Sample records for wall nanotubes swnts

  1. Attachment of Single-wall Carbon Nanotubes (SWNTs) on Platinum Surfaces by Self-Assembling Techniques

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Cabrera, Carlos R.; Perez-Davis, Maria; Lebron, Marisabel; Meador, Michael

    2003-01-01

    Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).

  2. On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs): Toward Robust and Scale Invariant SWNTs Transistors.

    PubMed

    Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A

    2017-06-01

    In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod.

    PubMed

    Templeton, Ryan C; Ferguson, P Lee; Washburn, Kate M; Scrivens, Wally A; Chandler, G Thomas

    2006-12-01

    Single-walled carbon nanotubes (SWNT) are finding increasing use in consumer electronics and structural composites. These nanomaterials and their manufacturing byproducts may eventually reach estuarine systems through wastewater discharge. The acute and chronic toxicity of SWNTs were evaluated using full life-cycle bioassays with the estuarine copepod Amphiascus tenuiremis (ASTM method E-2317-04). A synchronous cohort of naupliar larvae was assayed by culturing individual larvae to adulthood in individual 96-well microplate wells amended with SWNTs in seawater. Copepods were exposed to "as prepared" (AP) SWNTs, electrophoretically purified SWNTs, or a fluorescent fraction of nanocarbon synthetic byproducts. Copepods ingesting purified SWNTs showed no significant effects on mortality, development, and reproduction across exposures (p < 0.05). In contrast, exposure to the more complex AP-SWNT mixture significantly increased life-cycle mortality, reduced fertilization rates, and reduced molting success in the highest exposure (10 mg x L(-1)) (p < 0.05). Exposure to small fluorescent nanocarbon byproducts caused significantly increased life-cycle mortality at 10 mg x L(-1) (p < 0.05). The fluorescent nanocarbon fraction also caused significant reduction in life-cycle molting success for all exposures (p < 0.05). These results suggest size-dependent toxicity of SWNT-based nanomaterials, with the smallest synthetic byproduct fractions causing increased mortality and delayed copepod development over the concentration ranges tested.

  4. Impact of single walled carbon nanotubes (SWNTs) on wastewater microbial communities

    NASA Astrophysics Data System (ADS)

    Goyal, Deepankar

    Aim: Carbon nanotubes (CNTs) hold great promise in advancing our future, with potential applications such as adsorbents, conductive composites, energy storage devices, and more. Despite of numerous potential applications of CNTs, almost nothing so far is known about how such carbon-based nanomaterials would in future impact environmental processes such as wastewater treatment. The objective of the current study was to evaluate the impact of single-walled carbon nanotubes (SWNTs) on microbial communities and wastewater treatment processes in activated sludge bioreactors. Method: Closed system batch-scale reactors were used to simulate the activated sludge process. Two sets of triplicate reactors were analyzed to determine the effects of SWNTs and associated impurities compared to control reactors that contained no CNTs. Sub-samples for microbial community analyses were aseptically removed periodically from the bioreactors every ˜1 hour 15 minutes and held at -80°C until analyzed. Genomic DNA was extracted from bioreactor samples, and molecular profiles of the bacterial communities were determined using automated ribosomal intergenic spacer analysis (ARISA). The clones for the ARISA profiles having distinct ARISA peaks were picked and sequenced. Result: ARISA profiles revealed adverse changes in CNT-exposed bacterial communities compared to control reactors associated with CNTs. The phylogenetic analysis of cloned insert containing Internal Transcribed Spacer (ITS) region plus the 16S rRNA genes identified them belonging to taxonomic groups of the families Sphingomonadaceae and Cytophagacaceae , and the genus Zoogloea. Changes in community structure were observed in both SWNT-exposed and control reactors over the experimental time period. Also the date on which activated sludge was obtained from a wastewater treatment plant facility seemed to play a critical role in changing the community structure altogether, indicating the importance of analyzing microbial

  5. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  6. Optically active single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro

    2007-06-01

    The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.

  7. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  8. Single-Walled Carbon Nanotubes in Solar Cells.

    PubMed

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  9. The electronic properties of SWNTs intercalated by electron acceptors

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. V.; Kiseleva, E. A.; Verbitskii, N. I.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.

    2008-05-01

    Here we report synthesis of Chal@SWNT nanocomposites (where Chal=S, Se and Te) and the impact of the intercalated electron-acceptor compounds on the electronic properties of SWNTs. The chalcogens were introduced to the channels of single-walled carbon nanotubes by molten media technique via impregnation of pre-opened SWNTs with melted guest compounds in vacuum. HRTEM imaging confirms the filling of nanotube channels by continuous nanostructures of corresponding chalcogens. The strong influence of incorporated matter on the electronic properties of the SWNTs was detected by Raman spectroscopy.

  10. Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare.

    PubMed

    Chik, Mazzura Wan; Hussain, Zahid; Zulkefeli, Mohd; Tripathy, Minaketan; Kumar, Sunil; Majeed, Abu Bakar Abdul; Byrappa, K

    2018-03-28

    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.

  11. Elastomer Filled With Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Forest, Craig R.

    2004-01-01

    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.

  12. Fluorescent single walled nanotube/silica composite materials

    DOEpatents

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  13. Aggregation Kinetics and Transport of Single-Walled CarbonNanotubes at Low Surfactant Concentrations

    EPA Science Inventory

    Little is known about how low levels of surfactants can affect the colloidal stability of single-walled carbon nanotubes (SWNTs) and how surfactant-wrapping of SWNTs can impact ecological exposures in aqueous systems. In this study, SWNTs were suspended in water with sodium ...

  14. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  15. Enrichment Mechanism of Semiconducting Single-walled Carbon Nanotubes by Surfactant Amines

    PubMed Central

    Ju, Sang-Yong; Utz, Marcel; Papadimitrakopoulos, Fotios

    2009-01-01

    Utilization of single-walled carbon nanotubes (SWNTs) in high-end applications hinges on separating metallic (met-) from semiconducting (sem-) SWNTs. Surfactant amines, like octadecylamine (ODA) have proven instrumental for the selective extraction of sem-SWNTs from tetrahydrofuran (THF) nanotube suspensions. The chemical shift differences along the tail of an asymmetric, diacetylenic surfactant amine were used to probe the molecular dynamics in the presence and absence of nanotubes via NMR. The results suggest that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. X-ray and high-resolution TEM studies indicate that the sem-enriched sample is populated mainly by small nanotube bundles containing ca. three SWNTs. Molecular simulations in conjunction with previously determined HNO3/H2SO4 oxidation depths for met- and sem-SWNTs indicate that the strong pinning of the amine surfactants on the sem-enriched SWNTs bundles is a result of a well-ordered arrangement of nitrate/amine salts separated with a monomolecular layer of H2O. Such continuous 2D arrangement of nitrate/amine salts shields the local environment adjacent to sem-enriched SWNTs bundles and maintains an acidic pH that preserves nanotube oxidation (i.e. SWNTn+). This, in turn, results in strong interactions with charge-balancing NO3- counter ions that through their association with neutralized surfactant amines provide effective THF dispersion and consequent sem-enrichment. PMID:19397291

  16. Separation of Armchair SWNTs by Using Polymer Conformation Guided Assembly

    DTIC Science & Technology

    2013-08-22

    30 Publications 36 Reference List 38     2 Introduction Single-walled carbon nanotubes (SWNTs) are among the most...with 12, the polymer 15 of linear geometry also forms the donor-acceptor complex resulting in enhanced interactions with graphene or carbon nanotubes .32...Band engineering of oxygen doped single-walled carbon nanotubes , NANOSCALE 2011, 6 2465-2468.  R. Gunasingh; C. Kah; K. Quarles; et al

  17. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, M.; Kobayashi, T.; Ito, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  18. Single-molecule electrocatalysis by single-walled carbon nanotubes.

    PubMed

    Xu, Weilin; Shen, Hao; Kim, Yoon Ji; Zhou, Xiaochun; Liu, Guokun; Park, Jiwoong; Chen, Peng

    2009-12-01

    We report a single-molecule fluorescence study of electrocatalysis by single-walled carbon nanotubes (SWNTs) at single-reaction resolution. Applying super-resolution optical imaging, we find that the electrocatalysis occurs at discrete, nanometer-dimension sites on SWNTs. Single-molecule kinetic analysis leads to an electrocatalytic mechanism, allowing quantification of the reactivity and heterogeneity of individual reactive sites. Combined with conductivity measurements, this approach will be powerful to interrogate how the electronic structure of SWNTs affects the electrocatalytic interfacial charge transfer, a process fundamental to photoelectrochemical cells.

  19. Functional single-wall carbon nanotube nanohybrids--associating SWNTs with water-soluble enzyme model systems.

    PubMed

    Guldi, Dirk M; Rahman, G M Aminur; Jux, Norbert; Balbinot, Domenico; Hartnagel, Uwe; Tagmatarchis, Nikos; Prato, Maurizio

    2005-07-13

    We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene(-)), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP(8+)) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8+) were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8)(+) is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP(8)(+). Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP(8)(+) and CoP(8)(+) in donor-acceptor nanohybrids.

  20. Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides.

    PubMed

    Kong, Na; Shimpi, Manishkumar R; Ramström, Olof; Yan, Mingdi

    2015-03-20

    Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Molecular discriminators using single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ranjan Ray, Nihar; Sarkar, Sabyasachi

    2012-09-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular.

  2. Application of liquid-liquid interactions with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Randy Kai-Wei

    This study covers three important research topics related to the application of liquid-liquid interaction with single-walled carbon nanotubes (SWNTs). The first topic describes the removal of SWNT bundles from liquid suspensions of nanotubes. The key to this work includes the use of liquid-liquid interfaces to trap the SWNT bundles due to the free energy change of the system during the process. SWNTs pack into crystalline ropes that form bundles due to strong van der Waals attraction. Bundling diminishes mechanical and electronic properties because it could interrupt the electronic structure of the nanotubes. Also, the electronic devices based on as-grown nanotubes, which contains a mixture of individual nanotubes and nanotube bundles, make the electrical response unpredictable. We developed a new simple process to remove bundles by liquid-liquid interaction. SWNTs bundles are trapped at the interface because bundles stabilize the emulsions. Eliminating the use of ultracentrifugation to remove SWNT bundles enables large-scale production with reduced production costs and time savings. The second topic presented the swelling effect of the surfactant layer surrounding SWNTs with nonpolar solvents. Solvatochromic shifts in the absorbance and fluorescence spectra are observed when surfactant-stabilized aqueous SWNT suspensions are mixed with immiscible organic solvents. When aqueous surfactant-suspended SWNTs are mixed with certain solvents, the spectra closely match the peaks for SWNTs dispersed in only that solvent. These spectral changes suggest the hydrophobic region of the micelle surrounding SWNTs swells with the organic solvent when mixed. The solvatochromic shifts of the aqueous SWNT suspensions are reversible once the solvent evaporates. However, some surfactant-solvent systems show permanent changes to the fluorescence emission intensity after exposure to the organic solvent. The intensity of some large diameter SWNT (n, m) types increase by more than 175

  3. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Lili; Lin, Rui; He, Hua; Jiang, Li; Gao, Mengmeng

    2013-03-01

    Carboxylated single-walled carbon nanotubes (c-SWNTs) were synthesized prosperously in order to improve dispersion of raw carbon nanotubes. Then, bovine serum albumin (BSA) was used as the template protein to study the biocompatibility of c-SWNTs by UV-Vis, fluorescence and circular dichroism (CD) spectroscopic methods at the molecular level. Results from fluorescence spectrum showed obvious decreases in fluorescence intensity of BSA induced by c-SWNTs, indicating the occurrence of interaction between BSA and c-SWNTs. Static quenching effect of c-SWNTs was verified by linear Stern-Volmer plots and KSV values. Thermodynamic parameters at different temperatures demonstrated that the interaction between c-SWNTs and BSA was mainly favored by hydrophobic force. In addition, Na+ interfered with the quenching effect of c-SWNTs, which revealed that electrostatic force played a role in binding roles of BSA to c-SWNTs simultaneously. The results of UV and synchronous fluorescence spectrum validated that hydrophobicity of amino acid residues expressly increased with the addition of c-SWNTs. The content of α-helix structure in BSA decreased by 14.06% with c-SWNTs viewed from CD spectrum. Effect of SWNTs on the conformation of BSA could be controlled by the surface chemistry of SWNTs.

  4. On the Likelihood of Single-Walled Carbon Nanotubes Causing Adverse Marine Ecological Effects

    EPA Science Inventory

    This brief article discusses the ecological effects of single-walled carbon nanotubes (SWNTs)in the marine environment. Based on new research and a review of the scientific literature, the paper concludes that SWNTs are unlikely to cause adverse ecological effects in the marine ...

  5. General synthesis of inorganic single-walled nanotubes

    PubMed Central

    Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun

    2015-01-01

    The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862

  6. Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE PPV Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Kelly A; Chen, Yusheng; Malkovskiy, Andrey

    2012-01-01

    Electronic and mechanic properties of single-walled carbon nanotubes (SWNTs) are uniquely dependent on the tube's chiralities and diameters. Isolation of different type SWNTs remains one of the fundamental and challenging issues in nanotube science. Herein, we demonstrate that SWNTs can be effectively enriched to a narrow diameter range by sequential treatment of the HiPco sample with nitric acid and a {pi}-conjugated copolymer poly(phenyleneethynylene) (PPE)-co-poly(phenylenevinylene) (PPV). On the basis of Raman, fluorescence, and microscopic evidence, the nitric acid is found to selectively remove the SWNTs of small diameter. The polymer not only effectively dispersed carbon nanotubes but also exhibited a goodmore » selectivity toward a few SWNTs. The reported approach thus offers a new methodology to isolate SWNTs, which has the potential to operate in a relatively large scale.« less

  7. Surface-enhanced Raman scattering on single-wall carbon nanotubes.

    PubMed

    Kneipp, Katrin; Kneipp, Harald; Dresselhaus, Mildred S; Lefrant, Serge

    2004-11-15

    Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.

  8. Physicochemical and biological characterization of single-walled and double-walled carbon nanotubes in biological media.

    PubMed

    Liu, Wen-Te; Bien, Mauo-Ying; Chuang, Kai-Jen; Chang, Ta-Yuan; Jones, Tim; BéruBé, Kelly; Lalev, Georgi; Tsai, Dai-Hua; Chuang, Hsiao-Chi; Cheng, Tsun-Jen

    2014-09-15

    To study the toxicity of nanoparticles under relevant conditions, it is important to reproducibly disperse nanoparticles in biological media in in vitro and in vivo studies. Here, single-walled nanotubes (SWNTs) and double-walled nanotubes (DWNTs) were physicochemically and biologically characterized when dispersed in phosphate-buffered saline (PBS) and bovine serum albumin (BSA). BSA-SWNT/DWNT interaction resulted in a reduction of aggregation and an increase in particle stabilization. Based on the protein sequence coverage and protein binding results, DWNTs exhibited higher protein binding than SWNTs. SWNT and DWNT suspensions in the presence of BSA increased interleukin-6 (IL-6) levels and reduced tumor necrosis factor-alpha (TNF-α) levels in A549 cells as compared to corresponding samples in the absence of BSA. We next determined the effects of SWNTs and DWNTs on pulmonary protein modification using bronchoalveolar lavage fluid (BALF) as a surrogate collected form BALB/c mice. The BALF proteins bound to SWNTs (13 proteins) and DWNTs (11 proteins), suggesting that these proteins were associated with blood coagulation pathways. Lastly, we demonstrated the importance of physicochemical and biological alterations of SWNTs and DWNTs when dispersed in biological media, since protein binding may result in the misinterpretation of in vitro results and the activation of protein-regulated biological responses. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers.

    PubMed

    Wang, Youdan; Joshi, Pratixa P; Hobbs, Kevin L; Johnson, Matthew B; Schmidtke, David W

    2006-11-07

    In this study, we describe the construction of glucose biosensors based on an electrostatic layer-by-layer (LBL) technique. Gold electrodes were initially functionalized with negatively charged 11-mercaptoundecanoic acid followed by alternate immersion in solutions of a positively charged redox polymer, poly[(vinylpyridine)Os(bipyridyl)2Cl(2+/3+)], and a negatively charged enzyme, glucose oxidase (GOX), or a GOX solution containing single-walled carbon nanotubes (SWNTs). The LBL assembly of the multilayer films were characterized by UV-vis spectroscopy, ellipsometry, and cyclic voltammetry, while characterization of the single-walled nanotubes was performed with transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. When the GOX solution contained single-walled carbon nanotubes (GOX-SWNTs), the oxidation peak currents during cyclic voltammetry increased 1.4-4.0 times, as compared to films without SWNTs. Similarly the glucose electro-oxidation current also increased (6-17 times) when SWNTs were present. By varying the number of multilayers, the sensitivity of the sensors could be controlled.

  10. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  11. Review of Electronics Based on Single-Walled Carbon Nanotubes.

    PubMed

    Cao, Yu; Cong, Sen; Cao, Xuan; Wu, Fanqi; Liu, Qingzhou; Amer, Moh R; Zhou, Chongwu

    2017-08-14

    Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.

  12. High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle

    NASA Astrophysics Data System (ADS)

    Proctor, John E.; Halsall, Matthew P.; Ghandour, Ahmad; Dunstan, David J.

    2006-12-01

    The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent nanotube interaction is more complex than previously thought.

  13. Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. V.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.

    2007-03-01

    The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1-1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.

  14. Theoretical studies on lattice-oriented growth of single-walled carbon nanotubes on sapphire

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Meng, Xianhong; Xiao, Jianliang

    2017-09-01

    Due to their excellent mechanical and electrical properties, single-walled carbon nanotubes (SWNTs) can find broad applications in many areas, such as field-effect transistors, logic circuits, sensors and flexible electronics. High-density, horizontally aligned arrays of SWNTs are essential for high performance electronics. Many experimental studies have demonstrated that chemical vapor deposition growth of nanotubes on crystalline substrates such as sapphire offers a promising route to achieve such dense, perfectly aligned arrays. In this work, a theoretical study is performed to quantitatively understand the van der Waals interactions between SWNTs and sapphire substrates. The energetically preferred alignment directions of SWNTs on A-, R- and M-planes and the random alignment on the C-plane predicted by this study are all in good agreement with experiments. It is also shown that smaller SWNTs have better alignment than larger SWNTs due to their stronger interaction with sapphire substrate. The strong vdW interactions along preferred alignment directions can be intuitively explained by the nanoscale ‘grooves’ formed by atomic lattice structures on the surface of sapphire. This study provides important insights to the controlled growth of nanotubes and potentially other nanomaterials.

  15. Structure of single-wall carbon nanotubes purified and cut using polymer

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Koshio, A.; Jabs, C.; Ichihashi, T.; Iijima, S.

    2002-01-01

    Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate.

  16. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications.

    PubMed

    Chen, Chia-Ling; Agarwal, Vinay; Sonkusale, Sameer; Dokmeci, Mehmet R

    2009-06-03

    A simple methodology for integrating single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry is presented. The SWNTs were incorporated onto the CMOS chip as the feedback resistor of a two-stage Miller compensated operational amplifier utilizing dielectrophoretic assembly. The measured electrical properties from the integrated SWNTs yield ohmic behavior with a two-terminal resistance of approximately 37.5 kOmega and the measured small signal ac gain (-2) from the inverting amplifier confirmed successful integration of carbon nanotubes onto the CMOS circuitry. Furthermore, the temperature response of the SWNTs integrated onto CMOS circuitry has been measured and had a thermal coefficient of resistance (TCR) of -0.4% degrees C(-1). This methodology, demonstrated for the integration of SWNTs onto CMOS technology, is versatile, high yield and paves the way for the realization of novel miniature carbon-nanotube-based sensor systems.

  17. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    NASA Astrophysics Data System (ADS)

    Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  18. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.

    PubMed

    Huang, Houjin; Kajiura, Hisashi; Maruyama, Ryuichiro; Kadono, Koji; Noda, Kazuhiro

    2006-03-16

    While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.

  19. Extinction coefficients and purity of single-walled carbon nanotubes.

    PubMed

    Zhao, B; Itkis, M E; Niyogi, S; Hu, H; Perea, D E; Haddon, R C

    2004-11-01

    Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.

  20. Coulomb explosion: a novel approach to separate single-walled carbon nanotubes from their bundle.

    PubMed

    Liu, Guangtong; Zhao, Yuanchun; Zheng, Kaihong; Liu, Zheng; Ma, Wenjun; Ren, Yan; Xie, Sishen; Sun, Lianfeng

    2009-01-01

    A novel approach based on Coulomb explosion has been developed to separate single-walled carbon nanotubes (SWNTs) from their bundle. With this technique, we can readily separate a bundle of SWNTs into smaller bundles with uniform diameter as well as some individual SWNTs. The separated SWNTs have a typical length of several microns and form a nanotree at one end of the original bundle. More importantly, this separating procedure involves no surfactant and includes only one-step physical process. The separation method offers great conveniences for the subsequent individual SWNT or multiterminal SWNTs device fabrication and their physical properties studies.

  1. Electrochemical detection of Hg (II) ions using EDTA-PANI/SWNTs nanocomposite modified SS electrode

    NASA Astrophysics Data System (ADS)

    Deshmukh, M. A.; Patil, H. K.; Shirsat, M. D.; Ramanavicius, A.

    2017-05-01

    Detection of Hg (II) ions using EDTA modified polyaniline (PANI) and single walled carbon nanotubes (SWNTs) nanocomposite (PANI/SWNTs) was performed electrochemically via cyclic voltammetry (CV) technique. Dodecyl benzene sulphonic next step, PANI/SWNTs nanocomposite was modified acid sodium salt (DBSA) was used as a surfactant during this synthesis to get uniform suspension SWNTs. In the by EDTA solution containing crosslinking agent 1-ethyl-3(3-(dimethylamino) propyl) - carbodiimide (EDC) utilizing dip coating technique. The sensitivity of EDTA modified PANI/SWNTs nanocomposite towards Hg (II) ions was investigated. Differential pulse voltammetry (DPV) technique was applied for the electrochemical detection of Hg (II) ions.

  2. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  3. Phonon Dispersion in Chiral Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Vamivakas, Anthony Nickolas; Fang, Yan; Wang, Bolin

    The method to obtain phonon dispersion of achiral single-wall carbon nanotubes (SWNTs) from 6×6 matrix proposed by Mahan and Jeon7 has been extended to chiral SWNTs. The number of calculated phonon modes of a chiral SWNT (10, 1) is much larger than that of a zigzag one (10, 0) because the number of atoms in the translational unit cell of chiral SWNT is larger than that of an achiral one even though they have relative similar radius. The possible application of our approach to other models with more phonon potential terms beyond Mahan and Jeon's model is discussed.

  4. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    PubMed

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  5. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B 2O 3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection andmore » transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  6. Surface-enhanced resonant Raman spectroscopy (SERRS) of single-walled carbon nanotubes absorbed on the Ag-coated anodic aluminum oxide (AAO) surface

    NASA Astrophysics Data System (ADS)

    Dou, X. Y.; Zhou, Z. P.; Tan, P. H.; Song, L.; Liu, L. F.; Zhao, X. W.; Luo, S. D.; Yan, X. Q.; Liu, D. F.; Wang, J. X.; Gao, Y.; Zhang, Z. X.; Yuan, H. J.; Zhou, W. Y.; Xie, S. S.

    2005-05-01

    In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO 3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results.

  7. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  8. Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes.

    PubMed

    Xie, Xu; Jin, Sung Hun; Wahab, Muhammad A; Islam, Ahmad E; Zhang, Chenxi; Du, Frank; Seabron, Eric; Lu, Tianjian; Dunham, Simon N; Cheong, Hou In; Tu, Yen-Chu; Guo, Zhilin; Chung, Ha Uk; Li, Yuhang; Liu, Yuhao; Lee, Jong-Ho; Song, Jizhou; Huang, Yonggang; Alam, Muhammad A; Wilson, William L; Rogers, John A

    2014-11-12

    Recent progress in the field of single-walled carbon nanotubes (SWNTs) significantly enhances the potential for practical use of this remarkable class of material in advanced electronic and sensor devices. One of the most daunting challenges is in creating large-area, perfectly aligned arrays of purely semiconducting SWNTs (s-SWNTs). Here we introduce a simple, scalable, large-area scheme that achieves this goal through microwave irradiation of aligned SWNTs grown on quartz substrates. Microstrip dipole antennas of low work-function metals concentrate the microwaves and selectively couple them into only the metallic SWNTs (m-SWNTs). The result allows for complete removal of all m-SWNTs, as revealed through systematic experimental and computational studies of the process. As one demonstration of the effectiveness, implementing this method on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  9. Ultrasensitive Detection of Single-Walled Carbon Nanotubes Using Surface Plasmon Resonance.

    PubMed

    Jang, Daeho; Na, Wonhwi; Kang, Minwook; Kim, Namjoon; Shin, Sehyun

    2016-01-05

    Because single-walled carbon nanotubes (SWNTs) are known to be a potentially dangerous material, inducing cancers and other diseases, any possible leakage of SWNTs through an aquatic medium such as drinking water will result in a major public threat. To solve this problem, for the present study, a highly sensitive, quantitative detection method of SWNTs in an aqueous solution was developed using surface plasmon resonance (SPR) spectroscopy. For a highly sensitive and specific detection, a strong affinity conjugation with biotin-streptavidin was adopted on an SPR sensing mechanism. During the pretreatment process, the SWNT surface was functionalized and hydrophilized using a thymine-chain based biotinylated single-strand DNA linker (B-ssDNA) and bovine serum albumin (BSA). The pretreated SWNTs were captured on a sensing film, the surface of which was immobilized with streptavidin on biotinylated gold film. The captured SWNTs were measured in real-time using SPR spectroscopy. Specific binding with SWNTs was verified through several validation experiments. The present method using an SPR sensor is capable of detecting SWNTs of as low as 100 fg/mL, which is the lowest level reported thus far for carbon-nanotube detection. In addition, the SPR sensor showed a linear characteristic within the range of 100 pg/mL to 200 ng/mL. These findings imply that the present SPR sensing method can detect an extremely low level of SWNTs in an aquatic environment with high sensitivity and high specificity, and thus any potential leakage of SWNTs into an aquatic environment can be precisely monitored within a couple of hours.

  10. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation.

    PubMed

    Huang, Houjin; Maruyama, Ryuichiro; Noda, Kazuhiro; Kajiura, Hisashi; Kadono, Koji

    2006-04-13

    Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.

  11. Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure.

