench escarpment (six common eruption units) and Cassia Mountains (three common eruption units) regions of southern Idaho. The CPT records an unusual pattern of geomagnetic field directions that provides the basis for robust stratigraphic correlations. Paleomagnetic characterization of eruption units based on geomagnetic field variation has a resolution on the order of a few centuries, providing a strong test of whether two deposits could have been emplaced from the same eruption or from temporally separate events. To obtain reliable paleomagnetic directions, the anisotropy of anhysteretic remanence was measured to correct for magnetic anisotropy, and an efficient new method was used to remove gyroremanence acquired during alternating field demagnetization.

  2. Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico

    USGS Publications Warehouse

    Teasdale, W.E.; Pemberton, R.R.

    1984-01-01

    This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)

  3. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less

  4. Oxygen isotopic and geochemical evidence for a short-lived, high-temperature hydrothermal event in the Chegem caldera, Caucasus Mountains, Russia

    USGS Publications Warehouse

    Gazis, C.; Taylor, H.P.; Hon, K.; Tsvetkov, A.

    1996-01-01

    Within the 2.8 Ma Chegem ash-flow caldera (11 ?? 15 km), a single cooling unit of rhyolitic to dacitic welded tuff more than 2 km thick is exposed in deep valleys incised during recent rapid uplift of the Caucasus Mountains. The intracaldera tuff is mineralogically fresh and unaltered, and is overlain by andesite lavas and cut by a resurgent granodiorite intrusion. Major- and trace-element compositions for a 1405-m stratigraphic section of intracaldera tuff display trends of upwardly increasing Na2O, CaO, Al2O3, total Fe, MgO, TiO2, Sr and Zr and decreasing SiO2, K2O and Rb. This mafic-upward zoning (from 76.1 to 69.9% SiO2) reflects an inverted view of the upper part of the source magma chamber. Oxygen isotope studies of 35 samples from this 1405-m section define a striking profile with "normal" igneous ??18O values (+7.0 to +8.5) in the lower 600 m of tuff, much lower ??18O values (-4.0 to +4.3) in a 700-m zone above that and a shift to high ??18O values (+4.4 to -10.9) in the upper 100 m of caldera-fill exposure. Data from two other partial stratigraphic sections indicate that these oxygen isotope systematics are probably a caldera-wide phenomenon. Quartz and feldspar phenocrysts everywhere have "normal" igneous ??18O values of about +8.5 and +7.5, respectively, whereas groundmass and glass ??18O values range from -7.7 to +12.3. Consequently, the ??18O values of coexisting feldspar, groundmass and glass form a steep array in a plot of ??feldspar vs. ??groundmass/glass. Such pronounced disequilibrium between coexisting feldspar and groundmass or glass has never before been observed on this scale. It requires a hydrothermal event involving large amounts of low-18O H2O at sufficiently high temperatures and short enough time (tens of years or less) that glass exchanges thoroughly but feldspar does not. The most likely process responsible for the O depletions at Chegem is a very high temperature (500-600??C), short-lived, vigorous meteoric-hydrothermal event that was

  5. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Farquharson, Jamie I.; Kushnir, Alexandra R. L.; Lavallée, Yan; Baud, Patrick; Gilg, H. Albert; Reuschlé, Thierry

    2018-06-01

    Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.

  6. Correlation of ash-flow tuffs.

    USGS Publications Warehouse

    Hildreth, W.; Mahood, G.

    1985-01-01

    Discrimination and correlation of ash-flow sheets is important in structurally complex, long-lived volcanic fields where such sheets provide the best keys to the regional stratigraphic framework. Three-dimensional complexities resulting from pulsatory eruptions, sectorial emplacement, mechanical sorting during outflow, thermal and compositional zoning of magmas, the physical zoning of cooling units, and structural and erosional disruption can make such correlation and discrimination difficult. When lithologic, magnetic, petrographic, chemical, and isotopic criteria for correlating ash-flow sheets are critically evaluated, many problems and pitfalls can be identified. Distinctive phenocrysts, pumice clasts, and lithic fragments are among the more reliable criteria, as are high-precision K-Ar ages and thermal remanent magnetization (TRM) directions in unaltered welded tuff. Chemical correlation methods should rely principally upon welded or nonwelded pumice blocks, not upon the ash-flow matrix, which is subject to fractionation, mixing, and contamination during emplacement. Compositional zoning of most large sheets requires that many samples be analyzed before phenocryst, glass or whole-rock chemical trends can be used confidently as correlation criteria.-Authors

  7. Tectonic controls on large landslide complex: Williams Fork Mountains near Dillon, Colorado

    USGS Publications Warehouse

    Kellogg, K.S.

    2001-01-01

    An extensive (~ 25 km2) landslide complex covers a large area on the west side of the Williams Fork Mountains in central Colorado. The complex is deeply weathered and incised, and in most places geomorphic evidence of sliding (breakaways, hummocky topography, transverse ridges, and lobate distal zones) are no longer visible, indicating that the main mass of the slide has long been inactive. However, localized Holocene reactivation of the landslide deposits is common above the timberline (at about 3300 m) and locally at lower elevations. Clasts within the complex, as long as several tens of meters, are entirely of crystalline basement (Proterozoic gneiss and granitic rocks) from the hanging wall of the Laramide (Late Cretaceous to Early Tertiary), west-directed Williams Range thrust, which forms the western structural boundary of the Colorado Front Range. Late Cretaceous shale and sandstone compose most footwall rocks. The crystalline hanging-wall rocks are pervasively fractured or shattered, and alteration to clay minerals is locally well developed. Sackung structures (trenches or small-scale grabens and upslope-facing scarps) are common near the rounded crest of the range, suggesting gravitational spreading of the fractured rocks and oversteepening of the mountain flanks. Late Tertiary and Quaternary incision of the Blue River Valley, just west of the Williams Fork Mountains, contributed to the oversteepening. Major landslide movement is suspected during periods of deglaciation when abundant meltwater increased pore-water pressure in bedrock fractures. A fault-flexure model for the development of the widespread fracturing and weakening of the Proterozoic basement proposes that the surface of the Williams Range thrust contains a concave-downward flexure, the axis of which coincides approximately with the contact in the footwall between Proterozoic basement and mostly Cretaceous rocks. Movement of brittle, hanging-wall rocks through the flexure during Laramide

  8. The effect of dilatancy on the unloading behavior of Mt. Helen tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attia, A.V.; Rubin, M.B.

    1993-11-01

    In order to understand the role of rock dilatancy in modeling the response of partially saturated rock formations to underground nuclear explosions, we have developed a thermodynamically consistent model for a porous material, partially saturated with fluid. This model gives good predictions of the unloading behavior of dry, partially saturated, and fully saturated Mt. Helen tuff, as measured by Heard.

  9. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    USGS Publications Warehouse

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that

  10. From coseismic offsets to fault-block mountains

    USGS Publications Warehouse

    Thompson, George A.; Parsons, Thomas E.

    2017-01-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  11. From coseismic offsets to fault-block mountains

    PubMed Central

    Thompson, George A.

    2017-01-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period. PMID:28847962

  12. From coseismic offsets to fault-block mountains.

    PubMed

    Thompson, George A; Parsons, Tom

    2017-09-12

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  13. From coseismic offsets to fault-block mountains

    NASA Astrophysics Data System (ADS)

    Thompson, George A.; Parsons, Tom

    2017-09-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  14. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    USGS Publications Warehouse

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  15. Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics

    NASA Astrophysics Data System (ADS)

    López-Gamundí, Oscar

    2006-12-01

    Increasing evidence of Permian volcanic activity along the South American portion of the Gondwana proto-Pacific margin has directed attention to its potential presence in the stratigraphic record of adjacent basins. In recent years, tuffaceous horizons have been identified in late Early Permian-through Middle Permian (280-260 Ma) sections of the Paraná Basin (Brazil, Paraguay, and Uruguay). Farther south and closer to the magmatic tract developed along the continental margin, in the San Rafael and Sauce Grande basins of Argentina, tuffs are present in the Early to Middle Permian section. This tuff-rich interval can be correlated with the appearance of widespread tuffs in the Karoo Basin. Although magmatic activity along the proto-Pacific plate margin was continuous during the Late Paleozoic, Choiyoi silicic volcanism along the Andean Cordillera and its equivalent in Patagonia peaked between the late Early Permian and Middle Permian, when extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region. The San Rafael orogenic phase (SROP) interrupted sedimentation along the southwestern segment of the Gondwana margin (i.e., Frontal Cordillera, San Rafael Basin), induced cratonward thrusting (i.e., Ventana and Cape foldbelts), and triggered accelerated subsidence in the adjacent basins (Sauce Grande and Karoo) located inboard of the deformation front. This accelerated subsidence favored the preservation of tuffaceous horizons in the syntectonic successions. The age constraints and similarities in composition between the volcanics along the continental margin and the tuffaceous horizons in the San Rafael, Sauce Grande, Paraná, and Karoo basins strongly suggest a genetic linkage between the two episodes. Radiometric ages from tuffs in the San Rafael, Paraná, and Karoo basins indicate an intensely tuffaceous interval between 280 and 260 Ma.

  16. The age of the Keystone thrust: laser-fusion 40Ar/39Ar dating of foreland basin deposits, southern Spring Mountains, Nevada

    USGS Publications Warehouse

    Fleck, R.J.; Carr, M.D.

    1990-01-01

    Nonmarine sedimentary and volcaniclastic foreland-basin deposits in the Spring Mountains are cut by the Contact and Keystone thrusts. These synorogenic deposits, informally designated the Lavinia Wash sequence by Carr (1980), previously were assigned a Late Jurassic to Early Cretaceous(?) age. New 40Ar.39Ar laser-fusion and incremental-heating studies of a tuff bed in the Lavinia Wash sequence support a best estimate age of 99.0 ?? 0.4 Ma, indicating that the Lavinia Wash sequence is actually late Early Cretaceous in age and establishing a maximum age for final emplacement of the Contact and Keystone thrust plates consistent with the remainder of the Mesozoic foreland thrust belt. -from Authors

  17. Removal and recovery of p-phenylenediamines developing compounds from photofinishing lab-washwater using clinoptilolite tuffs from Greece.

    PubMed

    Vlessidis, A G; Triantafillidis, C S; Evmiridis, N P

    2001-04-01

    Clinoptilolite tuffs from areas in Thrace region of Greece are compared with synthetic zeolites NaY and NH4Y for the uptake of N4-ethyl-N4-(2-methansulphonamidoethyl)-2-methyl-1,4-phenylenediamin (sesquisulphate, monohydrate) with the trade name CD-3 for the purpose to be used for clean-up and recycling photo-finishing and photo-developing washwaters. The cation-exchange capacity is found to be 6.15-11.1 mg/g for zeoliferous tuffs at equilibrium concentration of 50 ppm CD-3 in aqueous solution compared to 65.0 mg/g of NaY and 48.2 mg/g for NH4Y synthetic zeolites corresponding to the removal of CD-3 from 120 to 2001 of 50 ppm aqueous solution per kg of natural zeoliferous tuff; this capacity is only 6-10 times lower than type-Y synthetic zeolite. Initial rates of uptake are 20.8 mg/l/min for natural and 38.5 mg/l/min for synthetic zeolites. Regeneration levels of 55, 23, 35, and 33% are obtained for MCH, SF, NaY, and NH4Y, respectively. The rapid and almost complete uptake of CD-3 from its aqueous solutions at low CD-3 concentrations by the natural zeolites is promising for such an application.

  18. Fractures in outcrops in the vicinity of drill hole USW G-4. Yucca Mountain, Nevada; data analysis and compilation

    USGS Publications Warehouse

    Barton, Christopher C.; Page, William R.; Morgan, Terrance L.

    1989-01-01

    Fractures on outcrops in the vicinity of drill hole USW G-4, Yucca Mountain, Nevada, were studied in order to contribute to characterization of fractures for hydrologjc, geomechanical, and tectonic modeling of the Yucca Mountain block and to characterize fractures prior to the excavation of a proposed exploratory shaft located near USW G-4. Yucca Mountain is a prospective site for the construction of an underground repository for high-level nuclear waste.Measurements were taken and recorded on 5,000 fractures at 50 outcrop stations primarily in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paintbrush Tuff. Fracture orientation and surface roughness were recorded for each fracture. Additionally, notes were taken on fracture abutting, crossing, and offsetting relations, swarming, curvature, brecciation, slickensides, and fracture fillings. Frequency distributions of orientation and roughness were plotted and analyzed. Fractures with low roughness coefficients (0-4) group tightly into two sets based on orientation. We conclude that such fractures are cooling joints and that all other fractures are tectonic. The development of small-scale fractures adjacent, subparallel, and possibly related to the Ghost Dance fault has been addressed in a preliminary way based on data collected in this study. Such sympathetic fractures are abundant in the upper cliff unit but not in the upper lithophysal unit.

  19. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, H.W.; Sikora, R.F.

    1994-12-31

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identifiedmore » within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am{sup {minus}1} needed to produce the 400 nT low observed at the surface.« less

  20. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    USGS Publications Warehouse

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  1. Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains.

    PubMed

    Albert, Rosa Maria; Bamford, Marion K

    2012-08-01

    As part of ongoing research at Olduvai Gorge, Tanzania, to determine the detailed paleoenvironmental setting during Bed I and Bed II times and occupation of the basin by early hominins, we present the results of phytolith analyses of Tuff IF which is the uppermost unit of Bed I. Phytoliths were identified in most of the levels and localities on the eastern paleolake margin, but there are not always sufficient numbers of identifiable morphologies to infer the specific type of vegetation due to dissolution. Some surge surfaces and reworked tuff surfaces were vegetated between successive ash falls, as indicated by root-markings and the presence of a variety of phytolith morphotypes. Dicotyledonous wood/bark types were dominant except at the FLK N site just above Tuff IF when monocots are dominant and for the palm-dominated sample from the reworked channel cutting down into Tuff IF at FLK N. The area between the two fault scarps bounding the HWK Compartment, approximately 1 km wide, was vegetated at various time intervals between some of the surges and during the reworking of the Tuff. By lowermost Bed II times the eastern margin was fully vegetated again. Climate and tectonic activity probably controlled the fluctuating lake levels but locally the paleorelief and drainage were probably the controlling factors for the vegetation changes. These data support a scenario of small groups of hominins making brief visits to the paleolake during uppermost Bed I times, followed by a more desirable vegetative environment during lowermost Bed II times. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Cerro Xalapaxco: An Unusual Tuff Cone with Multiple Explosion Craters, in Central Mexico (Puebla)

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Siebe, C.

    1994-01-01

    The Xalapaxco tuff cone is located on the northeast flank of La Malinche stratovolcano in central Mexico. An unusually large number (10) of explosion craters, concentrated on the central and on the uphill side of the cone, expose alternating beds of stratified surge deposits and massive fall deposits.

  3. 33. VIEW OF WEST WALL OF CRUSHING ADDITION FROM SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF WEST WALL OF CRUSHING ADDITION FROM SOUTHWEST. STEPHENS-ADAMSON 25 TON/HR BUCKET ELEVATOR IN CENTER. TEAM SUPERVISOR ROBERT W. GRZYWACZ ON LOWER LEVEL (LOCATION OF STEARNS-ROGER DRYER). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. Rockfall hazard assessment of nearly vertical rhyolite tuff cliff faces by using terrestrial laser scanner, UAV and FEM analyses

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Görög, Péter; Lovas, Tamás; Bögöly, Gyula; Czinder, Balázs; Vásárhelyi, Balázs; Molnár, Bence; József Somogyi, Árpád

    2017-04-01

    Nearly vertical rhyolite tuff cliff faces are located in NE-Hungary representing rock fall hazard in the touristic region of Sirok. Larger blocks of the cliff have fallen in recent years menacing tourists and human lives. The rhyolite tuff, that forms the Castle Hill was formed during Miocene volcanism and comprises of brecciated lapilli tuffs and tuffs with intercalating ignimbritic horizons. The paper focuses on the 3D mapping of cliff faces and modeling of rock fall hazard. The topography and 3D model of the cliff was obtained by using GNSS supported terrestrial laser scanner and UAV. With imaging techniques of UAV a Triangulated Irregular Network (TIN) model was developed that contained triangles with 5-10 cm side lengths. GNSS supported terrestrial laser scanning allowed the observation with a resolution 1-5 cm of point spacing. The point clouds were further processed and with the combination of laser scanner and UAV data a 3D model of the studied cliff faces were obtained. Geological parameters for rock fall analyses included both field observations and laboratory tests. The lithotypes were identified on the field and were sampled for rock mechanical laboratory analyses. Joint- and fault system was mapped and visualized by using Rocscience Dip. EN test methods were used to obtain the density properties of various lithotypes of rhyolite tuff. Other standardized EN tests included ultrasonic pulse velocity, water absorption, indirect tensile strength (Brasilian), uniaxial compressive strength and modulus of elasticity of air dry and of water saturated samples. GSI values were denoted based on filed observations and rock mass properties. The stability analyses of cliff faces were made by using 2D FEM software (Phase 2). Cross sections were evaluated and global factor of safety was also calculated. The modeled displacements were in the order of few centimeters; however several locations were pinpointed where wedge failure and planar slip surfaces were identified

  5. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCord, John; Marutzky, Sam

    2004-12-01

    the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.« less

  6. 64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY MILL FEEDS AT BOTTOM. MILL SOLUTION TANKS WERE TO THE LEFT (EAST) AND BARREN SOLUTION TANK TO THE RIGHT (WEST) OR THE CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  7. Geohydrology of test well USW H-3, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Thordarson, William; Rush, F.E.; Waddell, S.J.

    1985-01-01

    Test well USW H-3 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 meters were volcanic tuffs of Tertiary age. The most transmissive zone in this well is in the upper part of the Tram Member of the Crater Flat Tuff that was penetrated at a depth from 809 to 841 meters; transmissivity is about 7 x 10 -1 meter squared per day. The remainder of the rocks penetrated between the depths of 841 to 1,219 meters have a transmissivity of about 4 x 10 -1 meter squared per day and are predominatly in the Tram Member of the Crater Flat Tuff and the Lithic Ridge Tuff in the depths from 841 to 1,219 meters. (USGS)

  8. The Lake Forest Tuff Ring, Lake Tahoe, CA: Age and Geochemistry of a Post-arc Phreatomagmatic Eruption

    NASA Astrophysics Data System (ADS)

    Cousens, B. L.; Henry, C. D.; Pauly, B. D.

    2007-12-01

    The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help

  9. Relict colluvial boulder deposits as paleoclimatic indicators in the Yucca Mountain region, southern Nevada

    USGS Publications Warehouse

    Whitney, J.W.; Harrington, C.D.

    1993-01-01

    Early to middle Pleistocene boulder deposits are common features on southern Nevada hillslopes. These darkly varnished, ancient colluvial deposits stand out in stark contrast to the underlying light-colored bedrock of volcanic tuffs, and they serve as minor divides between drainage channels on modern hillslopes. To demonstrate the antiquity of these stable hillslope features, six colluvial boulder deposits from Yucca Mountain, Nye County, Nevada, were dated by cation-ratio dating of rock varnish accreted on boulder surfaces. Estimated minimum ages of these boulder deposits range from 760 to 170 ka. Five additional older deposits on nearby Skull and Little Skull Mountains and Buckboard Mesa yielded cation-ratio minimum-age estimates of 1.38 Ma to 800 ka. An independent cosmogenic chlorine-36 surface exposure date was obtained on one deposit, which confirms an estimated early to middle Quaternary age. These deposits have provided the oldest age estimates for unconsolidated hillslope deposits in the southwestern United States. We suggest that the colluvial boulder deposits were produced during early and middle Pleistocene glacial/pluvial episodes and were stabilized during the transition to drier interglacial climates. The preservation of old, thin hillslope deposits and the less-than-2-m incision by hillslope runoff adjacent to these deposits, indicate that extremely low denudation rates have occurred on resistant volcanic hillslopes in the southern Great Basin during Quaternary time. -from Authors

  10. Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Neymark, L.A.; Peterman, Z.E.

    2003-01-01

    Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.

  11. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In

  12. Interstratified arkosic and volcanic rocks of the Miocene Spanish Canyon Formation, Alvord Mountain area, California: descriptions and interpretations

    USGS Publications Warehouse

    Buesch, David C.

    2014-01-01

    The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.

  13. Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2005-01-01

    Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in

  14. Employing volcanic tuff minerals in interior architecture design to reduce microbial contaminants and airborne fungal carcinogens of indoor environments.

    PubMed

    Gedikoglu, Yaman; Gedikoglu, Gunduz; Berkin, Genco; Ceyhan, Taskin; Altinoz, Meric A

    2012-09-01

    Indoor volatile organic compounds (VOCs) have posed significant risks to human health since people have both shifted to a life spent, for the most part, indoors. Further, changes in materials used in the construction of buildings, furnishings, and tools either leak or encourage the production of VOCs. Whether these enclosed areas are residences, hospitals or workplaces (specifically composting facilities or closed farm buildings for raising livestock), VOCs can rise to levels that threaten people's health. VOCs can either originate from phenolic and benzene-like compounds in building materials and office furniture or from molds (fungi) growing inside improperly ventilated or sealed buildings. Regardless of the source, exposure to VOCs could lead to significant health concerns from sick-building syndrome, 'leukemia houses,' in-hospital fungemia cases or occupation-associated cancer epidemics due to aflatoxicosis. Innovative 21st-century building materials could offer solutions to these challenges. We propose that volcanic materials, clays and minerals (volcanic tuff, modified clay montmorillonite and mineral clinoptilolite), in their original or chemically modified form, could act like synthetic lungs in building walls, breathing and filtering VOCs, and thus limiting human exposure to disease.

  15. Influence of temperature on the adsorption of α-tocopherol from ethanol solutions on acid-activated clinoptilolite tuff

    NASA Astrophysics Data System (ADS)

    Kotova, D. L.; Vasilyeva, S. Yu.; Krysanova, T. A.

    2014-08-01

    Patterns in the adsorption of α-tocopherol on acid-activated clinoptilolite tuff at 283, 295, 305, and 333 K are established and explained. It is found that the selectivity of the sorbent toward the vitamin rises as the temperature of the process falls. The adsorption of α-tocopherol from dilute solutions is described in terms of the Langmuir adsorption theory. It is shown that the fixing of vitamin E monolayers in the structural matrix of clinoptilolite tuff is due to the formation of hydrogen bonds between isolated silanol groups of the adsorbent and oxygen atoms of the chromane ring and the phenol residue of α-tocopherol. The thermodynamic functions of monolayer adsorption of the vitamin are estimated. It is concluded that the formation of polymolecular layers in the form of associates is due to hydrophobic interactions between side substituents of α-tocopherol.

  16. Experimental and textural investigation of welding: effects of compaction, sintering, and vapor-phase crystallization in the rhyolitic Rattlesnake Tuff

    NASA Astrophysics Data System (ADS)

    Grunder, Anita L.; Laporte, Didier; Druitt, Tim H.

    2005-04-01

    The abrupt changes in character of variably welded pyroclastic deposits have invited decades of investigation and classification. We conducted two series of experiments using ash from the nonwelded base of the rhyolitic Rattlesnake Tuff of Oregon, USA, to examine conditions of welding. One series of experiments was conducted at atmospheric pressure (1 At) in a muffle furnace with variable run times and temperature and another series was conducted at 5 MPa and 600 °C in a cold seal apparatus with variable run times and water contents. We compared the results to a suite of incipiently to densely welded, natural samples of the Rattlesnake Tuff. Experiments at 1 At required a temperature above 900 °C to produce welding, which is in excess of the estimated pre-eruptive magmatic temperature of the tuff. The experiments also yielded globular clast textures unlike the natural tuff. During the cold-seal experiments, the gold sample capsules collapsed in response to sample densification. Textures and densities that closely mimic the natural suite were produced at 5 MPa, 600 °C and 0.4 wt.% H 2O, over run durations of hours to 2 days. Clast deformation and development of foliation in 2-week runs were greater than in natural samples. Both more and less water reduced the degree of welding at otherwise constant run conditions. For 5 MPa experiments, changes in the degree of foliation of shards and of axial ratios of bubble shards and non-bubble (mainly platy) shards, are consistent with early densification related to compaction and partial rotation of shards into a foliation. Subsequent densification was associated with viscous deformation as indicated by more sintered contacts and deformation of shards. Sintering (local fusion of shard-shard contacts) was increasingly important with longer run times, higher temperatures, and greater pressures. During runs with high water concentrations, sintering was rare and adhesion between clasts was dominated by precipitation of

  17. The Mountainous Shoreline of Sputnik Planum

    NASA Image and Video Library

    2015-12-05

    In this highest-resolution image from NASA's New Horizons spacecraft, great blocks of Pluto's water-ice crust appear jammed together in the informally named al-Idrisi mountains. Some mountain sides appear coated in dark material, while other sides are bright. Several sheer faces appear to show crustal layering, perhaps related to the layers seen in some of Pluto's crater walls. Other materials appear crushed between the mountains, as if these great blocks of water ice, some standing as much as 1.5 miles high, were jostled back and forth. The mountains end abruptly at the shoreline of the informally named Sputnik Planum, where the soft, nitrogen-rich ices of the plain form a nearly level surface, broken only by the fine trace work of striking, cellular boundaries and the textured surface of the plain's ices (which is possibly related to sunlight-driven ice sublimation). This view is about 50 miles wide. The top of the image is to Pluto's northwest. These images were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, in a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20198

  18. Reconnaissance Seismic Refraction Studies at Calico Hills, Wahmonie, and Yucca Mountain, Southwest Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Pankratz, L.W.