    PubMed

    Yang, Feng; Wang, Xiao; Li, Meihui; Liu, Xiyan; Zhao, Xiulan; Zhang, Daqi; Zhang, Yan; Yang, Juan; Li, Yan

    2016-04-19

    Single-walled carbon nanotubes (SWNTs) have shown great potential in various applications attributed to their unique structure-dependent properties. Therefore, the controlled preparation of chemically and structurally pristine SWNTs is a crucial issue for their advanced applications (e.g., nanoelectronics) and has been a great challenge for two decades. Epitaxial growth from well-defined seeds has been shown to be a promising strategy to control the structure of SWNTs. Segments of carbon nanotubes, including short pipes from cutting of preformed nanotubes and caps from opening of fullerenes or cyclodehydrogenation of polycyclic hydrocarbon precursors, have been used as the seeds to grow SWNTs. Single-chirality SWNTs were obtained with both presorted chirality-pure SWNT segments and end caps obtained from polycyclic hydrocarbon molecules with designed structure. The main challenges of nanocarbon-segment-seeded processes are the stability of the seeds, yield, and efficiency. Catalyst-mediated SWNT growth is believed to be more efficient. The composition and morphology of the catalyst nanoparticles have been widely reported to affect the chirality distribution of SWNTs. However, chirality-specific SWNT growth is hard to achieve by alternating catalysts. The specificity of enzyme-catalyzed reactions brings us an awareness of the essentiality of a unique catalyst structure for the chirality-selective growth of SWNTs. Only catalysts with the desired atomic arrangements in their crystal planes can act as structural templates for chirality-specific growth of SWNTs. We have developed a new family of catalysts, tungsten-based intermetallic compounds, which have high melting points and very special crystal structures, to facilitate the growth of SWNTs with designed chirality. By the use of W6Co7 catalysts, (12,6) SWNTs were directly grown with purity higher than 92%. Both high-resolution transmission electron microscopy measurements and density functional theory simulations

  12. Seed crystals and catalyzed epitaxy of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Yuhuang

    This thesis demonstrates the continued growth of single-walled carbon nanotubes (SWNTs) from seeded SWNTs in a way analogous to epitaxy or cloning; that is, the SWNTs grow as a seamless extension to the existing seeded SWNTs and have the same diameter and chirality as those of the SWNT seeds. The experiments were carried out in three key steps, including: (1) preparing a macroscopic array of open-ended SWNTs; (2) reductively docking transition metals as a catalyst to the nanometer-sized open ends; and then (3) heating the whole up to 700--850°C in the presence of a carbon feedstock such as ethanol or ethylene. The resulting SWNT ropes inherit the diameters and chirality from the seeded SWNTs, as indicated by the closely matched frequencies of Raman radial breathing modes before and after the growth. As a control, only sparse nanotubes grew from closed-ended SWNTs, ruling out spontaneous nucleation as a dominating mechanism in our experiments. This experiment proved for the first time the growth of SWNTs can be separated from the nucleation step. The ability to separate the typically inefficient nucleation step from the growth of SWNTs and to restart the growth opens the possibility of amplifying SWNTs with only the desired (n, m). The success in the continued growth was enabled with the creation of macroscopic arrays of open-ended SWNTs from a neat SWNT fiber. A variety of techniques including cryo-microtoming and surface etching chemistry have been developed to produce a macroscopic (˜1200mum2), aligned, and clean---largely free of amorphous carbon, oxides, and metal residuals---SWNT substrate with open-ended SWNTs aligned along the fiber axis. Alternatively, the fiber was milled perpendicular to the fiber axis with a gallium focused ion beam to produce a planar, free-standing, ultra-thin, "bed-of-nails" SWNT membrane---a single layer of parallel SWNTs densely packed and aligned along the normal of the membrane.

  13. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics.

    PubMed

    Wu, Chung Chiang; Liu, Chang Hua; Zhong, Zhaohui

    2010-03-10

    We report a one-step direct transfer technique for the fabrication of functional nanoelectronic devices using pristine single-walled carbon nanotubes (SWNTs). Suspended SWNTs grown by the chemical vapor deposition (CVD) method are aligned and directly transferred onto prepatterned device electrodes at ambient temperature. Using this technique, we successfully fabricated SWNT electromechanical resonators with gate-tunable resonance frequencies. A fully suspended SWNT p-n diode has also been demonstrated with the diode ideality factor equal to 1. Our method eliminates the organic residues on SWNTs resulting from conventional lithography and solution processing. The results open up opportunities for the fundamental study of electron transport physics in ultraclean SWNTs and for room temperature fabrication of novel functional devices based on pristine SWNTs.

  14. Complications pertaining to the detection and characterization of individual and embedded single walled carbon nanotubes by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Orbaek, Alvin W.; Barron, Andrew R.

    2013-03-01

    Comparison of AFM and SEM images of single walled carbon nanotubes (SWNTs) grown within a dielectric matrix reveal subterranean nanotubes that are present within the matrix, and as such can be charge screened by the dielectric. Under adequate imaging conditions for the SWNT/silica sample the intensity of isolated nanotubes is found to be inversely proportional to the instrument dwell time (i.e., shorter dwell times were found to make SWNT intensities brighter). The threshold dwell time required to enable isolated tubes to be visible was found to be 10 μs moreover, the degree change in intensity was found to be nanotube specific, i.e., different SWNTs respond in a different manner at different dwell times. The results indicate that care should be taken when attempting to quantify number density and length distributions of SWNTs on or within a dielectric matrix.Comparison of AFM and SEM images of single walled carbon nanotubes (SWNTs) grown within a dielectric matrix reveal subterranean nanotubes that are present within the matrix, and as such can be charge screened by the dielectric. Under adequate imaging conditions for the SWNT/silica sample the intensity of isolated nanotubes is found to be inversely proportional to the instrument dwell time (i.e., shorter dwell times were found to make SWNT intensities brighter). The threshold dwell time required to enable isolated tubes to be visible was found to be 10 μs moreover, the degree change in intensity was found to be nanotube specific, i.e., different SWNTs respond in a different manner at different dwell times. The results indicate that care should be taken when attempting to quantify number density and length distributions of SWNTs on or within a dielectric matrix. Electronic supplementary information (ESI) available: Plots of SEM for cross over points, raw SEM images used for Fig. 5, and Fig. 6, SEM image of scattering centre, and SEM images with various scan directions at 10 μs dwell time. See DOI: 10.1039/c3

  15. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    EPA Science Inventory

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  16. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    PubMed

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    PubMed

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  18. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

    NASA Astrophysics Data System (ADS)

    Singha, Somdutta; Ghosh, Swapankumar

    2017-09-01

    Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

  19. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  20. Progress Toward Sequestering Carbon Nanotubes in PmPV

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2009-01-01

    Sequestration of single-walled carbon nanotubes (SWNTs) in molecules of poly(m-phenylenevinylene-co-2,5-diocty-loxy-p-phenylenevinylene) [PmPV] is a candidate means of promoting dissolution of single-walled carbon nanotubes (SWNTs) into epoxies for making strong, lightweight epoxy-matrix/carbon-fiber composite materials. Bare SWNTs cannot be incorporated because they are not soluble in epoxies. In the present approach, one exploits the tendency of PmPV molecules to wrap themselves around SWNTs without chemically bonding to them.

  1. Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

    NASA Technical Reports Server (NTRS)

    Li, Jing; Wignarajah, Kanapathipillai; Cinke, Marty; Partridge, Harry; Fisher, John

    2004-01-01

    Carbon nanotubes (CNTs) possess extraordinary properties such as high surface area, ordered chemical structure that allows functionalization, larger pore volume, and very narrow pore size distribution that have attracted considerable research attention from around the world since their discovery in 1991. The development and characterization of an original and innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches due to the ability to direct the selective uptake of gaseous species based on their controlled pore size, increased adsorptive capacity due to their increased surface area and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. We present our recent investigation of using SWNTs as catalytic supporting materials to impregnate metals, such as rhodium (Rh), palladium (Pd) and other catalysts. A protocol has been developed to oxidize the SWNTs first and then impregnate the Rh in aqueous rhodium chloride solution, according to unique surface properties of SWNTs. The Rh has been successfully impregnated in SWNTs. The Rh-SWNTs have been characterized by various techniques, such as TGA, XPS, TEM, and FTIR. The project is funded by a NASA Research Announcement Grant to find applications of single walled nanocarbons in eliminating toxic gas Contaminant in life support system. This knowledge will be utilized in the development of a prototype SWNT KO, gas purification system that would represent a significant step in the development of high efficiency systems capable of selectively removing specific gaseous for use in regenerative life support system for human exploration missions.

  2. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    2018-05-01

    Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.

  4. Air-tolerant Fabrication and Enhanced Thermoelectric Performance of n-Type Single-walled Carbon Nanotubes Encapsulating 1,1'-Bis(diphenylphosphino)ferrocene.

    PubMed

    Nonoguchi, Yoshiyuki; Iihara, Yu; Ohashi, Kenji; Murayama, Tomoko; Kawai, Tsuyoshi

    2016-09-06

    The thermally-triggered n-type doping of single-walled carbon nanotubes is demonstrated using 1,1'-bis(diphenylphosphino)ferrocene, a novel n-type dopant. Through a simple thermal vacuum process, the phosphine compounds are moderately encapsulated inside single-walled carbon nanotubes. The encapsulation into SWNTs is carefully characterized using Raman/X-ray spectroscopy and transmission electron microscopy. This easy-to-handle doping with air-stable precursors for n-type SWNTs enables the large-scale fabrication of thermoelectric materials showing an excellent power factor exceeding approximately 240 μW mK(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Wei; Cao, Bing-Yang

    2013-12-01

    The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

  6. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts.

    PubMed

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-21

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.

  7. Preparation and Properties of Nanocomposites Prepared From Shortened, Functionalized Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Delozier, D. M.; Watson, K. A.; Connell, J. W.; Yu, Aiping; Haddon, R. C.; Bekyarova, E.

    2006-01-01

    As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.

  8. Selective positioning and integration of individual single-walled carbon nanotubes.

    PubMed

    Jiao, Liying; Xian, Xiaojun; Wu, Zhongyun; Zhang, Jin; Liu, Zhongfan

    2009-01-01

    We present a general selective positioning and integration technique for fabricating single-walled carbon nanotube (SWNT) circuits with preselected individual SWNTs as building blocks by utilizing poly(methyl methacrylate) (PMMA) thin film as a macroscopically handlable mediator. The transparency and marker-replicating capability of PMMA mediator allow the selective placement of chirality-specific nanotubes onto predesigned patterned surfaces with a resolution of ca. 1 mum. This technique is compatible with multiple operations and p-n conversion by chemical doping, which enables the construction of complex and logic circuits. As demonstrations of building SWNTs circuits, we fabricated a field effect inverter, a 2 x 2 all-SWNT crossbar field effect transistor (FET), and flexible FETs on plastic with this technique. This selective positioning approach can also be extended to construct purpose-directed architecture with various nanoscale building blocks.

  9. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice

    NASA Astrophysics Data System (ADS)

    Xue, Xue; Yang, Jing-Yu; He, Yi; Wang, Li-Rong; Liu, Ping; Yu, Li-Sha; Bi, Guo-Hua; Zhu, Ming-Ming; Liu, Yue-Yang; Xiang, Rong-Wu; Yang, Xiao-Ting; Fan, Xin-Yu; Wang, Xiao-Min; Qi, Jia; Zhang, Hong-Jie; Wei, Tuo; Cui, Wei; Ge, Guang-Lu; Xi, Zheng-Xiong; Wu, Chun-Fu; Liang, Xing-Jie

    2016-07-01

    Methamphetamine (METH) abuse is a serious social and health problem worldwide. At present, there are no effective medications to treat METH addiction. Here, we report that aggregated single-walled carbon nanotubes (aSWNTs) significantly inhibited METH self-administration, METH-induced conditioned place preference and METH- or cue-induced relapse to drug-seeking behaviour in mice. The use of aSWNTs alone did not significantly alter the mesolimbic dopamine system, whereas pretreatment with aSWNTs attenuated METH-induced increases in extracellular dopamine in the ventral striatum. Electrochemical assays suggest that aSWNTs facilitated dopamine oxidation. In addition, aSWNTs attenuated METH-induced increases in tyrosine hydroxylase or synaptic protein expression. These findings suggest that aSWNTs may have therapeutic effects for treatment of METH addiction by oxidation of METH-enhanced extracellular dopamine in the striatum.

  10. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  11. Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes

    PubMed Central

    Bhirde, Ashwin A; Sousa, Alioscka A; Patel, Vyomesh; Azari, Afrouz A; Gutkind, J Silvio; Leapman, Richard D; Rusling, James F

    2009-01-01

    Aims To image the distribution of drug molecules attached to single-wall carbon nanotubes (SWNTs). Materials & methods Herein we report the use of scanning transmission electron microscopy (STEM) for atomic scale visualization and quantitation of single platinum-based drug molecules attached to SWNTs designed for targeted drug delivery. Fourier transform infrared spectroscopy and energy-dispersive x-ray spectroscopy were used for characterization of the SWNT drug conjugates. Results Z-contrast STEM imaging enabled visualization of the first-line anticancer drug cisplatin on the nanotubes at single molecule level. The identity and presence of cisplatin on the nanotubes was confirmed using energy-dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. STEM tomography was also used to provide additional insights concerning the nanotube conjugates. Finally, our observations provide a rationale for exploring the use of SWNT bioconjugates to selectively target and kill squamous cancer cells. Conclusion Z-contrast STEM imaging provides a means for direct visualization of heavy metal containing molecules (i.e., cisplatin) attached to surfaces of carbon SWNTs along with distribution and quantitation. PMID:19839812

  12. Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis

    PubMed Central

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs. PMID:29131586

  13. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.

    PubMed

    Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro

    2014-11-11

    The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1(st) sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2(nd) sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs.

  14. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    PubMed

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  15. Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Temporal evolution of N2 adsorption (77 K) properties of as-produced and purified single-walled nanotubes (SWNTs) samples is described here. The N2 adsorption isotherms are used to characterize the samples' surface areas and porosities. The as-produced samples demonstrate a temporal increase in surface area and pore volumes for up to 16 months. The purified samples, however, reached their stable values of surface area and pore volumes within four to seven months. N2 adsorption capacity of the purified SWNTs also increased when the fresh samples were subjected to thermal pre-processing, with diminishing changes in adsorption capacity with increased age. These observations indicate that the freshly prepared SWNTs, both as-produced and purified, were in an unstable state with their porosity changing with increasing sample age and thermal treatments. It is hypothesized that SWNTs undergo slow but progressive changes in their surface chemistry which causes their N2 adsorption properties to change over several months. ?? 2004 Elsevier Ltd. All rights reserved.

  16. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that includemore » thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.« less

  17. Biomolecular Doping of Single-Walled Carbon Nanotubes by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Rojas, Enrique; Paulson, Scott; Stern, Mike; Staii, Cristian; Dratman, Mary; Johnson, Alan

    2004-03-01

    Electron doping of semiconducting single-walled carbon nanotubes (SWNTs) by the thyroid hormone triiodothyronine (T3) is observed. T3 is applied locally, in solution, to SWNT field effect transistors (FETs) and binds along the length of the nanotube. T3 acts as an electron donor, shifting the I-V gate characteristics towards negative values of gate voltage. Shifts in the characteristics are measured as a function of the concentration of the solution. The effect is nearly reversible by rinsing the FETs with the solvent. Several days after application of T3, with no solvent rinsing, the gate characteristics are also nearly reversed. Experiments with a similar molecule for which the phenol ring is brominated as well as experiments with the de-iodinated molecule (T0) are performed to inform the effect of the iodine. The interaction of T3 with SWNTs may suggest a electronic interaction of T3 with other one-dimensional systems such as DNA.

  18. Improved cellular uptake of functionalized single-walled carbon nanotubes.

    PubMed

    Antonelli, A; Serafini, S; Menotta, M; Sfara, C; Pierigé, F; Giorgi, L; Ambrosi, G; Rossi, L; Magnani, M

    2010-10-22

    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 ± 30 nmol mg(-1) of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C(18)H(37)OH; 816 nmol mg(-1) of SWNTs). Subsequently, SWNTs-COOC(18)H(37) derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  19. Dispersion of single-wall carbon nanotubes with supramolecular Congo red - properties of the complexes and mechanism of the interaction.

    PubMed

    Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek

    2017-01-01

    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.

  20. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes.

    PubMed

    Ünlü, Ayhan; Meran, Mehdi; Dinc, Bircan; Karatepe, Nilgün; Bektaş, Muhammet; Güner, F Seniha

    2018-05-24

    Carbon nanotube (CNTs) is a new alternative for efficient drug delivery and it has a great potential to change drug delivery system profile in pharmaceutical industry. One of the important advantage of CNTs is their needle-like, cylindrical shape. This shape provides a high surface area for multiple connections and adsorption onto for millions of therapeutic molecules. CNTs can be internalized by cells via endocytosis, passive diffusion and phagocytosis and release the drug with different effects like pH and temperature. The acidic nature of cancer cells and the susceptibility of CNTs to release the drug in the acidic environment have made it a promising area of research in cancer drug delivery. In this research, we investigated cell viability, cytotoxicity and drug delivery in breast cancer cell line by designing non-covalent single walled carbon nanotubes (SWNT)-doxorubicin (DOX) supramolecular complex that can be developed for cancer therapy. Applied high concentrations of DOX loaded SWNTs changed the actin structure of the cells and prevented the proliferation of the cells. It was showed that doxorubicin loaded SWNTs were more effective than free doxorubicin at relatively small concentrations. Once we applied same procedure for short and long (short: 1-1.3 µm; long: 2.5-4 µm) SWNTs and compared the results, more disrupted cell structure and reduction in cell proliferation were observed for long CNTs. DOX is bounded more to nanotubes in basic medium, less bound in acidic environment. Cancer cells were also examined for concentration at which they were effective by applying DOX and it was seen that 3.68 µM doxorubicin kills more than 55% of the cells.

  1. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.

    PubMed

    Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun

    2016-03-01

    We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si.

  2. Nanoscale thermocapillarity enabled purification for horizontally aligned arrays of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Sung Hun; Dunham, Simon; Xie, Xu; Rogers, John A.

    2015-09-01

    Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermos-capillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. Especially for the purpose of selective joule heating over only metallic nanotubes, two representative platforms are proposed and confirmed. One is achieved by selective joule heating associated with thin film transistors with partial gate structure. The other is based on a simple, scalable, large-area scheme through microwave irradiation by using micro-strip dipole antennas of low work-function metals. In this study, based on purified semiconducting SWNTs, we demonstrated field effect transistors with mobility (> 1,000 cm2/Vsec) and on/off switching ratio (~10,000) with current outputs in the milliamp range. Furthermore, as one demonstration of the effectiveness over large area-scalability and simplicity, implementing the micro-wave based purification, on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  3. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge

    NASA Astrophysics Data System (ADS)

    Sugai, Toshiki; Omote, Hideki; Bandow, Shunji; Tanaka, Nobuo; Shinohara, Hisanori

    2000-04-01

    Fullerenes and single-wall carbon nanotubes (SWNTs) have been produced for the first time by the high-temperature pulsed arc-discharge technique, which has developed in this laboratory. Fullerenes are identified quantitatively by high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal a significant amount of production of bundles of SWNTs in soot. The pulse arc production of fullerenes and SWNTs favors the high-temperature (⩾1000 °C), long pulses (⩾1 ms) and a heavy rare gas such as Ar or Kr as a buffer gas. We have found that fullerenes and SWNTs have complementary relationships in their early stage of production. The details of the pulsed arc discharge have been obtained by observing the transition from the pulsed arc discharge to the steady arc discharge while increasing the pulse width.

  4. Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation

    NASA Astrophysics Data System (ADS)

    Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo

    2009-03-01

    We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.

  5. Chirality Characterization of Dispersed Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Williams, Phillip A.; Mayweather, Candis D.; Wincheski, Buzz; Park, Cheol; Namkung, Juock S.

    2005-01-01

    Raman scattering and optical absorption spectroscopy are used for the chirality characterization of HiPco single wall carbon nanotubes (SWNTs) dispersed in aqueous solution with the surfactant sodium dodecylbenzene sulfonate. Radial breathing mode (RBM) Raman peaks for semiconducting and metallic SWNTs are identified by directly comparing the Raman spectra with the Kataura plot. The SWNT diameters are calculated from these resonant peak positions. Next, a list of (n, m) pairs, yielding the SWNT diameters within a few percent of that obtained from each resonant peak position, is established. The interband transition energies for the list of SWNT (n, m) pairs are calculated based on the tight binding energy expression for each list of the (n, m) pairs, and the pairs yielding the closest values to the corresponding experimental optical absorption peaks are selected. The results reveal that (1, 11), (4, 11), and (0, 11) as the most probable chiralities of the semiconducting nanotubes. The results also reveal that (4, 16), (6, 12) and (8, 8) are the most probable chiralities for the metallic nanotubes. Directly relating the Raman scattering data to the optical absorption spectra, the present method is considered the simplest technique currently available. Another advantage of this technique is the use of the E(sup 8)(sub 11) peaks in the optical absorption spectrum in the analysis to enhance the accuracy in the results.

  6. Pore structure of raw and purified HiPco single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.

    2002-10-01

    Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.

  7. Separation of Single-Walled Carbon Nanotubes with DEP-FFF

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Peng, Haiqing; Alvarez, Noe; Mendes, Manuel; Pasquali, Matteo

    2011-01-01

    A process using a modified dielectrophoresis device separates single-walled carbon nanotubes (SWNTs) according to their polarizability in electric fields. This depends on the size and dielectric constant of individual nanotubes and easily separates metallic from semiconducting nanotubes. Separation by length has also been demonstrated. Partial separation (enrichment) according to bandgap (which is linked to polarizability) has also been shown and can be improved to full separation of individual types of semiconducting SWNTs with better control over operational parameters and the length of SWNT starting material. This process and device can be scaled affordably to generate useful amounts of semiconducting SWNTs for electronic device development and production. In this study, a flow injection dielectrophoresis technique was used with a modified dielectrophoresis device. The length, width, and height of the modified chamber were 28, 2.5, and 0.025 cm, respectively. On the bottom of the chamber, there are two arrays of 50-m-wide, 2-m-thick gold electrodes, which are connected to an AC voltage generator and are alternately arranged so that every electrode is adjacent to two electrodes of the opposite polar. There is an additional plate electrode on the top of the chamber that is negatively biased. During the experiment, a syringe pump constantly pumps in the mobile phase, 1-percent sodium dodecylbenzene sulfonate (SDBS) solution, into the chamber. The frequency and voltage are set to 1 MHz and 10 V peak-to-peak, respectively. About 150 micro-L of SWNTs in 1- percent SDBS decanted solution are injected to the mobile phase through a septum near the entrance of the chamber. The flow rate of the mobile phase is set to 0.02 cu cm/min. The injected SWNTs sample flows through the chamber before it is lead into a fluorescence flow-through cell and collected for further analysis. The flow-through cell has three windows, thus allowing the fluorometer to collect fluorescence

  8. Bulk purification and deposition methods for selective enrichment in high aspect ratio single-walled carbon nanotubes.

    PubMed

    Bhatt, Nidhi P; Vichchulada, Pornnipa; Lay, Marcus D

    2012-06-06

    Aqueous batch processing methods for the concurrent purification of single-walled carbon nanotube (SWNT) soot and enrichment in high aspect ratio nanotubes are essential to their use in a wide variety of electronic, structural, and mechanical applications. This manuscript presents a new route to the bulk purification and enrichment of unbundled SWNTs having average lengths in excess of 2 μm. Iterative centrifugation cycles at low centripetal force not only removed amorphous C and catalyst nanoparticles but also allowed the enhanced buoyancy of surfactant encapsulated, unbundled, high aspect ratio SWNTs to be used to isolate them in the supernatant. UV-vis-NIR and Raman spectroscopy were used to verify the removal of residual impurities from as-produced (AP-grade) arc discharge soot and the simultaneous enrichment in unbundled, undamaged, high aspect ratio SWNTs. The laminar flow deposition process (LFD) used to form two-dimensional networks of SWNTs prevented bundle formation during network growth. Additionally, it further enhanced the quality of deposits by taking advantage of the inverse relationship between the translational diffusion coefficient and length for suspended nanoparticles. This resulted in preferential deposition of pristine, unbundled, high aspect ratio SWNTs over residual impurities, as observed by Raman spectroscopy and atomic force microscopy (AFM).

  9. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.

    PubMed

    Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A

    2005-11-01

    A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.

  10. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs

  11. Performance Enhancement of 3-Mercaptopropionic Acid-Capped CdSe Quantum-Dot Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes.

    PubMed

    Yang, Jonghee; Park, Taehee; Lee, Jongtaek; Lee, Junyoung; Shin, Hokyeong; Yi, Whikun

    2016-03-01

    We fabricated a series of linker-assisted quantum-dot-sensitized solar cells based on the ex situ self-assembly of CdSe quantum dots (QDs) onto TiO2 electrode using sulfide/polysulfide (S(2-)/Sn(2-)) as an electrolyte and Au cathode. Our cell were combined with single-walled carbon nanotubes (SWNTs) by two techniques; One was mixing SWNTs with TiO2 electrode and the other was spraying SWNTs onto Au electrode. Absorption spectra were used to confirm the adsorption of QDs onto TiO2 electrode. Cell performance was measured on samples containing and not-containing SWNTs. Samples mixing SWNTs with TiO2 showed higher cell efficiency, on the while sample spraying SWNTs onto Au electrode showed lower efficiency compared with pristine sample (not-containing SWNTs). Electrochemical impedance spectroscopy analysis suggested that SWNTs can act as either barriers or excellent carrier transfers according their position and mixing method.

  12. First-principles calculations on electronic properties of single-walled carbon nanotubes for H{sub 2}S gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliyati, Dewi, E-mail: dmuliyati@unj.ac.id; Dept. of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta; Wella, Sasfan A.

    2015-09-30

    In this research, we performed first-principles calculations by means of density functional theory (DFT) to investigate the interaction of H{sub 2}S gas on the surface of single-walled carbon nanotubes (SWNTs). In order to understand the effect of chirality to the electronic structure of SWNTs/H{sub 2}S, the pristine SWNTs was varied to become SWNTs (5,0), (6,0), (7,0), (8,0), (9,0), and (10,0). From the calculation we found that after H{sub 2}S adsorbed on surface of SWNTs, the electronic properties of system changes from semiconductor to metal but not vice versa. It was only SWNTs (5,0), (7,0), (8,0), and (10,0) occuring the changingmore » on its electronic properties behavior, others were remain similar with its initial behavior. In the degassing process, metal return to semiconductor behavior, which is an indication that SWNTs is a good gas sensors, responsive and reversible.« less

  13. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  14. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  15. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.

    2006-01-01

    Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.

  16. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nedil, M.; Habib, M. A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F.

    2013-08-01

    This letter describes the fabrication and characterization of a fluidic patch antenna operating at the S-band frequency (4 GHz). The antenna prototype is composed of a nanocomposite material made by a liquid metal alloy (eutectic gallium indium) blended with single-wall carbon-nanotube (SWNTs). The nanocomposite is then enclosed in a polymeric substrate by employing the UV-assisted direct-writing technology. The fluidic antennas specimens feature excellent performances, in perfect agreement with simulations, showing an increase in the electrical conductivity and reflection coefficient with respect to the SWNTs concentration. The effect of the SWNTs on the long-term stability of antenna's mechanical properties is also demonstrated.

  17. Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles

    NASA Astrophysics Data System (ADS)

    Kondo, Daiyu; Sato, Shintaro; Awano, Yuji

    2006-05-01

    Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.

  18. Incorporation of single-walled carbon nanotubes into ferrocene-modified linear polyethylenimine redox polymer films.

    PubMed

    Tran, Tu O; Lammert, Emily G; Chen, Jie; Merchant, Stephen A; Brunski, Daniel B; Keay, Joel C; Johnson, Matthew B; Glatzhofer, Daniel T; Schmidtke, David W

    2011-05-17

    In this study, we describe the effects of incorporating single-walled carbon nanotubes (SWNTs) into redox polymer-enzyme hydrogels. The hydrogels were constructed by combining the enzyme glucose oxidase with a redox polymer (Fc-C(6)-LPEI) in which ferrocene was attached to linear poly(ethylenimine) by a six-carbon spacer. Incorporation of SWNTs into these films changed their morphology and resulted in a significant increase in the enzymatic response at saturating glucose concentrations (3 mA/cm(2)) as compared to films without SWNTs (0.6 mA/cm(2)). Likewise, the sensitivity at 5 mM glucose was significantly increased in the presence of SWNTs (74 μA/cm(2)·mM) as compared to control films (26 μA/cm(2)·mM). We demonstrate that the increase in the electrochemical and enzymatic response of these films depends on the amount of SWNTs incorporated and the method of SWNT incorporation. Furthermore, we report that the presence of SWNTs in thick films allows for more of the ferrocene redox centers to become accessible. The high current densities of the hydrogels should allow for the construction of miniature biosensors and enzymatic biofuel cells.

  19. Electrical transport properties of small diameter single-walled carbon nanotubes aligned on ST-cut quartz substrates

    PubMed Central

    2014-01-01

    A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications. PMID:25170326

  20. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway.

    PubMed

    Qin, Yue; Li, Suning; Zhao, Gan; Fu, Xuanhao; Xie, Xueping; Huang, Yiyi; Cheng, Xiaojing; Wei, Jinbin; Liu, Huagang; Lai, Zefeng

    2017-01-01

    Numerous studies have demonstrated promising application of single-walled carbon nanotubes (SWNTs) in drug delivery, diagnosis, and targeted therapy. However, the adverse health effects resulting from intravenous injection of SWNTs are not completely understood. Studies have shown that levels of "pristine" or carboxylated carbon nanotubes are very high in mouse lungs after intravenous injection. We hypothesized that long-term and repeated intravenous administration of carboxylated SWNTs (c-SWNTs) can result in persistent accumulation and induce histopathologic changes in rat lungs. Here, c-SWNTs were administered repeatedly to rats via tail-vein injection for 90 days. Long-term intravenous injection of c-SWNTs caused sustained embolization in lung capillaries and granuloma formation. It also induced a persistent inflammatory response that was regulated by the nuclear factor-kappa B signaling pathway, and which resulted in pulmonary fibrogenesis. c-SWNTs trapped within lung capillaries traversed capillary walls and injured alveolar epithelial cells, thereby stimulating production of pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and pro-fibrotic growth factors (transforming growth factor-beta 1). Protein levels of type-I and type-III collagens, matrix metalloproteinase-2, and the tissue inhibitor of metalloproteinase-2 were upregulated after intravenous exposure to c-SWNTs as determined by immunohistochemical assays and Western blotting, which suggested collagen deposition and remodeling of the extracellular matrix. These data suggest that chronic and cumulative toxicity of nanomaterials to organs with abundant capillaries should be assessed if such nanomaterials are applied via intravenous administration.

  1. Impact of helium pressure in arc plasma synthesis on crystallinity of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ando, Atsushi; Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hiramatsu, Mineo; Ishikawa, Kenji; Kondo, Hiroki; Sekine, Makoto; Suzuki, Tomoko; Inoue, Sakae; Ando, Yoshinori; Hori, Masaru

    2018-06-01

    Single-walled carbon nanotubes (SWNTs) were synthesized with a high growth rate by an arc plasma method employing the electrodes made from a Ni–Y mixture catalyst. In a previous study, it was reported that the monitoring of high-crystallinity SWNT growth enabled the evaluation of the results of the optical emission spectroscopy (OES) of C2, Ni, and Y. Here, the impact of helium pressure of arc plasma on the high crystallinity of SWNTs was determined by considering the high intensity ratios of catalytic metals over C2 emissions at low helium pressures in the arc plasma.

  2. Polarized excitons and optical activity in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  3. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Mei, Xuesong; Wang, Wenjun; Yang, Xinju; Xie, Hui; Yang, Lijun; Wang, Yang

    2017-03-01

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO2 substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  4. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.

    PubMed

    Zheng, Xiaoli; Xu, Qun

    2010-07-29

    In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.

  5. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    PubMed

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  6. Influence of Oxygen ions irradiation on Polyaniline/Single Walled Carbon Nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Gaikwad, Sumedh D.; Bodkhe, Gajanan A.; Asokan, K.; Yasuzawa, Mikito; Koinkar, Pankaj; Shirsat, Mahendara D.

    2017-01-01

    Influence of Oxygen ions (100 MeV) irradiation on Polyaniline (PANI)/Single Walled Carbon Nanotubes (SWNTs) nanocomposite was studied in the present investigation. PANI/SWNTs nanocomposite was synthesized by electrochemical Cyclic Voltammetry technique. Nanocomposite was exposed under SHI irradiation of Oxygen (100 MeV) ions for three different fluences such as 1×1010 ions/cm2, 5×1010 ions/cm2 and 1×1011 ions/cm2. The SHI irradiated PANI/SWNTs nanocomposite was investigated by using morphological (AFM), structural (XRD) and spectroscopy (FTIR) characterization. AFM study exhibits effects of SHI irradiation on morphology of the nanocomposite and root mean square roughness of the nanocomposite is observed to be decreased as fluence was increased. The FTIR absorption spectrum exhibits formation of new functional sites with the increase in intensity of absorption peaks, due to SHI irradiation. X-Ray Diffraction studies show a gradual decrease in the crystalline nature of the nanocomposite upon irradiation.

  7. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells.

    PubMed

    Zheng, Lixia; Wu, Shao; Tan, Li; Tan, Huo; Yu, Baodan

    2016-09-01

    Delivery of amphiphobic drugs (insoluble in both water and oil) has been a great challenge in drug delivery. SNX-2112, a novel inhibitor of Hsp90, is a promising drug candidate for treating various types of cancers; however, the insolubility greatly limits its clinical application. This study aimed to build a new type of drug delivery system using single-walled carbon nanotubes (SWNTs) for controllable release of SNX-2112; chitosan (CHI) was non-covalently added to SWNTs to improve their biocompatibility. SWNTs-CHI demonstrated high drug-loading capability; the release of SNX-2112 was pH triggered and time related. The intracellular reactive oxygen species of SWNTs-CHI increased, compared with that of SWNTs, leading to higher mitogen-activated protein kinase and cell apoptosis. The results of western-blotting, lactate dehydrogenase (LDH) release assay, and cell viability assay analyses indicated that apoptosis-related proteins were abundantly expressed in K562 cells and that the drug delivery system significantly inhibited K562 cells. Thus, SWNT-CHI/SNX-2112 shows great potential as a drug delivery system for cancer therapy. © The Author(s) 2016.

  8. Adsorption of small hydrocarbon radicals on single walled carbon nanotubes of finite length

    NASA Astrophysics Data System (ADS)

    Wu, Jianhua; Hagelberg, Frank

    2010-04-01

    Adsorption of the hydrocarbon radicals CH, CH2 , and CH3 on finite single walled carbon nanotubes (SWNTs) of the (10,0) type is investigated by density-functional theory (DFT). Two classes of finite SWNTs are considered: truncated SWNTs, where admission is made for geometric reconstruction of the tube ends, and those capped with fullerene hemispheres. Both prototypes are characterized by ground states with nonvanishing magnetic moments, where antiferromagnetic coordination between nds is preferred over the ferromagnetic alternative. The focus of this study is on the influence exerted by the adsorbates on the magnetic structure of the system as a whole, as well as the relative impact of both, confinement due to the finite lengths of the considered SWNTs and their magnetic structure on the preferred positions of hydrocarbon adsorbates. In particular, it is shown that the confinement outweighs the magnetic effect in defining the adsorption energy variations among nonequivalent sites of attachment. The SWNT spin-density distributions turn out to affect the nature of the bonding between finite SWNT substrates and hydrocarbon radical adsorbates.

  9. Direct comparison of single- and multi-walled carbon nanotubes in fluorescence quenching phenomenon

    NASA Astrophysics Data System (ADS)

    Oura, Shusuke; Umemura, Kazuo

    2018-03-01

    Here, we report the fluorescence quenching ability of single-stranded DNA (ssDNA)-wrapped single- and multi-walled carbon nanotubes (ssDNA-SWNTs and ssDNA-MWNTs, respectively) using fluorescein dye-labeled ssDNA (Fluor-ssDNA). To compare the quenching abilities of SWNTs and MWNTs, we measured the quenching ratios of fluorescence emission from fluorescein when Fluor-ssDNA reacted with the hybrids of 30-mers of thymine (T30) and SWNTs or MWNTs (T30-SWNTs and T30-MWNTs, respectively). The fluorescence quenching ratios of Fluor-T30 in SWNT and MWNT samples were 28 ± 3.1 and 36 ± 2.0% relative to free fluorescein at the same concentration, respectively. On the other hand, those of Fluor-A30 with SWNT and MWNT hybrids were 11 ± 1.9 and 32 ± 1.9%, respectively. Our results suggest that although the fluorescence quenching ability of MWNT was greater than that of SWNT, SWNT quenching ratios were more sensitive to the base sequences of Fluor-ssDNA.

  10. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery.

    PubMed

    Li, Zixian; de Barros, Andre Luis Branco; Soares, Daniel Cristian Ferreira; Moss, Sara Nicole; Alisaraie, Laleh

    2017-05-30

    The unique properties of single-walled carbon nanotubes (SWNTs) enable them to play important roles in many fields. One of their functional roles is to transport cargo into cell. SWNTs are able to traverse amphipathic cell membranes due to their large surface area, flexible interactions with cargo, customizable dimensions, and surface chemistry. The cargoes delivered by SWNTs include peptides, proteins, nucleic acids, as well as drug molecules for therapeutic purpose. The drug delivery functions of SWNTs have been explored over the past decade. Many breakthrough studies have shown the high specificity and potency of functionalized SWNT-based drug delivery systems for the treatment of cancers and other diseases. In this review, we discuss different aspects of drug delivery by functionalized SWNT carriers, diving into the cellular uptake mechanisms, biodistribution of the delivery system, and safety concerns on degradation of the carriers. We emphasize the delivery of several common drugs to highlight the recent achievements of SWNT-based drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer.

    PubMed

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2015-12-14

    The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.

  12. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    PubMed

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  13. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  14. Adjusting Permittivity by Blending Varying Ratios of SWNTs

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Stephenson, Jason J.; Higginbotham, Amanda

    2012-01-01

    A new composite material of singlewalled carbon nanotubes (SWNTs) displays radio frequency (0 to 1 GHz) permittivity properties that can be adjusted based upon the nanotube composition. When varying ratios of raw to functionalized SWNTs are blended into the silicone elastomer matrix at a total loading of 0.5 percent by weight, a target real permittivity value can be obtained between 70 and 3. This has particular use for designing materials for microwave lenses, microstrips, filters, resonators, high-strength/low-weight electromagnetic interference (EMI) shielding, antennas, waveguides, and low-loss magneto-dielectric products for applications like radome construction.

  15. Imaging active topological defects in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  16. Optical and Thermo-optical Properties of Polyimide-Single-Walled Carbon Nanotube Films: Experimental Results and Empirical Equations

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Connell, John W.; Watson, Kent A.; Danehy, Paul M.

    2005-01-01

    The incorporation of single-walled carbon nanotubes (SWNTs) into the bulk of space environmentally durable polymers at loading levels greater than or equal to 0.05 wt % has afforded thin films with surface and volume resistivities sufficient for electrostatic charge mitigation. However, the optical transparency at 500 nm decreased and the thermo-optical properties (solar absorptivity and thermal emissivity) increased with increaed SWNT loading. These properties were also dependent on film thickness. The absorbance characteristics of the films as a function of SWNT loading and film thickness were measured and determined to follow the classical Beer-Lambert law. Based on these results, an empirical relationship was derived and molar absorptivities determined for both the SWNTs and polymer matrix to provide a predictive approximation of these properties. The molar absorptivity determined for SWNTs dispersed in the polymer was comparable to reported solution determined values for HiPco SWNTs.

  17. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide amore » microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.« less

  18. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Self-Assemblies of Single-Walled Carbon Nanotubes through Tunable Tethering of Pyrenes by Dextrin for Rapidly Chiral Sensing

    PubMed Central

    Wei, Wei-Li; Chen, Qiushui; Li, Haifang; Lin, Jin-Ming

    2011-01-01

    Pyrene-modified dextrin (Py-Dex) was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs) were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, fluorescence spectroscopy, Raman spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectroscopy, and transmission electron microscopy. The tethering effect of dextrin toward pyrene moieties was clearly revealed and was found to be tunable by adjusting the length of dextrin chains. The fluorescence of pyrene moieties was sufficiently quenched by SWNTs with the support of dextrin chains. Furthermore, the Py-Dex-SWNTs assemblies were used for chiral selective sensing by introducing cyclodextrins as chiral binding sites. The rapid chiral sensing was successfully tested for different enantiomers. PMID:21811502

  20. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study.

    PubMed

    Cui, Jianlei; Yang, Lijun; Zhou, Liang; Wang, Yang

    2014-02-12

    The miniaturization of electronics devices into the nanometer scale is indispensable for next-generation semi-conductor technology. Carbon nanotubes (CNTs) are considered to be the promising candidates for future interconnection wires. To study the carbon nanotubes interconnection during nanosoldering, the melting process of nanosolder and nanosoldering process between single-walled carbon nanotubes are simulated with molecular dynamics method. As the simulation results, the melting point of 2 nm silver solder is about 605 K because of high surface energy, which is below the melting temperature of Ag bulk material. In the nanosoldering process simulations, Ag atoms may be dragged into the nanotubes to form different connection configuration, which has no apparent relationship with chirality of SWNTs. The length of core filling nanowires structure has the relationship with the diameter, and it does not become longer with the increasing diameter of SWNT. Subsequently, the dominant mechanism of was analyzed. In addition, as the heating temperature and time, respectively, increases, more Ag atoms can enter the SWNTs with longer length of Ag nanowires. And because of the strong metal bonds, less Ag atoms can remain with the tight atomic structures in the gap between SWNT and SWNT. The preferred interconnection configurations can be achieved between SWNT and SWNT in this paper.

  1. The adsorption of L-phenylalanine on oxidized single-walled carbon nanotubes.

    PubMed

    Piao, Lingyu; Liu, Quanrun; Li, Yongdan; Wang, Chen

    2009-02-01

    A simple and green approach was proceeded to obtain a stable single-walled carbon nanotubes (SWNTs)/L-phenylalanine (Phe) solution. The oxidized SWNTs (OSWNT) were used in this work. The scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), Raman spectrometer, Fourier transform-infrared resonance (FT-IR), Ultraviolet-visible (UV-vis) spectroscopy, Thermogravimetric analysis (TGA) and High performance liquid chromatography (HPLC) were joined together to investigate the interaction between OSWNT and Phe. The OSWNT became soluble in the water and formed a stable solution since the Phe was adsorbed. The absorbed amount of Phe on the OSWNT is around 33 wt%. Adsorption of the Phe was mainly carried out on the OSWNT with smaller diameters. The Phe molecules were absorbed on the OSWNT by conjunct interaction of the pi-pi stacking, hydrogen bond and part of covalent bond.

  2. Effect of UV irradiation on the dynamics of oxygen and water interaction with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Anthony J; Ivanov, Ilia N

    2016-01-01

    Carbon nanotube (CNT) films composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O2 and H2O vapor in the dark and under UV irradiation. Changes in the film conductivity and mass were measured in situ. We find that UV irradiation increases the resistive response of CNT films to O2 and H2O by more than an order of magnitude. In m-SWNT and MWNT films, UV irradiation changes the sign of the resistive response to O2 and H2O by generating free charge carriers. S-SWNTs show the largest UV-induced resistive response and exhibitmore » weakening of van der Waals interactions with the QCM crystal when exposed to gas/vapor.« less

  3. Structural and compositional changes in single wall carbon nanotube ensemble upon exposure to microwave plasma

    NASA Astrophysics Data System (ADS)

    Roy, Soumyendu; Bajpai, Reeti; Soin, Navneet; Sinha Roy, Susanta; McLaughlin, James A.; Misra, D. S.

    2017-10-01

    Microwave plasma treatment of single wall carbon nanotube (SWNT) films called bucky papers (BPs) resulted in changes in the relative proportion of different chiralities of SWNTs present in the BP and the production of vertical microstructures on the surface of BP. The plasma was created using H2 gas mixed with Ar or CH4, at a temperature of 900 °C and a pressure of 70 Torr. Radial breathing mode spectra of the BPs revealed that the preferential sputtering by plasma is not with respect to the diameter or the metallic nature of SWNTs. We propose that the lengths of SWNTs influence how they interact with plasma. Longer tubes will have higher dielectric constants and hence will be polarized more strongly by the electric field of the plasma sheath. This in turn results in greater ion bombardment and sputtering. Finite element method was used to find the strengths of the induced electric fields on model SWNT surfaces. Microscopy, Raman, and X-ray photoelectron spectroscopy were used to study the effect of plasma on the crystallinity of the surviving SWNTs. Structural integrity of SWNTs was preserved after the plasma treatment.

  4. Effect of side-chain structure of rigid polyimide dispersant on mechanical properties of single-walled carbon nanotube/cyanate ester composite.

    PubMed

    Yuan, Wei; Li, Weifeng; Mu, Yuguang; Chan-Park, Mary B

    2011-05-01

    Three kinds of polymer, polyimide without side-chain (PI), polyimide-graft-glyceryl 4-nonylphenyl ether (PI-GNE), and polyimide-graft-bisphenol A diglyceryl acrylate (PI-BDA), have been synthesized and used to disperse single-walled carbon nanotubes (SWNTs) and to improve the interfacial bonding between SWNTs and cyanate ester (CE) matrix. Visual observation, UV-vis-near-IR (UV-vis-NIR) spectra, and atomic force microscopy (AFM) images show that both PI-GNE and PI-BDA are highly effective at dispersing and debundling SWNTs in DMF, whereas PI is less effective. Interaction between SWNTs and PI, PI-GNE or PI-BDA was confirmed by computer simulation and Raman spectra. A series of CE-based composite films reinforced with different loadings of SWNTs, SWNTs/PI, SWNTs/PI-GNE and SWNTs/PI-BDA were prepared by solution casting. It was found that, because of the unique side-chain structure of PI-BDA, SWNTs/PI-BDA disperse better in CE matrix than do SWNTs/PI-GNE, SWNTs/PI, and SWNTs. As a result, SWNTs/PI-BDA/CE composites have the greatest improvement in mechanical properties of the materials tested. These results imply that the choice of side-chain on a dispersant is very important to the dispersion of SWNTs in matrix and the filler/matrix interfacial adhesion, which are two key requirements for achieving effective reinforcement.

  5. Nanotube Dispersions Made With Charged Surfactant

    NASA Technical Reports Server (NTRS)

    Kuper, Cynthia; Kuzma, Mike

    2006-01-01

    Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

  6. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    NASA Astrophysics Data System (ADS)

    Watters, Arianna L.; Palmese, Giuseppe R.

    2014-09-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.

  7. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    DTIC Science & Technology

    2014-10-30

    S1793984412300129 Marquita Lilly, Liju Yang, Kamal Aferchich. Effect of Single-walled Carbon Nanotubes on Bacillus Anthracis Cell Growth, Sporulation ...addition,  SWNTs  treatment  did  not  induce  sporulation  of B. anthracis.  [Aferichich, et al. 2012]. 2)  SWNTs  in  combination with oxidizing agents...8. Kamal Aferchich, Marquita Lilly, Liju Yang*. 2012. Effect of Single‐walled Carbon Nanotubes on  Bacillus Anthracis Cell Growth,  Sporulation , and

  8. Controlling the electrophoretic mobility of single-walled carbon nanotubes: a comparison of theory and experiment.

    PubMed

    Usrey, Monica L; Nair, Nitish; Agnew, Daniel E; Pina, Cesar F; Strano, Michael S

    2007-07-03

    The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.

  9. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  10. A water-soluble hybrid material of single-walled carbon nanotubes with an amphiphilic poly(phenyleneethynylene): preparation, characterization, and photovoltaic properties.

    PubMed

    Mao, Jie; Liu, Qian; Lv, Xin; Liu, Zunfeng; Huang, Yi; Ma, Yanfeng; Chen, Yongsheng; Yin, Shougen

    2007-08-01

    A novel rigid linear polymer poly(phenyleneethynylene) (PPE) was synthesized and the polymer exhibits good solubility in both water and common organic solvents. The interaction at both ground and excited state between this polymer and single-walled carbon nanotubes (SWNTs) was studied and a water-soluble nano-scale PPE/SWNTs hybrid was fabricated, where the water solubility of SWNTs was enhanced to 1.8 mg/ml. Steady state fluorescence spectra and fluorescence lifetime decay measurements showed that the emissions from PPEs in this hybrid at excited state were efficiently quenched by the attachment of SWNTs, where an efficient energy transfer happened from PPEs to SWNTs as the electron acceptor. Using this hybrid as the active layer we fabricated a photovoltaic cell with the bulk heterojunction configuration, and it showed a photoresponse with an open circuit voltage (Voc) of 105 mV and a short circuit current density (Isc) of 28.7 microA/cm2 under standard AM 1.5 illumination (100 mW/cm2).

  11. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst

    NASA Astrophysics Data System (ADS)

    An, Hua; Kumamoto, Akihito; Takezaki, Hiroki; Ohyama, Shinnosuke; Qian, Yang; Inoue, Taiki; Ikuhara, Yuichi; Chiashi, Shohei; Xiang, Rong; Maruyama, Shigeo

    2016-07-01

    Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system.Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system. Electronic supplementary information (ESI) available: Raman spectroscopy (G-band) of SWNTs grown from Co and Co-W catalyst; Kataura plot for chirality

  12. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film.

    PubMed

    Sun, Dong; Xie, Xiafeng; Cai, Yuepiao; Zhang, Huajie; Wu, Kangbing

    2007-01-02

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd(2+). Based on this, an electrochemical method was developed for the determination of trace levels of Cd(2+) by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd(2+) was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd(2+). The linear range is found to be from 4.0 x 10(-8) to 4.0 x 10(-6) mol L(-1), and the lowest detectable concentration is estimated to be 4.0 x 10(-9) mol L(-1). Finally, this method was successfully employed to detect Cd(2+) in water samples.

  13. Single-Walled Carbon Nanotube-Based Near-Infrared Optical Glucose Sensors toward In Vivo Continuous Glucose Monitoring

    PubMed Central

    Yum, Kyungsuk; McNicholas, Thomas P.; Mu, Bin; Strano, Michael S.

    2013-01-01

    This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our development of SWNT-based glucose sensors that use glucose-binding proteins and boronic acids as a high-affinity molecular receptor for glucose and transduce binding events on the receptors to modulate SWNT fluorescence. Finally, we discuss opportunities and challenges in translating the emerging technology of SWNT-based NIR optical glucose sensors into in vivo CGM for practical clinical use. PMID:23439162

  14. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  15. Spectroelectrochemical properties of the single walled carbon nanotubes functionalized with polydiphenylamine doped with heteropolyanions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaranda, I.; Baibarac, M., E-mail: barac@infim.ro; Baltog, I.

    A combined chemical-electrochemical method was used for covalent functionalization of single-walled carbon nanotube (SWNT) with polydiphenylamine (PDPA) doped with heteropolyanions of H{sub 3}PMo{sub 12}O{sub 40}{center_dot}xH{sub 2}O. The functionalization process induces in Raman spectra of SWNTs the following changes: (i) an increase in relative intensity of the D band, accompanied a gradual up-shift of the G band in the case of the semiconducting tubes and a decrease in the relative intensity of band peaked at 1540 cm{sup -1} is remarked in the case of the metallic tubes; (ii) in the anti-Stokes Raman spectrum an increase in the relative intensity of Ramanmore » line of metallic tubes peaked at -1560 cm{sup -1} is remarked when the cycles number increases. The additional down-shift of the FTIR bands belonging to H{sub 3}PMo{sub 12}O{sub 40} heteropolyanions (at 881, 943 and 1055 cm{sup -1}) and PDPA (at 688, 736 and 1016 cm{sup -1}) originates in hindrance steric effects induced the covalent functionalization of SWNTs with polymer molecules. Using Raman scattering and FTIR spectroscopy we demonstrate that chemical polymerization of diphenylamine in the presence of H{sub 3}PMo{sub 12}O{sub 40}{center_dot}xH{sub 2}O and SWNTs results in a composite of the type blend based on PDPA in un-doped state and SWNTs doped with H{sub 3}PMo{sub 12}O{sub 40} heteropolyanions. - Graphical abstract: Stokes and anti-Stokes Raman spectra of the SWNTs before (a) and after electrochemical functionalization with PDPA doped with heteropolyanions by 5 (b) and 25 (c) voltammeter cycles. Highlights: Black-Right-Pointing-Pointer A chemical-electrochemical method is used to functionalization of SWNTs. Black-Right-Pointing-Pointer Functionalization of wall-side of tube is evidenced by anti-Stokes Raman studies. Black-Right-Pointing-Pointer FTIR spectra proves insertion of heteropolyanions in polydiphenylamine matrix. Black-Right-Pointing-Pointer FTIR spectra of polymer functionalized

  16. Scalable Fabrication of High-Performance Transparent Conductors Using Graphene Oxide-Stabilized Single-Walled Carbon Nanotube Inks

    PubMed Central

    He, Linxiang; Liao, Chengzhu

    2018-01-01

    Recent development in liquid-phase processing of single-walled carbon nanotubes (SWNTs) has revealed rod-coating as a promising approach for large-scale production of SWNT-based transparent conductors. Of great importance in the ink formulation is the stabilizer having excellent dispersion stability, environmental friendly and tunable rheology in the liquid state, and also can be readily removed to enhance electrical conductivity and mechanical stability. Herein we demonstrate the promise of graphene oxide (GO) as a synergistic stabilizer for SWNTs in water. SWNTs dispersed in GO is formulated into inks with homogeneous nanotube distribution, good wetting and rheological properties, and compatible with industrial rod coating practice. Microwave treatment of rod-coated films can reduce GOs and enhance electro-optical performance. The resultant films offer a sheet resistance of ~80 Ω/sq at 86% transparency, along with good mechanical flexibility. Doping the films with nitric acid can further decrease the sheet resistance to ~25 Ω/sq. Comparing with the films fabricated from typical surfactant-based SWNT inks, our films offer superior adhesion as assessed by the Scotch tape test. This study provides new insight into the selection of suitable stabilizers for functional SWNT inks with strong potential for printed electronics. PMID:29642446

  17. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  18. Bio-fabrication of nanomesh channels of single-walled carbon nanotubes for locally gated field-effect transistors

    NASA Astrophysics Data System (ADS)

    Byeon, Hye-Hyeon; Lee, Woo Chul; Kim, Wonbin; Kim, Seong Keun; Kim, Woong; Yi, Hyunjung

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) are one of the promising electronic components for nanoscale electronic devices such as field-effect transistors (FETs) owing to their excellent device characteristics such as high conductivity, high carrier mobility and mechanical flexibility. Localized gating gemometry of FETs enables individual addressing of active channels and allows for better electrostatics via thinner dielectric layer of high k-value. For localized gating of SWNTs, it becomes critical to define SWNTs of controlled nanostructures and functionality onto desired locations in high precision. Here, we demonstrate that a biologically templated approach in combination of microfabrication processes can successfully produce a nanostructured channels of SWNTs for localized active devices such as local bottom-gated FETs. A large-scale nanostructured network, nanomesh, of SWNTs were assembled in solution using an M13 phage with strong binding affinity toward SWNTs and micrometer-scale nanomesh channels were defined using negative photolithography and plasma-etching processes. The bio-fabrication approach produced local bottom-gated FETs with remarkably controllable nanostructures and successfully enabled semiconducting behavior out of unsorted SWNTs. In addition, the localized gating scheme enhanced the device performances such as operation voltage and I on/I off ratio. We believe that our approach provides a useful and integrative method for fabricating electronic devices out of nanoscale electronic materials for applications in which tunable electrical properties, mechanical flexibility, ambient stability, and chemical stability are of crucial importance.