    1982-01-01

    Reconnaissance refraction surveys consisting off a total of 5 spreads were conducted in the Calico Hills, Wahmonie and Yucca Mountain areas, southwestern Nevada Test Site (NTS). Data from Calico Hills and Wahmonie are generally high in quality; data from Yucca Mountain are for the most part low in quality. At Calico Hills and Wahmonie, special attention was focused on the possible occurrence of a major intrusive body at depth. At Calico Hills this occurrence is supported by an inferred dome-shaped velocity interface. possibly associated with the roof of an altered phase of argillite. However, if an intrusive body is present, its top must be buried deeper than 3 km or it must be so pervasively altered that its velocity is similar to that of the calcareous argillite encountered at the bottom of drill hole DE 25a-3. At Wahmonie, the seismic data suggest the occurrence of a massive lenticular unit within 60 m of the ground surface, probably consisting of argillite but possibly consisting of intensively altered intrusive rock. At Yucca Mountain, preliminary interpretations of the most reliable data suggest the occurrence of a major, steeply inclined velocity interface 500 m from the southwest end of the Yucca C spread. This interface may represent a major fault or erosional feature separating the Topopah Spring and Tiva Canyon Members with Paintbrush Tuff at depth. This interface is 800 m east of a previously mapped fault. On the basis of poor-quality data obtained at Yucca Mountain, the subsurface velocity distribution appears to be complex. For example, one spread near drill hole UE25 a-I suggests not only a much thicker section of Tiva but also that this material is down thrown in the valley. This may suggest faulting with throws exceeding 100 meters or an equivalent erosional feature.

  19. Comparison of neptunium sorption results using batch and column techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments undermore » static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.« less

  20. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor

    2015-02-01

    The Auckland Volcanic Field (AVF) comprises at least 52 monogenetic eruption centres dispersed over ˜360 km2. Eruptions have occurred sporadically since 250 ka, predominantly when glacio-eustatic sea levels were lower than today. Now that around 35 % of the field is covered by shallow water (up to 30 m depth), any eruption occurring in the present or near future within this area may display Surtseyan dynamics. The North Head tuff cone evidences eruptive dynamics caused by magma interaction with seawater. The first stages of the eruption comprise a phreatomagmatic phase that built a 48-m-high tuff cone. North Head tuff deposits contain few lithic fragments (<10 vol%) and are characterized by deposits from collapsing tephra jets and fall from relatively wet tephra columns. The conditions needed for this eruption existed between 128 and 116 ka, when the sea level in the Auckland area was at least 10-12 m above the pre-eruptive surface. The hazards associated with this type of eruption pose a risk to the densely populated coastal residential zones and the activities of one of the busiest harbours in New Zealand.

  1. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    NASA Astrophysics Data System (ADS)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  2. Water and CO2 content of melt inclusions from the high-silica rhyolite Bandelier Tuff super-eruptions, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Waelkens, C. M.; Gonzalez, C.; Martineau, D.; Goff, F. E.; Stix, J.

    2017-12-01

    Large silicic caldera-forming eruptions are some of the most destructive events on our planet, which makes silicic calderas important systems to study. Volatiles play an important role in determining the nature and behaviour of magmas, and can trigger eruptions when changes in volatile content and exsolution of fluid phases lead to overpressure in the magma chamber. A separate fluid phase will be exsolved if the magma is fluid saturated; whether the magma is fluid saturated depends on its H2O and CO2 content. We measured H2O and CO2 in melt inclusions of the Valles Caldera supervolcano system in New Mexico. This system had super-eruptions at 1.64 Ma and 1.25 Ma, depositing respectively the Lower (Otowi Member) and the Upper (Tshirege Member) Bandelier Tuff. Previous studies have reported H2O values for the Bandelier Tuff and the Cerro Toledo Formation - erupted between the two Bandelier super-eruptions from the same magma reservoir. We expanded this dataset and added CO2 analyses, which gives a more complete image of the volatile saturation state of the magma. Both H2O and CO2 were measured by transmission FTIR on doubly-polished melt inclusions hosted in quartz and feldspar crystals. While we found only limited variation within H2O contents, CO2 values were found to vary strongly. Our preliminary results indicate H2O values of 4 to 6 wt % throughout both the Lower and Upper Bandelier Tuff, consistent with previous studies. In contrast, we found CO2 values vary strongly, from below 50 ppm (maximum measured 60 ppm, minimum 7 ppm, median 33 ppm) in the base of the Lower Bandelier Tuff to 100 - 200 ppm CO2 (maximum measured 234 ppm, minimum 44, median 118 ppm) in the top of the basal Plinian fall deposit (Guaje Pumice). By the end of the Cerro Toledo Rhyolite and beginning of the Upper Bandelier, CO2 values in the magma were low again, around 50 ppm (maximum measured 91 ppm, minimum 23 ppm, median 42 ppm). No substantial difference is observed in H2O and CO2 values

  3. Trondhjemite and metamorphosed quartz keratophyre tuff of the Ammonoosuc volcanics (Ordovician), western New Hampshire and adjacent Vermont and Massachusetts.

    USGS Publications Warehouse

    Leo, G.W.

    1985-01-01

    These volcanic rocks consist of a lower, mainly mafic unit of hornblende-plagioclase amphibolite and an upper, mainly felsic metamorphosed quartz keratophyre tuff. They are intruded by sills, dykes and plugs of trondhjemite; which is highly silicic (SiO2, 73-81%), low in Al2O3 (11.3-13.5%) and generally contains <1% K2O. Both trondhjemite and volcanics are calc-alkaline. The major- and minor-element geochemistry of the trondhjemites is closely similar to that of the quartz keratophyre tuff. These rocks were probably produced by partial melting of basaltic source rocks, rather than by fractional crystallization, in view of the virtually bimodal nature of the Ammonoosuc assemblage. The generation of the felsic rocks occurred at deeper levels along a subduction zone dipping eastward.-L.C.H.

  4. Digital mountains: toward development and environment protection in mountain regions

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaobo

    2007-06-01

    Former studies on mountain system are focused on the department or subject characters, i.e. different department and branches of learning carry out researches only for their individual purposes and with individual characters of the subject of interests. As a whole, their investigation is lacking of comprehensive study in combination with global environment. Ecological environment in mountain regions is vulnerable to the disturbance of human activities. Therefore, it is a key issue to coordinate economic development and environment protection in mountain regions. On the other hand, a lot of work is ongoing on mountain sciences, especially depending on the application of RS and GIS. Moreover, the development of the Digital Earth (DE) provides a clue to re-understand mountains. These are the background of the emergence of the Digital Mountains (DM). One of the purposes of the DM is integrating spatial related data and information about mountains. Moreover, the DM is a viewpoint and methodology of understanding and quantifying mountains holistically. The concept of the DM is that, the spatial and temporal data related to mountain regions are stored and managed in computers; moreover, manipulating, analyzing, modeling, simulating and sharing of the mountain information are implemented by utilizing technologies of RS, GIS, GPS, Geo-informatic Tupu, computer, virtual reality (VR), 3D simulation, massive storage, mutual operation and network communication. The DM aims at advancing mountain sciences and sustainable mountain development. The DM is used to providing information and method for coordinating the mountain regions development and environment protection. The fundamental work of the DM is the design of the scientific architecture. Furthermore, construct and develop massive databases of mountains are the important steps these days.

  5. Assessment of dry-stone terrace wall degradation with a 3D approach

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Camera, Corrado; Faka, Marina; Bruggeman, Adriana; Hermon, Sorin

    2016-04-01

    In the Mediterranean basin, terracing is a common element of agricultural lands. Terraces retained by dry-stone walls are used to conserve arable soil, delay erosion processes and retain rainfall runoff. Currently, agricultural land abandonment is widespread in the Mediterranean region leading to terrace wall failure due to lack of maintenance and consequently an increase in soil erosion. The objective of this study is to test the applicability of digital 3D documentation on mountainous agricultural areas for assessing changes in terrace wall geometry, including terrace wall failures and associated soil erosion. The study area is located at 800-1100 m above sea level, in the Ophiolite complex of the Troodos Mountains in Cyprus. Average annual precipitation is 750 mm. Two sites with dry-stone terraces were selected for this study. The first site had a sequence of three terrace walls that were surveyed. The uppermost terrace wall was collapsed at several locations; the middle at few locations; and the lowest was still intact. Three fieldwork campaigns were conducted at this site: during the dry season (initial conditions), the middle and end of the wet season. The second site had one terrace wall that was almost completely collapsed. This terrace was restored during a communal terrace rehabilitation event. Two fieldwork campaigns were conducted for this terrace: before and after the terrace wall restoration. Terrace walls were documented with a set of digital images, and transformed into a 3D point cloud (using web-based services and commercial software - Autodesk 123D catch and Menci Software uMap, respectively). A set of points, registered with the total station and geo-referenced with a GPS, enabled the scaling of the 3D model and aligning the terrace walls within the same reference system. The density (distance between each point) of the reconstructed point clouds is 0.005 m by Umap and 0.025 m by 123D Catch. On the first site, the model analysis identified wall

  6. Physical and stable-isotope evidence for formation of secondary calcite and silica in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, J.F.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    Calcite and silica form coatings on fracture footwalls and cavity floors in the welded tuffs at Yucca Mountain, the potential site of a high-level radioactive waste repository. These secondary mineral deposits are heterogeneously distributed in the unsaturated zone (UZ) with fewer than 10% of possible depositional sites mineralized. The paragenetic sequence, compiled from deposits throughout the UZ, consists of an early-stage assemblage of calcite??fluorite??zeolites that is frequently capped by chalcedony??quartz. Intermediate- and late-stage deposits consist largely of calcite, commonly with opal on buried growth layers or outermost crystal faces of the calcite. Coatings on steep-dipping fractures usually are thin (??? 3 mm) with low-relief outer surfaces whereas shallow-dipping fractures and lithophysal cavities typically contain thicker, more coarsely crystalline deposits characterized by unusual thin, tabular calcite blades up to several cms in length. These blades may be capped with knobby or corniced overgrowths of late-stage calcite intergrown with opal. The observed textures in the fracture and cavity deposits are consistent with deposition from films of water fingering down fracture footwalls or drawn up faces of growing crystals by surface tension and evaporated at the crystal tips. Fluid inclusion studies have shown that most early-stage and some intermediate-stage calcite formed at temperatures of 35 to 85??C. Calcite deposition during the past several million years appears to have been at temperatures < 30??C. The elevated temperatures indicated by the fluid inclusions are consistent with temperatures estimated from calcite ??18O values. Although others have interpreted the elevated temperatures as evidence of hydrothermal activity and flooding of the tuffs of the potential repository, the authors conclude that the temperatures and fluid-inclusion assemblages are consistent with deposition in a UZ environment that experienced prolonged heat input from

  7. 206Pb-230Th-234U-238U and 207Pb-235U geochronology of Quaternary opal, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.

    2000-01-01

    U–Th–Pb isotopic systems have been studied in submillimeter-thick outermost layers of Quaternary opal occurring in calcite–silica fracture and cavity coatings within Tertiary tuffs at Yucca Mountain, Nevada, USA. These coatings preserve a record of paleohydrologic conditions at this site, which is being evaluated as a potential high-level nuclear waste repository. The opal precipitated from groundwater is variably enriched in 234U (measured 234U/238U activity ratio 1.124–6.179) and has high U (30–313 ppm), low Th (0.008–3.7 ppm), and low common Pb concentrations (measured 206Pb/204Pb up to 11,370). It has been demonstrated that the laboratory acid treatment used in this study to clean sample surfaces and to remove adherent calcite, did not disturb U–Th–Pb isotopic systems in opal. The opal ages calculated from 206Pb∗/238U and 207Pb∗/235U ratios display strong reverse discordance because of excess radiogenic 206Pb∗ derived from the elevated initial 234U. The data are best interpreted using projections of a new four-dimensional concordia diagram defined by 206Pb∗/238U, 207Pb∗/235U, 234U/238Uactivity, and 230Th/238Uactivity. Ages and initial 234U/238U activity ratios have been calculated using different projections of this diagram and tested for concordance. The data are discordant, that is observed 207Pb∗/235U ages of 170 ± 32 (2σ) to 1772 ± 40 ka are systematically older than 230Th/U ages of 34.1 ± 0.6 to 452 ± 32 ka. The age discordance is not a result of migration of uranium and its decay products under the open system conditions, but a consequence of noninstantaneous growth of opal. Combined U–Pb and 230Th/U ages support the model of slow mineral deposition at the rates of millimeters per million years resulting in layering on a scale too fine for mechanical sampling. In this case, U–Pb ages provide more accurate estimates of the average age for mixed multiage samples than 230Th/U ages, because ages based on shorter

  8. Neutron and gamma (density) logging in welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W

    This Technical Implementation Procedure (TIP) describes the field operation, and the management of data records pertaining to neutron logging and density logging in welded tuff. This procedure applies to all borehole surveys performed in support of Engineered Barrier System Field Tests (EBSFT), including the Earge Block Tests (LBT) and Initial Engineered Barrier System Field Tests (IEBSFT) - WBS 1.2.3.12.4. The purpose of this TIP is to provide guidelines so that other equally trained and qualified personnel can understand how the work is performed or how to repeat the work if needed. The work will be documented by the use ofmore » Scientific Notebooks (SNs) as discussed in 033-YMP-QP 3.4. The TIP will provide a set of guidelines which the scientists will take into account in conducting the mea- surements. The use of this TIP does not imply that this is repetitive work that does not require profes- sional judgment.« less

  9. Science is the first step to siting nuclear waste repositories

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    As Shaw [2014] notes, U.S. research on shale as a repository host was halted before expending anything close to the effort devoted to studying crystalline rock, salt, and - most notably - tuff at Yucca Mountain. The new political reality regarding Yucca Mountain may allow reconsideration of the decision to abandon research on shale as a repository host.

  10. Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elston, W.E.; Deal, E.G.; Logsdon, M.J.

    1983-01-01

    This circular covers the geology of the Pyramid Peak, Swallow Fork Peak, Table Top Mountain, and South Pyramid Peak 7-1/2-min quadrangles, which include the Lightning Dock KGRA. Hot wells (70 to 115.5/sup 0/C) seem to be structurally controlled by intersections of the ring-fracture zone of an Oligocene ash-flow tuff cauldron (Muir cauldron), a Miocene-to-Holocene north-trending basin-and-range fault (Animas Valley fault), and a northeast-trending lineament that appears to control anomalously heated underground waters and Pliocene-Pleistocene basalt cones in the San Bernardino, San Simon, and Animas Valleys. The Muir cauldron, approximately 20 km in diameter, collapsed in two stages, each associated withmore » the eruption of a rhyolite ash-flow-tuff sheet and of ring-fracture domes. Most of the hydrothermal alteration of the Lightning Dock KGRA is related to the first stage of eruption and collapse, not to the modern geothermal system. Contrary to previous reports, no silicic volcanic rocks younger than basin-and-range faulting are known; unconformities beneath rhyolite ring-fracture domes are caused by Oligocene caldera collapse, not by basin-and-range faulting. The Animas Valley is the site of widespread post-20 My travertine deposits and near-surface veins of calcite, fluorite, and/or psilomelane, controlled by north- or northwest-trending basin-and-range faults. The fluoride-bearing waters of the Lightning Dock KGRA may be a late stage of this hydrothermal activity. Distribution of Pliocene-Pleistocene basalt suggests that deep-seated basalt near the solids may be the ultimate heat source.« less

  11. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Geochronology and geology of late Oligocene through Miocene volcanism and mineralization in the western San Juan Mountains, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Hon, Ken; Budding, K.E.; Slack, J.F.; Snee, L.W.; Yeoman, R.A.

    2000-01-01

    Twenty-five new 40Ar/39Ar ages from volcanic rocks and veins in the western San Juan Mountains clarify relationships between volcanism and mineralization in this classic area. Five calc-alkaline ash-flow sheets erupted from caldera sources (Ute Ridge, Blue Mesa, Dillon Mesa, Sapinero Mesa, and Crystal Lake Tuffs) from 28.6 to 27.6 Ma. This is a much more restricted time interval than previously thought and indicates that the underlying batholith rose and evolved very rapidly beneath the western San Juan Mountains. The new ages and geologic relations constrain the timing of joint resurgence of the Uncompahgre and San Juan calderas to between 28.2 and 27.6 Ma. The collapse of the Silverton caldera produced a set of strong ring fractures that intersected with graben faults on the earlier resurgent dome to produce the complex set of structures that localized the mid-Miocene epithermal gold veins. Later calc-alkaline monzonitic to quartz monzontic plutons solidified at 26.5-26.0 Ma as the underlying batholith rose through its volcanic cover. A new age from lavas near Uncompahgre Peak supports earlier interpretations that these lavas were fed by nearby 26 Ma monzonite intrusions. Nearly all of these intrusions are associated with subeconomic Mo and Cu mineralization and associated alteration, and new ages of 26.40 and 25.29 Ma from the Ute-Ulay and Lilly veins in the Lake City region show that some of the most important silver and base-metal veins were temporally and possibly genetically connected to these plutons. In addition, the Golden Fleece telluride vein cuts all of the post-Uncompahgre caldera volcanics in the area and is probably temporally related to this cycle, though its age of 27.5 ? 0.3 Ma was determined by less precise U/Pb methods. The 22.9 Ma Lake City caldera collapsed within the older Uncompahgre caldera structure but is petrologically unrelated to the older calc-alkaline activity. The distinctive suite of high-silica rhyolite tuff and alkaline

  13. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain-Crater Flat region, Nevada

    USGS Publications Warehouse

    Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or

  14. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener

    2015-01-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204

  15. A tuff cone erupted under frozen-bed ice (northern Victoria Land, Antarctica): linking glaciovolcanic and cosmogenic nuclide data for ice sheet reconstructions

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Rocchi, S.; Johnson, J. S.; Di Vincenzo, G.; Schaefer, J. M.

    2018-01-01

    The remains of a small volcanic centre are preserved on a thin bedrock ridge at Harrow Peaks, northern Victoria Land, Antarctica. The outcrop is interpreted as a monogenetic tuff cone relict formed by a hydrovolcanic (phreatomagmatic) eruption of mafic magma at 642 ± 20 ka (by 40Ar-39Ar), corresponding to the peak of the Marine Isotope Stage 16 (MIS16) glacial. Although extensively dissected and strewn with glacial erratics, the outcrop shows no evidence for erosion by ice. From interpretation of the lithofacies and eruptive mechanisms, the weight of the evidence suggests that eruptions took place under a cold-based (frozen-bed) ice sheet. This is the first time that a tuff cone erupted under cold ice has been described. The most distinctive feature of the lithofacies is the dominance of massive lapilli tuff rich in fine ash matrix and abraded lapilli. The lack of stratification is probably due to repeated eruption through a conduit blasted through the ice covering the vent. The ice thickness is uncertain but it might have been as little as 100 m and the preserved tephra accumulated mainly as a crater (or ice conduit) infill. The remainder of the tuff cone edifice was probably deposited supraglacially and underwent destruction by ice advection and, particularly, collapse during a younger interglacial. Dating using 10Be cosmogenic exposure of granitoid basement erratics indicates that the erratics are unrelated to the eruptive period. The 10Be ages suggest that the volcanic outcrop was most recently exposed by ice decay at c. 20.8 ± 0.8 ka (MIS2) and the associated ice was thicker than at 642 ka and probably polythermal rather than cold-based, which is normally assumed for the period.

  16. ESTIMATES OF CLOUD WATER DEPOSITION AT MOUNTAIN DEPOSITION AT MOUNTAIN ACID DEPOSITION PROGRAM SITES IN THE APPALACHIAN MOUNTAINS

    EPA Science Inventory

    Cloud water deposition was estimated at three high elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY, Whitetop Mountain, VA, and Clingrnan's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). ...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a{number_sign}1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy,more » and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates.« less

  18. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: implications for the origin of lithium-rich brines

    USGS Publications Warehouse

    Hofstra, Albert H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E.

    2013-01-01

    To evaluate whether anatectic and/or highly fractionated lithophile element-enriched rhyolite tuffs deposited in arid lacustrine basins lose enough lithium during eruption, lithification, and weathering to generate significant Li brine resources, pre-eruptive melt compositions, preserved in inclusions, and the magnitude of post-eruptive Li depletions, evident in host rhyolites, were documented at six sites in the western United States. Each rhyolite is a member of the bimodal basalt-rhyolite assemblage associated with extensional tectonics that produced the Basin and Range province and Rio Grande rift, an evolving pattern of closed drainage basins, and geothermal energy or mineral resources. Results from the 0.8 Ma Bishop tuff (geothermal) in California, 1.3 to 1.6 Ma Cerro Toledo and Upper Bandelier tephra (geothermal) and 27.9 Ma Taylor Creek rhyolite (Sn) in New Mexico, 21.7 Ma Spor Mountain tuff (Be, U, F) and 24.6 Ma Pine Grove tuff (Mo) in Utah, and 27.6 Ma Hideaway Park tuff (Mo) in Colorado support the following conclusions. Melt inclusions in quartz phenocrysts from rhyolite tuffs associated with hydrothermal deposits of Sn, Mo, and Be are extremely enriched in Li (1,000s of ppm); those from Spor Mountain have the highest Li abundance yet recorded (max 5,200 ppm, median 3,750 ppm). Forty-five to 98% of the Li present in pre-eruptive magma was lost to the environment from these rhyolite tuffs. The amount of Li lost from the small volumes (1–10 km3) of Li-enriched rhyolite deposited in closed basins is sufficient to produce world-class Li brine resources. After each eruption, meteoric water leaches Li from tuff, which drains into playas, where it is concentrated by evaporation. The localized occurrence of Li-enriched rhyolites may explain why brines in arid lacustrine basins seldom have economic concentrations of Li. Considering that hydrothermal deposits of Sn, Mo, Be, U, and F may indicate potential for Li brines in nearby basins, we surmise that the

  19. Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II).

    PubMed

    Brown, Francis H; McDougall, Ian; Fleagle, John G

    2012-10-01

    Hominin specimens Omo I and Omo II from Member I of the Kibish Formation, Ethiopia are attributed to early Homo sapiens, and an age near 196 ka has been suggested for them. The KHS Tuff, within Member II of the Kibish Formation has not been directly dated at the site, but it is believed to have been deposited at or near the time of formation of sapropel S6 in the Mediterranean Sea. Electron microprobe analyses suggest that the KHS Tuff correlates with the WAVT (Waidedo Vitric Tuff) at Herto, Gona, and Konso (sample TA-55), and with Unit D at Kulkuletti in the Ethiopian Rift Valley. Konso sample TA-55 is older than 154 ka, and Unit D at Kulkuletti is dated at 183 ka. These correlations and ages provide strong support for the age originally suggested for the hominin remains Omo I and Omo II, and for correlation of times of deposition in the Kibish region with formation of sapropels in the Mediterranean Sea. The Aliyo Tuff in Member III of the Kibish Formation is dated at 104 ka, and correlates with Gademotta Unit 15 in the Ethiopian Rift Valley. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Histologic characterization of dilated cardiomyopathy in Estrela mountain dogs.

    PubMed

    Lobo, L; Carvalheira, J; Canada, N; Bussadori, C; Gomes, J L; Faustino, A M R

    2010-07-01

    Dilated cardiomyopathy (DCM) is the second-most-important acquired cardiovascular disease in dogs (excluding heartworm disease in some geographic regions) and a major cause of morbidity and mortality in Estrela Mountain Dogs. The objective of this study is to describe the histologic features of DCM in Estrela Mountain Dogs, with special attention to the localization and quantification of attenuated wavy fibers (AWFs), fibrosis, and fatty infiltration. Myocardial samples from 10 areas were collected from the hearts of 10 dogs with DCM and 7 dogs without signs of cardiac disease-namely, the basal, middle, and apical portions of the free wall of both cardiac ventricles and the interventricular septum, as well as the left ventricular papillary muscle. In each sample, the presence or absence of AWFs was noted, and fatty infiltration and fibrosis were quantified. Fatty infiltration, fibrosis, and AWFs were observed in the myocardium of all dogs with DCM, in contrast to what has been described in other breeds. The left ventricular myocardium was the best tissue for diagnosis of DCM, based on these histologic features. The authors concluded that quantification of fibrosis and observation of AWFs in the left ventricular myocardium are useful in the histologic diagnosis of DCM in Estrela Mountain dogs.