  19. Molecular dynamics simulations of the orientation properties of cytochrome c on the surface of single-walled carbon nanotubes.

    PubMed

    Zhang, Bing; Xu, Jia; Mo, Shu-Fan; Yao, Jian-Xi; Dai, Song-Yuan

    2016-12-01

    Electron transfer between cytochrome c (Cytc) and electrodes can be influenced greatly by the orientation of protein on the surface of the electrodes. In the present study, different initial orientations of Cytc on the surface of five types of single-walled carbon nanotubes (SWNTs), with different diameters and chirality, were constructed. Properties of the orientations of proteins on the surface of these tubes were first investigated through molecular dynamics simulations. It was shown that variations in SWNT diameter do not significantly affect the orientation; however, the chirality of the SWNTs is crucial to the orientation of the heme embedded in Cytc, and the orientation of the protein can consequently be influenced by the heme orientation. A new electron pathway between Cytc and SWNT, which hopefully benefits electron transfer efficiency, has also been proposed. This study promises to provide theoretical guidance for the rational design of bio-sensors or bio-fuel cells by using Cytc-decorated carbon nanotube electrodes.

  20. Label-free detection of cardiac troponin-I using gold nanoparticles functionalized single-walled carbon nanotubes based chemiresistive biosensor

    NASA Astrophysics Data System (ADS)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Singh, Rajiv K.; Biradar, Ashok M.; Mulchanadani, Ashok

    2013-11-01

    We report a specific and ultrasensitive, label-free chemiresistive biosensor based on mercaptopropionic acid capped gold nanoparticles (GNP) functionalized single walled carbon nanotube (SWNT) hybrid for the detection of cardiac specific biomarker troponin-I (cTnI). GNPs were attached to SWNTs through a molecular linker 1-pyrenemethylamine. The highly specific cTnI antibody was covalently immobilized on GNPs through capping agent using carbodiimide coupling reaction. The cTnI interaction to its corresponding antibody was studied with respect to changes in conductance in SWNTs channel, and a detailed field-effect transistor characteristic was delineated. The device exhibited a linear response to cTnI from 0.01 to 10 ng ml-1.

  1. Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C. Y.; Too, C. O.; Wallace, G. G.

    The development of highly-flexible fibre batteries based on a conducting polymer and single-wall carbon nanotubes (SWNTs) is described. Initially, polypyrrole-hexafluorophosphate (PPy/PF 6) and SWNTs are tested in lithium cells to ascertain their performance. Based on the results, fibre batteries consisting of a PPy/PF 6 cathode and an anode based on SWNTs are fabricated and tested in both a "flooded cell" and 'dry cell', arrangement.

  2. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  3. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  4. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE PAGES

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.; ...

    2016-06-01

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  5. Effect of semiconductor polymer backbone structures and side-chain parameters on the facile separation of semiconducting single-walled carbon nanotubes from as-synthesized mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Dennis T.; Chung, Jong Won; Park, Geonhee; Kim, Yun-Tae; Lee, Chang Young; Cho, Yeonchoo; Yoo, Pil J.; Han, Jae-Hee; Shin, Hyeon-Jin; Kim, Woo-Jae

    2018-01-01

    Semiconducting single-walled carbon nanotubes (SWNTs) show promise as core materials for next-generation solar cells and nanoelectronic devices. However, most commercial SWNT production methods generate mixtures of metallic SWNTs (m-SWNTs) and semiconducting SWNT (sc-SWNTs). Therefore, sc-SWNTs must be separated from their original mixtures before use. In this study, we investigated a polymer-based, noncovalent sc-SWNT separation approach, which is simple to perform and does not disrupt the electrical properties of the SWNTs, thus improving the performance of the corresponding sc-SWNT-based applications. By systematically investigating the effect that different structural features of the semiconductor polymer have on the separation of sc-SWNTs, we discovered that the length and configuration of the alkyl side chains and the rigidity of the backbone structure exert significant effects on the efficiency of sc-SWNT separation. We also found that electron transfer between the semiconductor polymers and sc-SWNTs is strongly affected by their energy-level alignment, which can be tailored by controlling the donor-acceptor configuration in the polymer backbone structures. Among the polymers investigated, the highly planar P8T2Z-C12 semiconductor polymer showed the best sc-SWNT separation efficiency and unprecedentedly strong electronic interaction with the sc-SWNTs, which is important for improving their performance in applications.

  6. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel

    2004-01-01

    The latest process for producing large quantities of single-walled carbon nanotubes (SWNTs) to emerge from the Rice University, dubbed HiPco, is living up to its promise. The current production rates approach 450 mg/h (or 10 g/day), and nanotubes typically have no more than 7 mol % of iron impurities. Second-generation HiPco apparatus can run continuously for 7-10 days at a time. In the HiPco process nanotubes grow in high-pressure, high-temperature flowing CO on catalytic clusters of iron. Catalyst is formed in situ by thermal decomposition of iron pentacarbonyl, which is delivered intact within a cold CO flow and then rapidly mixed with hot CO in the reaction zone. Upon heating, the Fe(CO)5 decomposes into atoms that condense into larger clusters. SWNTs nucleate and grow on these particles in the gas phase via CO disproportionation: CO + CO --> CO2 + C (SWNT), catalyzed by the Fe surface. The concentration of CO2 produced in this reaction is equal to that of carbon and can therefore serve as a useful real-time feedback parameter. It was used to study and optimize SWNT production as a function of temperature, pressure, and Fe(CO)5 concentration. The results of the parametric study are in agreement with current understanding of the nanotube formation mechanism.

  7. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  8. Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil.

    PubMed

    Cano, Amanda M; Kohl, Kristina; Deleon, Sabrina; Payton, Paxton; Irin, Fahmida; Saed, Mohammad; Shah, Smit Alkesh; Green, Micah J; Cañas-Carrell, Jaclyn E

    2016-06-01

    Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Assessment of chemically separated carbon nanotubes for nanoelectronics.

    PubMed

    Zhang, Li; Zaric, Sasa; Tu, Xiaomin; Wang, Xinran; Zhao, Wei; Dai, Hongjie

    2008-02-27

    It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that

  10. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    PubMed

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Demo opto-electronic power source based on single-walled carbon nanotube sheets.

    PubMed

    Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan

    2010-08-24

    It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.

  12. Fluorination, Defluorination, Derivatization and Solvation of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Margrave, John L.

    1999-10-01

    Direct fluorination has been used to create fluoronanotubes which have active sites for derivatizing carbon nanotubes. A new technique using hydrazine and its derivatives has been used for defluorination of fluoronanotubes. The products include N2 and HF. Fluorinated species can be derivatized with R-Li or Grignard Reagents to form inorganic fluorides and derivatized products e.g., methyl, butyl or hexyl-nanotubes, (NH2)x-nanotubes, etc. Mass-spectra IR and Raman spectra along with electron microprobe analyses have been utilized, along with AFM, SEM and TEM to characterize the products. ``Fluorotubes" can be solvated as individual tubes in various alcohol solvents via ultrasonication. These solutions persist long enough (over a week) to permit solution phase chemistry to be carried out on the fluorotubes. For example, the solvated fluorotubes can be precipitated out of solution with hydrazine to yield normal, unfluorinated SWNTs or they can be reacted with sodium methoxide to yield methoxylated SWNTs.

  13. Functionalization of Carbon Nanotubes using Atomic Hydrogen

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)

    2001-01-01

    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.

  14. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  15. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  16. Carbon Nanotubes for Space Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  17. Carbon nanotube-polymer nanocomposite infrared sensor.

    PubMed

    Pradhan, Basudev; Setyowati, Kristina; Liu, Haiying; Waldeck, David H; Chen, Jian

    2008-04-01

    The infrared photoresponse in the electrical conductivity of single-walled carbon nanotubes (SWNTs) is dramatically enhanced by embedding SWNTs in an electrically and thermally insulating polymer matrix. The conductivity change in a 5 wt % SWNT-polycarbonate nanocomposite is significant (4.26%) and sharp upon infrared illumination in the air at room temperature. While the thermal effect predominates in the infrared photoresponse of a pure SWNT film, the photoeffect predominates in the infrared photoresponse of SWNT-polycarbonate nanocomposites.

  18. Fluorescent Polymer-Single-Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies.

    PubMed

    Huth, Katharina; Glaeske, Mareen; Achazi, Katharina; Gordeev, Georgy; Kumar, Shiv; Arenal, Raúl; Sharma, Sunil K; Adeli, Mohsen; Setaro, Antonio; Reich, Stephanie; Haag, Rainer

    2018-06-05

    Fluorescent nanomaterials are expected to revolutionize medical diagnostic, imaging, and therapeutic tools due to their superior optical and structural properties. Their inefficient water solubility, cell permeability, biodistribution, and high toxicity, however, limit the full potential of their application. To overcome these obstacles, a water-soluble, fluorescent, cytocompatible polymer-single-walled carbon nanotube (SWNT) complex is introduced for bioimaging applications. The supramolecular complex consists of an alkylated polymer conjugated with neutral hydroxylated or charged sulfated dendronized perylene bisimides (PBIs) and SWNTs as a general immobilization platform. The polymer backbone solubilizes the SWNTs, decorates them with fluorescent PBIs, and strongly improves their cytocompatibility by wrapping around the SWNT scaffold. In photophysical measurements and biological in vitro studies, sulfated complexes exhibit superior optical properties, cellular uptake, and intracellular staining over their hydroxylated analogs. A toxicity assay confirms the highly improved cytocompatibility of the polymer-wrapped SWNTs toward surfactant-solubilized SWNTs. In microscopy studies the complexes allow for the direct imaging of the SWNTs' cellular uptake via the PBI and SWNT emission using the 1st and 2nd optical window for bioimaging. These findings render the polymer-SWNT complexes with nanometer size, dual fluorescence, multiple charges, and high cytocompatibility as valuable systems for a broad range of fluorescence bioimaging studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparing the photothermal effects of gold nanorods and single-walled carbon nanotubes in cancer models

    NASA Astrophysics Data System (ADS)

    West, Connor L.; Hasanjee, Aamr M.; Young, Blake; Wolf, Roman; Silk, Kegan; Ingalls, Rianna; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Laser Immunotherapy (LIT) is an innovative cancer treatment modality that is specifically targeted towards treating late-stage, metastatic cancer. This treatment modality utilizes laser irradiation in combination with active immune system stimulation to induce a systemic anti-tumor immune response against metastatic cancer. Nanoparticles have recently been utilized to support and increase the photothermal effect of the laser irradiation by absorbing the light energy produced from the laser and converting that energy into thermal energy. In the past, single-walled carbon nanotubes (SWNTs) have been the main choice in nanotechnology, however, recent studies have shown that gold nanorods (AuNRs) are a prospective alternative that may produce photothermal effects similar to SWNTs. Due to the precedence of gold biomaterials currently having approval for use in various treatments for humans, AuNRs are regarded to be a safer option than SWNTs. The goal of this study is to precisely compare any differences in photothermal effects between AuNRs and SWNTs. Both types of nanoparticles were irradiated with the same wavelength of near-infrared light to ascertain the photothermal effects in gel phantom tumor models, aqueous solutions, and metastatic cancer cell cultures. We discerned from the results that the AuNRs could be equally or more effective than SWNTs in absorbing the light energy from the laser and converting it into thermal energy. In both solution and gel studies, AuNRs were shown to be more efficient than SWNTs in creating thermal energy, while in cell studies, no definitive differences between AuNRs and SWNTs were observed. The cytotoxicity of both nanoparticles needs further assessment in future studies. Given these results, AuNRs are comparable to SWNTs, even superior in certain aspects. This advances the opportunity to use AuNRs as replacements for SWNTs in LIT treatments. The results from this study will contribute to any subsequent studies in the development

  20. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.

    PubMed

    Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi

    2017-11-09

    Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.

  1. Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS2.

    PubMed

    Wang, Rui; Wang, Tianjiao; Hong, Tu; Xu, Ya-Qiong

    2018-08-24

    We report a facile method to produce ultrathin molybdenum disulfide (MoS 2 ) hybrids with polarized near-infrared (NIR) photoresponses, in which horizontally-aligned single-walled carbon nanotubes (SWNTs) are integrated with single- and few-layer MoS 2 through a two-step chemical vapor deposition process. The photocurrent generation mechanisms in SWNT-MoS 2 hybrids are systematically investigated through wavelength- and polarization-dependent scanning photocurrent measurements. When the incident photon energy is above the direct bandgap of MoS 2 , isotropic photocurrent signals are observed, which can be primarily attributed to the direct bandgap transition in MoS 2 . In contrast, if the incident photon energy in the NIR region is below the direct bandgap of MoS 2 , the maximum photocurrent response occurs when the incident light is polarized in the direction along the SWNTs, indicating that photocurrent signals mainly result from the anisotropic absorption of SWNTs. More importantly, these two-dimensional (2D) hybrid structures inherit the electrical transport properties from MoS 2 , displaying n-type characteristics at a zero gate voltage. These fundamental studies provide a new way to produce ultrathin MoS 2 hybrids with inherited electrical properties and polarized NIR photoresponses, opening doors for engineering various 2D hybrid materials for future broadband optoelectronic applications.

  2. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    PubMed

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  3. Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination.

    PubMed

    Wang, Hui; Liu, Yang; Liu, Gang

    2018-04-20

    Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 10⁶ pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results.

  4. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2004-01-01

    Chemical kinetic models for the nucleation and growth of clusters and single-walled carbon nanotube (SWNT) growth are developed for numerical simulations of the production of SWNTs. Two models that involve evaporation and condensation of carbon and metal catalysts, a full model involving all carbon clusters up to C80, and a reduced model are discussed. The full model is based on a fullerene model, but nickel and carbon/nickel cluster reactions are added to form SWNTs from soot and fullerenes. The full model has a large number of species--so large that to incorporate them into a flow field computation for simulating laser ablation and arc processes requires that they be simplified. The model is reduced by defining large clusters that represent many various sized clusters. Comparisons are given between these models for cases that may be applicable to arc and laser ablation production. Solutions to the system of chemical rate equations of these models for a ramped temperature profile show that production of various species, including SWNTs, agree to within about 50% for a fast ramp, and within 10% for a slower temperature decay time.

  5. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix.

    PubMed

    Mollahosseini, Mehdi; Karunaratne, Erandika; Gibson, George N; Gascón, Jose A; Papadimitrakopoulos, Fotios

    2016-05-11

    One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.

  6. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  7. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.

    2015-03-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  8. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes.

    PubMed

    Park, Jaehong; Deria, Pravas; Olivier, Jean-Hubert; Therien, Michael J

    2014-02-12

    We utilize individualized, length-sorted (6,5)-chirality enriched single-walled carbon nanotubes (SWNTs) having dimensions of 200 and 800 nm, femtosecond transient absorption spectroscopy, and variable excitation fluences that modulate the exciton density per nanotube unit length, to interrogate nanotube exciton/biexciton dynamics. For pump fluences below 30 μJ/cm(2), transient absorption (TA) spectra of (6,5) SWNTs reveal the instantaneous emergence of the exciton to biexciton transition (E11 → E11,BX) at 1100 nm; in contrast, under excitation fluences exceeding 100 μJ/cm(2), this TA signal manifests a rise time (τ rise ∼ 250 fs), indicating that E11 state repopulation is required to produce this signal. Femtosecond transient absorption spectroscopic data acquired over the 900-1400 nm spectral region of the near-infrared (NIR) region for (6,5) SWNTs, as a function of nanotube length and exciton density, reveal that over time delays that exceed 200 fs exciton-exciton interactions do not occur over spatial domains larger than 200 nm. Furthermore, the excitation fluence dependence of the E11 → E11,BX transient absorption signal demonstrates that relaxation of the E11 biexciton state (E11,BX) gives rise to a substantial E11 state population, as increasing delay times result in a concomitant increase of E11 → E11,BX transition oscillator strength. Numerical simulations based on a three-state model are consistent with a mechanism whereby biexcitons are generated at high excitation fluences via sequential SWNT ground- and E11-state excitation that occurs within the 980 nm excitation pulse duration. These studies that investigate fluence-dependent TA spectral evolution show that SWNT ground → E11 and E11 → E11,BX excitations are coresonant and provide evidence that E11,BX → E11 relaxation constitutes a significant decay channel for the SWNT biexciton state over delay times that exceed 200 fs, a finding that runs counter to assumptions made in previous

  9. Rheological alteration of erythrocytes exposed to carbon nanotubes.

    PubMed

    Heo, Yujin; Li, Cheng-Ai; Kim, Duckjong; Shin, Sehyun

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) have been increasingly used in a variety of biomedical applications, such as in vivo delivery of drugs and tumor imaging. Potential exposure of SWNTs to human red blood cells (RBCs) may cause serious toxicity including alteration of mechanical properties of cells. The present study investigated the cellular response to exposure of SWNTs with measuring rheological characteristics of RBCs, including hemolysis, deformability, aggregation, and morphological changes. RBCs were exposed to two different dispersion-state samples (i.e. individual SWNTs and bundled SWNTs) in chitosan hydroxyphenyl acetamide (CHPA) solutions. The concentrations of SWNTs were carefully chosen to avoid any hemorheological alterations due to hemolysis. Rheological characteristics were measured using microfluidic-laser diffractometry and aggregometry. Our results show that the bundled SWNTs had higher hemolytic activity than did the individual SWNTs. RBC aggregation apparently decreased as the concentration of SWNTs or incubation time increased. Additionally, bundled SWNTs caused significant alterations in the shape and fusion of RBCs. In conclusion, bundled SWNTs were found to be more toxic than individual SWNTs. These results provide important insights into the interactions between RBCs and SWNTs and will facilitate assessment of the risk of nanomaterial toxicity of blood.

  10. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  11. Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source

    NASA Astrophysics Data System (ADS)

    Fujii, Hayato; Setiadi, Agung; Kuwahara, Yuji; Akai-Kasaya, Megumi

    2017-09-01

    Stochastic resonance (SR) is an intrinsic noise usage system for small-signal sensing found in various living creatures. The noise-enhanced signal transmission and detection system, which is probabilistic but consumes low power, has not been used in modern electronics. We demonstrated SR in a summing network based on a single-walled carbon nanotube (SWNT) device that detects small subthreshold signals with very low current flow. The nonlinear current-voltage characteristics of this SWNT device, which incorporated Cr electrodes, were used as the threshold level of signal detection. The adsorption of redox-active polyoxometalate molecules on SWNTs generated additional noise, which was utilized as a self-noise source. To form a summing network SR device, a large number of SWNTs were aligned parallel to each other between the electrodes, which increased the signal detection ability. The functional capabilities of the present small-size summing network SR device, which rely on dense nanomaterials and exploit intrinsic spontaneous noise at room temperature, offer a glimpse of future bio-inspired electronic devices.

  12. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    NASA Astrophysics Data System (ADS)

    Neves, Luis Filipe Ferreira

    To develop a therapeutic system with cancer cell selectivity, the present study evaluated a possible specific and localized tumor treatment. Phosphatidylserine (PS) exposure on the external face of the cell membrane is almost completely exclusive to cancer cells and endothelial cells in the tumor vasculature. The human protein annexin V is known to have strong calcium-dependent binding to anionic phospholipids such as PS. This protein was studied for targeting single-walled carbon nanotubes (SWNTs) to the vasculature of breast tumors. The synthesis of the protein annexin V, by a pET vector in Escherichia coli, constitutes the first phase of this study. Recombinant annexin V was purified from the cell lysate supernatant by immobilized metal affinity chromatography. The overall production of purified annexin V protein was 50 mg/L. The binding ability of the protein annexin V was evaluated by determining the dissociation constant when incubated with proliferating human endothelial cells in vitro. The dissociation constant, Kd, was measured to be 0.8 nM, indicating relatively strong binding. This value of Kd is within the range reported in the literature. Single-walled carbon nanotubes (SWNTs) were functionalized with annexin V using two intermediate linkers (containing FMOC and DSPE) resulting in stable suspensions. The SWNT and protein concentrations were 202 mg/L and 515 mg/L, respectively, using the linker with DSPE (average of nine preparations). The conjugation method that used the DSPE-PEG-maleimide linker allowed to successfully conjugate the SWNTs with final concentrations approximately five times higher than the linker containing FMOC. The conjugation method used has a non-covalent nature, and therefore the optical properties of the nanotubes were preserved. The conjugate was also visually observed using atomic force microscopy (AFM), allowing to verify the presence of the protein annexin V on the surface of the nanotubes, with an height ranging between 2

  13. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates.

    PubMed

    Wang, Xueshen; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan

    2009-09-01

    We report the controlled growth of ultralong single-wall carbon nanotube (SWNT) arrays using an improved chemical vapor deposition strategy. Using ethanol or methane as the feed gas, monodispersed Fe-Mo as the catalyst, and a superaligned carbon nanotube (CNT) film as the catalyst supporting frame, ultralong CNTs over 18.5 cm long were grown on Si substrates. The growth rate of the CNTs was more than 40 mum/s. No catalyst-related residual material was found on the substrates due to the use of a CNT film as the catalyst supporting frame, facilitating any subsequent fabrication of SWNT-based devices. Electrical transport measurements indicated that the electrical characteristics along a single ultralong SWNT were uniform. We also found that maintaining a spatially homogeneous temperature during the growth process was a critical factor for obtaining constant electrical characteristics along the length of the ultralong SWNTs.

  14. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    PubMed Central

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  15. Synthesis, transfer printing, electrical and optical properties, and applications of materials composed of self-assembled, aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pint, Cary L.

    Super growth of single-walled carbon nanotubes (SWNTs) has emerged as a unique method for synthesizing self-assembled, pristine, aligned SWNT materials composed of ultra-long (millimeter-long) nanotubes. This thesis focuses on novel routes of synthesizing such self-assembled SWNTs and the challenges that arise in integrating this material into next-generation applications. First of all, this work provides unique insight into growth termination of aligned SWNTs, emphasizing the mechanism that inhibits the growth of infinitely long nanotubes. Exhaustive real-time growth studies, combined with ex-situ and in-situ TEM characterization emphasizes that Ostwald ripening and subsurface diffusion of catalyst particles play a key role in growth termination. As a result, rational steps to solving this problem can enhance growth, and may ultimately lead to the meter or kilometer-long SWNTs that are necessary for a number of applications. In addition, other novel synthesis routes are discussed, such as the ability to form macroscopic fibrils of SWNTs, called "flying carpets" from 40 nm thick substrates, and the ability to achieve supergrowth of SWNTs that are controllably doped with nitrogen. In the latter case, molecular heterojunctions of doped and undoped sections in a single strand of ultralong SWNTs are demonstrated Secondly, as supergrowth is conducted on alumina coated SiO2 substrates, any applications will require that one can transfer the SWNTs to host surfaces with minimal processing. This work demonstrates a unique contact transfer route by which both patterned arrays of SWNTs, or homogenous SWNT carpets, can be transferred to any host surface. In the first case, the SWNTs are grown vertically aligned, and transferred in patterns of horizontally aligned SWNT. This transfer process relies on simple water-vapor etching of amorphous carbons at the catalyst following growth, and strong van der Waals adhesion of the high surface-area SWNT to host surfaces (gecko effect

  16. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  17. Making Macroscopic Assemblies of Aligned Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; Colbert, Daniel T.; Smith, Ken A.; Walters, Deron A.; Casavant, Michael J.; Qin, Xiaochuan; Yakobson, Boris; Hauge, Robert H.; Saini, Rajesh Kumar; Chiung, Wan-Ting; hide

    2005-01-01

    A method of aligning and assembling single-wall carbon nanotubes (SWNTs) to fabricate macroscopic structures has been invented. The method entails suspending SWNTs in a fluid, orienting the SWNTs by use of a magnetic and/or electric field, and then removing the aligned SWNTs from suspension in such a way as to assemble them while maintaining the alignment. SWNTs are essentially tubular extensions of fullerene molecules. It is desirable to assemble aligned SWNTs into macroscopic structures because the common alignment of the SWNTs in such a structure makes it possible to exploit, on a macroscopic scale, the unique mechanical, chemical, and electrical properties that individual oriented SWNTs exhibit at the molecular level. Because of their small size and high electrical conductivity, carbon nanotubes, and especially SWNTs, are useful for making electrical connectors in integrated circuits. Carbon nanotubes can be used as antennas at optical frequencies, and as probes in scanning tunneling microscopes, atomic-force microscopes, and the like. Carbon nanotubes can be used with or instead of carbon black in tires. Carbon nanotubes are useful as supports for catalysts. Ropes of SWNTs are metallic and, as such, are potentially useful in some applications in which electrical conductors are needed - for example, they could be used as additives in formulating electrically conductive paints. Finally, macroscopic assemblies of aligned SWNTs can serve as templates for the growth of more and larger structures of the same type. The great variety of tubular fullerene molecules and of the structures that could be formed by assembling them in various ways precludes a complete description of the present method within the limits of this article. It must suffice to present a typical example of the use of one of many possible variants of the method to form a membrane comprising SWNTs aligned substantially parallel to each other in the membrane plane. The apparatus used in this variant

  18. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.

    PubMed

    Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin

    2009-06-02

    Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.

  19. Ecological Uptake and Depuration of Carbon Nanotubes by Lumbriculus variegatus

    PubMed Central

    Petersen, Elijah J.; Huang, Qingguo; Weber, Walter J.

    2008-01-01

    Background Carbon nanotubes represent a class of nanomaterials having broad application potentials and documented cellular uptake and ecotoxicological effects that raise the possibility that they may bioaccumulate in living organisms. Objectives Radioactively labeled nanotubes were synthesized using a novel methane chemical vapor deposition procedure. Single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), and pyrene were spiked to sediment samples, and the respective uptake and depuration of these nanotubes and pyrene were assessed by the oligochaete, Lumbriculus variegatus. Results 14C-labeled carbon nanotubes were developed for these experiments to overcome significant previous limitations for quantifying nanotube materials in environmental and biological media. Biota-sediment accumulation factors for SWNTs and MWNTs were observed to be almost an order of magnitude lower than those for pyrene, a four-ringed polycyclic aromatic hydrocarbon (PAH). The depuration behaviors of the oligochaete suggested that the nanotubes detected in these organisms were associated with sediments remaining in the organism guts and not absorbed into cellular tissues as was the pyrene. The results suggest that, unlike PAHs, purified carbon nanotubes do not readily absorb into organism tissues. PMID:18414633

  20. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion.

    PubMed

    Kim, Yoong Ahm; Kojima, Masahito; Muramatsu, Hiroyuki; Umemoto, Souichiro; Watanabe, Takaaki; Yoshida, Kazuto; Sato, Keigo; Ikeda, Takuya; Hayashi, Takuya; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2006-05-01

    We investigated the electrochemical lithium ion (Li(+)) insertion/desertion behavior on highly pure and bundled single- and double-walled carbon nanotubes (SWNTs and DWNTs) using an in situ Raman technique. In general, two storage sites could host Li(+) in SWNT and DWNT bundles when varying an external potential: a) the outer surface sites, and b) the interstitial spaces within the bundles. The most sensitive changes in the tangential mode (TM) of the Raman spectra upon doping with Li(+) can be divided into two regions. The first region was found from 2.8 to 1.0 V (the coverage of Li(+) on the outer surface of a bundled nanotube) and was characterized by the loss of resonant conditions via partial charge transfer, where the G(+) line of the SWNT and the TM of the outer tube of DWNTs experienced a highly depressed intensity, but remained almost constant in frequency. The appearance of a Breit-Wigner-Fano (BWF) profile provided strong evidence of metallic inner tubes within DWNTs. The second region was observed when the applied potentials ranged from 0.9 to 0 V and was characterized by Li(+) diffusion into the interstitial sites of the bundled nanotube material. This phenomenon invoked a large downshift of the G(-) band in SWNTs, and a small downshift of the TM of the inner tube of DWNTs caused by expansion of the C--C bonds due to the charge transferred to the nanotubes, and the disappearance of the BWF profile through the screening effect of the interstitial Li(+) layers.

  1. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  2. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  3. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine.

    PubMed

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Emrani, Ahmad Sarreshtehdar; Ramezani, Mohammad; Abnous, Khalil

    2015-11-15

    Cocaine is a strong central nervous system stimulant and one of the most commonly abused drugs. In this study, an electrochemical aptasensor was designed for sensitive and selective detection of cocaine, based on single-walled carbon nanotubes (SWNTs), gold electrode and complimentary strand of aptamer (CS). This electrochemical aptasensor inherits properties of SWNTs and gold such as large surface area and high electrochemical conductivity, as well as high affinity and selectivity of aptamer toward its target and the stronger interaction of SWNTs with single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In the absence of cocaine, a little amount of SWNTs bind to Aptamer-CS-modified electrode, so that the electrochemical signal is weak. In the presence of cocaine, aptamer binds to cocaine, leaves the surface of electrode. So that, a large amount of SWNTs bind to CS-modified electrode, generating to a strong electrochemical signal. The designed electrochemical aptasensor showed good selectivity toward cocaine with a limit of detection (LOD) as low as 105 pM. Moreover, the fabricated electrochemical aptasensor was successfully applied to detect cocaine in serum with a LOD as low as 136 pM. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Separation of carbon nanotubes into chirally enriched fractions

    DOEpatents

    Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  5. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    PubMed

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Label-Free Biosensor Using a Silver Specific RNA-Cleaving DNAzyme Functionalized Single-Walled Carbon Nanotube for Silver Ion Determination

    PubMed Central

    Liu, Yang; Liu, Gang

    2018-01-01

    Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 106 pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results. PMID:29677143

  7. Pulmonary Toxicity of Carbon Nanotubes: Ethical Implications and Human Risk Assessment

    NASA Technical Reports Server (NTRS)

    James, John T.

    2006-01-01

    Presentation viewgraphs review the health considerations of working with and manufacturing Carbon Nanotubes. The inherent toxicity of Single Walled Carbon Nanotubes (SWNT) are reviewed, and how the preparation of the SWNTs are reviewed. The experimental protocol that was used is reviewed, and the results in lungs of rodents are shown. The presentation ends with posing the ethical questions in reference to the manufacture and use of carbon nanotubes.

  8. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  9. Transparent conductive carbon nanotubes coated flexible substrate and its application for electronic devices

    NASA Astrophysics Data System (ADS)

    Rahy, Abdelaziz

    The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.

  10. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  11. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  12. DNA decorated carbon nanotube sensors on CMOS circuitry for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chen, Chia-Ling; Agarwal, V.; Li, Xinghui; Sonkusale, S.; Dokmeci, Mehmet R.; Wang, Ming L.

    2010-04-01

    Single-walled carbon nanotubes (SWNTs) with their large surface area, high aspect ratio are one of the novel materials which have numerous attractive features amenable for high sensitivity sensors. Several nanotube based sensors including, gas, chemical and biosensors have been demonstrated. Moreover, most of these sensors require off chip components to detect the variations in the signals making them complicated and hard to commercialize. Here we present a novel complementary metal oxide semiconductor (CMOS) integrated carbon nanotube sensors for portable high sensitivity chemical sensing applications. Multiple zincation steps have been developed to ascertain proper electrical connectivity between the carbon nanotubes and the foundry made CMOS circuitry. The SWNTs have been integrated onto (CMOS) circuitry as the feedback resistor of a Miller compensated operational amplifier utilizing low temperature Dielectrophoretic (DEP) assembly process which has been tailored to be compatible with the post-CMOS integration at the die level. Building nanotube sensors directly on commercial CMOS circuitry allows single chip solutions eliminating the need for long parasitic lines and numerous wire bonds. The carbon nanotube sensors realized on CMOS circuitry show strong response to various vapors including Dimethyl methylphosphonate and Dinitrotoluene. The remarkable set of attributes of the SWNTs realized on CMOS electronic chips provides an attractive platform for high sensitivity portable nanotube based bio and chemical sensors.

  13. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  14. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI).

    PubMed

    Ouyang, Ruizhuo; Zhang, Wangyao; Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2013-12-15

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at -1.06 V ( vs . Ag/AgCl) with a linear concentration range of 0-25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples.

  15. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI)

    PubMed Central

    Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2014-01-01

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at −1.06 V (vs. Ag/AgCl) with a linear concentration range of 0–25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples. PMID:24771881

  16. Spray-coated single walled carbon nanotubes as source and drain electrodes in SnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ryu, Jae Hyeon; Baek, Geun-Woo; Kim, Seung Yeob; Kwon, Hyuck-In; Jin, Sung Hun

    2018-07-01

    In this letter, spray-coated single walled carbon nanotubes (SWNTs) as one of alternative electrodes in SnO thin-film transistors are demonstrated for emerging electronic applications. Herein, the device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. Moreover, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (∼1.49 kΩ cm), field effect mobility (∼0.69 cm2 V‑1 s‑1), sub-threshold slope (∼0.4 V dec‑1), and current on–off ratio (I on/I off ∼ 3.5 × 103). Systematic temperature dependency measurements elucidate that SnO channel transports with an activation energy within several tens of meV, together with decent contact resistance as compared to that of conventional Ni electrodes.

  17. Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering.

    PubMed

    Shokrgozar, Mohammad Ali; Mottaghitalab, Fatemeh; Mottaghitalab, Vahid; Farokhi, Mehdi

    2011-04-01

    With the ability to form a nano-sized fibrous structure with large pore sizes mimicking the extracellular matrix (ECM), electrospinning was used to fabricate chitosan/poly(vinyl alcohol) nanofibers reinforced by single-walled carbon nanotube (SWNT-CS/PVA) for potential use in neural tissue engineering. Moreover, ultrasonication was performed to fabricate highly dispersed SWNT/CS solution with 7%, 12%, and 17% SWNT content prior to electrospinning process. In the present study, a number of properties of CS/PVA reinforced SWNTs nanocomposites were evaluated. The in vitro biocompatibility of the electrospun fiber mats was also assessed using human brain-derived cells and U373 cell lines. The results have shown that SWNTs as reinforcing phase can augment the morphology, porosity, and structural properties of CS/PVA nanofiber composites and thus benefit the proliferation rate of both cell types. In addition, the cells exhibit their normal morphology while integrating with surrounding fibers. The results confirmed the potential of SWNT-CS/PVA nanocomposites as scaffold for neural tissue engineering.

  18. Nonlocal Response in Infrared Detector with Semiconducting Carbon Nanotubes and Graphdiyne

    PubMed Central

    Zheng, Zhe; Fang, Hehai; Liu, Dan; Tan, Zhenjun; Gao, Xin; Hu, Weida; Peng, Hailin; Tong, Lianming

    2017-01-01

    Abstract Semiconducting single‐walled carbon nanotubes (s‐SWNTs) are regarded as an important candidate for infrared (IR) optical detection due to their excellent intrinsic properties. However, the strong binding energy of excitons in s‐SWNTs seriously impedes the development of s‐SWNTs IR photodetector. This Communication reports an IR photodetector with highly pure s‐SWNTs and γ‐graphdiyne. The heterojunctions between the two materials can efficiently separate the photogenerated excitons. In comparison to device fabricated only with s‐SWNTs, this IR detector shows a uniform response in the whole channel of the device. The response time is demonstrated to be below 1 ms. The optimal responsivity and detectivity approximately reach 0.4 mA W−1 and 5 × 106 cmHz1/2 W−1, respectively. PMID:29270354

  19. Pressure-sensing properties of single-walled carbon nanotubes covered with a corona-poled piezoelectric polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikawa, Takeshi; Tabata, Hiroshi, E-mail: tabata@eei.eng.osaka-u.ac.jp; Yoshizawa, Takeshi

    Single-walled carbon nanotubes (SWNTs) have been studied extensively as sensing elements for chemical and biochemical sensors because of their excellent electrical properties, their ultrahigh ratio of surface area to volume, and the consequent extremely high sensitivity of their surface to the surrounding environment. The extremely high sensitivity indicates that SWNTs can operate as excellent transducers when combined with piezoelectric materials. In this paper, we present a touch sensor based on SWNT thin-film transistors (SWNT-TFTs) covered with a thin film of the piezoelectric polymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). Devices were fabricated by spin-coating a P(VDF-TrFE) layer on an SWNT-TFT, which was followedmore » by in situ corona poling to polarize the P(VDF-TrFE) layer. We studied the effect of the corona polarity on the device characteristics and revealed that poling with a negative corona discharge induced a large amount of hole doping in the SWNTs and improved the touch-sensing performance of the devices, while a positive discharge had a negligible effect. The poled devices exhibited regular, stable, and positive drain current modulation in response to intermittent pressing, and the response was proportional to the magnitude of the applied pressure, suggesting that it was caused by the piezoelectric effect of the polarized P(VDF-TrFE) layer. Furthermore, we also fabricated a device using horizontally aligned SWNTs with a lower SWNT density as an alternative transducer to an SWNT thin film, which demonstrated sensitivity as high as 70%/MPa.« less

  20. A Signature of Spatial Correlations between rare earth ions and single-wall nanotubes wrapped with DNA in their mixed solution

    NASA Astrophysics Data System (ADS)

    Ignatova, Tetyana; Rotkin, Slava V.

    2012-02-01

    We propose that the fluorescence resonance energy transfer (FRET) between the rare earth ions (REI) and single-wall nanotubes (SWNT) can be used to measure their Coulomb correlation in solution. As a calibration experiment the FRET between two different REIs, being the energy donor and the acceptor, in their mixed solution has been used. From the photoluminescence decay time we were able to extract the characteristic distance between unlike REIs. Our study revealed negative correlation (the repulsion) for Tb-Eu solution. In the case of the solution containing the REI and the SWNTs wrapped with DNA we observed a significant positive correlation (the attraction and the complex formation). The data is in a good agreement with the theoretical estimates and allows to propose REIs and their FRET as a sensitive tool for detecting kinetics of interaction of SWNTs in aqueous solutions.

  1. Ultrafast Spectral Diffusion of the First Subband Exciton in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schilling, Daniel; Hertel, Tobias

    2013-03-01

    The width of optical transitions in semiconductors is determined by homogeneous and inhomogeneous contributions. Here, we report on the determination of homogeneous linewidths for the first exciton subband transition and the dynamics of spectral diffusion in single-wall carbon nanotubes (SWNTs) using one- and two-dimensional time resolved spectral hole burning spectroscopy. Our investigation of highly purified semiconducting (6,5)-SWNTs suggests that room temperature homogeneous linewidths are on the order of 4 meV and are rapidly broadened by an ultrafast sub-ps spectral diffusion process. These findings are supported by our off-resonant excitation experiments where we observe sub-ps population transfer reflecting the thermal distribution of energy levels around the first subband exciton transition. The results of temperature-dependent spectral hole burning experiments between 17 K and 293 K suggest that homogeneous linewidths are due to exciton interaction with low energy optical phonons, most likely of the radial breathing mode type. In contrast, we find that inhomogeneous broadening is determined by an electronic degree of freedom such as ultrafast intra-tube exciton diffusion which is characteristic and unique for excitons in these one-dimensional semiconductors.

  2. Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments.

    PubMed

    Duque, Juan G; Hamilton, Christopher E; Gupta, Gautam; Crooker, Scott A; Crochet, Jared J; Mohite, Aditya; Htoon, Han; Obrey, Kimberly A DeFriend; Dattelbaum, Andrew M; Doorn, Stephen K

    2011-08-23

    A general challenge in generating functional materials from nanoscale components is integrating them into useful composites that retain or enhance their properties of interest. Development of single walled carbon nanotube (SWNT) materials for optoelectronics and sensing has been especially challenging in that SWNT optical and electronic properties are highly sensitive to environmental interactions, which can be particularly severe in composite matrices. Percolation of SWNTs into aqueous silica gels shows promise as an important route for exploiting their properties, but retention of the aqueous and surfactant environment still impacts and limits optical response, while also limiting the range of conditions in which these materials may be applied. Here, we present for the first time an innovative approach to obtain highly fluorescent solution-free SWNT-silica aerogels, which provides access to novel photophysical properties. Strongly blue-shifted spectral features, revelation of new diameter-dependent gas-phase adsorption phenomena, and significant increase (approximately three times that at room temperature) in photoluminescence intensities at cryogenic temperatures all indicate greatly reduced SWNT-matrix interactions consistent with the SWNTs experiencing a surfactant-free environment. The results demonstrate that this solid-state nanomaterial will play an important role in further revealing the true intrinsic SWNT chemical and photophysical behaviors and represent for the first time a promising new solution- and surfactant-free material for advancing SWNT applications in sensing, photonics, and optoelectronics. © 2011 American Chemical Society

  3. Functional Single-Walled Carbon Nanotubes and Nanoengineered Networks for Organic- and Perovskite-Solar-Cell Applications.

    PubMed

    Barbero, David R; Stranks, Samuel D

    2016-11-01

    Carbon nanotubes have a variety of remarkable electronic and mechanical properties that, in principle, lend them to promising optoelectronic applications. However, the field has been plagued by heterogeneity in the distributions of synthesized tubes and uncontrolled bundling, both of which have prevented nanotubes from reaching their full potential. Here, a variety of recently demonstrated solution-processing avenues is presented, which may combat these challenges through manipulation of nanoscale structures. Recent advances in polymer-wrapping of single-walled carbon nanotubes (SWNTs) are shown, along with how the resulting nanostructures can selectively disperse tubes while also exploiting the favorable properties of the polymer, such as light-harvesting ability. New methods to controllably form nanoengineered SWNT networks with controlled nanotube placement are discussed. These nanoengineered networks decrease bundling, lower the percolation threshold, and enable a strong enhancement in charge conductivity compared to random networks, making them potentially attractive for optoelectronic applications. Finally, SWNT applications, to date, in organic and perovskite photovoltaics are reviewed, and insights as to how the aforementioned recent advancements can lead to improved device performance provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  5. Optical Spectroscopy and Photophysics of Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Brus, Louis

    2006-03-01

    We explore the fundamental nature and dynamics of excited electronic states in SWNT. Psec luminescence and photobleaching dynamics of SWNTs in micellar solution show that non-radiative Auger recombination is extremely fast. At low pH, nanotube surface endoperoxides protonate and introduce holes that quench the luminescence. At higher concentration these holes also bleach the band gap optical absorption. Near infrared two photon luminescence excitation spectra quantitatively reveal the importance of excitons. In order to characterize excited states in both metallic and semiconducting SWNTs at the single-tube level, we detect white-light Rayleigh scattering from individual tubes suspended over an open slit in a substrate. Diagnostic spectra with high signal to noise are obtained in just a few minutes.

  6. Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ding, Qiuyue; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2018-04-01

    How nanomaterials interact with pollutants is the central for understanding their environmental behavior and practical application. In this work, molecular dynamics (MD) and density functional theoretical (DFT) methods were used to investigated the influence of carbon chain length, degree of chlorination, chain configuration, and chirality of chlorinated paraffin (CP) and diameter of single-walled carbon nanotubes (SWNTs) on the interaction between CPs and SWNTs. The simulation results demonstrated that CP chain length and chlorination degree played considerably important roles in determining interaction strength between SWNTs and CPs. The interaction energies increased with increasing chain length and chlorination degree. The chirality of SWNT exerted negligible influence on the interaction energy between SWNTs and CPs. On the contrary, interaction energy increased with increasing radius of SWNTs due to the surface curvatures. This result was rationalized by considering the decrease in SWNT curvature with increasing radius, which resulted in plane-like CNT wall. The negligible influence of CP chain configurations was attributed to relative flexibility of CP carbon chains, which can wrap on tubes through conformational changes with low-energy barriers. MD results indicated that CPs could adsorb on SWNT surface rapidly in aqueous environment. Charge transfer and electronic density results indicated that the interaction between CPs and SWNTs was physisorption in nature. This work provides fundamental information regarding SWNTs as sorbents for CPs extraction and adsorptive removal from environmental water system.

  7. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    PubMed

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  8. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes.

    PubMed

    Al-Hamadani, Yasir A J; Chu, Kyoung Hoon; Flora, Joseph R V; Kim, Do-Hyung; Jang, Min; Sohn, Jinsik; Joo, Wanho; Yoon, Yeomin

    2016-09-01

    Sonocatalytic degradation experiments were carried out to determine the effects of glass beads (GBs) and single-walled carbon nanotubes (SWNTs) on ibuprofen (IBP) and sulfamethoxazole (SMX) removal using low and high ultrasonic frequencies (28 and 1000kHz). In the absence of catalysts, the sonochemical degradation at pH 7, optimum power of 0.18WmL(-1), and a temperature of 15°C was higher (79% and 72%) at 1000kHz than at 28kHz (45% and 33%) for IBP and SMX, respectively. At the low frequency (28kHz) H2O2 production increased significantly, from 10μM (no GBs) to 86μM in the presence of GBs (0.1mm, 10gL(-1)); however, no enhancement was achieved at 1000kHz. In contrast, the H2O2 production increased from 10μM (no SWNTs) to 31μM at 28kHz and from 82μM (no SWNTs) to 111μM at 1000kHz in the presence of SWNTs (45mgL(-1)). Thus, maximum removals of IBP and SMX were obtained in the presence of a combination of GBs and SWNTs at the low frequency (94% and 88%) for 60min contact time; however, >99% and 97% removals were achieved for 40 and 60min contact times at the high frequency for IBP and SMX, respectively. The results indicate that both IBP and SMX degradation followed pseudo-first-order kinetics. Additionally, the enhanced removal of IBP and SMX in the presence of catalysts was because GBs and SWNTs increased the number of free OH radicals due to ultrasonic irradiation and the adsorption capacity increase with SWNT dispersion. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction

    NASA Astrophysics Data System (ADS)

    Nadine Wong Shi Kam,; O'Connell, Michael; Wisdom, Jeffrey A.; Dai, Hongjie

    2005-08-01

    Biological systems are known to be highly transparent to 700- to 1,100-nm near-infrared (NIR) light. It is shown here that the strong optical absorbance of single-walled carbon nanotubes (SWNTs) in this special spectral window, an intrinsic property of SWNTs, can be used for optical stimulation of nanotubes inside living cells to afford multifunctional nanotube biological transporters. For oligonucleotides transported inside living cells by nanotubes, the oligos can translocate into cell nucleus upon endosomal rupture triggered by NIR laser pulses. Continuous NIR radiation can cause cell death because of excessive local heating of SWNT in vitro. Selective cancer cell destruction can be achieved by functionalization of SWNT with a folate moiety, selective internalization of SWNTs inside cells labeled with folate receptor tumor markers, and NIR-triggered cell death, without harming receptor-free normal cells. Thus, the transporting capabilities of carbon nanotubes combined with suitable functionalization chemistry and their intrinsic optical properties can lead to new classes of novel nanomaterials for drug delivery and cancer therapy. Author contributions: N.W.S.K., M.O., and H.D. designed research; N.W.S.K., M.O., and J.A.W. performed research; N.W.S.K., M.O., and H.D. analyzed data; and N.W.S.K. and H.D. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: NIR, near-infrared; SWNT, single-walled carbon nanotube; AFM, atomic force microscopy; PL, phospholipid; PEG, polyethylene glycol; FA, folic acid; FR, folate receptor.

  10. Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes.

    PubMed

    Im, Jong-Kwon; Heo, Jiyong; Boateng, Linkel K; Her, Namguk; Flora, Joseph R V; Yoon, Jaekyung; Zoh, Kyung-Duk; Yoon, Yeomin

    2013-06-15

    Ultrasonic (US) and single-walled carbon nanotube (SWNT)-catalyzed ultrasonic (US/SWNT) degradation of a pharmaceutical (PhAC) mixture of acetaminophen (AAP) and naproxen (NPX) used as analgesics was carried out in water. In the absence of SWNTs, maximum degradations of AAP and NPX occurred at a high frequency (1000 kHz) and under acidic conditions (pH 3) and different solution temperatures (25 °C at 28 kHz and 35 °C at 1000 kHz) during US reactions. Rapid degradation of PhACs occurred within 10 min at 28 kHz (44.5% for AAP; 90.3% for NPX) and 1000 kHz (39.2% for AAP; 74.8% for NPX) at a SWNT concentration of 45 mgL(-1) under US/SWNT process, compared with 28 kHz (5.2% for AAP; 10.6% for NPX) and 1000 kHz (29.1% for AAP; 46.2% for NPX) under US process. Degradation was associated with the dispersion of SWNTs; small particles acted as nuclei during US reactions, enhancing the H2O2 production yield. NPX removal was greater than AAP removal under all US-induced reaction and SWNT adsorption conditions, which is governed by the chemical properties of PhACs. Based on the results, the optimal treatment performance was observed at 28 kHz with 45 mgL(-1) SWNTs (US/SWNT) within 10 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  12. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  13. Interaction between fullerenes and single-wall carbon nanotubes: the influence of fullerene size and electronic structure.

    PubMed

    Hao, Jian; Guan, Lunhui; Guo, Xihong; Lian, Yongfu; Zhao, Shixiong; Dong, Jinquan; Yang, Shangyuan; Zhang, Hong; Sun, Baoyun

    2011-09-01

    A series of fullerenes and endohedral metallofullerenes peapods have been synthesized by supercritical method in high filling rate. The interaction between SWNTs and various kinds of fullerenes (C60, C70, C78, C84) and metallofullerenes (Gd@C82, Er@C82, Ho@C82, Y@C82) has been further investigated. The slight blue shift of G-band in Raman spectra with respect to pristine SWNTs was attributed to the charge transfer from SWNTs to fullerenes cage. The obvious RBM shift strongly depended on the distance between the inner wall of the SWNTs and the fullerene cage and also partly associated with the electronic structure of the fullerene. These results indicated that the interaction between fullerenes and SWNTs, which was considered to be the van de walls interaction, can be influenced by the cage size and the kind of fullerenes.

  14. Carbon nanotube/biocompatible bola-amphiphile supramolecular biohybrid materials: preparation and their application in bacterial cell agglutination.

    PubMed

    Yu, Guocan; Li, Jinying; Yu, Wei; Han, Chengyou; Mao, Zhengwei; Gao, Changyou; Huang, Feihe

    2013-11-26

    Supramolecular biohybrid materials were successfully constructed driven by non-covalent interactions between three biocompatible bolaform amphiphiles and single walled carbon nanotubes (SWNTs). The existence of galactoses in these supramolecular systems endowed the hybrid materials with interesting bio-function. By introducing the SWNTs as semi-flexible platforms, these supramolecular biohybrid materials display excellent agglutination ability for E. coli. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identifying and counting point defects in carbon nanotubes.

    PubMed

    Fan, Yuwei; Goldsmith, Brett R; Collins, Philip G

    2005-12-01

    The prevailing conception of carbon nanotubes and particularly single-walled carbon nanotubes (SWNTs) continues to be one of perfectly crystalline wires. Here, we demonstrate a selective electrochemical method that labels point defects and makes them easily visible for quantitative analysis. High-quality SWNTs are confirmed to contain one defect per 4 microm on average, with a distribution weighted towards areas of SWNT curvature. Although this defect density compares favourably to high-quality, silicon single-crystals, the presence of a single defect can have tremendous electronic effects in one-dimensional conductors such as SWNTs. We demonstrate a one-to-one correspondence between chemically active point defects and sites of local electronic sensitivity in SWNT circuits, confirming the expectation that individual defects may be critical to understanding and controlling variability, noise and chemical sensitivity in SWNT electronic devices. By varying the SWNT synthesis technique, we further show that the defect spacing can be varied over orders of magnitude. The ability to detect and analyse point defects, especially at very low concentrations, indicates the promise of this technique for quantitative process analysis, especially in nanoelectronics development.