  1. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  2. Mountains: An Overview.

    ERIC Educational Resources Information Center

    Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex

    1999-01-01

    Introduces the lessons from "Mountain: A Global Resource" that were developed by the National Council for the Social Studies (NCSS) and The Mountain Institute for use by NCSS members and their students. Provides an overview that introduces the mountains, mountain cultures, historical perceptions, and the geographical importance of…

  3. Quantitative remote sensing of ammonium minerals, Cedar Mountains, Esmeralda County, Nevada

    NASA Technical Reports Server (NTRS)

    Baugh, William M.; Kruse, Fred A.

    1995-01-01

    Mineral-bound ammonium (NH4+) was discovered by the U.S. Geological Survey in the southern Cedar Mountains of Esmeralda County, Nevada in 1989. At 10 km in length, this site is 100 times larger than any previously known occurrence in volcanic rocks. The ammonium occurs in two hydrothermally altered, crystal-rich rhyolitic tuff units of Oligocene age, and is both structurally and stratigraphically controlled. This research uses Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) data to quantitatively map the mineral-bound ammonium (buddingtonite) concentration in the altered volcanic rocks. Naturally occurring mineral-bound ammonium is fairly rare; however, it has been found to occur in gold-bearing hydrothermal deposits. Because of this association, it is thought that ammonium may be a useful too in exploration for gold and other metal deposits. Mineral-bound ammonium is produced when an ammonium ion (NH4+) replaces the alkali cation site (usually K+) in the crystal structure of silicate minerals such as feldspars, micas and clays. Buddingtonite is an ammonium feldspar. The ammonium originates in buried organic plant matter and is transported to the host rock by hydrothermal fluids. Ammonium alteration does not produce visible changes in the rock, and it is barely detectable with standard x-ray diffraction methods. It is clearly identified, however, by absorption features in short wave-infrared (SWIR) wavelengths (2.0 - 2.5 micrometers). The ammonium absorption features are believed to be caused by N-H vibrational modes and are analogous to hydroxyl (O-H) vibrational modes, only shifted slightly in wavelength. Buddingtonite absorption features in the near- and SWIR lie at 1.56, 2.02 and 2.12 micrometers. The feature at 2.12 micrometer is the strongest of the three and is the only one used in this study. The southern Cedar Mountains are sparsely vegetated and are an ideal site for a remote sensing study.

  4. Insect infestation and residential property values: A hedonic analysis of the mountain pine beetle epidemic

    Treesearch

    James I. Price; Daniel W. McCollum; Robert P. Berrens

    2010-01-01

    In recent years mountain pine beetles (MPB), Dendroctonus ponderosae, along with several other bark beetle species, have severely damaged coniferous forests in the western United States (U.S.) and Canada (Morris and Walls, 2009). Colorado provides one example of a region that has been heavily affected. The Colorado State Forest Service estimates that 769,000ha of...

  5. Hydrological and Geological Features Contributing to a Seepage Event at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Smart, K. J.; Parrott, J. D.

    2006-05-01

    The occurrence of an unusual seepage event in the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain (YM) in 2005 provides an opportunity to further understand the hydrological system associated with flow in fractured rocks and seepage into tunnels. Understanding the contributing factors for this seepage occurrence in the ventilated tunnel will assist U.S. Nuclear Regulatory Commission in its assessment of Department of Energy flow models. The seepage event begin in the later portion of an El Nino winter (February 2005) predominantly along a 40-m [130-ft] section of the south ramp of the ESF tunnel. The stratigraphic section at this location is comprised of a portion of the Tiva Canyon Tuff, which is a rhyolitic ignimbrite. The effect of El Nino conditions in the semi-arid climate of southern Nevada near YM is greatly increased winter precipitation. Based on the ~50 years of record at a nearby meteorological station, the winter of 2004-2005 was the wettest winter on record. The previous largest winter precipitation amounts were recorded in the El Nino years of 1992-1993 and 1997-1998. During the 1997 El Nino year, a monitored set of boreholes in nearby Pagany Wash indicated that a saturated front traversed the entire Tiva Canyon Tuff section during a single event (Le Cain and Kurmack, 2002, USGS Water Resources Investigations Report 02-4035). It is unclear if the fracture system in the south ramp location was saturated in the February 2005 event; no data were available to estimate the saturated state of the fracture system. With heavy precipitation occurring throughout the winter, however, the matrix and fracture systems were likely primed (i.e., saturation levels were likely significantly higher than normal) for a significant percolation event. Ponding caused by focusing of runoff at the ground surface above seepage location in the south ramp of the ESF tunnel likely did not occur based on topographical and catchment considerations (no significant

  6. Radiogenic Ingrowth of 40CA from Decay of 40K Provides a Powerful Tracer for Understanding the Origins of Felsic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, Ryan D.; Simon, Justin I.; Depaolo, Donald J.; Bachmann, Olivier

    2013-01-01

    Over time high K/Ca continental crust produces a unique Ca isotopic reservoir, with measurable 40Ca excesses compared to Earth's mantle (?Ca=0). Thus, values of ?Cai > 1 indicate a significant crustal contribution to a magma. Values of ?Cai (<1) indistinguishable from mantle Ca indicate that the Ca in those magmas is either directly from the mantle, or is from partial melting of newly formed crust. So, whereas 40Ca excesses clearly define crustal contributions, mantle-like 40Ca/44Ca ratios are not as definitive. Here we present Ca isotopic measurements of intermediate to felsic igneous rocks from the western United States, and two crustal xenoliths found within the Fish Canyon Tuff (FCT). The two crustal xenoliths found within the 28.2 Ma FCT of the southern Rocky Mountain volcanic field (SRMVF) yield ?Ca values of 4 and 7.5, respectively. The 40Ca excesses of these possible source rocks are due to long-term in situ 40K decay and suggest that they are Precambrian in age. However, the FCT (?Cai 0.3) is within uncertainty of the mantle 40Ca/44Ca. Together, these data indicate that little Precambrian crust was involved in the petrogenesis of the FCT. Nd isotopic analyses of the FCT imply that it was generated from 10- 75% of an enriched component, and the Ca isotopic data appear to restrict that component to newly formed lower crust, or enriched mantle. However, the Ca isotopic data do permit assimilation of some crust with low Ca/Nd; decreasing the 143Nd/144Nd without adding much excess 40Ca to the FCT. Several other large tuffs from the SRMVF and from Yellowstone have ?Cai indistinguishable from the mantle. However, a few large tuffs from the SRMVF show significant 40Ca excesses. These tuffs (Wall Mountain, Blue Mesa, and Grizzly Peak) are likely sourced from near, or within the Colorado Mineral Belt. New isotopic measurements of Mesozoic and Tertiary granites from across the northern Great Basin show a range of ?Cai from 0 to 3. In these samples ?Cai is generally

  7. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  8. Gravitational slope-deformation of a resurgent caldera: New insights from the mechanical behaviour of Mt. Nuovo tuffs (Ischia Island, Italy)

    NASA Astrophysics Data System (ADS)

    Marmoni, G. M.; Martino, S.; Heap, M. J.; Reuschlé, T.

    2017-10-01

    Ischia Island (Italy) is an impressive example of the rare phenomenon of caldera resurgence. The emplacement and replenishment of magmas at shallow depth resulted in a vertical uplift of about 900 m, concentrated in the western portion of Mt. Epomeo (789 m a.s.l.). As a consequence of this uplift, the island has experienced several slope instabilities at different scales since the Holocene, from shallow mass movements to large rock and debris avalanches. These mass wasting events, which mobilised large volumes of greenish alkali-trachytic tuff (the Mt. Epomeo Green Tuff, MEGT), were strictly related to volcano-tectonic activity and the interaction between the volcanic slopes and the hydrothermal system beneath the island. Deep-Seated Gravitational Slope Deformation (DSGSD) at Mt. Nuovo, located adjacent to densely populated coastal villages, is an ongoing process that covers an area of 1.6 km2. The Mt. Nuovo DSGSD involves a rock mass volume of 190 Mm3 and is accommodated by a main shear zone and a series of sub-vertical fault zones associated with high-angle joint sets. To improve our understanding of this gravity-induced process, we performed a physical (porosity and permeability) and mechanical (uniaxial and triaxial deformation experiments) characterisation of two ignimbrite deposits - both from the MEGT - that form a significant component of the NW sector of Mt. Epomeo. The main conclusions drawn from our experiments are twofold. First, the presence of water dramatically reduces the strength of the tuffs, suggesting that the movement of fluids within the hydrothermal system could greatly impact slope stability. Second, the transition from brittle (dilatant) to ductile (compactant) behaviour in the tuffs of the MEGT occurs at a very low effective pressure, analogous to a depth of a couple of hundred metres, and that this transition is likely moved closer to the surface in the presence of water. We hypothesise that compactant (porosity decreasing) behaviour at

  9. Use of Thermal Data to Estimate Infiltration in Pagany Wash Associated with the winter of 1997-1998 El Nino Precipitation, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.D. LeCain; N. lu; M. Kurzmack

    Temperature and air-pressure monitoring in a vertical borehole located in Pagany Wash, a normally dry stream-carved channel northeast of Yucca Mountain, Nevada, indicated that the annual temperature wave was measurable to a depth of 11.1 m. Temperature depressions were measured at depths of 3.1, 6.1, 9.2, and 11.1 m below ground surface. The temperature depressions were interpreted to be the result of infiltration associated with the 1997-1998 El Nino precipitation. A pressure differential, of approximately 2 kiloPascals, between stations located 11.1 and 24.5 m below ground surface was interpreted to be the result of compressed air ahead of the wettingmore » front. The pressure differences between stations indicated that the wetting front migrated deeper than 35.2 m and that the Yucca Mountain Tuff retarded the downward movement of the wetting front. An analytical method indicated that the infiltration flux through the Pagany Wash alluvium due to the 1997-1998 El Nino precipitation was approximately 940 mm. A one-dimensional numerical model indicated that the infiltration flux was approximately 1000 mm. Sensitivity analysis indicated that the potential temperature decrease due to conduction was minimal and that cooler surface temperatures could not account for the measured subsurface temperature depressions.« less

  10. Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.

    2010-01-01

    Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (<60°C) since the Cretaceous. We interpret these data to record rapid unroofing of the southern Ruby Mountains during slip on the west dipping brittle detachment between 17–16 and 10–12 Ma, followed by minor high-angle faulting. We interpret published Oligocene to early Miocene K-Ar biotite and zircon fission track dates from the Harrison Pass pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.

  11. Growth and erosion of mountain ranges at the northeastern margin of Tibet

    NASA Astrophysics Data System (ADS)

    Hetzel, Ralf; Palumbo, Luigi; Giese, Jörg; Guo, Jianming

    2010-05-01

    fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet. Terra Nova 16, 157-162. [2] Hetzel et al. (2002). Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417, 428-432. [3] Hetzel et al. (2004). Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau, Tectonics 23, TC6006, doi:10.1029/2004TC001653. [4] Goethals et al. (2009). Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103, 401-413. [5] Palumbo et al. (2009). Deciphering the rate of mountain growth during topographic presteady state: an example from the NE margin of the Tibetan Plateau. Tectonics 28, TC4017, doi:10.1029/2009TC002455. [6] Palumbo et al. (in press). Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology, doi:10.1016/j.geomorph.2009.11.019. [7] Meyer et al. (in press). Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany. Earth and Planetary Science Letters. [8] Densmore et al. (2009). Spatial variations in catchment-averaged denudation rates from normal fault footwalls. Geology 37, 1139-1142.

  12. Mountains

    Treesearch

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  13. Geologic map of the Puye Quadrangle, Los Alamos, Rio Arriba, Sandoval, and Santa Fe Counties, New Mexico

    USGS Publications Warehouse

    Dethier, David P.

    2003-01-01

    The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.

  14. Experimental Analyses of Yellow Tuff Spandrels of Post-medieval Buildings in the Naples Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderoni, B.; Cordasco, E. A.; Lenza, P.

    2008-07-08

    Experimental analyses have been carried out on tuff masonry specimens in order to investigate the structural behaviour of historical buildings in the Naples area (Southern Italy). Spandrels of post-medieval buildings (late XVI to early XX century) have been analysed, with emphasis on morphological characteristics according to chronological indicators. Results of the experimentation on scaled models (1:10) are discussed and the better behaviour of historical masonry typologies on respect to the modern one is highlighted. Comparison with theoretical formulations of ultimate shear resistance are provided too.

  15. Importance of mechanical disaggregation in chemical weathering in a cold alpine environment, San Juan Mountains, Colorado

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1999-01-01

    Weathering of welded tuff near the summit of Snowshoe Mountain (3660 m) in southwestern Colorado was studied by analyzing infiltrating waters in the soil and associated solid phases. Infiltrating waters exhibit anomalously high potassium to silica ratios resulting from dissolution of a potassium-rich glass that occurs as a trace phase in the rock. In laboratory experiments using rock from the field site, initial dissolution generated potassium-rich solutions similar to those observed in the field. The anomalous potassium release decreased over time (about 1 month), after which the dominant cation was calcium, with a much lower potassium to silica ratio. The anomalous potassium concentrations observed in the infiltrating soil solutions result from weathering of freshly exposed rock surfaces. Continual mechanical disaggregation of the rock due to segregation freezing exposes fresh glass to weathering and thus maintains the source of potassium for the infiltrating water. The ongoing process of creation of fresh surfaces by physical processes is an important influence on the composition of infiltrating waters in the vadose zone.

  16. Geology of the Humboldt region and the Iron King mine, Bigbug mining district, Yavapai County, Arizona

    USGS Publications Warehouse

    Creasey, Saville Cyrus

    1951-01-01

    the west the Iron King meta-andesite appears to grade into the Spud Mountain metabreccia through a zone containing beds characteristic of either one formation or the other. The Spud Mountain metabreccia consists of interbedded metabreccia and metatuff beds. The metatuffs are largely andesitic in composition, but a few thin beds of metarhyolite tuff occur. The fragments in the metabreccia beds consist chiefly or porphyritic meta-andesites and the matrix is meta-andesite tuff. Pre-Cambrian faults now marked by dikes separate the Chaparral Gulch metavolcanics, which lie west of the Spud Mountain metabreccia, from underlying and overlying formations. The Chaparral Gulch metavolcanics contain metarhyolite tuff, metarhyolite flow, and meta-andesite tuff that locally was contaminated by rhyolitic detritus. The Indian Hills metavolcanics, which are northeast of the Chaparral Gulch metavolcanics, consist of two broad units, one composed of metarhyolites and the other of meta-andesites. Metamorphosed tuffs and flows are believed to be represented in both units and flow breccia in the meta-andesites. Granite and alaskite; granodiorite and quartz diorite; diorite, mafic quartz diorite, gabbro and diabase; metarhyolite (?); and quartz porphyry comprise the pre-Cambrian intrusive units mapped. They include both deep-seated and hypabyssal types. Dynamothermal metamorphism has foliated the smaller bodies and the margins of the larger masses and partly converted them into mineral assemblages stable under low-grade metamorphic conditions. Planar structures (chiefly foliation) are omnipresent and linear structures are common in the pre-Cambrian meta-volcanic rocks. North-trending planar structures dominate in the Indian Hills metavolcanics, and in the Spud Mountain metabreccia, whereas northeast-trending planar structures are dominant in the Texas Gulch formation, Iron King meta-andesite, and Chaparral Gulch metavolcanics. To a lesser extent northeast-trending st

  17. High-resolution 40Ar 39Ar chronology of Oligocene volcanic rocks, San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lanphere, M.A.

    1988-01-01

    The central San Juan caldera complex consists of seven calderas from which eight major ash-flow tuffs were erupted during a period of intense volcanic activity that lasted for approximately 2 m.y. about 26-28 Ma. The analytical precision of conventional K-Ar dating in this time interval is not sufficient to unambiguously resolve this complex history. However, 40Ar 39Ar incremental-heating experiments provide data for a high-resolution chronology that is consistent with stratigraphie relations. Weighted-mean age-spectrum plateau ages of biotite and sanidine are the most precise with standard deviations ranging from 0.08 to 0.21 m.y. The pooled estimate of standard deviation for the plateau ages of 12 minerals is about 0.5 percent or about 125,000 to 135,000 years. Age measurements on coexisting minerals from one tuff and on two samples of each of two other tuffs indicate that a precision in the age of a tuff of better than 100,000 years can be achieved at 27 Ma. New data indicate that the San Luis caldera is the youngest caldera in the central complex, not the Creede caldera as previously thought. ?? 1988.

  18. Mountain research

    NASA Astrophysics Data System (ADS)

    The newly incorporated International Mountain Society (IMS) will in May begin publication of an interdisciplinary scientific journal, Mountain Research and Development. The quarterly will be copublished with the United National University; additional support will come from UNESCO.A primary objective of IMS is to ‘help solve mountain land-use problems by developing a foundation of scientific and technical knowledge on which to base management decisions,’ according to Jack D. Ives, president of the Boulder-based organization. ‘The Society is strongly committed to the belief that a rational worldwide approach to mountain problems must involve a wide range of disciplines in the natural and human sciences, medicine, architecture, engineering, and technology.’

  19. Determining the physical processes behind four large eruptions in rapid sequence in the San Juan caldera cluster (Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Curry, Adam; Caricchi, Luca; Lipman, Peter

    2017-04-01

    Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.

  20. Isotopic studies of authigenic sulfides, silicates and carbonates, and calcite and pyrite veinlets in the Creede Formation, San Juan Mountains, Southwest Colorado

    USGS Publications Warehouse

    Bethke, Philip M.; Rye, Robert O.; Finkelstein, David B.

    2000-01-01

    Sulfur isotope analysis of authigenic pyrite in the Creede Formation documents its precipitation by the reaction between iron in the volcaniclastic sediments and H2S formed through bacteriogenic reduction of sulfate added to the lake during and immediately following repeated volcanic eruptions during sedimentation. Pyrite veinlets in the underlying Snowshoe Mountain Tuff were formed by the percolation of H2S-bearing pore waters into fractures in the tuff. Conventional analyses of bulk samples of authigenic pyrite range from -20.4% to 34.5% essentially equivalent to the range of -30% to 40% determined using SHRIMP microprobe techniques. Conventional analyses of bulk samples of pyrite from veinlets in the Snowshow Mountain Tiff range from -3.5% to 17.6% much more limited than the ranges of -23% to 111% and -15.6% to 67.0% determined by SHRIMP and laser ablation microbeam techniques, respectively. The extreme range of δ34S for the veinlets is interpreted to be the result of continued fractionation of the already 34S-depleted pore water. Oxygen isotope analysis of authigenic smectite, kaolinite, and K-feldspar together with fluid-inclusion temperatures and oxygen isotope analysis of calcite coexisting with kaolinite indicate that the smectites formed early during burial diagenesis, in accord with petrographic observations. The 40Ar/39Ar dating of K-feldspar, concorfance of K-feldspar, kaolinite, and calcite δ18O values, and fluid-inclusion temperatures in calcite, indicate that the sediments at core hole CCM-1 were subjected to a hydrothermal event at 17.6 Ma. The minerals formed oxygen-shifted meteoric waters with δ18O values of ~-9% Smecities at CCM-1 at least partially exchanged with these waters. Carbon and oxygen isotope analysis of authigenic calcites in the Creede Formation show that they formed over a wide range of temperatures from fluids having a wide range of isotopic composition, presumably over an extended period time. Some of the cements apparently

  1. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  2. Plant Functional Traits Are More Consistent Than Plant Species on Periglacial Patterned Ground in the Rocky Mountains of Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Ricketts, M. K.; Gallagher, J. H. R.

    2017-12-01

    Periglacial patterned ground exists as stripes and hexagons near glaciers and snowfields, some of which are former glaciers. The patterns are accentuated by profound differences in plant cover between the sloping surfaces, generally perceived as green, and the flat treads, generally perceived as brown but which are not devoid of plant life. On four sites in the Rocky Mountains of Montana we detected strong similarities in plant functional traits on the sloping surfaces of striped and hexagonal periglacial patterned ground. On Mt. Keokirk in the Pioneer Mountains, Kinnickinnick, Arctostaphylos uva-ursi, dominates narrow green stripes. On Goat Flat in the Pintler Mountains, Mountain Avens, Dryas octopetala, dominates the side walls of hexagonally patterned ground and narrow green stripes. At Glacier National Park, D. octopetala and the Arctic Willow, Salix arctica, co-dominate the green risers of widely-spaced striped periglacial patterned system at Siyeh Pass, while D. octopetala, S. arctica, and the Mountain Heather, Phyllodoce glanduliflora, co-dominate the green risers of the widely-spaced stripes of Piegan Pass. All four of these dictotyledonous angiosperm species are adventitiously-rooted dwarf shrubs with simple leaves. Of these, P. glanduliflora, A. uva-ursi and D. octopetala are evergreen. D. octopetala is symbiotic with N-fixing Frankia sp. All are mycorrhizal, although D. octopetala and S. arctica are ectomycorrhizal and P. glanduliflora and A. uva-ursi have ericaceous mycorrhizae. In contrast, dwarf shrubs are scarce on flat treads and within hexagons, which are chiefly inhabited by herbaceous, taprooted or rhizomatous, VAM angiosperms. As the green stripes and hexagon walls have greater plant cover, they likely have greater organic material due to leaf buildup and root turnover, anchor themselves and the soil with adventitious roots, their clonality suggests long lives, and N-fixing influences N dynamics of the periglacial patterned ground.

  3. Recent population trends of mountain goats in the Olympic Mountains, Washington

    USGS Publications Warehouse

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John

    2012-01-01

    Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.

  4. Testing the concept of drift shadow at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Ghezzehei, T.; Dobson, P.F.

    2006-01-01

    If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain, To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238U-234U-230Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All rock samples show 234U depletion relative to parent 238U indicating varying degrees of water-rock interaction over the past million years. Variations in 234U/238U activity ratios indicate that depletion of 234U relative to 238U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234U/ 238U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors.

  5. Tracer Transport Along a Vertical Fault Located in Welded Tuffs

    NASA Astrophysics Data System (ADS)

    Salve, R.; Liu, H.; Hu, Q.

    2002-12-01

    A near-vertical fault that intercepts the fractured welled tuff formation in the underground Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada, has provided a unique opportunity to evaluate important hydrological parameters associated with faults (e.g., flow velocity, matrix diffusion, fault-fracture-matrix interactions). Alcove 8, which intersects the fault is located in the cross drift of the ESF, has been excavated for liquid releases through this fault and a network of fractures. Located 25 m below Alcove 8 in the main drift of the ESF, Niche 3 which also intercepts the fault, serves as the site for monitoring the wetting front and for collecting seepage following liquid releases in Alcove 8. To investigate the importance of matrix diffusion and the extent of area subject to fracture-matrix interactions, we released a mix of conservative tracers (pentafluorobenzoic acid [PFBA] and lithium bromide [LiBr]) along the fault. The ceiling of Niche 3 was blanketed with an array of trays to capture seepage, and seepage rates were continuously monitored by a water collection system connected to the trays. Additionally, a water sampling device, the passive-discreet water sampler (PDWS), was connected to three of the collections trays in Niche 3 into which water was seeping. The PDWS, designed to isolate continuous seepage from each tray into discreet samples for chemical analysis, remained connected to the trays over a period of three months. During this time, all water that seeped into the three trays was captured sequentially into sampling bottles and analyzed for concentrations of PFBA and LiBr. Water released along the fault initially traveled the 25 m vertical distance over a period of 36 days (at a velocity ~0.7 m/day). The seepage recovered in Niche 3 was less than 10% of the injected water with significant spatial and temporal fluctuations in seepage rates. Along a fast flow path, the benzoic tracer (PFBA) and LiBr were first detected ~12 days after

  6. Advances in global mountain geomorphology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  7. Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.; Rush, F.E.; Waddell, S.J.