  16. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  17. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes are capable of penetrating the cell membrane and are widely considered as potential carriers for gene or drug delivery. Because the C-C and C=C bonds in carbon nanotubes are nonpolar, functionalization is required for carbon nanotubes to interact with genes or drugs as well as to improve their biocompatibility. In this study, polyethylenimine (PEI)-functionalized single-wall (PEI-NH-SWNTs) and multiwall carbon nanotubes (PEI-NH-MWNTs) were produced by direct amination method. PEI functionalization increased the positive charge on the surface of SWNTs and MWNTs, allowing carbon nanotubes to interact electrostatically with the negatively charged small interfering RNAs (siRNAs) and to serve as nonviral gene delivery reagents. PEI-NH-MWNTs and PEI-NH-SWNTs had a better solubility in water than pristine carbon nanotubes, and further removal of large aggregates by centrifugation produced a stable suspension of reduced particle size and improved homogeneity and dispersity. The amount of grafted PEI estimated by thermogravimetric analysis was 5.08% (w/w) and 5.28% (w/w) for PEI-NH-SWNTs and PEI-NH-MWNTs, respectively. For the assessment of cytotoxicity, various concentrations of PEI-NH-SWNTs and PEI-NH-MWNTs were incubated with human cervical cancer cells, HeLa-S3, for 48 h. PEI-NH-SWNTs and PEI-NH-MWNTs induced cell deaths in a dose-dependent manner but were less cytotoxic compared to pure PEI. As determined by electrophoretic mobility shift assay, siRNAs directed against glyceraldehyde-3-phosphate dehydrogenase (siGAPDH) were completely associated with PEI-NH-SWNTs or PEI-NH-MWNTs at a PEI-NH-SWNT/siGAPDH or PEI-NH-MWNT/siGAPDH mass ratio of 80:1 or 160:1, respectively. Furthermore, PEI-NH-SWNTs and PEI-NH-MWNTs successfully delivered siGAPDH into HeLa-S3 cells at PEI-NH-SWNT/siGAPDH and PEI-NH-MWNT/siGAPDH mass ratios of 1:1 to 20:1, resulting in suppression of the mRNA level of GAPDH to an extent similar to that of DharmaFECT, a common transfection

  18. Electron diffraction and microscopy study of nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan

    Carbon nanotubes have many excellent properties that are strongly influenced by their atomic structure. The realization of the ultimate potential of carbon nanotubes in technological applications necessitates a precise control of the structure of as-grown nanotubes as well as the identification of their atomic structures. Transmission electron microscopy (TEM) is a technique that can deliver this by combining the high resolution imaging and electron diffraction simultaneously. In this study, a new catalyst system (the Co/Si) was investigated in the production of single-walled carbon nanotubes (SWNTs) by laser ablation. It was discovered that the Co/Si mixture as a catalyst was as successful as the Ni/Co in the synthesis of SWNTs. The isolated individual SWNTs were examined by using nanobeam electron diffraction for the structure identification and it was found that carbon nanotubes grown by this catalyst mixture tend to be slightly more metallic. The electron diffraction technique has been refined to establish a new methodology to determine the chirality of each shell in a carbon nanotube and it has been applied to determine the atomic structure of double-walled carbon nanotubes (DWNT), few-walled carbon nanotubes (FWNT) and multi-walled carbon nanotubes (MWNT). We observed that there is no strong correlation in the structure of two adjacent shells in DWNTs. Several FWNTs and MWNTs have been examined by our new electron diffraction method to determine their atomic structures and to test the efficiency and the reliability of this method for structure identification. We now suggest that a carbon nanotube of up to 25 shells can be studied and the chirality of each shell can be identified by this new technique. The guidelines for the automation of such procedure have been laid down and explained in this work. The atomic structure of tungsten disulfide (WS2) nanotubes was studied by using the methods developed for the structure determination of carbon nanotubes. The WS2

  19. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  20. Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting

    NASA Astrophysics Data System (ADS)

    Ou, Zhongmin; Wu, Baoyan; Xing, Da; Zhou, Feifan; Wang, Huiying; Tang, Yonghong

    2009-03-01

    The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin αvβ3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin αvβ3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin αvβ3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin αvβ3-positive U87MG cells with low cellular toxicity, while for integrin αvβ3-negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.

  1. Chemistry of carbon nanomaterials: Uses of lithium nanotube salts in organic syntheses and functionalization of graphite

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Jayanta

    The effective utilization of carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs) and graphite, has been hindered due to difficulties (poor solubility, poly-dispersity) in processing. Therefore, a high degree of sidewall functionalization, either covalent or non-covalent, is often required to overcome these difficulties as the functionalized nanomaterials exhibit better solubility (either in organic solvents or in water), dispersity, manipulation, and processibility. This thesis presents a series of convenient and efficient organic synthetic routes to functionalize carbon nanomaterials. Carbon nanotube salts, prepared by treating SWNTs with lithium in liquid ammonia, react readily with aryl halides to yield aryl-functionalized SWNTs. These arylated SWNTs are soluble in methanol and water upon treatment with oleum. Similarly, SWNTs can be covalently functionalized by different heteroatoms (nitrogen, oxygen, and sulfur). Using the reductive alkylation approach, a synthetic scheme is designed to prepare long chain carboxylic acid functionalized SWNTs [SWNTs-(RCOOH)] that can react with (1) amine-terminated polyethylene glycol (PEG) chains to yield water-soluble biocompatible PEGylated SWNTs that are likely to be useful in a variety of biomedical applications; (2) polyethyleneimine (PEI) to prepare a SWNTs-PEI based adsorbent material that shows a four-fold improvement in the adsorption capacity of carbon dioxide over commonly used materials, making it useful for regenerable carbon dioxide removal in spaceflight; (3) chemically modified SWNTs-(RCOOH) to permit covalent bonding to the nylon matrix, thus allowing the formation of nylon 6,10 and nylon 6,10/SWNTs-(RCOOH) nanocomposites. Furthermore, we find that the lithium salts of carbon nanotubes serve as a source of electrons to induce polymerization of simple alkenes and alkynes onto the surface of carbon nanotubes. In the presence of sulfide/disulfide bonds, SWNT salts can initiate the single electron

  2. New multifunctional porous materials based on inorganic-organic hybrid single-walled carbon nanotubes: gas storage and high-sensitive detection of pesticides.

    PubMed

    Wang, Feng; Zhao, Jinbo; Gong, Jingming; Wen, Lili; Zhou, Li; Li, Dongfeng

    2012-09-10

    Single-walled carbon nanotubes (SWNTs) that are covalently functionalized with benzoic acid (SWNT-PhCOOH) can be integrated with transition-metal ions to form 3D porous inorganic-organic hybrid frameworks (SWNT-Zn). In particular, N(2)-adsorption analysis shows that the BET surface area increases notably from 645.3 to 1209.9 m(2)  g(-1) for SWNTs and SWNT-Zn, respectively. This remarkable enhancement in the surface area of SWNT-Zn is presumably due to the microporous motifs from benzoates coordinated to intercalated zinc ions between the functionalized SWNTs; this assignment was also corroborated by NLDFT pore-size distributions. In addition, the excess-H(2)-uptake maximum of SWNT-Zn reaches about 3.1 wt. % (12 bar, 77 K), which is almost three times that of the original SWNTs (1.2 wt. % at 12 bar, 77 K). Owing to its inherent conductivity and pore structure, as well as good dispersibility, SWNT-Zn is an effective candidate as a sensitive electrochemical stripping voltammetric sensor for organophosphate pesticides (OPs): By using solid-phase extraction (SPE) with SWNT-Zn-modified glassy carbon electrode, the detection limit of methyl parathion (MP) is 2.3 ng mL(-1). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carbon nanotube materials for hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption onmore » planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.« less

  4. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    PubMed Central

    2013-01-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

  5. Directed Growth of Carbon Nanotubes Across Gaps

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Meyyapan, Meyya

    2008-01-01

    An experiment has shown that when single-walled carbon nanotubes (SWNTs) are grown by chemical vapor deposition in the presence of an electric field of suitable strength, the nanotubes become aligned along the electric field. In an important class of contemplated applications, one would exploit this finding in fabricating nanotube transistors; one would grow SWNTs across gaps between electrodes that would serve, subsequently, as source and drain contacts during operation of the transistors. In preparation for the experiment, a multilayer catalyst comprising a 20-nmthick underlayer of iridium (platinum group), a 1-nm-thick middle layer of iron, and a 0.2-nm-thick outer layer of molybdenum was ion-beam sputtered onto a quartz substrate. A 25 micrometers-diameter iron wire was used as a shadow mask during the sputtering to create a 25 micrometers gap in the catalyst. Then electrical leads were connected to the catalyst areas separated by the gap so that these catalyst areas would also serve as electrodes. The substrate as thus prepared was placed in a growth chamber that consisted of a quartz tube of 1-in. (2.54-cm) diameter enclosed in a furnace. SWNTs of acceptably high quantity and quality were grown in 10 minutes with methane at atmospheric pressure flowing through the chamber at a rate of 1,000 standard cubic centimeters per minute at a temperature of 900 C. To prevent oxidation of the SWNTs, the chamber was purged with 99.999-percent pure argon before and after growth, and the chamber was cooled to less than 300 C before opening it to the atmosphere after growth. When no voltage was applied across the gap, the SWNTs grew in random directions extending out from the edges of the catalyst at the gap. When a potential of 10 V was applied between the catalyst/electrode areas to create an electric field across the gap, the SWNTs grew across the gap, as shown in the figure.

  6. Recycling Strategy for Fabricating Low-Cost and High-Performance Carbon Nanotube TFT Devices.

    PubMed

    Yu, Xiaoqin; Liu, Dan; Kang, Lixing; Yang, Yi; Zhang, Xiaopin; Lv, Qianjin; Qiu, Song; Jin, Hehua; Song, Qijun; Zhang, Jin; Li, Qingwen

    2017-05-10

    High-purity semiconducting single-walled carbon nanotubes (s-SWNTs) can be obtained by conjugated polymer wrapping. However, further purification of sorted s-SWNTs and high costs of raw materials are still challenges to practical applications. It is inevitable that a lot of polymers still cover the surface of s-SWNTs after separation, and the cost of the polymer is relatively higher than that of SWNTs. Here, we demonstrated a facile isolated process to improve the quality of s-SWNT solutions and films significantly. Compared with the untreated s-SWNTs, the contact resistance between the s-SWNT and the electrode is reduced by 20 times, and the thin-film transistors show 300% enhancement of current density. In this process, most of the polymers can be recycled and reused directly without any purification, which can greatly decrease the cost for s-SWNT separation. The results presented herein demonstrate a new scalable and low-cost approach for large-scale application of s-SWNTs in the electronics industry.

  7. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes

    PubMed Central

    Ghosh, Debadyuti; Bagley, Alexander F.; Na, Young Jeong; Birrer, Michael J.; Bhatia, Sangeeta N.; Belcher, Angela M.

    2014-01-01

    Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950–1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery. PMID:25214538

  8. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes.

    PubMed

    Ghosh, Debadyuti; Bagley, Alexander F; Na, Young Jeong; Birrer, Michael J; Bhatia, Sangeeta N; Belcher, Angela M

    2014-09-23

    Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950-1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.

  9. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    PubMed Central

    2009-01-01

    Background Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Results Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high

  10. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells.

    PubMed

    Xiao, Yan; Gao, Xiugong; Taratula, Oleh; Treado, Stephen; Urbas, Aaron; Holbrook, R David; Cavicchi, Richard E; Avedisian, C Thomas; Mitra, Somenath; Savla, Ronak; Wagner, Paul D; Srivastava, Sudhir; He, Huixin

    2009-10-02

    Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies

  11. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  12. Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip

    DOEpatents

    Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin

    2010-06-01

    The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.

  13. Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles

    NASA Technical Reports Server (NTRS)

    Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We investigate energetics and structure of circular and polygonal single wall carbon nanotubes (SWNTs) using large scale molecular simulations on NAS SP2, motivated by their unusual electronic and magnetic properties. The circular tori are formed by bending tube (no net whereas the polygonal tori are constructed by turning the joint of two tubes of (n, n), (n+1, n-1) and (n+2, n-2) with topological pentagon-heptagon defect, in which n =5, 8 and 10. The strain energy of circular tori relative to straight tube decreases by I/D(sup 2) where D is torus diameter. As D increases, these tori change from buckling to an energetically stable state. The stable tori are perfect circular in both toroidal and tubular geometry with strain less than 0. 03 eV/atom when D greater than 10, 20 and 40 nm for torus (5,5), (8,8) and (10, 10). Polygonal tori, whose strain is proportional to the number of defects and I/D are energetically stable even for D less than 10 nm. However, their strain is higher than that of perfect circular tori. In addition, the local maximum strain of polygonal tori is much higher than that of perfect circular tori. It is approx. 0.03 eV/atom or less for perfect circular torus (5,5), but 0.13 and 0.21 eV/atom for polygonal tori (6,4)/(5,5) and (7,3)/(5,5). Therefore, we conclude that the circular tori with no topological defects are more energetically stable and kinetically accessible than the polygonal tori containing the pentagon-heptagon defects for the laser-grown SWNTs and Fullerene crop circles.

  14. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.

    2011-04-01

    Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real

  15. Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media.

    PubMed

    Afrooz, A R M Nabiul; Das, Dipesh; Murphy, Catherine J; Vikesland, Peter; Saleh, Navid B

    2016-08-01

    Porous media transport of engineered nanomaterials (ENMs) is typically assessed in a controlled single-particulate environment. Presence of a secondary particle (either natural or engineered) in the natural environment though likely, is rarely taken into consideration in assessing ENMs' transport behavior. This study systematically assesses the effect of a secondary ENM (i.e., pluronic acid modified single-walled carbon nanotubes, PA-SWNTs) on a primary particle (i.e., gold nanospheres, AuNSs) transport through saturated porous media under a wide range of aquatic conditions (1-100 mM NaCl). AuNS hetero-dispersions (i.e., with PA-SWNTs) are transported through saturated sand columns, and the transport behavior is compared to AuNS-only homo-dispersion cases, which display classical ionic strength-dependent behavior. AuNS hetero-dispersion, however, is highly mobile with little to no ionic strength-dependent effects. This study also assesses the role of pre-coating of the collectors with PA-SWNTs on AuNSs' mobility, thereby elucidating the role played by the order of introduction of the secondary particles. Pre-existence of the secondary particles in the porous media shows enhanced filtration of primary AuNSs. However, the presence of natural organic matter (NOM) slightly increases AuNS mobility through PA-SWNT coated sand at 10 mM ionic strength. The study results demonstrate that the presence and order of addition of the secondary particles strongly influence primary particles' mobility. Thus ENMs can demonstrate facilitated transport or enhanced removal, depending on the presence of the secondary particulate matter and background solution chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Parametric Study of Carbon Nanotube Production by Laser Ablation Process

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl

    2002-01-01

    Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.

  17. Optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of

  18. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  19. A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.

  20. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  1. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  2. Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

    NASA Astrophysics Data System (ADS)

    Nasir, Saleem; Islam, Saeed; Gul, Taza; Shah, Zahir; Khan, Muhammad Altaf; Khan, Waris; Khan, Aurang Zeb; Khan, Saima

    2018-05-01

    In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302-307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

  3. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    NASA Astrophysics Data System (ADS)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

  4. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    PubMed Central

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  5. Enhancement of high-resolution photoacoustic imaging with indocyanine green-conjugated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Phuc Nguyen, Van; Oh, Yunok; Ha, Kanglyeol; Oh, Junghwan; Kang, Hyun Wook

    2015-07-01

    The current study indicates the feasibility of photoacoustic imaging (PAI) enhanced with contrast agents. A single-element ultrasound transducer (20 MHz) was used to detect PA signals for image reconstruction. To improve PA sensitivity, single-walled carbon nanotubes (SWNTs) conjugated with indocyanine green (ICG) were injected into samples at various concentrations. PA signal amplitudes linearly increased with SWNT-ICG concentration owing to strong light absorption. Compared with SWNTs, SWNT-ICG augmented the signal intensity by approximately 2-fold (concentration: 300 nM). The enhanced optical absorption can allow the application of SWNT-ICG to enable PAI for specifically identifying tumors with high sensitivity.

  6. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.

    PubMed

    Zurek, Eva; Pickard, Chris J; Walczak, Brian; Autschbach, Jochen

    2006-11-02

    NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.

  7. Resistive sensing of gaseous nitrogen dioxide using a dispersion of single-walled carbon nanotubes in an ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Prabhash; Department of Nanoengineering, Samara State Aerospace University, 443086 Samara; Pavelyev, V.S.

    2016-06-15

    Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNTmore » force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.« less

  8. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  10. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  11. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  12. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  13. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  14. Laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  15. Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: a molecular dynamics study.

    PubMed

    Tian, Xingling; Yang, Zaixing; Zhou, Bo; Xiu, Peng; Tu, Yusong

    2013-05-28

    Alcohols are important products in chemical industry, but separating them from their aqueous solutions is very difficult due to the hydrophilic nature of alcohols. Based on molecular dynamics simulations, we observe a striking nanoscale drying phenomenon and suggest an energy-saving and efficient approach toward alcohol∕water separation by using single-walled carbon nanotubes (SWNTs). We use various common linear alcohols including C1-C6 1-alcohols and glycerol for demonstration (the phenol is also used as comparison). Our simulations show that when SWNTs are immersed in aqueous alcohols solutions, although the alcohols concentration is low (1 M), all kinds of alcohols can induce dehydration (drying) of nanotubes and accumulate inside wide [(13, 13)] and narrow [(6, 6) or (7, 7)] SWNTs. In particular, most kinds of alcohols inside the narrow SWNTs form nearly uniform 1D molecular wires. Detailed energetic analyses reveal that the preferential adsorption of alcohols over water inside nanotubes is attributed to the stronger dispersion interactions of alcohols with SWNTs than water. Interestingly, we find that for the wide SWNT, the selectivity for 1-alcohols increases with the number of alcohol's carbon atoms (Ncarbon) and exhibits an exponential law with respect to Ncarbon for C1-C5 1-alcohols; for narrow SWNTs, the selectivity for 1-alcohols is very high for methanol, ethanol, and propanol, and reaches a maximum when Ncarbon = 3. The underlying physical mechanisms and the implications of these observations for alcohol∕water separation are discussed. Our findings provide the possibility for efficient dehydration of aqueous alcohols (and other hydrophilic organic molecules) by using SWNT bundles∕membranes.

  16. Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tian, Xingling; Yang, Zaixing; Zhou, Bo; Xiu, Peng; Tu, Yusong

    2013-05-01

    Alcohols are important products in chemical industry, but separating them from their aqueous solutions is very difficult due to the hydrophilic nature of alcohols. Based on molecular dynamics simulations, we observe a striking nanoscale drying phenomenon and suggest an energy-saving and efficient approach toward alcohol/water separation by using single-walled carbon nanotubes (SWNTs). We use various common linear alcohols including C1-C6 1-alcohols and glycerol for demonstration (the phenol is also used as comparison). Our simulations show that when SWNTs are immersed in aqueous alcohols solutions, although the alcohols concentration is low (1 M), all kinds of alcohols can induce dehydration (drying) of nanotubes and accumulate inside wide [(13, 13)] and narrow [(6, 6) or (7, 7)] SWNTs. In particular, most kinds of alcohols inside the narrow SWNTs form nearly uniform 1D molecular wires. Detailed energetic analyses reveal that the preferential adsorption of alcohols over water inside nanotubes is attributed to the stronger dispersion interactions of alcohols with SWNTs than water. Interestingly, we find that for the wide SWNT, the selectivity for 1-alcohols increases with the number of alcohol's carbon atoms (Ncarbon) and exhibits an exponential law with respect to Ncarbon for C1-C5 1-alcohols; for narrow SWNTs, the selectivity for 1-alcohols is very high for methanol, ethanol, and propanol, and reaches a maximum when Ncarbon = 3. The underlying physical mechanisms and the implications of these observations for alcohol/water separation are discussed. Our findings provide the possibility for efficient dehydration of aqueous alcohols (and other hydrophilic organic molecules) by using SWNT bundles/membranes.

  17. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  18. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  19. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  20. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  1. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  2. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  3. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  4. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  5. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].

    PubMed

    Wu, Xiao-Bin; Wang, Jia; Wang, Rui; Xu, Ji-Ying; Tian, Qian; Yu, Jian-Yuan

    2009-10-01

    Raman spectroscopy is a powerful technique in the characterization of carbon nanotubes (CNTs). However, this spectral method is subject to two obstacles. One is spatial resolution, namely the diffraction limits of light, and the other is its inherent small Raman cross section and weak signal. To resolve these problems, a new approach has been developed, denoted tip-enhanced Raman spectroscopy (TERS). TERS has been demonstrated to be a powerful spectroscopic and microscopic technique to characterize nanomaterial or nanostructures. Excited by a focused laser beam, an enhanced electric field is generated in the vicinity of a metallic tip because of the surface plasmon polariton (SPP) and lightening rod effect. Consequently, Raman signal from the sample area illuminated by the enhanced field nearby the tip is enhanced. At the same time, the topography is obtained in the nanometer scale. The exact corresponding relationship between the localized Raman and the topography makes the Raman identification at the nanometer scale to be feasible. In the present paper, based on an inverted microscope and a metallic AFM tip, a tip-enhanced Raman system was set up. The radius of the Au-coated metallic tip is about 30 nm. The 532 nm laser passes through a high numerical objective (NA0.95) from the bottom to illuminate the tip to excite the enhanced electric field. Corresponding with the AFM image, the tip-enhanced near-field Raman of a 100 nm diameter single-walled carbon nanotube (SWNT) bundles was obtained. The SWNTs were prepared by arc method. Furthermore, the near-field Raman of about 3 SWNTs of the bundles was received with the spatial resolution beyond the diffraction limit. Compared with the far-field Raman, the enhancement factor of the tip-enhanced Raman is more than 230. With the super-diffraction spatial resolution and the tip-enhanced Raman ability, tip-enhanced Raman spectroscopy will play an important role in the nano-material and nano-structure characterization.

  6. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108.

    PubMed

    Wang, Ruhung; N Meredith, Alicea; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford

    2016-08-01

    Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity.

  7. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108

    PubMed Central

    Wang, Ruhung; Meredith, Alicea N.; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford

    2015-01-01

    Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity. PMID:26559437

  8. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  9. Graphene-carbon nanotube composite aerogel for selective detection of uric acid

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Tang, Jie; Wang, Zonghua; Qin, Lu-Chang

    2013-12-01

    Graphene and single-walled carbon nanotube (SWNT) composite aerogel has been prepared by hydrothermal synthesis. The restacking of graphene is effectively reduced by SWNTs inserted in between graphene layers in order to make available more active sites and reactive surface area. Electrochemical experiments show that the graphene-SWNT composite electrode has superior catalytic performance in selective detection of uric acid (UA).

  10. Enhancement of ambipolar characteristics in single-walled carbon nanotubes using C{sub 60} and fabrication of logic gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Steve; Nam, Ji Hyun; Koo, Ja Hoon

    2015-03-09

    We demonstrate a technique to convert p-type single-walled carbon nanotube (SWNT) network transistor into ambipolar transistor by thermally evaporating C{sub 60} on top. The addition of C{sub 60} was observed to have two effects in enhancing ambipolar characteristics. First, C{sub 60} served as an encapsulating layer that enhanced the ambipolar characteristics of SWNTs. Second, C{sub 60} itself served as an electron transporting layer that contributed to the n-type conduction. Such a dual effect enables effective conversion of p-type into ambipolar characteristics. We have fabricated inverters using our SWNT/C{sub 60} ambipolar transistors with gain as high as 24, along with adaptivemore » NAND and NOR logic gates.« less

  11. A theoretical study for mechanical contact between carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshiteru; Uda, Tsuyoshi; Ohno, Takahisa

    2005-03-01

    We have theoretically investigated motions of single-walled carbon nanotubes (SWNTs) which are mounted on a flat substrate layer of SWNTs by tight-binding molecular dynamics simulations. One of the most interesting motions is the conversion of force and torque, where the force and torque acting initially on the mounted tube finally results in the lateral motion and rolling of the supporting tubes in the substrate. This motion is well understood in terms of the total energy surface of the SWNT/SWNT system. It is suggested that an undulation of the total energy surface plays a role as an atomic-scale gear tooth in the field of nanomechanics, in spite of the atomically smooth surface of SWNT.

  12. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  13. Exciton antennas and concentrators from core-shell and corrugated carbon nanotube filaments of homogeneous composition.

    PubMed

    Han, Jae-Hee; Paulus, Geraldine L C; Maruyama, Ryuichiro; Heller, Daniel A; Kim, Woo-Jae; Barone, Paul W; Lee, Chang Young; Choi, Jong Hyun; Ham, Moon-Ho; Song, Changsik; Fantini, C; Strano, Michael S

    2010-10-01

    There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core-shell structures with radial gradients in the optical bandgap. We find an unusually sharp, reversible decay in photoemission that occurs as such filaments are cycled from ambient temperature to only 357 K, attributed to the strongly temperature-dependent second-order Auger process. Core-shell structures consisting of annular shells of mostly (6,5) SWNTs (E(g)=1.21 eV) and cores with bandgaps smaller than those of the shell (E(g)=1.17 eV (7,5)-0.98 eV (8,7)) demonstrate the concentration concept: broadband absorption in the ultraviolet-near-infrared wavelength regime provides quasi-singular photoemission at the (8,7) SWNTs. This approach demonstrates the potential of specifically designed collections of nanotubes to manipulate and concentrate excitons in unique ways.

  14. Photothermal optical coherence tomography for depth-resolved imaging of mesenchymal stem cells via single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Connolly, Emma; Murphy, Mary; Barron, Valerie; Leahy, Martin

    2014-03-01

    The progress in stem cell research over the past decade holds promise and potential to address many unmet clinical therapeutic needs. Tracking stem cell with modern imaging modalities are critically needed for optimizing stem cell therapy, which offers insight into various underlying biological processes such as cell migration, engraftment, homing, differentiation, and functions etc. In this study we report the feasibility of photothermal optical coherence tomography (PT-OCT) to image human mesenchymal stem cells (hMSCs) labeled with single-walled carbon nanotubes (SWNTs) for in vitro cell tracking in three dimensional scaffolds. PT-OCT is a functional extension of conventional OCT with extended capability of localized detection of absorbing targets from scattering background to provide depth-resolved molecular contrast imaging. A 91 kHz line rate, spectral domain PT-OCT system at 1310nm was developed to detect the photothermal signal generated by 800nm excitation laser. In general, MSCs do not have obvious optical absorption properties and cannot be directly visualized using PT-OCT imaging. However, the optical absorption properties of hMSCs can me modified by labeling with SWNTs. Using this approach, MSC were labeled with SWNT and the cell distribution imaged in a 3D polymer scaffold using PT-OCT.

  15. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  16. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  17. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  18. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.

    PubMed

    Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae

    2016-05-01

    Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Method for separating single-wall carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Hauge, Robert H. (Inventor); Kittrell, W. Carter (Inventor); Sivarajan, Ramesh (Inventor); Bachilo, Sergei M. (Inventor); Weisman, R. Bruce (Inventor); Smalley, Richard E. (Inventor); Strano, Michael S. (Inventor)

    2006-01-01

    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types.

  20. Synthesis Methods of Carbon Nanotubes and Related Materials

    PubMed Central

    Szabó, Andrea; Perri, Caterina; Csató, Anita; Giordano, Girolamo; Vuono, Danilo; Nagy, János B.

    2010-01-01

    The challenge on carbon nanotubes is still the subject of many research groups. While in the first years the focus was on the new synthesis methods, new carbon sources and support materials, recently, the application possibilities are the principal arguments of the studies. The three main synthesis methods discussed in this review are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. In the early stage of the nanotube production the first two methods were utilized mainly for the production of SWNTs while the third one produced mainly MWNTs. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. Single-walled (SWNT), multi-walled (MWNT) and coiled carbon nanotubes are produced. In some case, interesting carbonaceous materials are formed during the synthesis process, such as bamboo-like tubes, onions, horn-like structures. In this paper, we refer to the progresses made in the field of the synthesis techniques of carbon nanotubes in the last decade.

  1. Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell

    NASA Astrophysics Data System (ADS)

    Fujigaya, Tsuyohiko; Yamamoto, Yuki; Kano, Arihiro; Maruyama, Atsushi; Nakashima, Naotoshi

    2011-10-01

    The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL-g-PEG very homogeneously that avoids the non-specific binding of proteins on the SWNT surface. The experiment using the obtained supramolecular hybrid was carried out in vitro and a dramatic enhancement in the cell uptake efficiency compared to that of the SWNT/DNA hybrid without PLL-g-PEG was found.The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL

  2. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.

    PubMed

    Inoue, Ippei; Watanabe, Kiyoshi; Yamauchi, Hirofumi; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2014-10-01

    We designed and mass-produced a versatile protein supramolecule that can be used to manufacture a highly efficient dye-sensitized solar cell (DSSC). Twelve single-walled carbon-nanotube (SWNT)-binding and titanium-mineralizing peptides were genetically integrated on a cage-shaped dodecamer protein (CDT1). A process involving simple mixing of highly conductive SWNTs with CDT1 followed by TiO2 biomineralization produces a high surface-area/weight TiO2 -(anatase)-coated intact SWNT nanocomposite under environmentally friendly conditions. A DSSC with a TiO2 photoelectrode containing 0.2 wt % of the SWNT-TiO2 nanocomposite shows a current density improvement by 80% and a doubling of the photoelectric conversion efficiency. The SWNT-TiO2 nanocomposite transfers photon-generated electrons from dye molecules adsorbed on the TiO2 to the anode electrode swiftly. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)

    DTIC Science & Technology

    2006-08-01

    flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow

  4. Visible-Blind UV Photodetector Based on Single-Walled Carbon Nanotube Thin Film/ZnO Vertical Heterostructures.

    PubMed

    Li, Guanghui; Suja, Mohammad; Chen, Mingguang; Bekyarova, Elena; Haddon, Robert C; Liu, Jianlin; Itkis, Mikhail E

    2017-10-25

    Ultraviolet (UV) photodetectors based on heterojunctions of conventional (Ge, Si, and GaAs) and wide bandgap semiconductors have been recently demonstrated, but achieving high UV sensitivity and visible-blind photodetection still remains a challenge. Here, we utilized a semitransparent film of p-type semiconducting single-walled carbon nanotubes (SC-SWNTs) with an energy gap of 0.68 ± 0.07 eV in combination with a molecular beam epitaxy grown n-ZnO layer to build a vertical p-SC-SWNT/n-ZnO heterojunction-based UV photodetector. The resulting device shows a current rectification ratio of 10 3 , a current photoresponsivity up to 400 A/W in the UV spectral range from 370 to 230 nm, and a low dark current. The detector is practically visible-blind with the UV-to-visible photoresponsivity ratio of 10 5 due to extremely short photocarrier lifetimes in the one-dimensional SWNTs because of strong electron-phonon interactions leading to exciton formation. In this vertical configuration, UV radiation penetrates the top semitransparent SC-SWNT layer with low losses (10-20%) and excites photocarriers within the n-ZnO layer in close proximity to the p-SC-SWNT/n-ZnO interface, where electron-hole pairs are efficiently separated by a high built-in electric field associated with the heterojunction.

  5. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  6. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors.

    PubMed

    Zhao, Xiulan; Yang, Feng; Chen, Junhan; Ding, Li; Liu, Xiyan; Yao, Fengrui; Li, Meihui; Zhang, Daqi; Zhang, Zeyao; Liu, Xu; Yang, Juan; Liu, Kaihui; Li, Yan

    2018-04-19

    Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.

  7. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  8. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    PubMed

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  9. Electromechanical Actuator Performance of Carbon Nanotube Fibers

    NASA Astrophysics Data System (ADS)

    Munoz, Edgar; Kozlov, Mikhail; Collins, Steve; Dalton, Alan B.; Razal, Joselito; Zakhidov, Anvar A.; Baughman, Ray H.

    2003-03-01

    Single-walled carbon nanotube (SWNT) assemblies (sheets and fibers) have been investigated as electromechanical actuators. SWNT fibers provide maximum isometric actuator stress values of 20-26 MPa, which is about 5-10 times larger that those corresponding to SWNT sheets. This actuation performance is about 100 timer larger than the stress generation capability of natural muscle. The effect of employing different electrolytes as well as SWNTs produced by different routes, and the potential applications of these actuators will be also discussed.

  10. Process for separating metallic from semiconducting single-walled carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  11. High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films.

    PubMed

    Li, Jinzhu; Gao, Yun; Ma, Wenjun; Liu, Luqi; Zhang, Zhong; Niu, Zhiqiang; Ren, Yan; Zhang, Xiaoxian; Zeng, Qingshen; Dong, Haibo; Zhao, Duan; Cai, Le; Zhou, Weiya; Xie, Sishen

    2011-09-01

    We develop a facile, effective and filter free infiltration method to fabricate high performance, freestanding and superthin epoxy nanocomposite films with directly synthesized Sing-Walled Carbon Nanotubes (SWNTs) film as reinforcement skeleton. It is found that the thicknesses of the nanocomposite films can be easily controlled in the range of 0.5-3 μm by dripping target amount of acetone diluted epoxy through the skeleton film. The consequent measurements reveal that the mechanical and electrical properties of SWNTs/epoxy nanocomposite films could be tailored in a quite wide range. For examples, the Young's modulus of nanocomposite films can be tuned from 10 to 30 GPa, and the electrical conductivity can be ranged from 1000 S·cm(-1) to be insulated. Moreover, high load transfer efficiency in the nanocomposite films is demonstrated by the measured ultrahigh Raman bands shift rate (-30 ± 5 cm(-1)/% strain) under strain. The high effective modulus is derived as 774 ± 70 GPa for SWNTs inside this nanocomposite film.

  12. In situ evidence for chirality-dependent growth rates of individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rao, Rahul; Liptak, David; Cherukuri, Tonya; Yakobson, Boris I.; Maruyama, Benji

    2012-03-01

    Chiral-selective growth of single-walled carbon nanotubes (SWNTs) remains a great challenge that hinders their use in applications such as electronics and medicine. Recent experimental and theoretical reports have begun to address this problem by suggesting that selectivity may be achieved during nucleation by changing the catalyst composition or structure. Nevertheless, to establish a rational basis for chiral-selective synthesis, the underlying mechanisms governing nucleation, growth, and termination of SWNTs must be better understood. To this end, we report the first measurements of growth rates of individual SWNTs through in situ Raman spectroscopy and correlate them with their chiral angles. Our results show that the growth rates are directly proportional to the chiral angles, in agreement with recent theoretical predictions. Importantly, the evidence singles out the growth stage as responsible for the chiral distribution—distinct from nucleation and termination which might also affect the final product distribution. Our results suggest a route to chiral-selective synthesis of SWNTs through rational synthetic design strategies based on kinetic control.

  13. Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.

    PubMed

    Eckstein, Klaus H; Hartleb, Holger; Achsnich, Melanie M; Schöppler, Friedrich; Hertel, Tobias

    2017-10-24

    Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.

  14. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    PubMed

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  15. 76 FR 26186 - Multi-Walled Carbon Nanotubes; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... 2070-AB27 Multi-Walled Carbon Nanotubes; Significant New Use Rule AGENCY: Environmental Protection... as multi-walled carbon nanotubes (MWCNT) which was the subject of premanufacture notice (PMN) P-08... (due to confidentiality claims) as multi-walled carbon nanotubes (PMN P-08-199). This action requires...

  16. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    PubMed

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  17. Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes.

    PubMed

    Krajcik, Rasti; Jung, Adrian; Hirsch, Andreas; Neuhuber, Winfried; Zolk, Oliver

    2008-05-02

    The lipophilic nature of biological membranes restricts the direct intracellular delivery of potential drugs and molecular probes and makes intracellular transport one of the key problems in gene therapy. Because of their ability to cross cell membranes, single walled carbon nanotubes (SWNTs) are of interest as carriers of biologically active molecules, such as small interfering RNAs (siRNAs). We developed a strategy for chemical functionalization of SWNTs with hexamethylenediamine (HMDA) and poly(diallyldimethylammonium)chloride (PDDA) to obtain a material that was able to bind negatively charged siRNA by electrostatic interactions. PDDA-HMDA-SWNTs exhibited negligible cytotoxic effects on isolated rat heart cells at concentrations up to 10mg/l. PDDA-HMDA-SWNTs loaded with extracellular signal-regulated kinase (ERK) siRNA were able to cross the cell membrane and to suppress expression of the ERK target proteins in primary cardiomyocytes by about 75%. PDDA-functionalized SWNTs thus present an effective carrier system for applications in siRNA-mediated gene silencing.

  18. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells

    DOE PAGES

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; ...

    2017-11-10

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less

  19. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less

  20. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  1. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  2. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    PubMed Central

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  3. Selective dispersion of high-purity semiconducting carbon nanotubes using indacenodithiophene-based conjugated polymer

    NASA Astrophysics Data System (ADS)

    Ji, Dongseob; Lee, Seung-Hoon; Noh, Yong-Young

    2018-01-01

    The facile sorting of highly pure semiconducting single-walled carbon nanotubes (s-SWNTs) is still one of the challenging issues for the next-generation wearable electronic devices such as various opto-electric devices and field-effect transistors (FETs). Herein, we demonstrate the selective dispersion of high-purity s-SWNTs using indacenodithiophene-co-benzothiadiazole (IDT-BT), which is a state-of-the-art high-mobility conjugated polymer. By the selective wrapping of the IDT-BT copolymer, SWNTs of chiral indices (6, 5), (7, 5), (7, 6), (8, 4), (9, 4), (8, 6), (8, 7), (10, 5), (9, 7), (10, 6), (11, 1), and (13, 3) are sorted. Finally, the networked s-SWNT film formed by spin-coating is applied as an active layer of FETs that exhibited ambipolar characteristics with an average mobility of 2.28 cm2/V s in the p-channel and 2.10 cm2/V s in the n-channel. The ON/OFF ratios in both p- and n-channels are approximately 105, which supports the high purity separation of s-SWNTs wrapped by IDT-BT.

  4. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  5. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  6. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  7. Elastomer Reinforced with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  8. Double-walled silicon nanotubes: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Lima, Matheus P.

    2018-02-01

    The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

  9. The performance of fast-moving low-voltage electromechanical actuators based on single-walled carbon nanotubes and ionic liquids

    NASA Astrophysics Data System (ADS)

    Mukai, Ken; Asaka, Kinji; Hata, Kenji; Oike, Hideaki

    2011-12-01

    In this paper, we study the details of the mechanical and electrical properties of polymer-free single-walled carbon nanotube (SWNT) sheets containing different contents of ionic liquids (ILs). The polymer-free SWNT sheets were prepared by a previously reported finding that millimeter-long 'super-growth' carbon nanotubes (SG-SWNTs), produced by a water-assisted modified chemical vapor deposition (CVD) method, associate together tightly with ILs, affording a free-standing sheet with a superb conductivity. The Young's modulus, breaking strength and the electrical conductivity of the SG-SWNT sheet with 67 wt% 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) showed large values, 0.63 GPa, 20 MPa, and 147 S cm-1, respectively, although it has large amounts of ILs. We also measure the frequency dependence of the displacement of the actuator composed of SG-SWNT sheets sandwiching an ionic-gel electrolyte layer (SG-SWNT actuator). At more than 50 wt% of EMITFSI content, the frequency response of the actuation of the SG-SWNT actuator is flat up to around 100 Hz. The results of the displacement measurements are discussed in relation to the mechanical and electrical properties of the SG-SWNT actuators.

  10. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  11. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Functionalized multi-walled carbon...

  12. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Functionalized multi-walled carbon...

  13. Electrical properties of 0.4 cm long single walled nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Zhen

    2005-03-01

    Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).

  14. Electromechanics in MoS2 and WS2: nanotubes vs. monolayers

    PubMed Central

    Ghorbani-Asl, Mahdi; Zibouche, Nourdine; Wahiduzzaman, Mohammad; Oliveira, Augusto F.; Kuc, Agnieszka; Heine, Thomas

    2013-01-01

    The transition-metal dichalcogenides (TMD) MoS2 and WS2 show remarkable electromechanical properties. Strain modifies the direct band gap into an indirect one, and substantial strain even induces an semiconductor-metal transition. Providing strain through mechanical contacts is difficult for TMD monolayers, but state-of-the-art for TMD nanotubes. We show using density-functional theory that similar electromechanical properties as in monolayer and bulk TMDs are found for large diameter TMD single- (SWNT) and multi-walled nanotubes (MWNTs). The semiconductor-metal transition occurs at elongations of 16%. We show that Raman signals of the in-plane and out-of-plane lattice vibrations depend significantly and linearly on the strain, showing that Raman spectroscopy is an excellent tool to determine the strain of the individual nanotubes and hence monitor the progress of nanoelectromechanical experiments in situ. TMD MWNTs show twice the electric conductance compared to SWNTs, and each wall of the MWNTs contributes to the conductance proportional to its diameter. PMID:24129919

  15. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor

  16. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  17. Synthesis of SWNT/Pt nanocomposites for their effective role in hydrogen storage applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Andreas, Rossos; Nehra, S. P.

    2018-05-01

    Single Wall Carbon Nanotubes (SWNTs) decorated with platinum were synthesized for hydrogen storage applications. Platinum was deposited on the nanotubes using hexachloroplatinic acid (H2PtCl6.6H2O) as a precursor. Commercial SWNTs were also used to compare the results. The obtained SWNTs/Pt nanocomposite was characterized by various techniques such as powder X-ray diffractrometry (XRD), Raman Spectroscopy and Scanning Electron Microscopy (SEM). Furthermore, in the case of SWNTs/Pt, Pt nanoparticles are found to be uniformly dispersed and bound to the SWNTs acting like a single atom catalyst.

  18. Thermal conversion of electronic and electrical properties of AuCl3-doped single-walled carbon nanotubes.

    PubMed

    Yoon, Seon-Mi; Kim, Un Jeong; Benayad, Anass; Lee, Il Ha; Son, Hyungbin; Shin, Hyeon-Jin; Choi, Won Mook; Lee, Young Hee; Jin, Yong Wan; Lee, Eun-Hong; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min

    2011-02-22

    By using carbon-free inorganic atomic layer involving heat treatment from 150 to 300 °C, environmentally stable and permanent modulation of the electronic and electrical properties of single-walled carbon nanotubes (SWCNTs) from p-type to ambi-polar and possibly to n-type has been demonstrated. At low heat treatment temperature, a strong p-doping effect from Au(3+) ions to CNTs due to a large difference in reduction potential between them is dominant. However at higher temperature, the gold species are thermally reduced, and thermally induced CNT-Cl finally occurs by the decomposition reaction of AuCl(3). Thus, in the AuCl(3)-doped SWCNTs treated at higher temperature, the p-type doping effect is suppressed and an n-type property from CNT-Cl is thermally induced. Thermal conversion of the majority carrier type of AuCl(3)-doped SWNTs is systematically investigated by combining various optical and electrical tools.

  19. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  20. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Tigelaar, D. M.; Watson, K. A.; Smith, J. G., Jr.; Lillehei, P. T.; Connell, J. W.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge build-up have been under investigation as part of a materials development activity. In the work described herein, single-walled carbon nanotubes (SWNT) solutions were dispersed in solutions of a novel ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. The ionomer was used to aid in the dispersal of SWNTs in to a soluble, low color space environmentally durable polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 3 weight % in a polyimide solution without visual agglomeration. The films were further characterized for their electrical and mechanical properties.

  1. Multiplexed Five-Color Molecular Imaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tags in the Near-Infrared

    PubMed Central

    Liu, Zhuang; Tabakman, Scott; Sherlock, Sarah; Li, Xiaolin; Chen, Zhuo; Jiang, Kaili; Fan, Shoushan; Dai, Hongjie

    2011-01-01

    Single-walled carbon nanotubes (SWNTs) with five different C13/C12 isotope compositions and well-separated Raman peaks have been synthesized and conjugated to five targeting ligands in order to impart molecular specificity. Multiplexed Raman imaging of live cells has been carried out by highly specific staining of cells with a five-color mixture of SWNTs. Ex vivo multiplexed Raman imaging of tumor samples uncovers a surprising up-regulation of epidermal growth factor receptor (EGFR) on LS174T colon cancer cells from cell culture to in vivo tumor growth. This is the first time five-color multiplexed molecular imaging has been performed in the near-infrared (NIR) region under a single laser excitation. Near zero interfering background of imaging is achieved due to the sharp Raman peaks unique to nanotubes over the low, smooth autofluorescence background of biological species. PMID:21442006

  2. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  3. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  4. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes.

    PubMed

    Taghdisi, Seyed Mohammad; Emrani, Somayeh Sarreshtehdar; Tabrizian, Kaveh; Ramezani, Mohammad; Abnous, Khalil; Emrani, Ahmad Sarreshtehdar

    2014-05-01

    Lead contamination is a serious environmental problem with toxic effects in human. Here, we developed a simple and sensitive sensing method employing ATTO 647N/aptamer-SWNT ensemble for detection of Pb(2+). This method is based on the super quenching capability of single-walled carbon nanotubes (SWNTs), high affinity of the aptamer toward Pb(2+) and different propensities of ATTO 647N-aptamer and ATTO 647N-aptamer/Pb(2+) complex for adsorption on SWNTs. In the absence of Pb(2+), the fluorescence of ATTO 647N-aptamer is efficiently quenched by SWNTs. Upon addition of Pb(2+), the aptamer binds to its target, leading to the formation of a G-quadruplex/Pb(2+) complex and does not interact with SWNTs and ATTO 647N-aptamer starts fluorescing. This sensor exhibited a high selectivity toward Pb(2+) and a limit of detection (LOD) as low as 0.42 nM was obtained. Also this sensor could be applied for detection of Pb(2+) ions in tap water and biological sample like serum with high sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Study of gas adsorption on as-produced and modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rawat, Dinesh Singh

    Volumetric adsorption isotherm measurements were used to study the adsorption characteristics of Ethane (C2H6) and Butane (C 4H10) on as-produced single-walled carbon nanotubes. The binding energy of the adsorbed alkane molecule was found to increase with increasing carbon chain length. Two adsorption substeps were obtained for each alkane molecule. However, the size of the high pressure substep was found to be gradually smearing with the increase in size of the adsorbed molecule. This phenomenon is interpreted as size entropy effect for linear molecules. This interpretation was also verified by determining the specific surface area of the substrate using linear molecules of different sizes. Kinetics measurements of alkane adsorption on SWNTs were also conducted and their dependence on the molecular length was determined. Similar adsorption measurements were performed for Argon (Ar) on as-produced single-walled carbon nanotubes and nanotubes that were structurally modified using acid treatment. Enhancement of the sorptive capacity and the presence of two distinct kinetics of gas adsorption verified partial opening of single walled carbon nanotubes as a result of chemical treatment. Mutiwalled carbon nanotubes were exposed to oxygen plasma treatment for varying time periods. Afterwards, adsorption measurements of Methane (CH 4) were conducted on untreated and oxygen plasma treated tubes. The presence of an additional substep, after exposing multiwalled carbon nanotubes to oxygen plasma for varying time periods, suggested progressive cleaning of nanotube surface.

  6. Flame Synthesis Of Single-Walled Carbon Nanotubes And Nanofibers

    NASA Technical Reports Server (NTRS)

    Wal, Randy L. Vander; Berger, Gordon M.; Ticich, Thomas M.

    2003-01-01

    Carbon nanotubes are widely sought for a variety of applications including gas storage, intercalation media, catalyst support and composite reinforcing material [1]. Each of these applications will require large scale quantities of CNTs. A second consideration is that some of these applications may require redispersal of the collected CNTs and attachment to a support structure. If the CNTs could be synthesized directly upon the support to be used in the end application, a tremendous savings in post-synthesis processing could be realized. Therein we have pursued both aerosol and supported catalyst synthesis of CNTs. Given space limitations, only the aerosol portion of the work is outlined here though results from both thrusts will be presented during the talk. Aerosol methods of SWNT, MWNT or nanofiber synthesis hold promise of large-scale production to supply the tonnage quantities these applications will require. Aerosol methods may potentially permit control of the catalyst particle size, offer continuous processing, provide highest product purity and most importantly, are scaleable. Only via economy of scale will the cost of CNTs be sufficient to realize the large-scale structural and power applications on both earth and in space. Present aerosol methods for SWNT synthesis include laser ablation of composite metalgraphite targets or thermal decomposition/pyrolysis of a sublimed or vaporized organometallic [2]. Both approaches, conducted within a high temperature furnace, have produced single-walled nanotubes (SWNTs). The former method requires sophisticated hardware and is inherently limited by the energy deposition that can be realized using pulsed laser light. The latter method, using expensive organometallics is difficult to control for SWNT synthesis given a range of gasparticle mixing conditions along variable temperature gradients; multi-walled nanotubes (MWNTs) are a far more likely end products. Both approaches require large energy expenditures and

  7. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  8. Creation of novel structured carbon nanotubes using different-polarity ion plasmas

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Rikizo; Hirata, Takamichi; Jeong, Goo-Hwan

    2004-02-01

    In order to develop novel functional carbon-based nanomaterials, an original approach using plasma technology has been performed. When positive or negative bias voltages are applied to a substrate that is covered with single-walled carbon nanotubes (SWNTs) and immersed in alkali-fullerene plasmas, accelerated negative fullerene or positive alkali-metal ions are irradiated on the SWNTs through plasma sheaths in front of the substrate. Field emission gun transmission electron microscopy (FEG-TEM) images clearly show that drastic structural modifications such as severe bending of SWNT bundles and tube tip termination take place after the ion irradiation. Energy dispersive x-ray spectrometry confirms the existence of the elements Na, K and Cs in the samples after alkali-metal irradiation. In particular, Cs encapsulation inside the SWNTs is directly observed, the configuration of which is demonstrated to comprise three varieties by FEG-TEM and scanning TEM. In the case of C_{60}^{ - } irradiation by positive bias application, on the other hand, SWNTs encapsulating fullerene molecules are clearly observed. Furthermore, the fullerene encapsulation yield within the SWNTs linearly increases with an enhancement of the plasma density used. Finally, a sequential bias application with polarity change gives the possibility of formation of a nanojunction structure composed of Cs rows and C60 chains. It is worth emphasizing that our results open a new possibility for novel structured material synthesis using plasma technology.

  9. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.

    PubMed

    Yi, Hyunjung; Ghosh, Debadyuti; Ham, Moon-Ho; Qi, Jifa; Barone, Paul W; Strano, Michael S; Belcher, Angela M

    2012-03-14

    Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. © 2012 American Chemical Society

  10. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors

    PubMed Central

    HAM, MOON-HO; QI, JIFA; BARONE, PAUL W.; STRANO, MICHAEL S.; BELCHER, ANGELA M.

    2014-01-01

    Second near-infrared (NIR) window light (950-1,400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to four-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control non-targeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. PMID:22268625

  11. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  12. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  13. Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(DL-lactide-co-glycolide)/CNT films.

    PubMed

    Armentano, Ilaria; Dottori, Mariaserena; Puglia, Debora; Kenny, Josè M

    2008-06-01

    Nanocomposite films based on single wall carbon nanotubes (SWNTs) and poly(DL-lactide-co-glycolide) copolymer (50:50 PLGA) were processed and analyzed. The purpose of this study was to investigate the effect of different functionalization systems on the physical stability and morphology of PLGA films. Both covalent and non covalent functionalization of carbon nanotubes were considered in order to control the interactions between PLGA and SWNTs and to understand the role of the filler in the biodegradation properties. Using a solvent casting process, different PLGA/SWNT nanocomposites were prepared and incubated using organic solution under physiological conditions. In-vitro degradation studies were conducted by measurements of weight loss, infrared spectroscopy, glass transition temperature and SEM observations as a function of the incubation time, over a 9-week period. All PLGA films were degraded by hydrolitical degradation. However, a different degradation mechanism was observed in the case of functionalized SWNTs with respect to pristine material. It has been observed that system composition and SWNT functionalization may play a crucial role on the autocatalytic effect of the degradation process. These studies suggest that the degradation kinetics of the films can be engineered by varying carbon nanotube (CNT) content and functionalization. The combination of biodegradable polymers and CNTs opens a new perspective in the self-assembly of nanomaterials and nanodevices.

  14. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    PubMed

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Exploring the Chemical Sensitivity of a Carbon Nanotube/Green Tea Composite

    PubMed Central

    Chen, Yanan; Lee, Yang Doo; Vedala, Harindra; Allen, Brett L.; Star, Alexander

    2010-01-01

    Single-walled carbon nanotubes (SWNTs) possess unique electronic and physical properties, which make them very attractive for a wide range of applications. In particular, SWNTs and their composites have shown a great potential for chemical and biological sensing. Green tea, or more specifically its main antioxidant component, epigallocatechin gallate (EGCG), has been found to disperse SWNTs in water. However, the chemical sensitivity of this SWNT/green tea (SWNT/EGCG) composite remained unexplored. With EGCG present, this SWNT composite should have strong antioxidant properties and thus respond to reactive oxygen species (ROS). Here we report on fabrication and characterization of SWNT/EGCG thin films and the measurement of their relative conductance as a function of H2O2 concentrations. We further investigated the sensing mechanism by Fourier-transform infrared (FTIR) spectroscopy and field-effect transistor measurements (FET). We propose here that the response to H2O2 arises from the oxidation of EGCG in the composite. These findings suggest that SWNT/green tea composite has a great potential for developing simple resistivity-based sensors. PMID:21043457

  16. Hydrostatic pressure effects on the structural and electronicproperties of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capaz,Rodrigo B.; Spataru, Catalin D.; Tangney, Paul

    2004-03-15

    We study the structural and electronic properties ofisolated single-wall carbon nanotubes (SWNTs) under hydrostatic pressureusing a combination of theoretical techniques: continuum elasticitymodels, classical molecular dynamics simulations, tight-bindingelectronic structure methods, and first-principles total energycalculations within the density-functional and pseudopotentialframeworks. For pressures below a certain critica pressure Pc, the SWNTs'structure remains cylindrical and the Kohn-Sham energy gaps ofsemiconducting SWNTs have either positive or negative pressurecoefficients depending on the value of (n,m) with a distinct "family" (ofthe same n-m) behavior. The diameter and chirality dependence of thepressure coefficients can be described by a simple analytical expression.At Pc, molecular-dynamics simulations predict that isolated SWNTsmore » undergoa pressure-induced symmetry-breaking transformation from a cylindricalshape to a collapsed geometry. This transition is described by a simpleelastic model as arising from the competition between the bond-bendingand PV terms in the enthalpy. The good agreement between calculated andexperimental values of Pc provides a strong support to the "collapse"interpretation of the experimental transitions in bundles.« less

  17. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells.

    PubMed

    Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; Huang, Jing-Shun; Sfeir, Matthew Y; Reed, Mark A; Jung, Yeonwoong; Taylor, André D

    2017-12-01

    Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p-n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Heterostructured semiconductor single-walled carbon nanotube films for solution-processed high-performance field-effect transistors

    NASA Astrophysics Data System (ADS)

    Park, Noh-Hwal; Lee, Seung-Hoon; Jeong, Seung-Hyeon; Khim, Dongyoon; Kim, Yun Ho; Yoo, Sungmi; Noh, Yong-Young; Kim, Jang-Joo

    2018-03-01

    In this paper, we report a simple and effective method to simultaneously achieve a high charge-carrier mobility and low off current in conjugated polymer-wrapped semiconducting single-walled carbon nanotube (s-SWNT) transistors by applying a SWNT bilayer. To achieve the high mobility and low off current, highly purified and less purified s-SWNTs are successively coated to form the semiconducting layer consisting of poly (3-dodecylthiophene-2,5-diyl) (P3DDT)-wrapped high-pressure carbon mono oxide (HiPCO) SWNT (P3DDT-HiPCO) and poly (9, 9-di-n-dodecylfluorene) (PFDD)-wrapped plasma discharge (PD) SWNT (PFDD-PD). The SWNT transistors with bilayer SWNT networked film showed highly improved hole field-effect mobility (6.18 ± 0.85 cm2V-1s-1 average), on/off current ratio (107), and off current (˜1 pA). Thus, the combination of less purified PFDD-PD (98%-99%) charge-injection layer and highly purified s-P3DDT-HiPCO (>99%) charge-transport layer as the bi-layered semiconducting film achieved high mobility and low off current simultaneously.