    Test well USW H-3 is one of several test wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1219 meters are volcanic tuff of Tertiary age. The composite hydraulic head in the zone 751 to 1219 meters was 733 meters above sea level, and at a depth below land surface of 751 meters. Below a depth of 1190 meters, the hydraulic head was 754 meters above sea level ormore » higher, suggesting an upward component of groundwater flow at the site. The most transmissive part of the saturated zone is in the upper part of the Tram Member of the Crater Flat Tuff in the depth interval from 809 to 841 meters, with an apparent transmissivity of about 7 x 10{sup -1} meter squared per day. The remainder of the penetrated rocks in the saturated zone, 841 to 1219 meters, has an apparent transmissivity of about 4 x 10{sup -1} meter squared per day. The most transmissive part of the lower depth interval is in the bedded tuff and Lithic Ridge Tuff, in the depth interval from 1108 to 1120 meters. The apparent hydraulic conductivity of the rocks in the lower depth interval from 841 to 1219 meters commonly ranges from about 10{sup -1} to 10{sup -4} meter per day. 32 references, 20 figures, 4 tables.« less

  8. The Menengai Tuff: A 36 ka widespread tephra and its chronological relevance to Late Pleistocene human evolution in East Africa

    NASA Astrophysics Data System (ADS)

    Blegen, Nick; Brown, Francis H.; Jicha, Brian R.; Binetti, Katie M.; Faith, J. Tyler; Ferraro, Joseph V.; Gathogo, Patrick N.; Richardson, Jonathan L.; Tryon, Christian A.

    2016-11-01

    The East African Rift preserves the world's richest Middle and Late Pleistocene (∼780-12 ka) geological, archaeological and paleontological archives relevant to the emergence of Homo sapiens. This region also provides unparalleled chronological control for many important sites through tephrochronology, the dating and correlation of volcanic ashes as widespread isochronous markers in the geological record. There are many well-characterized Pliocene-Early Pleistocene tephras that are widespread across East Africa. A comparable framework is lacking for the Middle and Late Pleistocene; a period characterized by spatially and temporally complex patterns of climate change, as well as the emergence of modern Homo sapiens and the dispersal of this species across and out of Africa. Unraveling relationships among these spatial and temporally complex phenomena requires a precise chronology. To this end we report the Menengai Tuff, a widespread volcanic ash produced by the large-scale caldera-forming eruption in Kenya and 40Ar/39Ar dated to 35.62 ± 0.26 ka. Geochemical characterization of 565 glass shards from 36 samples by wavelength-dispersive electron probe microanalysis show the Menengai Tuff was deposited over >115,000 km2 and is found in the Baringo, Chalbi, Elmenteita, Nakuru, Olorgesailie, Turkana, and Victoria basins, all of which preserve rich Late Pleistocene paleoenvironmental and archaeological archives. Correlation and dating of the Menengai Tuff demonstrate that it is the most widespread tephra and largest eruption currently known from the Late Pleistocene of East Africa. As such, it is a valuable marker in establishing a Late Pleistocene chronology for paleoclimatic, archeological, and paleontological records relevant to the study of human evolution.

  9. Recognition of primary and diagenetic magnetizations to determine the magnetic polarity record and timing of deposition of the moat-fill rocks of the Oligocene Creede Caldera, Colorado

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.

    2000-01-01

    Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by

  10. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    USGS Publications Warehouse

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  11. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit

    USGS Publications Warehouse

    Levy, S.S.; O'Neil, J.R.

    1989-01-01

    The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

  12. Multiscale Model Simulations of Temperature and Relative Humidity for the License Application of the Proposed Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.

    2003-12-01

    For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock

  13. Possible Hydrovolcanic Landforms Observed in MOC NA Imagery: A Preliminary Survey

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Gaddis, L. R.; Blundell, S.

    2001-01-01

    In a preliminary survey of MOC NA imagery, a number of features resembling table mountains, tuff rings, and near craters have been identified. Their locations and geologic significance will be discussed. Additional information is contained in the original extended abstract.

  14. Tephra layers of blind Spring Valley and related upper pliocene and pleistocene tephra layers, California, Nevada, and Utah: isotopic ages, correlation, and magnetostratigraphy

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Reheis, Marith C.; Pringle, Malcolm S.; Fleck, Robert J.; Burbank, Doug; Meyer, Charles E.; Slate, Janet L.; Wan, Elmira; Budahn, James R.; Troxel, Bennie; Walker, James P.

    2005-01-01

    Numerical ages have been determined for a stratigraphic sequence of silicic tephra layers exposed at the Cowan Pumice Mine in Blind Spring Valley, near Benton Hot Springs, east-central California, as well as at Chalk Cliffs, north of Bishop, Calif. The tephra layers at these sites were deposited after eruptions from nearby sources, most of them from near Glass Mountain, and some from unknown sources. The ages were determined primarily by the laser-fusion 40Ar/39Ar method, mostly on sanidine feldspar; two were determined by conventional K-Ar analysis on obsidian clasts. These tephra layers, all underlying the Bishop ash bed and listed in order of concordant age and stratigraphic position, are: Tephra Unit Method Material Age Bishop Tuff (air-fall pumice) Ar/Ar sanidine 0.759?0.002 Ma* Upper tuffs of Glass Mountain Ar/Ar sanidine 0.87?0.02 Ma Upper tuffs of Glass Mountain Ar/Ar sanidine 1.13?0.19 Ma Lower tuffs of Glass Mountain K-Ar obsidian 1.86?0.09 Ma (avg of 2 dates) Ar/Ar sanidine 1.92?0.02 Ma (avg of 2 dates) Tuffs of Blind Spring Valley Ar/Ar sanidine 2.135?0.02 to sanidine 2.219?0.006 Ma (10 dates) Tuffs of Benton Hot Springs Ar/Ar plagioclase 2.81?0.02 Ma *Date published previously The above tephra layers were also petrographically examined and the volcanic glass shards of the layers were chemically analyzed using the electron microprobe and, for some samples, instrumental neutron activation analysis and X-ray fluorescence. The same types of chemical and petrographic analyses were conducted on stratigraphic sequences of tephra layers of suspected upper Pliocene and Pleistocene age in several past and present depositional basins within the region outside of Blind Spring Valley. Chemical characterization, combined with additional dates and with magnetostratigraphy of thick sections at two of the distal sites, allow correlation of the tephra layers at the Cowan Pumice Mine with layers present at the distal sites and provide age constraints for other

  15. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  16. Spatial variability of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, southwestern Utah

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2012-12-01

    In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of

  17. Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011

    USGS Publications Warehouse

    Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William

    2011-01-01

    We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at

  18. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial

  19. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    NASA Astrophysics Data System (ADS)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  20. Ce-Fe-modified zeolite-rich tuff to remove Ba(2+)-like (226)Ra(2+) in presence of As(V) and F(-) from aqueous media as pollutants of drinking water.

    PubMed

    Olguín, María Teresa; Deng, Shuguang

    2016-01-25

    The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Keil, K.; Mansker, W.L.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less

  2. Remagnetization of Jurassic volcanic rocks in the Santa Rita and Patagonia Mountains, Arizona: Implications for North American apparent polar wander

    NASA Astrophysics Data System (ADS)

    Hagstrum, Jonathan T.

    1994-08-01

    Paleomagnetic poles for the Jurassic Corral Canyon sequence and Glance Conglomerate in southern Arizona have been used to construct apparent polar wander (APW) paths for the North American plate, but they are controversial and conflict with higher-latitude poles from New England. Lower Jurassic dacites and ash flow tuffs of the Mount Wrightson Formation in the Santa Rita Mountains were initially sampled to provide an additionnal paleopole for southern Arizona. These rocks, however,have a predominantly reversed-polarity characteristic magnetization (in situ, I = -47 deg, D = 154 deg, alpha(sub 95) = 9 deg) which is statistically indistinguishable from that for the nearby latest Cretaceous Elephant Head pluton (I = -48 deg, D = 165 deg, alpha(sub 95) = 8 deg). Although magnetizations of both polarities are observed in the ash flow tuffs, they are mostly carried by hematite, and dual polarity components are observed within some specimens. Moreover, widespread mineralization and a K-Ar age of approx. 67 Ma for altered rocks of the Mount Wrightson Formation imply that these rocks were subjected to a prolonged episode (greater than one polarity interval) of low-temperature alteration and remagnetization. Hematite is also the dominant remanence carrier in most of the Corral Canyon sequence, and its predominantly normal-polarity direction (in situ, I = 51 deg, D = 326 deg, alpha(sub 95) = 9 deg) is indistinguishable from that for the nearby Patagonia Granodiorite (I = 49 deg, D = 342 deg, alpha(sub 95) = 8 deg). Rocks of the Corral Canyon sequence therefore are likely remagnetized as well. Problems also exist with the Glance Conglomerate pole. These rocks are situated within a caldera structure and have been potassium metasomatized. This potassic alteration could have occurred shortly after emplacement or at a later time, postdeformation. The low-latitude Jurassic APW path for North America and J-2 cusp therefore are not well supported and may need revision.

  3. Paleomagnetic and Anisotropy of Magnetic Susceptibility (AMS) Documentation of the Formation of Large-Scale Rheomorphic Structures in the 2.06 Ma Huckleberry Ridge Tuff, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Holm, D.; Harlan, S. S.

    2006-12-01

    In the Teton River Valley, east of Rexburg, Idaho, the ca. 2.06 Ma Huckleberry Ridge Tuff is about 130 m thick, exceedingly well-exposed, and displays large-scale (100-150 m+ amplitude) rheomorphic folds, with eutaxitic fabrics that are parallel to inferred primary internal zonation (e.g. boundary between basal vitrophyre and overlying devitrified part of the pyroclastic deposit) as well as the basal contact with older deposits defining the fold geometries. One 150 m amplitude fold , is well-exposed on the north side of the valley about 2.5 km east of Teton Dam, has a NW trending fold axis and has a southwest limb that is overturned by about 45o. Samples were collected from 16 sites in this fold, on both limbs and the hinge area, to test the hypothesis that folding took place above maximum TRM blocking temperatures (about 580C). Progressive AF and thermal demagnetization both yield characteristic magnetizations of southwest to south-southwest declination and shallow inclination removed over a range of peak fields (typically between 20 and 80 mT) and laboratory unblocking temperatures (typically between 350 and 580C). The preliminary determination of an in situ mean based on the 16 sites is about D = 215°, I = -5°, a95= 5°, N = 16 site means). The direction of this ChRM is statistically indistinguishable from that reported by previous studies of the tuff (e.g. Reynolds, 1977, JGR; Byrd et al., 1994, JGR). The trend of the fold axis is orthogonal to this declination; the paleomagnetic fold test applied to these data is negative, with k values continuously decreasing upon unfolding, thus indicating that the entire structure in the tuff formed after the well-developed compaction fabric was acquired, at a temperature above maximum blocking temperatures of the ChRM. Post-compaction, high temperature deformation is consistent with field evidence indicating plastic secondary deformation of much of the tuff prior to devitrification. Rapid strain rates probably

  4. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.

  5. Yucca Mountain Project Subsurface Facilities Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Linden; R.S. Saunders; R.J. Boutin

    2002-11-19

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lowermore » lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report.« less

  6. Paleomagnetic Evaluation of the Resurgent Dome at Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Rhode, A.; Geissman, J. W.; Goff, F. E.

    2016-12-01

    The Redondo Peak structural dome, located within the ca. 1.25 Ma Valles Caldera, Jemez Mountains, New Mexico, is a well documented example of post-caldera resurgence and is a fundamental part of the famous model of Smith and Bailey (1968). The NE/SW elongated structural resurgent dome, with over 1000 m of uplift, and its medial graben now occupied by Redondo Creek, parallel the NE orientation of the Jemez fault zone, a key boundary structure of the Rio Grande rift. Our paleomagnetic research quantifies the magnitude of structural tilt (i.e. rotation about a horizontal axis) as a component of any deformation of the resurgent dome to determine if uplift was accommodated by block uplift or by simple doming. Independently oriented samples from 43 sites located on two main structural domains that comprise the resurgent dome (the Redondo Border block and the Redondo Peak block) and within the Redondo Creek graben were obtained from the intracaldera facies of the Tshirege Member of the Bandelier Tuff and overlying lower members of post-Bandelier Valles Rhyolite. Magnetic mineralogy consists of low titanium magnetite and maghemite, consistent with previous paleomagnetic studies on flat-lying outflow facies tuff. In situ estimated directions of sites from the Redondo Border structural domain are generally steeper in inclination than the reference direction (D = 175.6, I = -35.7) (Doell et al., 1968; Sussman et al., 2011), with an average inclination of Ig = -42.5, and show a westward deflection in average declination (Dg = 184.2). In situ estimated directions of sites from the Redondo Peak structural domain are generally shallower in inclination than the reference direction (average inclination of Ig = -27.6) and show an eastward deflection in mean declination values, Dg = 160. Overall, paleomagnetic results show that the pattern of deformation is more pronounced parallel to the long axis of the dome and that the Redondo Border block exhibits some 12 degrees of down to the

  7. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Stephen F.

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  8. Electrical imaging at the large block test—Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Ramirez, A.; Daily, W.

    2001-02-01

    A monolithic block of densely welded tuff was excavated from a site on Fran Ridge near Yucca Mountain, Nevada so that coupled thermohydrological processes could be studied in a controlled, in situ experiment. A series of heaters were placed in a horizontal plane about 3 m from the top of the 3 m×3 m×4.5-m high block. Temperatures were measured at many points within and on the block surface and a suite of other measurements were taken to define the thermal and hydrologic response. Electrical resistance tomography (ERT) was used to map two-dimensional images of moisture content changes along four planes in the block. The ERT images clearly delineate the drying and wetting of the rockmass during the 13 months of heating and subsequent 6 months of cool down. The main feature is a prominent dry zone that forms around the heaters then gradually disappears as the rock cools down. Other features include linear anomalies of decreasing moisture content, which are fractures dehydrating as the block heats up. There are also examples of compact anomalies of wetting. Some of these appear to be water accumulation in fractures, which are draining condensate from the block. Others may be rainwater entering a fracture at the top of the block. During cool-down, a general rewetting is observed although this is less certain because of poor data quality during this stage of the experiment.

  9. Heat transfer enhancement induced by wall inclination in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (106≤Ra ≤109 ) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ "- and "V "-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  10. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and

  11. Zircon U-Pb Age Distributions in Cogenetic Crystal-Rich Dacitic and Crystal-Poor Rhyolitic Members of Zoned Ignimbrites in the Southern Rocky Mountains by Chemical Abrasion Inductively-Coupled-Plasma Mass Spectrometry (CA-LA-ICP-MS).

    NASA Astrophysics Data System (ADS)

    Sliwinski, J.; Zimmerer, M. J.; Guillong, M.; Bachmann, O.; Lipman, P. W.

    2015-12-01

    The San Juan locus of the Southern Rocky Mountain Volcanic Field (SRMVF) in SW Colorado represents an erosional remnant of a mid-Tertiary (~37-23 Ma) ignimbrite flare up that produced some of the most voluminous ignimbrites on Earth. A key feature of many SRMVF ignimbrites is compositional zonation, with many volcanic units comprising both dacitic and rhyolitic horizons. Geochemical, field and petrographic evidence suggests that dacites and rhyolites are cogenetic. Here, we report U-Pb zircon ages by chemical abrasion inductively-coupled-plasma mass spectrometry (CA-LA-ICPMS) for rhyolitic and dacitic components in four units: the Bonanza, Rat Creek, Carpenter Ridge and Nelson Mountain Tuffs. All units show zircon age spectra that are either within analytical uncertainty of Ar/Ar ages or are appreciably older, indicating prolonged magma residence times (~500 ka) prior to eruption. Anomalously young Pb-loss zones in zircon have been largely removed by chemical abrasion. Older, inherited zircons and zircon cores (60-2000 Ma) are rare in all samples, suggesting limited assimilation of upper crustal Precambrian country rock or complete resorption during recharge events and magma chamber growth.

  12. Lesson 1: Mountains Matter.

    ERIC Educational Resources Information Center

    Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex

    1999-01-01

    Provides a lesson that enables students to explain the global importance of mountains by applying the five themes of geography (location, place, relationships within places, movement, and regions) to a particular mountain range. Explains that students work in teams to prepare a brochure about their mountain range. (CMK)

  13. Western Mountain Initiative

    Science.gov Websites

    Home About WMI People Publications News Media Research Links Western Mountain Initiative The Western Mountain Initiative is a team of USGS, US Forest Service, and university scientists working to

  14. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  15. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving

  16. Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona

    USGS Publications Warehouse

    LeCain, G.D.

    1995-01-01

    Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.

  17. Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plume, R.W.; La Camera, R.J.

    1996-12-31

    The U.S. Department of Energy and U.S. Geological Survey are monitoring water levels in southern Nevada and adjacent parts of California in response to concern about the potential effects of pumping ground water to support the Yucca Mountain Site-Characterization Program. Well JF-3 was drilled in the western part of Jackass Flats for monitoring water levels, for determining the likelihood of a hydraulic connection between well JF-3 and production wells J-12 and J-13, and for measuring the hydraulic properties of the Topopah Spring Tuff. The borehole for JF-3 penetrated about 480 feet of alluvium and 818 feet of underlying volcanic rock.more » The well was finished at a depth of 1,138 feet below land surface near the base of the Topopah Spring Tuff, which is the principal volcanic-rock aquifer in the area. The Topopah Spring Tuff at well JF-3 extends from depths of 580 feet to 1,140 feet and consists of about 10 feet of partly to moderately welded ash-flow tuff; 10 feet of vitrophyre; 440 feet of devitrified, moderately to densely welded ash-flow tuff; 80 feet of densely welded ash-flow tuff; 10 feet of vitric, nonwelded to partly welded ash-flow tuff; and 10 feet of ashfall tuff. Fractures and lithophysae are most common in the devitrified tuff, especially between depths of 600 feet and 1,040 feet. Much of the water produced in well JF-3 probably comes from the sequence of these devitrified tuffs that is below the water table. The transmissivity of the aquifer is an estimated 140,000-160,000 feet squared per day and hydraulic conductivity is 330-370 feet per day. These values exceed estimates made at well J-13 by two orders of magnitude. Such large differences may be accounted for by differences in the development of fractures and lithophysae in the Topopah Spring Tuff at the two wells.« less

  18. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  19. YUCCA MOUNTAIN SITE DESCRIPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Simmons

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work donemore » at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.« less

  20. Geochronology, stratigraphy and geochemistry of Cindery Tuff in Pliocene hominid-bearing sediments of the Middle Awash, Ethiopia.

    PubMed

    Hall, C M; Walter, R C; Westgate, J A; York, D

    Cindery Tuff is a subalkaline, rhyolitic air-fall deposit that was probably produced by a mixed-magma eruption. It is a distinctive, datable, regional isochronous marker bed within the Pliocene sediments of the Middle Awash district, and is stratigraphically situated between two new fossil hominid discoveries. Based on 40Ar/39Ar analyses of plagioclase, rhyolitic glass and basaltic glass, as well as fission-track analyses of zircons, we estimate its age to be 3.8-4.0 Myr. This implies that associated hominid skull fragments are at least 3.9 Myr old.

  1. Preliminary hydrologic evaluation of the North Horn Mountain coal-resource area, Utah

    USGS Publications Warehouse

    Graham, M.J.; Tooley, John E.; Price, Don

    1981-01-01

    North Horn Mountain is part of a deeply dissected plateau in central Utah which is characterized by deep, narrow, steep-walled canyons with local relief of more than 1,000 feet. Geologic units exposed in the North Horn Mountain area range in age from Late Cretaceous to Holocene and contain two mineable seams of Cretaceous coal. The area is in the drainage basin of the San Rafael River, in the Colorado River Basin. Runoff from the mountain is ephemeral. This runoff to the San Rafael River is by way of Cottonwood and Perron Creeks and represents less than 10 percent of their average annual runoff. Probable peak discharges (100-year flood) for the ephemeral streams draining North Horn Mountain are estimated to range from 200 to 380 cubic feet per second.The chemical quality of surface water in the area is good. The water is generally of a calcium magnesium bicarbonate type with average dissolved solids less than 500 milligrams per liter. Annual sediment yield in most of the area ranges from 0.1 to 0.2 acre-foot per square mile but locally is as high as 1.0 acre-foot per square mile. Most of the sediment is eroded during cloudbursts.Most of the ground water above the coal on North Horn Mountain probably is in perched aquifers. These aquifers support the flow of small seeps and springs. In some areas, the regional water table appears to extend upward into the coal. The principal source of recharge is precipitation that probably moves to aquifers along faults, joints, or fractures. This movement is apparently quite rapid. The dissolved-solids concentrations of ground water in the North Horn Mountain area range from less than 500 to about 1,000 milligrams per liter.Coal mining on North Horn Mountain should have minor "effects on the quantity and quality of surface water. The maximum predicted decrease in the annual flow of Ferron and Cottonwood Creeks is less than U percent. The sediment loads of affected streams could be significantly increased if construction were to

  2. Patchy distribution of magma that fed the Bishop Tuff supereruption: Evidence from matrix glass major and trace-element compositions

    NASA Astrophysics Data System (ADS)

    Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.

    2017-12-01

    For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our

  3. Proceedings of the 92nd regular meeting of the Rocky Mountain Coal Mining Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnie, D.G.

    1996-12-31

    The proceedings of the 92nd Regular Meeting of the Rocky Mountain Coal Mining Institute held June 29-July 2, 1996 in Durango, CO. are presented. Attention was focused on the following areas: plots, plans, and partnerships in US mining; partnerships at McKinley; deregulation of the electric utility industry; environmental partnerships; Federal Mine Safety and Health Act; injury prevention in the coal mining industry; new trend in back injury prevention; and automated high wall mining. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Ejector subassembly for dual wall air drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolle, J.J.

    1996-09-01

    The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less

  5. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Martí, Joan; Geyer, Adelina

    2013-07-01

    The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE-SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.

  6. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  7. Mountain Weather and Climate, Third Edition

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2009-05-01

    For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.

  8. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  9. Evaluation of Pleistocene groundwater flow through fractured tuffs using a U-series disequilibrium approach, Pahute Mesa, Nevada, USA

    USGS Publications Warehouse

    Paces, James B.; Nichols, Paul J.; Neymark, Leonid A.; Rajaram, Harihar

    2013-01-01

    Groundwater flow through fractured felsic tuffs and lavas at the Nevada National Security Site represents the most likely mechanism for transport of radionuclides away from underground nuclear tests at Pahute Mesa. To help evaluate fracture flow and matrix–water exchange, we have determined U-series isotopic compositions on more than 40 drill core samples from 5 boreholes that represent discrete fracture surfaces, breccia zones, and interiors of unfractured core. The U-series approach relies on the disruption of radioactive secular equilibrium between isotopes in the uranium-series decay chain due to preferential mobilization of 234U relative to 238U, and U relative to Th. Samples from discrete fractures were obtained by milling fracture surfaces containing thin secondary mineral coatings of clays, silica, Fe–Mn oxyhydroxides, and zeolite. Intact core interiors and breccia fragments were sampled in bulk. In addition, profiles of rock matrix extending 15 to 44 mm away from several fractures that show evidence of recent flow were analyzed to investigate the extent of fracture/matrix water exchange. Samples of rock matrix have 234U/238U and 230Th/238U activity ratios (AR) closest to radioactive secular equilibrium indicating only small amounts of groundwater penetrated unfractured matrix. Greater U mobility was observed in welded-tuff matrix with elevated porosity and in zeolitized bedded tuff. Samples of brecciated core were also in secular equilibrium implying a lack of long-range hydraulic connectivity in these cases. Samples of discrete fracture surfaces typically, but not always, were in radioactive disequilibrium. Many fractures had isotopic compositions plotting near the 230Th-234U 1:1 line indicating a steady-state balance between U input and removal along with radioactive decay. Numerical simulations of U-series isotope evolution indicate that 0.5 to 1 million years are required to reach steady-state compositions. Once attained, disequilibrium 234U/238U

  10. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  11. Ural Mountains, Russia

    NASA Image and Video Library

    2015-10-06

    This image from NASA Terra spacecraft shows the Ural Mountains, which run 2500 km north-south through western Russia, and form the boundary between Europe and Asia. Since the 17th century, the mountains were exploited for their deposits of iron, copper, gold, coal, oil, mica and gemstones. The Urals are among the world's oldest existing mountain ranges, having been formed about 275 million years ago due to the collision of the Laurussia supercontinent with the continent of Kazakhstania. The image was acquired July 13, 2011, covers an area of 39 by 62 km, and is located near 65.5 degrees north, 59.9 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA19795

  12. Recreational mountain biking injuries.

    PubMed

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  13. Mountain Pine Beetle

    Treesearch

    Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph

    1989-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...

  14. Physical limits on ground motion at Yucca Mountain

    USGS Publications Warehouse

    Andrews, D.J.; Hanks, T.C.; Whitney, J.W.

    2007-01-01

    Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.

  15. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    PubMed

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  16. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  17. Rocky Mountain spotted fever

    MedlinePlus

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  18. Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)

    NASA Astrophysics Data System (ADS)

    Avetisyan, M. H.

    2018-01-01

    The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.

  19. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  20. Io: Mountains and crustal extension

    NASA Technical Reports Server (NTRS)

    Heath, M. J.

    1985-01-01

    It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.

  1. Chlorine-36 investigations of groundwater infiltration in the Exploratory Studies Facility at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, S.S.; Fabryka-Martin, J.T.; Dixon, P.R.

    1997-12-01

    Chlorine-36, including the natural cosmogenic component and the component produced during atmospheric nuclear testing in the 1950`s and 1960`s (bomb pulse), is being used as an isotopic tracer for groundwater infiltration studies at Yucca Mountain, a potential nuclear waste repository. Rock samples have been collected systematically in the Exploratory Studies Facility (ESF), and samples were also collected from fractures, faults, and breccia zones. Isotopic ratios indicative of bomb-pulse components in the water ({sup 36}Cl/Cl values > 1,250 x 10{sup {minus}15}), signifying less than 40-yr travel times from the surface, have been detected at a few locations within the Topopah Springmore » Tuff, the candidate host rock for the repository. The specific features associated with the high {sup 36}Cl/Cl values are predominantly cooling joints and syngenetic breccias, but most of the sites are in the general vicinity of faults. The non-bomb pulse samples have {sup 36}Cl/Cl values interpreted to indicate groundwater travel times of at least a few thousand to possibly several hundred thousand years. Preliminary numerical solute-travel experiments using the FEHM (Finite Element Heat and Mass transfer) code demonstrate consistency between these interpreted ages and the observed {sup 36}Cl/Cl values but do not validate the interpretations.« less

  2. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  3. A sightability model for mountain goats

    USGS Publications Warehouse

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  4. Global Measurements of Stratospheric Mountain Waves from Space

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Preusse, Peter; Jackman, Charles H. (Technical Monitor)

    1999-01-01

    Temperatures acquired by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) during shuttle mission STS-66 have provided measurements of stratospheric mountain waves from space. Large-amplitude, long-wavelength mountain waves at heights of 15 to 30 kilometers above the southern Andes Mountains were observed and characterized, with vigorous wave breaking inferred above 30 kilometers. Mountain waves also occurred throughout the stratosphere (15 to 45 kilometers) over a broad mountainous region of central Eurasia. The global distribution of mountain wave activity accords well with predictions from a mountain wave model. The findings demonstrate that satellites can provide the global data needed to improve mountain wave parameterizations and hence global climate and forecast models.

  5. Mountain pine beetle in southwestern white pine in the Pinaleno Mountains

    Treesearch

    Ann M. Lynch; Christopher D. O' Connor

    2013-01-01

    Mountain pine beetle has rarely been found in the Madrean Sky Island Archipelago and has not been reported from the Pinaleño Mountains until recently. This insect began killing southwestern white pine in 1996 or earlier, with additional mortality each year since. Activity has increased in the last 2 years. The life cycle in the Pinaleños during this time has been...

  6. The palaeogeographic setting and the local environmental impact of the 130 ka Falconiera tuff-cone eruption (Ustica island, Italy)

    NASA Astrophysics Data System (ADS)

    de Vita, Sandro; Foresta Martin, Franco

    2017-04-01

    This research focuses on the effects of the last eruption at Ustica (Suthern Tyrrhenian Sea, Italy), which formed the Falconiera tuff-cone at around 130 ka BP in the north-eastern tip of the island. This eruption was mainly explosive and phreatomagmatic, and emplaced a series of pyroclastic surge beds that formed an asymmetric tuff cone. This is the most easily recognizable volcanic edifice on Ustica, although its north-eastern sector has been partially eroded. A section of the feeding conduit is exposed northward, and is composed of lavas that fed the last stages of the eruption characterized by an intracrateric lava lake and a Strombolian scoria-fallout deposit. The eruption occurred during Upper Pleistocene Marine Isotopic Substage 5.5, a warm period characterized by a high sea-level stand (6±3 m above the present sea level in stable areas) and the diffusion of subtropical flora and fauna across the Mediterranean sea. This eruption slightly modified the morphology of Ustica, but impacted both marine and terrestrial environments, burying beach deposits rich in mollusk shells (i.e. Strombus bubonius, Conus testudinarius, Brachidontes puniceus), colonies of corals (Cladocora caespitosa) and subaerial plants (Chamaerops humilis). These organisms, found in some cases in their life position, along with other lines of evidence, provide information on the palaeogeography of this sector of the island at the time of the eruption, and on the local impact of this event on the environment.

  7. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high

  8. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and

  9. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  10. Western Mountain Initiative - Background

    Science.gov Websites

    , and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon

  11. Management of Multi-Casualty Incidents in Mountain Rescue: Evidence-Based Guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM).

    PubMed

    Blancher, Marc; Albasini, François; Elsensohn, Fidel; Zafren, Ken; Hölzl, Natalie; McLaughlin, Kyle; Wheeler, Albert R; Roy, Steven; Brugger, Hermann; Greene, Mike; Paal, Peter

    2018-06-01

    Blancher, Marc, François Albasini, Fidel Elsensohn, Ken Zafren, Natalie Hölzl, Kyle McLaughlin, Albert R. Wheeler III, Steven Roy, Hermann Brugger, Mike Greene, and Peter Paal. Management of multi-casualty incidents in mountain rescue: Evidence-based guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). High Alt Med Biol. 19:131-140, 2018. Multi-Casualty Incidents (MCI) occur in mountain areas. Little is known about the incidence and character of such events, and the kind of rescue response. Therefore, the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) set out to provide recommendations for the management of MCI in mountain areas. Details of MCI occurring in mountain areas related to mountaineering activities and involving organized mountain rescue were collected. A literature search using (1) PubMed, (2) national mountain rescue registries, and (3) lay press articles on the internet was performed. The results were analyzed with respect to specific aspects of mountain rescue. We identified 198 MCIs that have occurred in mountain areas since 1956: 137 avalanches, 38 ski lift accidents, and 23 other events, including lightning injuries, landslides, volcanic eruptions, lost groups of people, and water-related accidents. General knowledge on MCI management is required. Due to specific aspects of triage and management, the approach to MCIs may differ between those in mountain areas and those in urban settings. Mountain rescue teams should be prepared to manage MCIs. Knowledge should be reviewed and training performed regularly. Cooperation between terrestrial rescue services, avalanche safety authorities, and helicopter crews is critical to successful management of MCIs in mountain areas.

  12. Eruptive history, geochronology, and post-eruption structural evolution of the late Eocene Hall Creek Caldera, Toiyabe Range, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2017-02-24

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand

  13. Protection of the Mountain Ridgelines Utilizing GIS

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, M.

    2013-12-01

    Korean peninsula is characterized by numerous hills and mountains. The longest mountain ridgeline starting from Mt. Baekdusan to Mt. Jirisan is called Baekdudaegan which is similar to the continental divide or topographical watershed. In this study, GIS data, such as remotesensing images, national digital map, and watershed map, are used to analyze Korean mountain ridgelines structure and one Baekdudaegan data and nine Ridgelines are extracted. When extracted Baekdudaegan and other Ridgelines are overlaid on geologic maps, granite and gneiss are main components on the mountain ridgelines. The main mountain ridgelines are considered as the spiritual heritage overlapped in the land in Korea. As the environmental state is relatively better than those of other region in Korea, so many mountain ridgelines are legally protected by national legislation. The mountain ridgelines has hierarchical system; Baekdudaegan, Jeongmaek, Gimaek and Jimaek etc. according to their scale and total lengths of ridgelines. As only part of mountain ridgelines are currently protected by law or managed in environmental impact assessment (EIA) procedure, we think that most part of them should be under protection. Considering the environmental state of the ridgelines, we think that some protective measures should be set up nearby 1 km on both sides of them. If there goes a development plan or project near the main mountain ridgelines, topographical change index (TCI) and topographical scale index (TSI) etc. are to be applied in EIA. This study intends: firstly, to analyze the topological characteristics of the Korean mountain ridgelines using GIS, secondly, to analyze the geological characteristics of nearby mountain ridgelines, and lastly, to find a way to utilize the results on EIA.

  14. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology

  15. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Ho, C.K.; Glass, RJ.

    1996-09-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon infiltration of water observed in the experiment was subsequently modeled using measured Fran Ridgemore » fracture frequencies, and a specified fracture aperture of 285 {micro}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, al fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.« less

  16. Three-dimensional modeling of flow through fractured tuff at Fran Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Ho, C.K.; Glass, R.J.

    1996-01-01

    Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridgemore » fracture frequencies, and a specified fracture aperture of 285 {mu}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.« less

  17. Mountain goat abundance and population trends in the Olympic Mountains, northwestern Washington, 2016

    USGS Publications Warehouse

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Baccus, William T.

    2016-11-30

    Executive SummaryWe estimated abundance and trends of non-native mountain goats (Oreamnos americanus) in the Olympic Mountains of northwestern Washington, based on aerial surveys conducted during July 13–24, 2016. The surveys produced the seventh population estimate since the first formal aerial surveys were conducted in 1983. This was the second population estimate since we adjusted survey area boundaries and adopted new estimation procedures in 2011. Before 2011, surveys encompassed all areas free of glacial ice at elevations above 1,520 meters (m), but in 2011 we expanded survey unit boundaries to include suitable mountain goat habitats at elevations between 1,425 and 1,520 m. In 2011, we also began applying a sightability correction model allowing us to estimate undercounting bias associated with aerial surveys and to adjust survey results accordingly. The 2016 surveys were carried out by National Park Service (NPS) personnel in Olympic National Park and by Washington Department of Fish and Wildlife (WDFW) biologists in Olympic National Forest and in the southeastern part of Olympic National Park. We surveyed a total of 59 survey units, comprising 55 percent of the 60,218-hectare survey area. We estimated a mountain goat population of 623 ±43 (standard error, SE). Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 561 to 741 mountain goats at the time of the survey.We examined the rate of increase of the mountain goat population by comparing the current population estimate to previous estimates from 2004 and 2011. Because aerial survey boundaries changed between 2004 and 2016, we recomputed population estimates for 2011 and 2016 surveys based on the revised survey boundaries as well as the previously defined boundaries so that estimates were directly comparable across years. Additionally, because the Mount Washington survey unit was not surveyed in 2011, we used results from an independent survey of the Mount

  18. Mountain Child: Systematic Literature Review.

    PubMed

    Audsley, Annie; Wallace, Rebecca M M; Price, Martin F

    2016-12-01

    Objectives This systematic review identifies and reviews both peer-reviewed and 'grey' literature, across a range of disciplines and from diverse sources, relating to the condition of children living in mountain communities in low- and middle-income countries. Findings The literature on poverty in these communities does not generally focus on the particular vulnerabilities of children or the impact of intersecting vulnerabilities on the most marginalised members of communities. However, this literature does contribute analyses of the broader context and variety of factors impacting on human development in mountainous areas. The literature on other areas of children's lives-health, nutrition, child mortality, education, and child labour-focuses more specifically on children's particular vulnerabilities or experiences. However, it sometimes lacks the broader analysis of the many interrelated characteristics of a mountainous environment which impact on children's situations. Themes Nevertheless, certain themes recur across many disciplines and types of literature, and point to some general conclusions: mountain poverty is influenced by the very local specificities of the physical environment; mountain communities are often politically and economically marginalised, particularly for the most vulnerable within these communities, including children; and mountain communities themselves are an important locus for challenging and interrupting cycles of increasing inequality and disadvantage. While this broad-scale review represents a modest first step, its findings provide the basis for further investigation.

  19. Mountain cartography: revival of a classic domain

    NASA Astrophysics Data System (ADS)

    Häberling, Christian; Hurni, Lorenz

    The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.

  20. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  1. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of the boundary line between the central and mountain standard time zones described in § 71.7 and east of the...

  2. Storymakers: Hopa Mountain's Early Literacy Program

    ERIC Educational Resources Information Center

    Templin, Patricia A.

    2013-01-01

    Hopa Mountain's StoryMakers program is an innovative, research-based program for donating high quality young children's books to parents. Hopa Mountain is a nonprofit organization based in Bozeman, Montana. Hopa Mountain works with groups of rural and tribal citizen leaders who form StoryMakers Community Teams to talk one-on-one with local parents…

  3. Using prescribed fire to regenerate Table Mountain pine in the Southern Appalachian Mountains

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2000-01-01

    Stand-replacing prescribed fires are recommended to regenerate stands of Table Mountain pine (Pinus pungens) in the southern Appalachian Mountains because the species has serotinous cones and its seedlings require abundant sunlight and a thin forest floor. A 350-hectare prescribed fire in northeastern Georgia provided an opportunity to observe...

  4. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  5. Mountain Biking Injuries.

    PubMed

    Ansari, Majid; Nourian, Ruhollah; Khodaee, Morteza

    With the increasing popularity of mountain biking, also known as off-road cycling, and the riders pushing the sport into extremes, there has been a corresponding increase in injury. Almost two thirds of acute injuries involve the upper extremities, and a similar proportion of overuse injuries affect the lower extremities. Mountain biking appears to be a high-risk sport for severe spine injuries. New trends of injury patterns are observed with popularity of mountain bike trail parks and freeride cycling. Using protective gear, improving technical proficiency, and physical fitness may somewhat decrease the risk of injuries. Simple modifications in bicycle-rider interface areas and with the bicycle (bike fit) also may decrease some overuse injuries. Bike fit provides the clinician with postural correction during the sport. In this review, we also discuss the importance of race-day management strategies and monitoring the injury trends.

  6. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    PubMed

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  7. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    NASA Astrophysics Data System (ADS)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  8. Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, USA, using ion-microprobe and microdigestion methods

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Wooden, J.L.; Persing, H.M.

    2004-01-01

    Two novel methods of in situ isotope analysis, ion microprobe and microdigestion, were used for 230Th/U and 234U/238U dating of finely laminated opal hemispheres formed in unsaturated felsic tuff at Yucca Mountain, Nevada, proposed site for a high-level radioactive waste repository. Both methods allow analysis of layers as many as several orders of magnitude thinner than standard methods using total hemisphere digestion that were reported previously. Average growth rates calculated from data at this improved spatial resolution verified that opal grew at extremely slow rates over the last million years. Growth rates of 0.58 and 0.69 mm/m.y. were obtained for the outer 305 and 740 ??m of two opal hemispheres analyzed by ion microprobe, and 0.68 mm/m.y. for the outer 22 ??m of one of these same hemispheres analyzed by sequential microdigestion. These Pleistocene growth rates are 2 to 10 times slower than those calculated for older secondary calcite and silica mineral coatings deposited over the last 5 to 10 m.y. dated by the U-Pb method and may reflect differences between Miocene and Pleistocene seepage flux. The microdigestion data also imply that opal growth rates may have varied over the last 40 k.y. These data are the first indication that growth rates and associated seepage in the proposed repository horizon may correlate with changes in late Pleistocene climate, involving faster growth during wetter, cooler climates (glacial maximum), slower growth during transition climates, and no growth during the most arid climate (modern). Data collected at this refined spatial scale may lead to a better understanding of the hydrologic variability expected within the thick unsaturated zone at Yucca Mountain over the time scale of interest for radioactive waste isolation. ?? 2004 Elsevier Ltd.

  9. Consequences of slow growth for 230Th/U dating of Quaternary opals, Yucca Mountain, NV, USA

    USGS Publications Warehouse

    Neymark, L.A.; Paces, J.B.

    2000-01-01

    Thermal ionization mass-spectrometry 234U/238U and 230Th/238U data are reported for uranium-rich opals coating fractures and cavities within the silicic tuffs forming Yucca Mountain, NV, the potential site of a high-level radioactive waste repository. High uranium concentrations (up to 207 ppm) and extremely high 230Th/232Th activity ratios (up to about 106) make microsamples of these opals suitable for precise 230Th/U dating. Conventional 230Th/U ages range from 40 to greater than 600 ka, and initial 234U/238U activity ratios between 1.03 and 8.2. Isotopic evidence indicates that the opals have not experienced uranium mobility; however, wide variations in apparent ages and initial 234U/238U ratios for separate subsamples of the same outermost mineral surfaces, positive correlation between ages and sample weights, and negative correlation between 230Th/U ages and calculated initial 234U/238U are inconsistent with the assumption that all minerals in a given subsample was deposited instantaneously. The data are more consistent with a conceptual model of continuous deposition where secondary mineral growth has occurred at a constant, slow rate up to the present. This model assumes that individual subsamples represent mixtures of older and younger material, and that calculations using the resulting isotope ratios reflect an average age. Ages calculated using the continuous-deposition model for opals imply average mineral growth rates of less than 5 mm/m.y. The model of continuous deposition also predicts discordance between ages obtained using different radiometric methods for the same subsample. Differences in half-lives will result in younger apparent ages for the shorter-lived isotope due to the greater influence of younger materials continuously added to mineral surfaces. Discordant 14C, 230Th/U and U-Pb ages obtained from outermost mineral surfaces at Yucca Mountain support this model. (C) 2000 Elsevier Science B.V. All rights reserved.

  10. Cercocarpus Kunth: mountain-mahogany

    Treesearch

    Stanley G. Kitchen

    2008-01-01

    The mountain mahoganies - genus Cercocarpus - are 8 to 10 species of moderately to intricately branched shrubs or small trees that are endemic to dry coastal and interior mountains of the western United States and Mexico (Stutz 1990). Leaves are generally persistent and stems are unarmed. Two of the most widely distributed and utilized species are described here.

  11. Ages and Origins of Calcite and Opal in the Exploratory Studies Facility Tunnel, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, James B.; Neymark, Leonid A.; Marshall, Brian D.; Whelan, Joseph F.; Peterman, Zell E.

    2001-01-01

    Deposits of calcite and opal are present as coatings on open fractures and lithophysal cavities in unsaturated-zone tuffs at Yucca Mountain, Nevada, site of a potential high-level radioactive waste repository. Outermost layers of calcite and opal have radiocarbon ages of 16,000 to 44,000 years before present and thorium-230/uranium ages of 28,000 to more than 500,000 years before present. These ages are young relative to the 13-million-year age of the host rocks. Multiple subsamples from the same outer layer typically show a range of ages with youngest ages from the thinnest subsamples. Initial uranium-234/uranium-238 activity ratios between 1 and 9.5 show a distinct negative correlation with thorium-230/uranium age and are greater than 4 for all but one sample younger than 100,000 years before present. These data, along with micrometer-scale layering and distinctive crystal morphologies, are interpreted to indicate that deposits formed very slowly from water films migrating through open cavities. Exchanges of carbon dioxide and water vapor probably took place between downward-migrating liquids and upward-migrating gases at low rates, resulting in oversaturation of mineral constituents at crystal extremities and more or less continuous deposition of very thin layers. Therefore, subsamples represent mixtures of older and younger layers on a scale finer than sampling techniques can resolve. Slow, long-term rates of deposition (less than about 5 millimeters of mineral per million years) are inferred from subsamples of outermost calcite and opal. These growth rates are similar to those calculated assuming that total coating thicknesses of 10 to 40 millimeters accumulated over 12 million years. Calcite has a wide range of delta carbon-13 values from about -8.2 to 8.5 per mil and delta oxygen-18 values from about 10 to 21 per mil. Systematic microsampling across individual mineral coatings indicates basal (older) calcite tends to have the largest delta carbon-13 values

  12. Himalayan Mountain Range, India/Tibet

    NASA Image and Video Library

    1973-06-22

    SL2-102-900 (22 June 1973) --- The Great Himalayan Mountain Range, India/Tibet (30.5N, 81.5E) is literally the top of the world where mountains soar to over 20,000 ft. effectively isolating Tibet from the rest of the world. The two lakes seen in the center of the image are the Laga Co and the Kunggyu Co located just inside the Tibet border. Although clouds and rainfall are rare in this region, snow is always present on the mountain peaks. Photo credit: NASA

  13. Mountain big sagebrush communities on the Bishop Conglomerate in the eastern Uinta Mountains

    Treesearch

    Sherel Goodrich; Allen Huber

    2001-01-01

    The Bishop Conglomerate forms broad, gently sloping pediments that include a mantle or veneer of coarse gravel and some cobble over underlying formations. These pediments cover large areas at the margins of the Uinta Mountains. Mountain big sagebrush (Artemisia tridentata var. pauciflora) communities cover rather large areas at the outer edge or lower end of these...

  14. Influence of rock composition on the geochemistry of stream and spring waters from mountainous watersheds in the Gunnison, Uncompahgre, and Grand Mesa National Forests, Colorado

    USGS Publications Warehouse

    Miller, William Roger

    2002-01-01

    The ranges of geochemical baselines for stream and spring waters were determined and maps were constructed showing acid-neutralizing capacity and potential release of total dissolved solids for streams and spring waters for watersheds underlain by each of ten different rock composition types in the Gunnison, Uncompahgre, and Grand Mesa National Forests, Colorado (GMUG). Water samples were collected in mountainous headwater watersheds that have comparatively high precipitation and low evapotranspiration rates and that generally lack extensive ground-water reservoirs. Mountainous headwaters react quickly to changes in input of water from rain and melting snow and they are vulnerable to anthropogenic impact. Processes responsible for the control and mobility of elements in the watersheds were investigated. The geochemistry of water from the sampled watersheds in the GMUG, which are underlain by rocks that are relatively unmineralized, is compared to the geochemistry of water from the mineralized Redcloud Peak area. The water with the highest potential for release of total dissolved solids is from watersheds that are underlain by Paleozoic sedimentary rocks; that high potential is caused primarily by gypsum in those rocks. Water that has the highest acid-neutralizing capacity is from watersheds that are underlain by Paleozoic sedimentary rocks. The water from watersheds underlain by the Mancos Shale has the next highest acid-neutralizing capacity. Water that has the lowest acid-neutralizing capacity is from watersheds that are underlain by Tertiary ash-flow tuff. Tertiary sedimentary rocks containing oil shale, the Mesavede Formation containing coal, and the Mancos Shale all contain pyrite with elevated metal contents. In these mountainous head-water areas, water from watersheds underlain by these rock types is only slightly impacted by oxidation of pyrite, and over-all it is of good chemical quality. These geochemical baselines demonstrate the importance of rock

  15. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    NASA Astrophysics Data System (ADS)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  16. Mountains as early warning indicators of climate change

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  17. Tectonic models for Yucca Mountain, Nevada

    USGS Publications Warehouse

    O'Leary, Dennis W.

    2006-01-01

    Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.

  18. Stone Quarries and Sourcing in the Carolina Slate Belt

    DTIC Science & Technology

    2006-04-01

    a hilltop with a localized outcrop of small boulders of andesite porphyry . A revisit revealed that the site had recently been destroyed by...rocks are dacitic and include flows, tuffs, breccias, and porphyries . Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie...Rocks of this zone, from Shingle Trap, Hattaway, and Sugarloaf Mountains, are mainly light to dark gray metadacite porphyry or metadacitic

  19. Northern Chile and Andes Mountains seen from STS-61 Shuttle Endeavour

    NASA Image and Video Library

    1993-12-09

    STS061-101-023 (8 Dec 1993) --- This color photograph is a spectacular, panoramic (southeastern view) shot that features the northern half of the country of Chile and the Andes Mountains of South America. The Atacama Desert, one of the driest regions on earth, is clearly visible along the northern Chilean coast. This desert extends from roughly Arica in the north to the city of Caldera in the south, a distance of six hundred miles. Some parts of this very arid region go for more than twenty years without measurable precipitation. It is an area of dramatic and abrupt elevation changes. For example, from the waters edge there is an escarpment of the coastal plateau that rises like an unbroken wall two or three thousand feet above the Pacific Ocean. From the coastal plateau, there is an even more dramatic increase in elevation -- from two thousand feet above sea level to an average elevation of thirteen thousand feet above sea level in the Bolivian Altiplano. This elevation change occurs within a one hundred to two hundred mile distance from the Pacific Ocean. The north-south trending spine of the Andes Mountains can be seen on this photograph. Several of the volcanic peaks in this mountain chain exceed 20,000 feet above sea level. Interspersed with these volcanic peaks, numerous dry lake beds (salars) can be seen as highly reflective surfaces. The largest of these salars (Salar de Uyuni) is visible at the edge of the Hubble Space Telescope (HST). Offshore, the cold Peruvian current produces low stratus clouds that can be found along this coastline at certain times of the year. This is the same type of meteorological phenomena that is found along the southern California coast and the Skeleton coast of southwestern Africa.

  20. Injuries in mountain biking.

    PubMed

    Gaulrapp, H; Weber, A; Rosemeyer, B

    2001-01-01

    Despite still growing attraction mountain biking as a matter of sports traumatology still lacks relevant data based on large cross-sectional surveys. To obtain an overview of risk factors, types, and main body sites of injuries occurring in mountain biking we assessed the results of a questionnaire answered by 3873 athletes. A total of 8133 single lesions were reported by 3474 athletes, 36% of whom regularly participated in competitions. The incidence of injuries in mountain biking is comparable to that in other outdoor sports, the majority of injuries being minor. Mountain biking athletes were found to have an overall injury risk rate of 0.6% per year and 1 injury per 1000 h of biking. The main risk factors included slippery road surface, cyclist's poor judgement of the situation, and excessive speed, representing personal factors that could be altered by preventive measures. Of all injuries 14% were due to collision with some part of the bike, especially the pedals and the handlebar. While 75% of the injuries were minor, such as skin wounds and simple contusions, 10% were so severe that hospitalization was required. A breakdown of the injuries according to body site and frequency of occurrence is presented.

  1. Extinction of Harrington's mountain goat

    PubMed Central

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-01-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters. Images PMID:16593655

  2. Late glacial aridity in southern Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, O K; Pitblado, B L

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lakemore » (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.« less

  3. Assessment of the geothermal potential of southwestern New Mexico. Final report, July 1, 1978-April 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elston, W.E.

    1981-07-01

    Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows andmore » thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.« less

  4. A new network on mountain geomorphosites

    NASA Astrophysics Data System (ADS)

    Giusti, Christian

    2013-04-01

    Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional

  5. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains

    NASA Astrophysics Data System (ADS)

    Mattern, Frank; Scharf, Andreas

    2018-04-01

    extensionally reactivated by a branch fault of the Frontal Range Fault. Extension may be ductile (limestone mylonites), ductile and brittle (ooid deformation, boudinaged belemnite rostra, shear bands) or brittle. Extension is heterogeneously distributed within the Frontal Range. Extension is mainly related to orogenic/gravitational collapse of the Oman Mountains. Collapse may have been associated with isostatic rebound and rise of the two domes. In the western part of the study area, the Frontal Range Fault has a listric morphology. It is probably horizontal at a depth of 15 km below the Batinah coastal area. The fault seems to use the clay- and tuff-bearing Aruma Group as shear horizon. The depth of 15 km may coincide with the brittle-ductile transition of quartz- and feldspar-rich rocks. Close to this depth, the listric Batinah Coast Fault curves into the Frontal Range Fault. Extension along the Frontal Range and Batinah Coast faults probably reactivated preexisting late Cretaceous thrust faults during post-late Eocene time. The latter fault is likely mechanically related to the Wadi Kabir Fault via the Fanja Graben Fault and the Sunub fault segment. Listwaenite and serpentinite cluster preferably around the extensional faults. The Semail Gap probably functioned as a sinistral transform fault or fault zone during the Permian.

  6. Study of the seismic performance of hybrid A-frame micropile/MSE (mechanically stabilized earth) wall

    NASA Astrophysics Data System (ADS)

    Chen, Yumin; Zhang, Zhichao; Liu, Hanlong

    2017-04-01

    The Hybrid A-Frame Micropile/MSE (mechanically stabilized earth) Wall suitable for mountain roadways is put forward in this study: a pair of vertical and inclined micropiles goes through the backfill region of a highway MSE Wall from the road surface and are then anchored into the foundation. The pile cap and grade beam are placed on the pile tops, and then a road barrier is connected to the grade beam by connecting pieces. The MSE wall's global stability, local stability and impact resistance of the road barrier can be enhanced simultaneously by this design. In order to validate the serviceability of the hybrid A-frame micropile/MSE wall and the reliability of the numerical method, scale model tests and a corresponding numerical simulation were conducted. Then, the seismic performance of the MSE walls before and after reinforcement with micropiles was studied comparatively through numerical methods. The results indicate that the hybrid A-frame micropile/MSE wall can effectively control earthquake-induced deformation, differential settlement at the road surface, bearing pressure on the bottom and acceleration by means of a rigid-soft combination of micropiles and MSE. The accumulated displacement under earthquakes with amplitude of 0.1‒0.5 g is reduced by 36.3%‒46.5%, and the acceleration amplification factor on the top of the wall is reduced by 13.4%, 15.7% and 19.3% based on 0.1, 0.3 and 0.5 g input earthquake loading, respectively. In addition, the earthquake-induced failure mode of the MSE wall in steep terrain is the sliding of the MSE region along the backslope, while the micropiles effectively control the sliding trend. The maximum earthquake-induced pile bending moment is in the interface between MSE and slope foundation, so it is necessary to strengthen the reinforcement of the pile body in the interface. Hence, it is proven that the hybrid A-frame micropile/MSE wall system has good seismic performance.

  7. Sarcocystis sp. in mountain goats (Oreamnos americanus) in Washington: prevalence and search for the definitive host.

    PubMed

    Foreyt, W J

    1989-10-01

    During October and November 1986, Sarcocystis sp. was detected in 24 of 56 (43%) tongues from hunter-killed mountain goats (Oreamnos americanus) in Washington (USA). Sarcocysts had an unusual sessile polyp-shaped branched wall. Mean size of 154 sarcocysts was 71.3 x 37.8 microns (range, 20 to 248 x 10 to 120 microns), and the mean intensity was 2.3 (range, 1 to 28). In an attempt to identify the definitive host, infected tongues were fed to four coyotes (Canis latrans), eight domestic dogs, four domestic cats, three bears (Ursus americanus), two raccoons (Procyon lotor), two martens (Martes americana), two fishers (Martes pennanti), three skunks (Mephitis mephitis), five mink (Mustela vison), five ferrets (Mustela putorius), one pigtail macaque (Macaca nemestrina), two red-tailed hawks (Buteo jamaicensis) and one great horned owl (Bubo virginianus). Oocysts or sporocysts were not detected in the feces of any host for less than or equal to 20 days after ingestion of the infected meat. The definitive host for Sarcocystis sp. in mountain goats was not identified.

  8. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems

    USGS Publications Warehouse

    Hildreth, W.

    2004-01-01

    The volcanic history of the Long Valley region is examined within a framework of six successive (spatially discrete) foci of silicic magmatism, each driven by locally concentrated basaltic intrusion of the deep crust in response to extensional unloading and decompression melting of the upper mantle. A precaldera dacite field (3.5-2.5 Ma) northwest of the later site of Long Valley and the Glass Mountain locus of >60 high-silica rhyolite vents (2.2-0.79 Ma) northeast of it were spatially and temporally independent magmatic foci, both cold in postcaldera time. Shortly before the 760-ka caldera-forming eruption, the mantle-driven focus of crustal melting shifted ???20 km westward, abandoning its long-stable position under Glass Mountain and energizing instead the central Long Valley system that released 600 km3 of compositionally zoned rhyolitic Bishop Tuff (760 ka), followed by ???100 km3 of crystal-poor Early Rhyolite (760-650 ka) on the resurgent dome and later by three separate 5-unit clusters of varied Moat Rhyolites of small volume (527-101 ka). West of the caldera ring-fault zone, a fourth focus started up ???160 ka, producing a 10??20-km array of at least 35 mafic vents that surround the trachydacite/alkalic rhyodacite Mammoth Mountain dome complex at its core. This young 70-vent system lies west of the structural caldera and (though it may have locally re-energized the western margin of the mushy moribund Long Valley reservoir) represents a thermally and compositionally independent focus. A fifth major discrete focus started up by ???50 ka, 25-30 km north of Mammoth Mountain, beneath the center of what has become the Mono Craters chain. In the Holocene, this system advanced both north and south, producing ???30 dike-fed domes of crystal-poor high-silica rhyolite, some as young as 650 years. The nearby chain of mid-to-late Holocene Inyo domes is a fault-influenced zone of mixing where magmas of at least four kinds are confluent. The sixth and youngest focus is

  9. 14 CFR 95.19 - Hawaii Mountainous Area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Hawaii Mountainous Area. 95.19 Section 95...) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES Designated Mountainous Areas § 95.19 Hawaii Mountainous Area. The following islands of the State of Hawaii: Kauai, Oahu, Molokai, Lanai, Kehoolawe, Maui...

  10. 27 CFR 9.166 - Diamond Mountain District.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...

  11. 27 CFR 9.166 - Diamond Mountain District.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...

  12. 27 CFR 9.166 - Diamond Mountain District.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Diamond Mountain District... Diamond Mountain District. (a) Name. The name of the viticultural area described in this section is “Diamond Mountain District.” (b) Approved map. The appropriate maps for determining the boundary of the...

  13. Time scale for degradation and erosion of archaeological terraces in the Judea Mountains, Israel

    NASA Astrophysics Data System (ADS)

    Porat, Naomi; Elinson, Rotem; Ben Dor, Eyal; Avni, Yoav; Gadot, Yuval

    2017-04-01

    The fate of mountain bench terraces which have been abandoned in ancient times is puzzling. On the one hand recently abandoned terraces undergo rapid degradation by walls crumbling, leading to soil being washed by rain water out of breaches in the walls, suggesting that within a short time all soil would be washed down-slope. On the other hand slopes with degraded terraces appear to still retain much soil even though only faint remains of the terraces exist. Moreover, if soil is rapidly eroded down-slope when terraces are no longer maintained, where do subsequent terrace builders find the soil to fill behind the stone walls? These questions were addressed as part of a larger study on the chronology of terraces in the Judea Mountains, Israel. Previous OSL dating of terrace soils in the region showed that the majority of the maintained terraces were constructed during the past 700 years, and only occasionally older ages were obtained for the soil at the very base of these terraces. Concerns were raised that soil erosion caused earlier events of terrace construction to disappear. To check if terraces and soils indeed erode entirely and how long this might take, we selected a relatively smooth hill slope showing small patches of limestone bedrock as well as remains of highly degraded sets of terraces. Three pits were excavated in soils within three different terrace remains down to bedrock, some to a depth of 2 m, and samples for OSL dating were collected from the exposed soil sections. In all three pits the lowermost samples gave ages of 3000-4500 years before the present, possibly the natural soils before any human intervention. However samples from a depth of 35-45 cm gave ages of 350-200 years, providing the last time the soil at that depth was exposed to sunlight. This suggests that the terraces were abandoned in the past 200 years or so and since then degraded. However the thick soil present on most of the slope suggests that after the first stage of rapid

  14. Geology of the Blue Mountains region of Oregon, Idaho, and Washington; stratigraphy, physiography, and mineral resources of the Blue Mountains region

    USGS Publications Warehouse

    Vallier, T. L.; Brooks, H.C.

    1994-01-01

    island-arc terrane. PART 2: Mesozoic rocks exposed along the Snake River in the northern Wallowa terrane represent a volcanic island and its associated sedimentary basins within the Blue Mountains island arc of Washington, Oregon, and Idaho. In the northern part of the Wallowa terrane, rock units include the Wild Sheep Creek, Doyle Creek, and Coon Hollow Formations, the (informal) Imnaha intrusion, and the (informal) Dry Creek stock. The volcanic rocks of the Ladinian to Karnian Wild Sheep Creek Formation show two stages of evolution-an early dacitic phase Gower volcanic faciesY and a late mafic phase (upper volcanic facies). The two volcanic facies are separated by eruption-generated turbidites of siliceous argillites and arkosic arenites (argillitesandstone facies). The two magmatic phases of the Wild Sheep Creek Formation may be recorded by the compositional zoning from older quartz diorite and diorite to younger gabbro in the Imnaha intrusion. Although the Late Triassic Imnaha intrusion is in fault contact with the Wild Sheep Creek Formation, it may be a subduction-related pluton and was the likely magma source for the Wild Sheep Creek Formation. Interbedded with the upper volcanic facies are eruption-generated turbidite and debris flow deposits (sandstone-breccia facies) and thick carbonate units (limestone facies). The limestone facies consists of two marker units, which may represent carbonate platform environments. Clast imbrication, fossil orientation, and cross-stratification in the Wild Sheep Creek Formation indicate a shoaling to subaerial volcanic island to the south and southeast; sediment was transported to the north and northwest. The Karnian Doyle Creek Formation consists largely of epiclastic conglomerate, sandstone, and shale that were deposited in welloxygenated basins. Vitric tuffs interbedded with these sediments suggest shallow or subaerial pyroclastic eruptions. Quartz diorite clasts in this formation may indicate uplift

  15. Mountain-Scale Coupled Processes (TH/THC/THM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides themore » necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal

  16. Chaotic Mountain Blocks in Pluto’s Sputnik Planitia

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; Knight, Katherine I.; Stern, S. Alan; Olkin, Catherine; Grundy, William M.; McKinnon, William B.; Moore, Jeffrey M.; Schenk, Paul M.; Spencer, John R.; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; New Horizons Geology, Geophysics and Imaging Science Theme Team, The New Horizons Surface Composition Science Theme Team

    2017-10-01

    One of the first high-resolution Pluto images returned by New Horizons displayed a collection of tall, jagged peaks rising out of the large nitrogen ice sheet informally known as Sputnik Planitia (SP). This mountain range was later revealed to be one of several along the western edge of SP. The mountains are several hundred broken-up blocks of Pluto’s primarily water ice lithosphere and some retain surface terrains similar to the nearby intact crust surrounding SP. Water ice with some fractures or porosity is likely >5% less dense than solid N2 ice at Pluto’s temperatures. Thus it is possible the blocks are, or were, floating icebergs or at least partially suspended to the point that some blocks appear to be tilted as if they have faltered (Moore et al., 2016, Science, 351, 1284-1293).We analyze four mountain ranges on the western edge of SP and compare to chaotic terrains on Europa and Mars. The blocks on Pluto have angular planforms but we characterize their size using block surface area converted to an equivalent circular diameter. Topography was used to define block extents. The blocks range in size from 3-30 km in diameter, with a mode of ~8-10 km. Blocks range from 0.2-3.8 km in height, and block height generally increases with block diameter. One or more dark layers can be identified in a few scarp faces, and are at a similar depth to each other and to layers seen in fault and crater walls elsewhere on Pluto. A large N-S trending fault system runs tangential to SP and may be the source of crustal disruption on the western side.On Europa and Mars block sizes vary greatly between different chaos regions, but Conamara Chaos has an average block size of ~5 km in diameter, smaller than that typically seen on Pluto. Also the blocks often transition into fractured terrain still connected to the surround lithosphere at the periphery of the chaos regions. The source regions for the blocks are more obvious on Europa and Mars. Additionally the block heights on

  17. Personal and professional profile of mountain medicine physicians.

    PubMed

    Peters, Patrick

    2003-01-01

    The purpose of this study was to define and describe the personal and professional profile of mountain medicine physicians including general physical training information and to include a detailed overview of the practice of mountain sports. A group of physicians participating in a specialized mountain medicine education program filled out a standardized questionnaire. The data obtained from this questionnaire were first analyzed in a descriptive way and then by statistical methods (chi2 test, t test, and analysis of variance). Detailed results have been provided for gender, age, marital status, general training frequency and methods, professional status, additional medical qualifications, memberships in professional societies and alpine clubs, mountain sports practice, and injuries sustained during the practice of mountain sports. This study has provided a detailed overview concerning the personal and professional profile of mountain medicine physicians. Course organizers as well as official commissions regulating the education in mountain medicine will be able to use this information to adapt and optimize the courses and the recommendations/requirements as detailed by the UIAA-ICAR-ISMM (Union Internationale des Associations Alpinistes, International Commission for Alpine Rescue, International Society for Mountain Medicine).

  18. Tectonic and neotectonic framework of the Yucca Mountain Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweickert, R.A.

    1992-09-30

    Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.

  19. Mineral resources of the Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas, Malheur and Harney counties, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrod, D.R.; Griscom, A.; Turner, R.L.

    1988-01-01

    The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.

  20. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest

    PubMed Central

    2013-01-01

    Background The mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests. Results We developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insect's biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle. Conclusions Despite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects. PMID:23537049

  1. State Park Directors' Perceptions of Mountain Biking

    PubMed

    SCHUETT

    1997-03-01

    / This study intended to explore the perceptions of mountain bikingmanagement through a mail survey of state park directors in all 50 states.With a 100% response rate, it was found that 47 states permit mountainbiking in their state parks, however, few state parks have formalized plansto manage this outdoor activity. The management policies that do exist arenot followed on a statewide basis but vary within each state and at eachstate park. Many states have worked cooperatively with local mountain bikingclubs to develop and maintain mountain bike trails, promote rider education,and provide volunteer patrols on trails. The issue of user conflict surfacedwith almost three-fourths of the managers responding that conflict existedbetween mountain bikers and other trail users. This preliminary study shouldprompt further research with on-site managers focusing on the use ofmanagement plans for mountain biking, cooperation between managers and usergroups, and user conflict. It is recommended that an Internet-basedinformation clearinghouse or discussion group be made available to landmanagers by a national bicycling organization.KEY WORDS: Mountain biking; State parks; State park directors;Recreation resource management

  2. Mammoth Mountain and its mafic periphery—A late Quaternary volcanic field in eastern California

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judith; Champion, Duane E.; Calvert, Andrew T.

    2014-01-01

    The trachydacite complex of Mammoth Mountain and an array of contemporaneous mafic volcanoes in its periphery together form a discrete late Pleistocene magmatic system that is thermally and compositionally independent of the adjacent subalkaline Long Valley system (California, USA). The Mammoth system first erupted ca. 230 ka, last erupted ca. 8 ka, and remains restless and potentially active. Magmas of the Mammoth system extruded through Mesozoic plutonic rocks of the Sierra Nevada batholith and extensive remnants of its prebatholith wall rocks. All of the many mafic and silicic vents of the Mammoth system are west or southwest of the structural boundary of Long Valley caldera; none is inboard of the caldera’s buried ring-fault zone, and only one Mammoth-related vent is within the zone. Mammoth Mountain has sometimes been called part of the Inyo volcanic chain, an ascription we regard inappropriate and misleading. The scattered vent array of the Mammoth system, 10 × 20 km wide, is unrelated to the range-front fault zone, and its broad nonlinear footprint ignores both Long Valley caldera and the younger Mono-Inyo range-front vent alignment. Moreover, the Mammoth Mountain dome complex (63%–71% SiO2; 8.0%–10.5% alkalies) ended its period of eruptive activity (100–50 ka) long before Holocene inception of Inyo volcanism. Here we describe 25 silicic eruptive units that built Mammoth Mountain and 37 peripheral units, which include 13 basalts, 15 mafic andesites, 6 andesites, and 3 dacites. Chemical data are appended for nearly 900 samples, as are paleomagnetic data for ∼150 sites drilled. The 40Ar/39Ar dates (230–16 ka) are given for most units, and all exposed units are younger than ca. 190 ka. Nearly all are mildly alkaline, in contrast to the voluminous subalkaline rhyolites of the contiguous long-lived Long Valley magma system. Glaciated remnants of Neogene mafic and trachydacitic lavas (9.1–2.6 Ma) are scattered near Mammoth Mountain, but Quaternary

  3. Rocky Mountains

    NASA Image and Video Library

    2015-05-06

    On April 29, 2015 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured a true-color image of a typical spring scene in the western United State: snow-crowned Rocky Mountains rising above the faintly greening plains. The Rocky Mountains stretch from British Columbia, Canada to the Rio Grande in New Mexico, a span of roughly 3,000 miles, and contains many of the highest peaks in the continental United States. The tallest, Mount Elbert, rises 14,400 ft. (4,401 m) above sea level, and is located in the San Isabel National Forest, near Leadville, Colorado. This image covers seven Rocky Mountain states. From north to south they are: Montana and Idaho, Wyoming; Utah (with the Great Salt Lake visible) and Colorado; Arizona and New Mexico. To the east, the Great Plain states captured are, from north to south: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma and northwestern Texas. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. From nappe stacking to extensional detachments at the contact between the Carpathians and Dinarides - The Jastrebac Mountains of Central Serbia

    NASA Astrophysics Data System (ADS)

    Erak, Dalibor; Matenco, Liviu; Toljić, Marinko; Stojadinović, Uroš; Andriessen, Paul A. M.; Willingshofer, Ernst; Ducea, Mihai N.

    2017-07-01

    Reactivation of inherited nappe contacts is a common process in orogenic areas affected by back-arc extension. The amount of back-arc extension is often variable along the orogenic strike, owing to the evolution of arcuated mountain chains during stages of rapid slab retreat. This evolution creates low rates of extension near rotation poles, where kinematics and interplay with the pre-existing orogenic structure are less understood. The amount of Miocene extension recorded by the Pannonian Basin of Central Europe decreases SE-wards along the inherited Cretaceous - Paleogene contact between the Dinarides and Carpathian Mountains. Our study combines kinematic data obtained from field and micro-structural observations assisted with fission track thermochronological analysis and U-Pb zircon dating to demonstrate a complex poly-phase evolution in the key area of the Jastrebac Mountains of Serbia. A first event of Late Cretaceous exhumation was followed by latest Cretaceous - Eocene thrusting and magmatism related to a continental collision that sutured the accretionary wedge containing contractional trench turbidites. The suture zone was subsequently reactivated and exhumed by a newly observed Miocene extensional detachment that lasted longer in the Jastrebac Mountains when compared with similar structures situated elsewhere in the same structural position. Such extensional zones situated near the pole of extensional-driven rotation favour late stage truncations and migration of extension in a hanging-wall direction, while directions of tectonic transport show significant differences in short distances across the strike of major structures.

  5. Tectonic evolution of the Satpura Mountain Belt: A critical evaluation and implication on supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Mohanty, S.

    2010-11-01

    The Satpura Mountain Belt (also referred as Central Indian Tectonic Zone in recent literature) forms an important morphotectonic unit in the central part of India. Some of the recent workers have reported an orogenic event at ˜1000-900 Ma (termed "Sausar orogeny") which led to amalgamation of the North Indian Block and the South Indian Block and formation of the Satpura Mountain Belt. In this model the stratigraphic relations of two important lithostratigraphic units on either side of the Satpura Mountain Belt (the Sausar Group in the south and the Vindhyan Supergroup on the north) are suggested to be revised from previously held ideas. Critical analyses of available published work in the region to assess the status of the Sausar Group vis a vis the Vindhyan Supergroup was carried out. It is found that the ideas proposed by the recent workers stem from an earlier interpretation that the Sausar Group has monocyclic evolution and the earliest fabric in the Sausar Group is marked by a schistosity with EW strike. Re-mapping of the gneissic rocks and adjacent matasedimentary rocks of Khawasa, Deolapar, and Kandri-Mansar areas revealed presence of gneissic rocks and granulites of two generations, and of four phases of superposed deformations in the metasediments and gneisses. The older gneisses and granulites constitute the basement over which the rocks of the Sausar Group were deposited; and the younger gneisses developed by metamorphism and migmatisation of the rocks of the Sausar Group. The latter types are found in the Khawasa-Ramakona areas. Contrary to the belief of the recent workers that no volcanic activity is present in the Sausar Group, volcanic rocks marked by amygdular basic flows and tuffs have been mapped from different parts of the Sausar Group. Migmatisation and metamorphism of these volcanic rocks (of the Sausar Group) have given rise to amphibolites and granulites in Khawasa and Ramakona areas. Therefore, the use of fabric patterns in these areas to

  6. Mineral resources of the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas, San Bernardino County, California

    USGS Publications Warehouse

    Marsh, Sherman P.; Raines, Gary L.; Diggles, Michael F.; Howard, Keith A.; Simpson, Robert W.; Hoover, Donald B.; Ridenour, James; Moyle, Phillip R.; Willett, Spencee L.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 85,100 acres of the Whipple Mountains Wilderness Study Area (CDCA-312) and 1,380 acres of the Whipple Mountains Addition Wilderness Study Area (AZ-050-010) were evaluated for identified mineral resources (known) and mineral resource potential (undiscovered). In this report, the Whipple Mountains and Whipple Mountains Addition Wilderness Study Areas are referred to as simply "the study area." Most of the mines and prospects with identified resources in the Whipple Mountains Wilderness Study Area are within areas designated as having mineral resource potential. The area in and around the Turk Silver mine and the Lucky Green group and the area near the northwest boundary of the study area have high mineral resource potential for copper, lead, zinc, gold, and silver. An area along the west boundary of the study area has moderate resource potential for copper lead, zinc, gold, and silver. An area in the east adjacent to the Whipple Mountains Addition Wilderness Study Area has moderate resource potential for copper, gold, and silver resources. One area on the north boundary and one on the southeast boundary of the study area have low mineral resource potential for copper, lead, zinc, gold, and silver. Two areas, one on the north boundary and one inside the east boundary of the study area, have moderate resource potential for manganese. A small area inside the south boundary of the study area has high resource potential for decorative building stone, and the entire study area has low resource potential for sand and gravel and other rock products suitable for construction. Two areas in the eastern part of the study area have low resource potential for uranium. There is no resource potential for oil and gas or geothermal resources in the Whipple Mountains Wilderness Study Area. Sites within the Whipple Mountains Wilderness Study Area with identified resources of copper, gold, silver, manganese and (or

  7. Landscape, Mountain Worship and Astronomy in Socaire

    NASA Astrophysics Data System (ADS)

    Moyano, Ricardo

    The spatiotemporal analysis of mountain worship in the indigenous community of Socaire, Atacama, northern Chile, relates to cultural, geographical, climatic, psychological, and astronomical information gathered from ethno archaeological studies. We identify a system of offerings to the mountains that incorporates concepts such as ceque (straight line), mayllku (mountain lord or ancestor), and pacha (space and time). Here, the mountains on the visible horizon (Tumisa, Lausa, Chiliques, Ipira, and Miñiques) feature as the fingers on the left hand (PAH Triad). This structure regulates annual activities and rituals and sets the basis for the Socaireños' worldview raised on a humanized landscape.

  8. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  9. Response of western mountain ecosystems to climatic variability and change: The Western Mountain Initiative

    USGS Publications Warehouse

    Stephenson, Nathan L.; Peterson, Dave; Fagre, Daniel B.; Allen, Craig D.; McKenzie, Donald; Baron, Jill S.; O'Brian, Kelly

    2007-01-01

    Mountain ecosystems within our national parks and other protected areas provide valuable goods and services such as clean water, biodiversity conservation, and recreational opportunities, but their potential responses to expected climatic changes are inadequately understood. The Western Mountain Initiative (WMI) is a collaboration of scientists whose research focuses on understanding and predicting responses of western mountain ecosystems to climatic variability and change. It is a legacy of the Global Change Research Program initiated by the National Park Service (NPS) in 1991 and continued by the U.S. Geological Survey (USGS) to this day as part of the U.S. Climate Change Science Program (http://www.climatescience.gov/). All WMI scientists are active participants in CIRMOUNT, and seek to further its goals.

  10. Review of paleomagnetic data from the Klamath Mountains, Blue Mountains, and Sierra Nevada; Implications for paleogeographic reconstructions

    USGS Publications Warehouse

    Mankinen, Edward A.; Irwin, William P.

    1990-01-01

    Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.

  11. Estimates of cloud water deposition at Mountain Acid Deposition Program sites in the Appalachian Mountains.

    PubMed

    Baumgardner, Ralph E; Isil, Selma S; Lavery, Thomas F; Rogers, Christopher M; Mohnen, Volker A

    2003-03-01

    Cloud water deposition was estimated at three high-elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY; Whitetop Mountain, VA; and Clingman's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). This paper provides a summary of cloud water chemistry, cloud liquid water content, cloud frequency, estimates of cloud water deposition of sulfur and nitrogen species, and estimates of total deposition of sulfur and nitrogen at these sites. Other cloud studies in the Appalachians and their comparison to MADPro are also summarized. Whiteface Mountain exhibited the lowest mean and median concentrations of sulfur and nitrogen ions in cloud water, while Clingman's Dome exhibited the highest mean and median concentrations. This geographic gradient is partly an effect of the different meteorological conditions experienced at northern versus southern sites in addition to the difference in pollution content of air masses reaching the sites. All sites measured seasonal cloud water deposition rates of SO4(2-) greater than 50 kg/ha and NO3(-) rates of greater than 25 kg/ha. These high-elevation sites experienced additional deposition loading of SO4(2-) and NO3(-) on the order of 6-20 times greater compared with lower elevation Clean Air Status and Trends Network (CASTNet) sites. Approximately 80-90% of this extra loading is from cloud deposition.

  12. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . ... Center Atmospheric Science Data Center in Hampton, VA. Photo credit: NASA/GSFC/LaRC/JPL, MISR Science Team Other formats ...

  13. Kennesaw Mountain National Battlefield Park : Assessment of Management of Kennesaw Mountain Drive and Bus Shuttle Service.

    DOT National Transportation Integrated Search

    2010-07-06

    The purpose of this study is to assess the management of the Kennesaw Mountain Drive, which runs from the Visitor Center to the : summit of Kennesaw Mountain, and assess the future of the shuttle service that operates on the road during weekends, inc...

  14. Timber Mountain Precipitation Monitoring Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Milemore » Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data

  15. Western Mountain Initiative - Research Links

    Science.gov Websites

    Parks programS Forest Service Climate Change Resource Center (CCRC) North American Nitrogen Center to be told." US Global Change Research Program (GlobalChange.gov) USGS Climate and Land Use Rocky Mountain Science Center Global Change Research Program -- A Focus on Mountain Ecosystems Western

  16. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

    NASA Astrophysics Data System (ADS)

    Du, Qiuding; Wang, Zhengjiang; Wang, Jian; Deng, Qi; Yang, Fei

    2016-03-01

    Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U-Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U-Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

  17. Exhumation of the Black Mountains in Death Valley, California, with new thermochronometric data from the Badwater Turtleback

    NASA Astrophysics Data System (ADS)

    Sizemore, T. M.; Cemen, I.; Wielicki, M. M.; Stockli, D. F.; Heizler, M. T.; Lutz, B. M.

    2017-12-01

    The Black Mountains, in Death Valley, California, are one of the key areas to better understand Basin and Range extension because they contain Cenozoic igneous and sedimentary rocks overlying mid- to deep-crustal, 1.74 Ga basement gneiss with abundant fault striations, large-scale extensional folds, and tectonite fabrics containing top-to-the-northwest shear-sense indicators. These rocks make up the footwall of three prominent, high-relief "turtleback" fault surfaces in the western flank of the Black Mountains, which are thought to have accommodated a significant amount of strain in the Death Valley area. It is unknown whether the missing Paleozoic and Mesozoic strata in the Black Mountains were removed in association with high-angle faulting, or along a continuous detachment surface with a rolling-hinge style of faulting as the hanging wall moved to the west, now forming the Panamint Range. The turtlebacks play an important role in resolving this question because they are commonly cited as containing conflicting evidence of both hypotheses. To provide insight into this problem, we are building an exhumation model across the Black Mountains using previously published thermochronometric data as well as new transect-based (U-Th)/He and Ar-Ar thermochronology and U-Pb geochronology for the Badwater turtleback. The model will provide a four-dimensional view of the exhumation history of the Black Mountains, to serve as evidence for either of the two previously mentioned hypotheses, or possibly some other style of exhumation. Additionally, we will compare the exhumation history of the Black Mountains to that of the Panamint Range using previously published data and interpretations. Our preliminary zircon U-Pb data suggest a crystallization age for the gneissic rocks on the Badwater turtleback of 1.74 Ga (207Pb/206Pb, 2σ error=31.8 Ma, n=6) with two younger populations at 1.46 Ga (207Pb/206Pb, 2σ error=51.8 Ma, n=3) and 79.6 Ma (206Pb/238U, 2σ error=10.0 Ma, n=2

  18. Mountain biking injuries: a review.

    PubMed

    Carmont, Michael R

    2008-01-01

    Mountain biking is a fast, exciting adventure sport with increasing numbers of participants and competitions. A search of PubMed, Medline, CINAHL, DH data, and Embase databases was performed using the following keywords: mountain, biking and injuries. This revealed 2 review articles, 17 case controlled studies, 4 case series and 5 case reports. This review summarises the published literature on mountain biking injuries, discusses injury frequency and common injury mechanisms. Riders are quick to adopt safety measures. Helmet usage is now increasingly common and handlebar adaptations have been discontinued. Although the sport has a reputation for speed and risk with research and awareness, injury prevention measures are being adopted making the sport as safe as possible.

  19. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  20. Geology of the Southern Appalachian Mountains

    USGS Publications Warehouse

    Clark, Sandra H.B.

    2008-01-01

    The Southern Appalachian Mountains includes the Blue Ridge province and parts of four other physiographic provinces. The Blue Ridge physiographic province is a high, mountainous area bounded by several named mountain ranges (including the Unaka Mountains and the Great Smoky Mountains) to the northwest, and the Blue Ridge Mountains to the southeast. Metamorphic rocks of the mountains include (1) fragments of a billion-year-old supercontinent, (2) thick sequences of sedimentary rock that were deposited in subsiding (sinking) basins on the continent, (3) sedimentary and volcanic rocks that were deposited on the sea floor, and (4) fragments of oceanic crust. Most of the rocks formed as sediments or volcanic rocks on ocean floors, islands, and continental plates; igneous rocks formed when crustal plates collided, beginning about 450 million years ago. The collision between the ancestral North American and African continental plates ended about 270 million years ago. Then, the continents began to be stretched, which caused fractures to open in places throughout the crust; these fractures were later filled with sediment. This product (U.S. Geological Survey Scientific Investigations Map 2830) consists of a geologic map of the Southern Appalachian Mountains overlain on a shaded-relief background. The map area includes parts of southern Virginia, eastern West Virginia and Tennessee, western North and South Carolina, northern Georgia and northeastern Alabama. Photographs of localities where geologic features of interest can be seen accompany the map. Diagrams show how the movement of continental plates over many millions of years affected the landscapes seen today, show how folds and faults form, describe important mineral resources of the region, and illustrate geologic time. This two-sided map is folded into a convenient size (5x9.4 inches) for use in the field. The target audience is high school to college earth science and geology teachers and students; staffs of

  1. Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, M.S. Jr.; Thordarson, W.; Eshom, E.P.

    This report presents data on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1219 meters. Depthmore » to water below land surface was 519 meters, or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member of the Crater Flat Tuff (Tertiary age) was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member of the Crater Flat Tuff, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. 7 references, 26 figures, 9 tables.« less

  2. Mountains, Climate Change and North American Water Security

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Rasouli, K.; Harder, P.; Siemens, E.; Pradhananga, D.

    2016-12-01

    The juxtaposition of cold high precipitation catchments in mountains and low precipitation in downstream lowlands means that mountain water supplies support over half the world's population and sustain most irrigation agriculture. How secure is this mountain water in northern North America? Irrigation and other consumptive downstream uses have put immense pressure on water supplied from the Canadian Rockies. Excess water from these rivers also carries risk. Downstream communities are often located in the flood plains of mountain rivers, making them subject to the extreme hydrometeorology of the headwaters as was evident in the BC/Alberta/Saskatchewan floods of 2013 and droughts of 2015/2016. Climate change is disproportionately warming high mountain areas and the impacts of warming on water are magnified in high mountains because seasonal snowpacks, perennial snowfields and glaciers form important stores of water and control the timing of release of water and the seasonal and annual discharge of major mountain rivers. Changes in mountain snow and glacial regimes are rapidly occurring in Western Canada and this is already impacting downstream water security by changing flood risk, streamflow timing and volume. Hydrological process modelling is diagnosing the causes of intensification of hydrological cycling and coupled to climate models suggesting that the timing and quantity of mountain waters will shift under certain climate, glacier cover and forest cover scenarios and so impact the water security of downstream food production. So far, changes in precipitation are matched by evapotranspiration and sublimation providing some resilience to change in streamflow due to intensification of hydrological cycling. Faster glacier melt in drought periods has buffered low flows but this capacity id dwindling as glaciers ablate. The International Network for Alpine Research Catchment Hydrology (INARCH) project of GEWEX is quantifying water resiliency and risk in mountain

  3. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  4. Asia High Mountain Glacier Mass Balance

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Su, X.; Shang, K.; Cogley, J. G.; Zhang, G.; Howat, I. M.; Braun, A.; Kuo, C. Y.

    2015-12-01

    The Asian High Mountain encompassing the Qinghai-Tibetan Plateau has the largest glaciated regions in the world outside of Greenland and Antarctica. The Tibetan Plateau is the source or headwater of many major river systems, which provide water resources to more than a billion people downstream. The impact of climate change on the Tibetan Plateau physical processes, including mountain glacier wastage, permafrost active layer thickening, the timing and the quantity of the perennial snowpack melt affecting upstream catchments, river runoffs, land-use, have significant effects on downstream water resources. Exact quantification of the Asian High Mountain glacier wastage or its mass balance on how much of the melt water contributes to early 21st century global sea-level rise, remain illusive or the published results are arguably controversial. The recent observed significant increase of freshwater storage within the Tibetan Plateaus remains a limitation to exactly quantify mountain glacier wastage. Here, we provide an updated estimate of Asia high mountain glacier mass balance using satellite geodetic observations during the last decade, accounting for the hydrologic and other processes, and validated against available in situ mass balance data.

  5. Mountain pine beetle host selection between lodgepole and ponderosa pines in the southern Rocky Mountains

    Treesearch

    Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron

    2016-01-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...

  6. Geochemistry and Temperatures Recorded by Zircon During the Final Stages of the Youngest Toba Tuff Magma Chamber, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Gaither, T.; Reid, M. R.; Vazquez, J. A.

    2009-12-01

    The ~74 ka eruption of the Youngest Toba Tuff (YTT) in Sumatra, Indonesia, was one of the largest single volcanic eruptions in geologic history, on par with other voluminous silicic eruptions such as the Huckleberry Ridge Tuff of Yellowstone and the Bishop Tuff of Long Valley, California. We are exploring how zircon and other accessory mineral phases record compositional and thermal changes that occurred in the YTT magma, and the important clues these crystal scale records hold for magma chamber dynamics and processes that lead up to supervolcano eruptions. In this study, we report trace element (REE, U, Th, Ti, and Hf) characteristics, Ti-in-zircon crystallization temperatures, and apparent REE partition coefficients obtained for YTT zircon rims. Twenty-nine zircons from pumices with a compositional range of 70-76 wt% SiO2 were analyzed on the UCLA Cameca ims 1270 ion microprobe. The grains were mounted so that only the outermost ~1.5 microns of the crystals were analyzed. Median Zr/Hf ratios of 34 to 38 characterize zircons from the pumices; the high silica rhyolite grains have lower Zr/Hf. Chondrite-normalized REE patterns are strongly LREE-depleted. Positive Ce anomalies are large (Ce/Ce* ranges up to 88) and Eu/Eu* varies by a factor of four (0.05 to 0.21). Eu/Eu*, Nd/Yb, and Th/U decrease with decreasing Zr/Hf, showing that the variation in zircon rim compositions may be related by co-precipitation of feldspar and allanite along with zircon. Titanium contents also decrease with decreasing Zr/Hf, suggesting that the chemical differences could be related to temperature changes. REE partition coefficients calculated from zircon rim compositions and pumice glass compositions give a good fit to a lattice strain model. They are also quite similar to the partition coefficients of Sano et al. (2002) which have been shown to be successful at reproducing melt compositions in other settings. Temperatures of crystallization calculated using the Ti

  7. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  8. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  9. Numerical modeling of mountain formation on Io

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Jaeger, W. L.; McEwen, A. S.; Keszthelyi, L.

    2000-10-01

    Io has ~ 100 mountains [1] that, although often associated with patera [2], do not appear to be volcanic structures. The mountains are up to 16 km high [3] and are generally isolated from each other. We have performed finite-element simulations of the formation of these mountains, investigating several mountain building scenarios: (1) a volcanic construct due to heterogeneous resurfacing on a coherent, homogeneous lithosphere; (2) a volcanic construct on a faulted, homogeneous lithosphere; (3) a volcanic construct on a faulted, homogeneous lithosphere under compression induced by subsidence due to Io's high resurfacing rate; (4) a faulted, homogeneous lithosphere under subsidence-induced compression; (5) a faulted, heterogeneous lithosphere under subsidence-induced compression; and (6) a mantle upwelling beneath a coherent, homogeneous lithosphere under subsidence-induced compression. The models of volcanic constructs do not produce mountains similar to those observed on Io. Neither do those of pervasively faulted lithospheres under compression; these predict a series of tilted lithospheric blocks or plateaus, as opposed to the isolated structures that are observed. Our models show that rising mantle material impinging on the base of the lithosphere can focus the compressional stresses to localize thrust faulting and mountain building. Such faults could also provide conduits along which magma could reach the surface as is observed near several mountains. [1] Carr et al., Icarus 135, pp. 146-165, 1998. [2] McEwen et al., Science 288, pp. 1193-1198, 2000. [3] Schenk and Bulmer, Science 279, pp. 1514-1517, 1998.

  10. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5

    USGS Publications Warehouse

    Keith, T.E.C.; Muffler, L.J.P.

    1978-01-01

    A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been

  11. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita

  12. Forest ecology and biogeography of the Uinta Mountains, USA

    Treesearch

    John D. Shaw; James N. Long

    2007-01-01

    The Uinta Mountains form a crossroads of forests and woodlands in the central Rocky Mountains. Although no tree species is endemic to the area, all species characteristic of the central Rocky Mountains are found there, and the ranges of several other species terminate in the Uinta Mountains and the surrounding area. The peninsula-like shape, east-west orientation, and...

  13. Proanthocyanidins of mountain birch leaves: quantification and properties.

    PubMed

    Ossipova, S; Ossipov, V; Haukioja, E; Loponen, J; Pihlaja, K

    2001-01-01

    Proanthocyanidins (PAs; condensed tannins) are present in mountain birch leaves in soluble and cell wall-bound forms. Crude preparations of soluble PAs were isolated from birch leaves and purified by chromatography on a Sephadex LH-20 column with a yield of about 7% of leaf dry mass. Some chemical characteristics were elucidated with 13C-NMR and HPLC-ECI-MS. Birch leaf PAs were mainly delphinidin type oligo- and polymers with average molecular mass of about 3000. In order to quantify PAs, the method involving heating PA-containing materials in 1-butanol:hydrochloric acid (95:5, v/v), and spectrophotometric determination of the anthocyanidin monomers so formed was modified and optimised. Mature leaves were characterised by a relatively high content of PAs: mean values for soluble and bound PAs were 103 and 40 mg/g dry mass, respectively. In mature leaves the soluble PAs determined the total protein precipitation capacity (PPC) of extracts. In young leaves, the contribution of PAs to the total content of phenolics and the total PPC of tannins was about 20-25% only.

  14. Wind tunnels with adapted walls for reducing wall interference

    NASA Technical Reports Server (NTRS)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  15. [Diversity of soil archaea in Tibetan Mila Mountains].

    PubMed

    Meng, Xiangwei; Mao, Zhenchuan; Chen, Guohua; Yang, Yuhong; Xie, Bingyan

    2009-08-01

    In order to study the diversity of archaea and ammonia-oxidizing archaea (AOA) of the alp prairie soil in Mila Mountain of Tibet. Total microbial DNA was directly extracted from the alp prairie of Mila Mountain. The clone library of 16S rRNA genes and amoA genes were amplified by PCR with universal primer sets. The sequences of archaea and AOA were defined into operational taxonomic units (OTUs) according to the 97% similarity threshold for OTU assignment was performed using the software program DOTUR. Phylogenetic analysis revealed archaea in the soil of Mila Mountain including the Crenarchaeota (71.7%) and unclassified-Archaea (28.3%) phyla. All the Crenarchaeota belong to the Thermoprotei. Phylogenetic analysis revealed AOA in the alp prairie soil of Mila Mountain belonged to the kingdom Crenarchaeota. Archaea and AOA species composition from Mila Mountain included 64 OTUs and 75 OTUs. These findings show prolific archaeal diversity in the alp prairie soil of Mila Mountain, where they may be actively involved in nitrification.

  16. Status Report on the 40Ar/39Ar and U/Pb Dating of Tuffs in the Dewey Lake Formation of West Texas Towards Constraining the Permo-Triassic Magnetostratigraphic Time Scale

    NASA Astrophysics Data System (ADS)

    Chang, S.; Renne, P. R.; Mundil, R.

    2007-12-01

    A detailed magnetic polarity time scale for the Permo-Triassic Boundary interval, critical for correlating events in marine and terrestrial paleoenvironments, is not yet well-established. Recently, late Permian magnetostratigraphic studies have been reported for non-marine sections in Europe and South Africa (Szurlies et al., 2003; Nawrocki, 2004; Ward et al., 2005). However, these sections are devoid of index fossil suitable for correlation with marine successions and also lack age constraints from radioisotopic dating methods. In other words, it is dubious to correlate these magnetostratigraphic data with the GSSP Permo-Triassic boundary and mass extinction. The Dewey Lake red beds formation of West Texas, believed to be the youngest Permian formation in North America, has yielded high-quality paleomagnetic data (Molina-Garza et al., 1989; Steiner, 2001) and contains several silicic tuffs potentially enabling high-resolution calibration of the magnetic polarity time scale in this critical age range. The tuffs have yet to be placed into a regional stratigraphic or magnetostratigraphic framework, and it is unclear exactly how many distinct eruptive units are represented by the 7 distinct samples collected to date from widely separated (>160 km) localities. 40Ar/39Ar (sanidine and biotite) and U/Pb (zircon) studies reveal that all 7 sampled tuffs were probably erupted within several hundred ka of the Permo-Triassic boundary as dated at the Meishan GSSP section (Renne et al., 1995; Mundil et al., 2004) but results thus far are inadequate to convincingly resolve age differences between the various samples. U/Pb dating of some samples is severely challenged by Pb-loss from the zircons despite application of the Mattinson (2005) annealing/chemical abrasion technique. 40Ar/39Ar data have been obtained from as many as four different irradiations in order to reduce neutron fluence related error. We observe the familiar ~1% bias between U/Pb and 40Ar/39Ar ages. Biotite

  17. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  18. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  19. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  20. Kansas Students Enjoy Summertime "Mountain Ventures"

    ERIC Educational Resources Information Center

    Highfill, Kenneth M.

    1974-01-01

    Describes an elective biology program offered at Lawrence High School (Kansas) that emphasizes basic field biology, ecology, conservation, camping, first aid, mountaineering, and map reading. Groups of students spend two weeks in the Rocky Mountains developing knowledge and skills in these areas. (JR)

  1. Climate change and the Rocky Mountains: Chapter 20

    USGS Publications Warehouse

    Byrne, James M.; Fagre, Daniel B.; MacDonald, Ryan; Muhlfeld, Clint C.

    2014-01-01

    For at least half of the year, the Rocky Mountains are shrouded in snow that feeds a multitude of glaciers. Snow and ice eventually melt into rivers that have eroded deep valleys that contain rich aquatic and terrestrial ecosystems. Because the Rocky Mountains are the major divide on the continent, rainfall and melt water from glaciers and snowfields feed major river systems that run to the Pacific, Atlantic, and Arctic oceans. The Rockies truly are the water tower for much of North America, and part of the Alpine backbone of North and South America. For purposes of this chapter, we limit our discussion to the Rocky Mountains of the Canadian provinces of Alberta and British Columbia, and the U.S. states of Montana, Idaho, Wyoming, and Colorado. Similar to other mountain systems, the altitude of the Rocky Mountains condenses the weather, climate and ecosystems of thousands of kilometres of latitude into very short vertical distances. In one good day, a strong hiker can journey by foot from the mid-latitude climates of the great plains of North America to an arctic climate near the top of Rocky Mountain peaks. The steep climatic gradients of mountain terrain create some of the most diverse ecosystems in the world, but it is those rapid changes in microclimate and ecology that make mountains sensitive to climate change. The energy budget in mountains varies dramatically not only with elevation but with slope and aspect. A modest change in the slope of the terrain over short distances may radically change the solar radiation available in that location. Shaded or north facing slopes have very different microclimates than the same elevations in a sunlit location, or for a hill slope facing south. The complexities associated with the mountain terrain of the Rockies compound complexities of weather and climate to create diverse, amazing ecosystems. This chapter addresses the impacts of climate change on Rocky Mountain ecosystems in light of their complexities and

  2. Titanite petrochronology in the Fish Canyon Tuff

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Crowley, J. L.

    2014-12-01

    The petrologic complexity of the archtypical 'monotonous intermediate' Fish Canyon Tuff (FCT) has been previously established by a variety of mineralogical and geochemical proxies [1-2], and the unusual storage and eruptive dynamics of the FCT have been delineated by several geochronological studies [3-5]. Titanite is an apparent equilibrium phase in the penultimate FCT magma, and can be linked petrographically to hornblende crystals that preserve up-temperature core-to-rim zoning profiles. As a reactive, trace element-rich phase, we hypothesized that titanite may record an intracrystalline record of magma chamber dynamics. Titanite crystals from the same separate analyzed in [4] were oriented and doubly-polished to yield characteristic wedge-shaped cross-sectional wafers approximately 300 µm in thickness. BSE imaging guided LA-ICPMS analyses of a full suite of trace elements using a 25 µm beam diameter and crater depth on multiple locations across both sides of the wafer. Most titanite crystals are characterized by large variations in trace elements, including at least two generations of REE-enriched, actinide-poor, low Sr, large Eu anomaly cores overgrown by REE-depleted, actinide-rich, high Sr domains with small Eu anomalies and distinctive concave-up middle to heavy REE patterns. Trace element contents and patterns correlate strongly with Eu anomaly; intermediate compositions are abundant and spatially correlated to reaction zones between core and rim domains. Within the context of the batholithic rejuvenation model for the FCT magma [1-2], these trace element variations are interpreted to record the partial melting of a differentiated crystalline FCT precursor and its hybridization with a more 'mafic' flux. ID-TIMS dating of end-member titanites confirm older ages (ca 28.4 to 29.0 Ma) for cores and define a younger age for rejuvenation of ca 28.2 Ma, consistent with recent U-Pb zircon and 40Ar/39Ar studies [5-7]. [1] Bachmann & Dungan (2002) Am Mineral 87

  3. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    USGS Publications Warehouse

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    ago with eruption of the tuff of Round Mountain. The Manhattan caldera south of the Mount Jefferson caldera and northwest of the Big Ten Peak caldera formed in association with eruption of a series of tuffs, principally the Round Rock Formation, mostly ash-flow tuff, about 24.4 million years ago. Extensive 40Ar/39Ar dating of about 60 samples that represent many of the Tertiary extrusive and intrusive rocks in the southern Toquima Range provides precise ages that refine the chronology of previously dated units. New geochronologic data indicate that the petrogenetically related Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas formed during a period of about 560,000 years. Electron microprobe analyses of phenocrysts from 20 samples of six dated units underscore inferred petrogenetic relations among some of these units. In particular, compositions of augite, hornblende, and biotite in tuffs erupted from the Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas are similar, which suggests that magmas represented by these tuffs have similar petrogenetic histories. The unique occurrence of hypersthene in Isom-type tuff confirms its derivation from a source beyond the southern Toquima Range.

  4. Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions

    NASA Astrophysics Data System (ADS)

    Campagnola, S.; Romano, C.; Mastin, L. G.; Vona, A.

    2016-06-01

    Numerical simulations are useful tools to illustrate how flow parameters and physical processes may affect eruption dynamics of volcanoes. In this paper, we present an updated version of the Conflow model, an open-source numerical model for flow in eruptive conduits during steady-state pyroclastic eruptions (Mastin and Ghiorso in A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 2000). In the modified version, called Confort 15, the rheological constraints are improved, incorporating the most recent constitutive equations of both the liquid viscosity and crystal-bearing rheology. This allows all natural magma compositions, including the peralkaline melts excluded in the original version, to be investigated. The crystal-bearing rheology is improved by computing the effect of strain rate and crystal shape on the rheology of natural magmatic suspensions and expanding the crystal content range in which rheology can be modeled compared to the original version ( Conflow is applicable to magmatic mixtures with up to 30 vol% crystal content). Moreover, volcanological studies of the juvenile products (crystal and vesicle size distribution) of the investigated eruption are directly incorporated into the modeling procedure. Vesicle number densities derived from textural analyses are used to calculate, through Toramaru equations, maximum decompression rates experienced during ascent. Finally, both degassing under equilibrium and disequilibrium conditions are considered. This allows considerations on the effect of different fragmentation criteria on the conduit flow analyses, the maximum volume fraction criterion ("porosity criterion"), the brittle fragmentation criterion and the overpressure fragmentation criterion. Simulations of the pantelleritic and trachytic phases of the Green Tuff (Pantelleria) and of the Plinian Etna 122 BC eruptions are performed to test the upgrades in

  5. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.S. Wu

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used tomore » support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  6. Mountain laurel toxicosis in a dog.

    PubMed

    Manhart, Ingrid O; DeClementi, Camille; Guenther, Christine L

    2013-01-01

    To describe a case of mountain laurel (Kalmia latifolia) toxicosis in a dog, including case management and successful outcome. A dog presented for vomiting, hematochezia, bradycardia, weakness, and ataxia, which did not improve with supportive treatment. Mountain laurel ingestion was identified as cause of clinical signs after gastrotomy was performed to remove stomach contents. Supportive treatment was continued and the dog made a full recovery. This report details a case of mountain laurel toxicosis in a dog, including management strategies and outcome, which has not been previously published in the veterinary literature. © Veterinary Emergency and Critical Care Society 2013.

  7. Non-linear homogenized and heterogeneous FE models for FRCM reinforced masonry walls in diagonal compression

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele; Poggi, Carlo

    2016-12-01

    Two FE modeling techniques are presented and critically discussed for the non-linear analysis of tuff masonry panels reinforced with FRCM and subjected to standard diagonal compression tests. The specimens, tested at the University of Naples (Italy), are unreinforced and FRCM retrofitted walls. The extensive characterization of the constituent materials allowed adopting here very sophisticated numerical modeling techniques. In particular, here the results obtained by means of a micro-modeling strategy and homogenization approach are compared. The first modeling technique is a tridimensional heterogeneous micro-modeling where constituent materials (bricks, joints, reinforcing mortar and reinforcing grid) are modeled separately. The second approach is based on a two-step homogenization procedure, previously developed by the authors, where the elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. The non-linear structural analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM). All the simulations here presented are performed using the commercial software Abaqus. Pros and cons of the two approaches are herein discussed with reference to their reliability in reproducing global force-displacement curves and crack patterns, as well as to the rather different computational effort required by the two strategies.

  8. Mountain biking injuries: an update.

    PubMed

    Kronisch, Robert L; Pfeiffer, Ronald P

    2002-01-01

    This article reviews the available literature regarding injuries in off-road bicyclists. Recent progress in injury research has allowed the description of several patterns of injury in this sport. Mountain biking remains popular, particularly among young males, although sales and participation figures have decreased in the last several years. Competition in downhill racing has increased, while cross-country racing has decreased somewhat in popularity. Recreational riders comprise the largest segment of participants, but little is known about the demographics and injury epidemiology of noncompetitive mountain cyclists. Most mountain bikers participating in surveys reported a history of previous injuries, but prospective studies conducted at mountain bike races have found injury rates of <1%. The most common mechanism of injury involves a forward fall over the handlebars, usually while riding downhill, which can result in direct trauma to the head, torso and upper extremities. A variety of factors can be associated with this type of fall, including trail surface irregularities, mechanical failures and loss of control. In mountain bike racing the risk of injury may be higher for women than men. Minor injuries such as abrasions and contusions occur frequently, but are usually of little consequence. Fractures usually involve the torso or upper extremities, and shoulder injuries are common. Head and face injuries are not always prevented by current helmet designs. Fatal injuries are rare but have been reported. Improvements in safety equipment, rider training and racecourse design are suggested injury prevention measures. The authors encourage continued research in this sport.

  9. An investigation of infrasound propagation over mountain ranges.

    PubMed

    Damiens, Florentin; Millet, Christophe; Lott, François

    2018-01-01

    Linear theory is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mountain gravity wave model. For the infrasound component, this paper solves the wave equation under the effective sound speed approximation using both a finite difference method and a Wentzel-Kramers-Brillouin approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low-level waveguide, which leads to significant acoustic dispersion. To interpret these results, each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, situations that are common during night over land in winter, the mountain waves induce a strong Foehn effect downstream, which shrinks the waveguide significantly. This yields a new form of infrasound absorption that can largely outweigh the direct effect the mountain induces on the low-level waveguide. For the opposite case, when the low-level flow is less statically stable (situations that are more common during day in summer), mountain wave dynamics do not produce dramatic responses downstream. It may even favor the passage of infrasound and mitigate the direct effect of the obstacle.

  10. Patterns of Seed Productions in Table Mountain Pine

    Treesearch

    Ellen A. Gray; John C. Rennie; Thomas A. Waldrop; James L. Hanula

    2002-01-01

    The lack of regeneration in stands of Table Mountain pine (Pinus pungens Lamb.) in the Southern Appalachian Mountains is of concern, particularly to federal land managers. Efforts to regenerate Table Mountain pine (TMP) stands with prescribed burning have been less successful than expected. Several factors that may play a key role in successful...

  11. Purple Mountain Majesty

    NASA Image and Video Library

    2015-07-15

    NASA Mars Reconnaissance Orbite observed this image of an isolated mountain in the Southern highlands reveals a large exposure of purplish bedrock. Since HiRISE color is shifted to longer wavelengths than visible color and given relative stretches, this really means that the bedrock is roughly dark in the broad red bandpass image compared to the blue-green and near-infrared bandpass images. In the RGB (red-green-blue) color image, which excludes the near-infrared bandpass image, the bedrock appears bluish in color. This small mountain is located near the northeastern rim of the giant Hellas impact basin, and could be impact ejecta. http://photojournal.jpl.nasa.gov/catalog/PIA19854

  12. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it

  13. Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Walker, A. J.; McGarvie, D. W.; Burgess, R.

    2016-08-01

    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations.

  14. Limited fluid in carbonate-shale hosted thrust faults of the Rocky Mountain Fold-and-Thrust Belt (Sun River Canyon, Montana)

    NASA Astrophysics Data System (ADS)

    OBrien, V. J.; Kirschner, D. L.

    2001-12-01

    It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian

  15. A Mountain Range within Pluto Heart

    NASA Image and Video Library

    2015-07-21

    A newly discovered mountain range lies near the southwestern margin of Pluto heart-shaped Tombaugh Regio Tombaugh Region, situated between bright, icy plains and dark, heavily-cratered terrain. This image was acquired by NASA's New Horizons' Long Range Reconnaissance Imager (LORRI) on July 14, 2015, from a distance of 48,000 miles (77,000 kilometers) and sent back to Earth on July 20. Features as small as a half-mile (1 kilometer) across are visible. These frozen peaks are estimated to be one-half mile to one mile (1-1.5 kilometers) high, about the same height as the United States' Appalachian Mountains. The Norgay Montes (Norgay Mountains) discovered by New Horizons on July 15 more closely approximate the height of the taller Rocky Mountains The names of features on Pluto have all been given on an informal basis by the New Horizons team. http://photojournal.jpl.nasa.gov/catalog/PIA19842

  16. Extreme ground motions and Yucca Mountain

    USGS Publications Warehouse

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  17. Managing a Scarce Natural Resource: The High Altitude Mountaineering Setting.

    ERIC Educational Resources Information Center

    Ewert, Alan

    This study identifies some characteristics of mountaineering visitors, climbers' perceptions of the mountain environment, and certain preferred management options affecting both the mountain environment and the mountaineer on Mt. McKinley and adjacent Alaska Range peaks. Approximately 360 registered climbers were asked to complete a 26-item…

  18. Mountains on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.

    2007-01-01

    The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.

  19. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  20. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  1. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then

  2. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  3. 19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ELECTRICAL JUNCTION BOXES, BUILT-IN WALL CABINETRY, AND ELECTRICAL WALL HEATER. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  4. Longleaf Pine Forests...in the Mountains?

    Treesearch

    Morgan Varner

    1999-01-01

    While most people familiar with Alabama's forests associate longleaf pine with the gently rolling hills of lower Alabama, longleaf pine forests extend up into the hills, ridges and mountains of north Alabama. These forests, termed "montane" or "mountain longleaf," still thrive in several spots, but are becoming increasingly rare. These rare...

  5. General Approach for Rock Classification Based on Digital Image Analysis of Electrical Borehole Wall Images

    NASA Astrophysics Data System (ADS)

    Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.

    2005-12-01

    Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.

  6. 27 CFR 9.155 - Texas Davis Mountains.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 1600 meter contour line to the west of Friend Mountain; (10) The boundary then follows the 1600 meter contour line in a northeasterly direction until it reaches the northernmost point of Friend Mountain; (11...

  7. 27 CFR 9.155 - Texas Davis Mountains.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 1600 meter contour line to the west of Friend Mountain; (10) The boundary then follows the 1600 meter contour line in a northeasterly direction until it reaches the northernmost point of Friend Mountain; (11...

  8. Geology of the Henry Mountains

    USGS Publications Warehouse

    Gilbert, G.K.

    1877-01-01

    If these pages fail to give a correct account of the structure of the Henry Mountains the fault is mine and I have no excuse. In all the earlier exploration of the Rocky Mountain Region, as well as in much of the more recent survey, the geologist has merely accompanied the geographer and has had no voice in the determination of either the route or the rate of travel. When the structure of a mountain was in doubt he was rarely able to visit the points which should resolve the doubt, but was compelled to turn regretfully away. Not so in the survey of the Henry Mountains. Geological exploration had shown that they were well disposed for examination, and that they promised to give the key to a type of structure which was at best obscurely known; and I was sent by Professor Powell to make a study of them, without restriction as to my order or method. I was limited only in time, the snow stopping my work two months after it was begun. Two months would be far too short a period in which to survey a thousand square miles in Pennsylvania or Illinois, but among the Colorado Plateaus it proved sufficient. A few comprehensive views from mountain tops gave the general distribution of the formations, and the remainder of the time was spent in the examination of the localities which best displayed the peculiar features of the structure. So thorough was the display and so satisfactory the examination, that in preparing my report I have felt less than ever before the desire to revisit the field and prove my conclusions by more extended observation.

  9. The Icy Mountains of Pluto

    NASA Image and Video Library

    2015-07-15

    New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building. That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. The youthful age estimate is based on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. The mountains are probably composed of Pluto's water-ice "bedrock." Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. http://photojournal.jpl.nasa.gov/catalog/PIA19710

  10. Influence of Mountains on Arctic Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Whiteway, J. A.; Seabrook, J.

    2015-12-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.

  11. Geometric and kinematic analysis of structural elements along north front of Bagharan Kuh Mountain, NE Iran

    NASA Astrophysics Data System (ADS)

    Samimi, S.; Gholami, E.

    2017-03-01

    At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts

  12. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  13. Acute mountain sickness

    MedlinePlus

    High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... If you have fluid in your lungs (pulmonary edema), treatment may include: Oxygen A high blood pressure ...

  14. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  15. Camera Geolocation From Mountain Images

    DTIC Science & Technology

    2015-09-17

    be reliably extracted from query images. However, in real-life scenarios the skyline in a query image may be blurred or invisible , due to occlusions...extracted from multiple mountain ridges is critical to reliably geolocating challenging real-world query images with blurred or invisible mountain skylines...Buddemeier, A. Bissacco, F. Brucher, T. Chua, H. Neven, and J. Yagnik, “Tour the world: building a web -scale landmark recognition engine,” in Proc. of

  16. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  17. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  18. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    USGS Publications Warehouse

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  19. Recreational mountain biking: a management perspective

    Treesearch

    D.J. Chavez; P.L. Winter; J.M. Baas

    1993-01-01

    Mountain biking activity presents a new set of management challenges related to multiple use in recreation areas. To determine the potential issues associated with mountain bike management, a telephone survey of 40 recreation managers from two federal agencies (USDA Forest Service and USDI Bureau of Land Management) was conducted. Exploratory in nature, the study sets...

  20. pXRF quantitative analysis of the Otowi Member of the Bandelier Tuff: Generating large, robust data sets to decipher trace element zonation in large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Wolff, J.; Conrey, R.

    2013-12-01

    Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show

  1. Risk of cardiovascular events during mountain activities.

    PubMed

    Burtscher, Martin

    2007-01-01

    Sudden cardiac death (SCD) is the major cause of fatalities in males over 34 years of age during hiking or downhill skiing in the mountains. The main goal of the present study was the identification of risk factors and triggers associated with SCDs during these mountain activities. Besides recording individual circumstances associated with SCD, a case-control study was performed comparing the risk factor profiles of 247 males over the age of 34 who suffered SCD during mountain hiking or downhill skiing with those of 741 matched controls. The SCD risk was greatest on the first day at altitude but altitude per se and the duration of activity did not appear to markedly modify this risk. In contrast, the longer the time from the last food and fluid intake during hiking, the higher was the SCD risk. Early cardio-pulmonary resuscitation was started in 33% of skiers and in 14 % of hikers after occurrence of unconsciousness. Hikers who died suddenly during mountain hiking were much more likely to have had a prior myocardial infarction (MI) (17% vs. 0.9%), known coronary artery disease (CAD) without prior MI (17% vs. 4%), diabetes (6% vs. 1%), hypercholesterolemia (54 % vs. 20%), and were also less engaged in regular mountaineering activities (31% vs. 58%) compared with hikers from the control group (all P < 0.001). Skiers who suffered SCD had much more frequently a prior MI (41% vs. 1.5%), hypertension (50% vs. 17%), known CAD without prior MI (9% vs. 3%), and were less engaged in regular strenuous exercise (4% vs. 15%) when compared to controls (all P < 0.05). These findings enable identification of skiers and hikers at increased SCD-risk and recommendation of preventive measures, e.g. pharmacological interventions and adaptation to specific mountain activities. They also underline the need for intensified cardio-pulmonary resuscitation training for all mountaineers.

  2. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the

  3. Integrating Unmanned Aerial Vehicles and Terrestrial Structure from Motion Photogrammetry for Assessing High Mountain Glacier Change, Huaytapallana, Peru

    NASA Astrophysics Data System (ADS)

    Wigmore, O.; Mark, B. G.; Lagos, P.; Somers, L. D.; McKenzie, J. M.; Huh, K. I.; Hopkinson, C.; Baraer, M.; Crumley, R. L.

    2016-12-01

    Terrestrial photogrammetry has a long and successful history of application to glaciological research. However, traditional methods rely upon large and expensive metric cameras and detailed triangulation of in-scene points for derivation of terrain models and analysis of glacier change. Recent developments in computer vision, including the advent of Structure from Motion (SfM) algorithms and associated software packages have made it possible to use consumer grade digital cameras to produce highly precise digital elevation models. This has facilitated the rapid expansion of unmanned aerial vehicles (UAVs) for mapping purposes. However, without onboard RTK GNSS positions of the UAV, within scene survey-grade ground targets are required for accurate georectification. Gaining access to mountain glaciers for the installation and survey of ground targets is often labour intensive, hazardous and sometimes impossible. Compounding this are limitations of UAV flight within these confined and high elevation locations and reduced flight times that limit the total survey area. Luckily, these environments also present a highly suitable location for the application of terrestrial SfM photogrammetry; because; high moraines, cliffs and ridgelines provide excellent 'semi-nadir' viewing of the glacier surface; while steep mountain walls present a close to nadir view from an oblique angle. In this study we present a workflow and results from an integrated UAV and terrestrial SfM photogrammetry campaign at Huaytapallana glacier, Huancayo Peru. We combined terrestrial images taken from GNSS surveyed positions with oblique UAV imagery of the mountain face. From this data a centimetre resolution orthomosaic and a decimetre resolution DEM of the snow and ice covered mountain face and proglacial lake were generated, covering over 6km2. Accuracy of the surface was determined from comparison over ice free areas to 1m aerial LiDAR data collected in 2009. Changes in glacier volume were then

  4. Atmospheric propagation of infrasound across mountain ranges

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Millet, Christophe; Lott, Francois

    2017-11-01

    Linear theory of acoustic propagation is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mounatin wave model. For the infrasound component, we solve the wave equation under the effective sound speed approximation using both a spectral collocation method and a WKB approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low level waveguide, which leads to significant acoustic dispersion. To interpret these results each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, roughly representative of winter or night situations, the mountain waves induce a Foehn effect downstream which shrinks significantly the waveguide. This yields a new form of infrasound absorption, that can largely outweigh the direct effect the moutain induces on the low-level waveguide. For the opposite case, when the low level flow is less statically stable (summer or day situations), mountain wave dynamics do not produce dramatic responses downstream. Instead, it favors the passage of infrasound, which somehow mitigates the direct effect of the obstacle.

  5. 5. Detail of bin wall, showing the thinner exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail of bin wall, showing the thinner exterior wall next to the inner wall with its alternating courses of channel tile and hollow tile. - Saint Anthony Elevator No. 3, 620 Malcom Avenue, Southeast, Minneapolis, Hennepin County, MN

  6. Dating paleo-seismic faulting in the Taiwan Mountain Belt

    NASA Astrophysics Data System (ADS)

    Lo, C. H.; Wu, C. Y.; Chu, H. T.; Yui, T. F.

    2017-12-01

    In-situ 40Ar/39Ar laser microprobe dating was carried out on the Hoping pseudotachylite from a mylonite-fault zone in the metamorphosed basement complex of the active Taiwan Mountain Belt to determine the timing of the responsible earthquake(s). The dating results, distributed between 3.2 to 1.6 Ma with errors ranging 0.2 1.1 Ma, were derived from a combination of two Ar isotopic system end-members with inverse isochron ages of 1.55±0.05 and 2.87±0.07 Ma, respectively. Fault melt was found mixed with ultracataclasis in petrographical observations, therefore the older inverse isochron end-member may be attributed to the relic wall rock Ar isotopic system contained in micro-breccia as published 40Ar/39Ar mylonitization ages from 4.1 to 3.0 Ma. Without significant Ar loss expected, the young 1.6 Ma end-member represents the Ar isotopic system and age of the exact pseudotachylite. Seismic faulting therefore occurred during basement rock exhumation in the Taiwanese hinterland.

  7. Winter Tourism and mountain wetland management and restoration

    NASA Astrophysics Data System (ADS)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  8. Rocky Mountain spotted fever in children.

    PubMed

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  10. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  11. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  12. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  13. 27 CFR 9.102 - Sonoma Mountain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Sonoma Mountain. 9.102 Section 9.102 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.102 Sonoma Mountain. (a) Name. The name of the...

  14. Summiteers--Moving Mountains with Bereaved Boys

    ERIC Educational Resources Information Center

    Renner, Hans-Georg

    2011-01-01

    Summiteers are people who rush to the top. There is a mountain summit and a metaphorical summit inside us which we can climb. In the area of mountain summits, Reinhold Messner is surely the best known and most successful summiteer. He climbed, among other things, the highest peak on earth without supplemental oxygen. In the language of the country…

  15. Mammoth Mountain, California broadband seismic experiment

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.

    2013-12-01

    Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have

  16. Documentation of mountain lions in Marin County, California, 2010–2013

    USGS Publications Warehouse

    Fifield, Virginia L.; Rossi, Aviva J.; Boydston, Erin E.

    2015-01-01

    Prior to 2010, mountain lions (Puma concolor) have rarely been documented in Marin County, California. Although there are reports of sightings of mountain lions or observations of mountain lion sign, most have not been verified by photographs or physical samples. Beginning in 2010, we conducted a pilot study of mountain lions in Marin County using motion-triggered cameras. Our objectives were to obtain additional documentations, confirm the presence of mountain lions outside of Point Reyes National Seashore, and determine if mountain lions had a regular presence in the county. 

  17. The Olympic Mountains Experiment (OLYMPEX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houze, Robert A.; McMurdie, Lynn A.; Petersen, Walter A.

    the Olympic Mountains Experiment (OLYMPEX) took place during the 2015-2016 fall-winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S./Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four researchmore » aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching "atmospheric river" status, warm and cold frontal systems, and postfrontal convection« less

  18. Evolution of endemism on a young tropical mountain.

    PubMed

    Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno

    2015-08-20

    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.

  19. Trapped mountain wave excitations over the Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, Ram P.; Maharjan, Sangeeta

    2015-11-01

    Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.

  20. Prevalence of acute mountain sickness in the Swiss Alps.

    PubMed Central

    Maggiorini, M; Bühler, B; Walter, M; Oelz, O

    1990-01-01

    OBJECTIVE--To assess the prevalence of symptoms and signs of acute mountain sickness of the Swiss Alps. DESIGN--A study using an interview and clinical examination in a representative population of mountaineers. Positive symptoms and signs were assigned scores to quantify the severity of acute mountain sickness. SETTING--Four huts in the Swiss Alps at 2850 m, 3050 m, 3650 m, and 4559 m. SUBJECTS--466 Climbers, mostly recreational: 47 at 2850 m, 128 at 3050 m, 82 at 3650, and 209 at 4559 m. RESULTS--In all, 117 of the subjects were entirely free of symptoms and clinical signs of acute mountain sickness; 191 had one or two symptoms and signs; and 158 had more than two. Those with more than two symptoms and signs were defined as suffering from acute mountain sickness. At 4559 m 11 climbers presented with high altitude pulmonary oedema or cerebral oedema, or both. Men and women were equally affected. The prevalence of acute mountain sickness correlated with altitude: it was 9% at 2850 m, 13% at 3050 m, 34% at 3650 m, and 53% at 4559 m. The most frequent symptoms and signs were insomnia, headache, peripheral oedema, and scanty pulmonary rales. Severe headache, vomiting, dizziness, tachypnoea, and pronounced pulmonary rales were associated with other symptoms and signs and therefore characteristic of acute mountain sickness. CONCLUSION--Acute mountain sickness is not an uncommon disease at moderately high altitude--that is, above 2800 m. Severe headache, vomiting, dizziness, tachypnoea, and pronounced pulmonary rales indicate severe acute mountain sickness, and subjects who suffer these should immediately descend to lower altitudes. PMID:2282425