  19. Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 Technical Targets

    PubMed Central

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112

  20. Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets.

    PubMed

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.

  1. Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid-gas interface for Li-ion battery anodes.

    PubMed

    Kim, Hyeri; Kim, Jongsoon; Jeong, Hee-Sung; Kim, Hyungsub; Lee, Hoyeon; Ha, Jae-Min; Choi, Sung-Min; Kim, Tae-Ho; Nah, Yoon-Chae; Shin, Tae Joo; Bang, Joona; Satija, Sushil K; Koo, Jaseung

    2018-05-17

    We demonstrate that hybrid structures of graphene and single-walled carbon nanotubes (SWNTs) are precisely controlled at the liquid-gas interface. The functionalized SWNT Langmuir monolayers anchor single-layer graphene nanosheets (GNSs) suspended in water via Coulomb interaction at the interface. This GNS/SWNT hybrid multilayer electrode can be a promising anode material for Li-ion batteries, offering high specific capacity, outstanding power capability, and excellent cyclability.

  2. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  3. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    NASA Astrophysics Data System (ADS)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  4. Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.

    PubMed

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V; Mulchandani, Ashok

    2010-12-15

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure-based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  6. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    PubMed

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  7. Pristine carbon nanotubes based resistive temperature sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Md Bayazeed, E-mail: bayazeed786@gmail.com; Jamia Millia Islamia; Saini, Sudhir Kumar, E-mail: sudhirsaini1310@gmail.com

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible methodmore » to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ∼ 0.29%/°C in the 25°C to 60°C temperature range.« less

  8. Neurobehavioral toxicity of carbon nanotubes in mice.

    PubMed

    Gholamine, Babak; Karimi, Isaac; Salimi, Amir; Mazdarani, Parisa; Becker, Lora A

    2017-04-01

    The aim of this study was to evaluate neurobehavioral toxicity of single-walled (SWNTs) and multiwalled carbon nanotubes (MWNTs) in mice. Male NMRI mice were randomized into 5 groups ( n = 10 each): Normal control (NC) group was injected intraperitoneally (i.p.) with phosphate-buffered saline (PBS) solution (pH 7.8; ca. 1 mL), MW80 and MW800 groups were injected with either i.p. 80 or 800 mg kg -1 MWNTs suspended in 1 mL of PBS and SW80 and SW800 groups were injected with either i.p. 80 or 800 mg kg -1 SWNTs suspended in 1 mL of PBS. After 2 weeks, five mice from each group were evaluated for brain-derived neurotrophic factor (BDNF) messenger RNA expression and protein content of brain tissues. Locomotion, anxiety, learning and memory, and depression were measured by open field test (OFT), elevated plus-maze (EPM), object recognition test (ORT), and forced swimming test (FST), respectively. Ambulation time and center arena time in the OFT did not change among groups. In the EPM paradigm, SWNTs (800 mg kg -1 ) and MWNTs (80 and 800 mg kg -1 ) showed an anxiogenic effect. In ORT, MWNTs (80 mg kg -1 ) increased the discrimination ratio while in FST, MWNTs showed a depressant effect as compared to vehicle. The BDNF gene expression in mice treated with 80 and 800 mg kg -1 SWNTs or 80 mg kg -1 MWNTs decreased as compared to NC mice although BDNF gene expression increased in mice that were treated with 800 mg kg -1 MWNTs. The whole brain BDNF protein content did not change among groups. Our study showed that i.p. exposure to carbon nanotubes (CNTs) may result in behavioral toxicity linked with expression of depression or anxiety that depends on the type of CNTs. In addition, exposure to CNTs changed BDNF gene expression.

  9. Understanding and controlling the rest potential of carbon nanotube-based supercapacitors for energy density enhancement

    NASA Astrophysics Data System (ADS)

    Yoo, Young-Eun; Park, Jinwoo; Kim, Woong

    2018-03-01

    We present a novel method for enhancing the energy density of an electrical double layer capacitor (EDLC). Surface modification of single-walled carbon nanotube (SWNT) electrodes significantly affects the rest potential (E0) of EDLCs; acid treatment and polyethyleneimine (PEI) coating of SWNTs shift E0 toward more positive and more negative values, respectively. Adjusting E0 towards the center of the electrolyte stability window can increase the cell voltage and hence the energy density. PEI coating on SWNTs increases the cell voltage from 0.8 V to 1.7 V in tetrabutylammonium perchlorate (TBAP)/tetrahydrofuran (THF) electrolyte, and from 2.5 V to 3.1 V in tetraethylammonium tetrafluoroborate (TEABF4)/3-cyanopropionic acid methyl ester (CPAME), respectively. Moreover, PEI-SWNT EDLCs exhibit excellent cycling stability (92% of capacitance retention over 10000 cycles). We attribute the shift in E0 to a change in the Fermi level of SWNTs owing to the surface charge modification. Injection of electrical charge into PEI-SWNTs consistently yielded similar trends and thus validated our hypothesis. Our results may help to push various electrolytes that have been overlooked so far to new frontiers for obtaining high energy-density supercapacitors.

  10. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less

  11. Noise characteristics of single-walled carbon nanotube network transistors.

    PubMed

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-16

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

  12. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    ERIC Educational Resources Information Center

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  13. A p-i-n junction diode based on locally doped carbon nanotube network

    PubMed Central

    Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei

    2016-01-01

    A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~104), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm. PMID:26996610

  14. A p-i-n junction diode based on locally doped carbon nanotube network.

    PubMed

    Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei

    2016-03-21

    A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~10(4)), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm.

  15. A p-i-n junction diode based on locally doped carbon nanotube network

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Chen, Changxin; Wei, Liangming; Hu, Nantao; Song, Chuanjuan; Liao, Chenghao; He, Rong; Dong, Xusheng; Wang, Ying; Liu, Qinran; Zhang, Yafei

    2016-03-01

    A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~104), large forward current (~12.2 μA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 μm.

  16. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  17. Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications.

    PubMed

    Qu, Liangti; Vaia, Rich A; Dai, Liming

    2011-02-22

    A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.

  18. Single Wall Nanotube Type-Specific Functionalization and Separation

    NASA Technical Reports Server (NTRS)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

  19. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    PubMed

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  20. Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition

    PubMed Central

    Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin

    2013-01-01

    Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334

  1. Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation

    NASA Astrophysics Data System (ADS)

    Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey

    2017-03-01

    The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.

  2. Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation

    PubMed Central

    Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey

    2017-01-01

    The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement. PMID:28287159

  3. Improvements in Production of Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  4. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2015-03-14

    The structure and dynamics of the nitromethane-water (NM-WT) binary mixture surrounding single walled carbon nanotubes (SWNTs) have been investigated by molecular dynamics simulations. The simulation trajectories show that the NM molecules can be selectively adsorbed both outside the surface and inside the cavity of SWNTs mainly dominated by van der Waals attractions because SWNTs have a higher binding affinity for NM than WT. The binding energies of SWNTs with NM and WT obtained from electronic structure calculations at the M06-2X/6-31+G* level are 15.31 and 5.51 kcal mol(-1), respectively. Compared with the SWNT exterior, the selective adsorption of NM is preferentially occurred in the SWNT interior due to the hydrophobic interactions and the dipole-dipole interactions, which induces the decrease of the hydrogen-bond number of NM with WT and ordered structures of NM with preferred intermolecular orientation in the SWNT cavity. Furthermore, the selective adsorption dynamics of NM from the aqueous solution is regardless of the chirality and radius of SWNTs. The SWNT radius plays a negligible role in the mass density distributions of NM outside the SWNTs, while the mass density of NM in the SWNT interior decreases gradually as the SWNT radius increases. The structural arrangements and intermolecular orientations of NM in the SWNT cavity are greatly dependent on the SWNT radius due to the size effect.

  5. From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes

    PubMed Central

    2018-01-01

    Dense layers of semiconducting single-walled carbon nanotubes (SWNTs) serve as electrochromic (EC) materials in the near-infrared with high optical density and high conductivity. EC cells with tunable notch filter properties instead of broadband absorption are created via highly selective dispersion of specific semiconducting SWNTs through polymer-wrapping followed by deposition of thick films by aerosol-jet printing. A simple planar geometry with spray-coated mixed SWNTs as the counter electrode renders transparent metal oxides redundant and facilitates complete bleaching within a few seconds through iongel electrolytes with high ionic conductivities. Monochiral (6,5) SWNT films as working electrodes exhibit a narrow absorption band at 997 nm (full width at half-maximum of 55–73 nm) with voltage-dependent optical densities between 0.2 and 4.5 and a modulation depth of up to 43 dB. These (6,5) SWNT notch filters can retain more than 95% of maximum bleaching for several hours under open-circuit conditions. In addition, different levels of transmission can be set by applying constant low voltage (1.5 V) pulses with modulated width or by a given number of fixed short pulses. PMID:29521086

  6. Thermostable luciferase from Luciola cruciate for imaging of carbon nanotubes and carbon nanotubes carrying doxorubicin using in vivo imaging system.

    PubMed

    El-Sayed, Ramy; Eita, Mohamed; Barrefelt, Asa; Ye, Fei; Jain, Himanshu; Fares, Mona; Lundin, Arne; Crona, Mikael; Abu-Salah, Khalid; Muhammed, Mamoun; Hassan, Moustapha

    2013-04-10

    In the present study, we introduce a novel method for in vivo imaging of the biodistribution of single wall carbon nanotubes (SWNTs) labeled with recombinant thermo-stable Luciola cruciata luciferase (LcL). In addition, we highlight a new application for green fluorescent proteins in which they are utilized as imaging moieties for SWNTs. Carbon nanotubes show great positive potential compared to other drug nanocarriers with respect to loading capacity, cell internalization, and biodegradability. We have also studied the effect of binding mode (chemical conjugation and physical adsorption) on the chemiluminescence activity, decay rate, and half-life. We have shown that through proper chemical conjugation of LcL to CNTs, LcL remained biologically active for the catalysis of d-luciferin in the presence of ATP to release detectable amounts of photons for in vivo imaging. Chemiluminescence of LcL allows imaging of CNTs and their cargo in nonsuperficial locations at an organ resolution with no need of an excitation source. Loading LcL-CNTs with the antitumor antibiotic doxorubicin did not alter their biological activity for imaging. In vivo imaging of LcL-CNTs has been carried out using "IVIS spectrum" showing the uptake of LcL-CNTs by different organs in mice. We believe that the LcL-CNT system is an advanced powerful tool for in vivo imaging and therefore a step toward the advancement of the nanomedicine field.

  7. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Qi-lin, E-mail: xiongql@hust.edu.cn; Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074; Tian, Xiao Geng

    The torsional mechanical properties of hexagonal single-walled boron nitride nanotubes (SWBNNTs), single-walled carbon nanotubes (SWCNTs), and their hybrid structures (SWBN-CNTs) are investigated using molecular dynamics (MD) simulation. Two approaches - force approach and energy approach, are adopted to calculate the shear moduli of SWBNNTs and SWCNTs, the discrepancy between two approaches is analyzed. The results show that the shear moduli of single-walled nanotubes (SWNTs), including SWBNNTs and SWCNTs are dependent on the diameter, especially for armchair SWNTs. The armchair SWNTs show the better ability of resistance the twisting comparable to the zigzag SWNTs. The effects of diameter and length onmore » the critical values of torque of SWNTs are obtained by comparing the torsional behaviors of SWNTs with different diameters and different lengths. It is observed that the MD results of the effect of diameter and length on the critical values of torque agrees well with the prediction of continuum shell model. The shear modulus of SWBN-CNT has a significant dependence on the percentages of SWCNT and the hybrid style has also an influence on shear modulus. The critical values of torque of SWBN-CNTs increase with the increase of the percentages of SWCNT. This phenomenon can be interpreted by the function relationship between the torque of different bonds (B-N-X, C-C-X, C-B-X, C-N-X) and the angles of bonds.« less

  9. Redox protein noncovalent functionalization of double-wall carbon nanotubes: electrochemical binder-less glucose biosensor.

    PubMed

    Pumera, Martin; Smíd, Bretislav

    2007-10-01

    Double wall carbon nanotubes are noncovalently functionalized with redox protein and such assembly is used for construction of electrochemical binder-less glucose biosensor. Redox protein glucose oxidase performs as biorecognition element and double wall carbon nanotubes act both as immobilization platform for redox enzyme and as signal transducer. The double carbon nanotubes are characterized by cyclic voltammetry and specific surface area measurements; the redox protein noncovalently functionalized double wall carbon nanotubes are characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, amperometry, and transmission electron microscopy.

  10. Free Fall Plasma-Arc Reactor for Synthesis of Carbon Nanotubes in Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feinkema, D. A.

    2006-01-01

    High temperatures inside the plasma of a carbon arc generate strong buoyancy driven convection which has an effect on the growth and morphology of the single-walled carbon nanotubes (SWNTs). To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was designed and developed to synthesize SWNTs in a microgravity environment substantially free from buoyant convective flows. An arc reactor was operated in the 2.2- and 5.18-second drop towers at the NASA Glenn Research Center. The apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5-second drop. However, the principal result is that no dramatic difference in sample yield or composition was noted between normal gravity, 2.2-and 5-second long microgravity runs.

  11. Electronic Detection of Lectins Using Carbohydrate Functionalized Nanostructures: Graphene versus Carbon Nanotubes

    PubMed Central

    Chen, Yanan; Vedala, Harindra; Kotchey, Gregg P.; Audfray, Aymeric; Cecioni, Samy; Imberty, Anne; Vidal, Sébastien; Star, Alexander

    2012-01-01

    Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 µM of nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL and ConA) and three carbohydrate epitopes (galactose, fucose and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugates surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (Kd) and compare them to the values obtained from the isothermal titration microcalorimetry (ITC) technique. PMID:22136380

  12. Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation

    NASA Astrophysics Data System (ADS)

    Rosati, Roberto; Dolcini, Fabrizio; Rossi, Fausto

    2015-12-01

    A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015), 10.1063/1.4922739] has predicted that, while in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical spatial diffusion of conventional materials, in metallic SWNTs, its shape remains essentially unaltered up to micrometer distances at room temperature, even in the presence of the electron-phonon coupling. Here, by utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence effects, we test such a prediction by analyzing various aspects that were so far unexplored. In particular, accounting for initial nonequilibrium excitations, characterized by an excess energy E0, and including both intra- and interband phonon scattering, we show that for realistically high values of E0 the electronic diffusion is extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realize quantum channels for the nondispersive transmission of electronic wave packets.

  13. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    NASA Astrophysics Data System (ADS)

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-02-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.

  14. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    PubMed Central

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-01-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367

  15. The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Wu; Shen, Hsin-Hui

    2010-09-01

    We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.

  16. Production of single-walled carbon nanotube grids

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  17. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  18. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  19. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  20. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    NASA Astrophysics Data System (ADS)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  1. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.

    PubMed

    Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei

    2015-01-14

    An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.

  2. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Willis, Peter A.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single-wall carbon nanotubes (SWNTs) is analyzed with the use of a chemical reaction model coupled with flow properties calculated along streamlines, calculated by the FLUENT code for pure carbon monoxide. Cold iron pentacarbonyl, diluted in CO at about 30 atmospheres, is injected into a conical mixing zone, where hot CO is also introduced via three jets at 30 degrees with respect to the axis. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Then iron nucleates and forms clusters that catalyze the formation of SWNTs by a disproportionation reaction (Boudouard) of CO on Fe-containing clusters. Alternative nucleation rates are estimated from the theory of hard sphere collision dynamics with an activation energy barrier. The rate coefficient for carbon nanotube growth is estimated from activation energies in the literature. The calculated growth was found be about an order of magnitude greater than measured, regardless of the nucleation rate. A study of cluster formation in an incubation zone prior to injection into the reactor shows that direct dimer formation from Fe atoms is not as important as formation via an exchange reaction of Fe with CO in FeCO.

  3. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.

    PubMed

    Scott, Carl D; Povitsky, Alexander; Dateo, Christopher; Gökçen, Tahir; Willis, Peter A; Smalley, Richard E

    2003-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single-wall carbon nanotubes (SWNTs) is analyzed with the use of a chemical reaction model coupled with flow properties calculated along streamlines, calculated by the FLUENT code for pure carbon monoxide. Cold iron pentacarbonyl, diluted in CO at about 30 atmospheres, is injected into a conical mixing zone, where hot CO is also introduced via three jets at 30 degrees with respect to the axis. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Then iron nucleates and forms clusters that catalyze the formation of SWNTs by a disproportionation reaction (Boudouard) of CO on Fe-containing clusters. Alternative nucleation rates are estimated from the theory of hard sphere collision dynamics with an activation energy barrier. The rate coefficient for carbon nanotube growth is estimated from activation energies in the literature. The calculated growth was found be about an order of magnitude greater than measured, regardless of the nucleation rate. A study of cluster formation in an incubation zone prior to injection into the reactor shows that direct dimer formation from Fe atoms is not as important as formation via an exchange reaction of Fe with CO in FeCO.

  4. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  5. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.

    PubMed

    Chiu, Chi-Cheng; Dieckmann, Gregg R; Nielsen, Steven O

    2008-12-25

    Many potential applications of single-walled carbon nanotubes (SWNTs) require that they be isolated from one another. This may be accomplished through covalent or noncovalent SWNT functionalization. The noncovalent approach preserves the intrinsic electrical, optical, and mechanical properties of SWNTs and can be achieved by dispersing SWNTs in aqueous solution using surfactants, polymers, or biomacromolecules like DNA or polypeptides. The designed amphiphilic helical peptide nano-1, which contains hydrophobic valine and aromatic phenylalanine residues for interaction with SWNTs and glutamic acid and lysine residues for water solubility, has been shown to debundle and disperse SWNTs, although the details of the peptide-SWNT interactions await elucidation. Here we use fully atomistic molecular dynamics simulations to investigate the nano-1 peptide at three different water/hydrophobic interfaces: water/oil, water/graphite, and water/SWNT. The amphiphilic nature of the peptide is characterized by its secondary structure, peptide-water hydrogen bonding, and peptide-hydrophobic surface van der Waals energy. We show that nano-1 has reduced amphiphilic character at the water/oil interface because the peptide helix penetrates into the hydrophobic phase. The peptide alpha-helix cannot match its hydrophobic face to the rigid planar graphite surface without partially unfolding. In contrast, nano-1 can curve on the SWNT surface in an alpha-helical conformation to simultaneously maximize its hydrophobic contacts with the SWNT and its hydrogen bonds with water. The molecular insight into the peptide conformation at the various hydrophobic surfaces provides guidelines for future peptide design.

  6. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  7. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Carbon Nanotube-Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport

    DOE PAGES

    Pilgrim, Gregory A.; Amori, Amanda R.; Hou, Zhentao; ...

    2016-12-07

    Here we discuss the photon driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT based membrane than through the commercial polymer Nafion. Furthermore, the potential utility of SWNT membranes for solar water splitting applications is demonstratedmore » through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small molecule electron acceptors.« less

  9. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  10. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    PubMed

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  11. New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Meador, Michael A.

    2003-01-01

    Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing

  12. Boron-doped few-walled carbon nanotubes: novel synthesis and properties

    NASA Astrophysics Data System (ADS)

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  13. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    NASA Astrophysics Data System (ADS)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  14. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.

    PubMed

    Dong, Qi; Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2017-10-18

    As-synthetized single walled carbon nanotubes (SWCNTs) contain both metallic and semiconducting nanotubes. For the electronics, it is desirable to separate semiconducting SWCNTs (s-SWCNTs) from the metallic ones as s-SWCNTs provide desirable electronic properties. Here we test whether ultrapure semi-conducting single-walled carbon nanotubes (s-SWCNTs) provide advantageous electrochemical properties over the as prepared SWCNTs which contain a mixture of semiconducting and metallic CNTs. We test them as a transducer platform which enhanced the detection of target analytes (ascorbic acid, dopamine, uric acid) when compared to a bare glassy carbon (GC) electrode. Despite that, the two materials exhibit significantly different electrochemical properties and performances. A mixture of m-SWCNTs and s-SWCNTs demonstrated superior performance over ultrapure s-SWCNTs with greater peak currents and pronounced shift in peak potentials to lower values in cyclic and differential pulse voltammetry for the detection of target analytes. The mixture of m- and s-SWCNTs displayed about a 4 times improved heterogeneous electron transfer rate as compared to bare GC and a 2 times greater heterogeneous electron transfer rate than s-SWCNTs, demonstrating that ultrapure SWCNTs do not provide any major enhancement over the as prepared SWCNTs.

  15. Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes.

    PubMed

    López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario

    2014-04-29

    The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.

  16. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  17. Direct observation of hole transfer from semiconducting polymer to carbon nanotubes.

    PubMed

    Lan, Fei; Li, Guangyong

    2013-05-08

    Carbon nanotubes have been proven to play significant roles in polymer-based solar cells. However, there is intensive debate on whether carbon nanotube behaves as a donor or acceptor in the semiconducting polymer:carbon nanotube composite. In this paper, we report a direct observation via Kelvin probe force microscopy (KPFM) that single walled carbon nanotubes (SWNTs) behave as hole transporting channels in poly(3-hexylthiophene-2,5-diyl) (P3HT)/SWNT heterojunctions. By comparing the surface potential (SP) change of SWNT in dark and under illumination, we observed that electrons are blocked from SWNT while holes are transferred to SWNT. This observation can be well-explained by our proposed band alignment model of P3HT/SWNT heterojunction. The finding is further verified by hole mobility measurement using the space charge limited current (SCLC) method. SCLC results indicate that the existence of small amount of SWNT (wt 0.5%) promotes device hole mobility to around 15-fold, indicating SWNT act as hole transfer channel. Our finding of hole transporting behavior of SWNT in P3HT/SWNT blend will provide a useful guidance for enhancing the performance of polymer solar cells by carbon nanotubes.

  18. Effects of single-walled carbon nanotubes on lysozyme gelation.

    PubMed

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.

  20. Photoinduced Spontaneous Free-Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes

    DOE PAGES

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; ...

    2015-11-04

    The strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. We found that the conditions of the microwave conductivity measurement allow us tomore » avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. At low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.« less

  1. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  2. 75 FR 44198 - Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period AGENCY... (SNUR) for the chemical substance identified generically as multi-walled carbon nanotubes (P-08-199). In... identified generically as multi-walled carbon nanotubes as identified in Premanufacture Notice (PMN) P-08-199...

  3. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  4. Intrinsic phonon properties of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Levshov, D. I.; Nguyen, V. C.; Paillet, M.; Arenal, R.; Than, X. T.; Zahab, A. A.; Yuzyuk, Y. I.; Phan, N. M.; Sauvajol, J.-L.; Michel, T.

    2017-03-01

    Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  5. Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes.

    PubMed

    Yang, Ming; Peng, Zhihui; Ning, Yi; Chen, Yongzhe; Zhou, Qin; Deng, Le

    2013-05-22

    In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.

  6. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    DOE PAGES

    Upadhyayula, Venkata K. K.; Ghoshroy, Soumitra; Nair, Vinod S.; ...

    2008-01-01

    Tmore » he possibility of using single-walled carbon nanotubes (SWCNs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. he Freundlich adsorption equilibrium constant ( k ) for S.aureus and E.coli determined from batch adsorption study was found to be 9 × 10 8 and 2 × 10 8  ml/g, respectively. he visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. he results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. his is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.« less

  7. Theory of Exciton Energy Transfer in Carbon Nanotube Composites

    DOE PAGES

    Davoody, A. H.; Karimi, F.; Arnold, M. S.; ...

    2016-06-24

    Here, we compute the exciton transfer (ET) rate between semiconducting single-wall carbon nanotubes (SWNTs). We show that the main reasons for the wide range of measured ET rates reported in the literature are (1) exciton confinement in local quantum wells stemming from disorder in the environment and (2) exciton thermalization between dark and bright states due to intratube scattering. The SWNT excitonic states are calculated by solving the Bethe–Salpeter equation using tight-binding basis functions. The ET rates due to intertube Coulomb interaction are computed via Fermi’s golden rule. In pristine samples, the ET rate between parallel (bundled) SWNTs of similarmore » chirality is very high (~10 14 s –1), while the ET rate for dissimilar or nonparallel tubes is considerably lower (~10 12 s –1). Exciton confinement reduces the ET rate between same-chirality parallel SWNTs by 2 orders of magnitude but has little effect otherwise. Consequently, the ET rate in most measurements will be on the order of 10 12 s –1, regardless of the tube relative orientation or chirality. Exciton thermalization between bright and dark states further reduces the ET rate to ~10 11 s –1. The ET rate also increases with increasing temperature and decreases with increasing dielectric constant of the surrounding medium.« less

  8. Theory of Exciton Energy Transfer in Carbon Nanotube Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoody, A. H.; Karimi, F.; Arnold, M. S.

    Here, we compute the exciton transfer (ET) rate between semiconducting single-wall carbon nanotubes (SWNTs). We show that the main reasons for the wide range of measured ET rates reported in the literature are (1) exciton confinement in local quantum wells stemming from disorder in the environment and (2) exciton thermalization between dark and bright states due to intratube scattering. The SWNT excitonic states are calculated by solving the Bethe–Salpeter equation using tight-binding basis functions. The ET rates due to intertube Coulomb interaction are computed via Fermi’s golden rule. In pristine samples, the ET rate between parallel (bundled) SWNTs of similarmore » chirality is very high (~10 14 s –1), while the ET rate for dissimilar or nonparallel tubes is considerably lower (~10 12 s –1). Exciton confinement reduces the ET rate between same-chirality parallel SWNTs by 2 orders of magnitude but has little effect otherwise. Consequently, the ET rate in most measurements will be on the order of 10 12 s –1, regardless of the tube relative orientation or chirality. Exciton thermalization between bright and dark states further reduces the ET rate to ~10 11 s –1. The ET rate also increases with increasing temperature and decreases with increasing dielectric constant of the surrounding medium.« less

  9. Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature

  10. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  11. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  12. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  13. GaS multi-walled nanotubes from the lamellar precursor

    NASA Astrophysics Data System (ADS)

    Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B.

    2005-04-01

    Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500-850 °C. Bulk quantities of GaS nanotubes with diameters of 30-150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.

  14. Role of surfactants in carbon nanotubes density gradient separation.

    PubMed

    Carvalho, Elton J F; dos Santos, Maria Cristina

    2010-02-23

    Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 A, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 A. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

  15. Modelling the nonlinear behaviour of double walled carbon nanotube based resonator with curvature factors

    NASA Astrophysics Data System (ADS)

    Patel, Ajay M.; Joshi, Anand Y.

    2016-10-01

    This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.

  16. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    DOEpatents

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  17. Electroluminescence from single-wall carbon nanotube network transistors.

    PubMed

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  18. Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.

    2003-06-01

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  19. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.

    PubMed

    Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C

    2003-06-27

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  20. Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study.

    PubMed

    Wang, Wenjuan; Peng, Xuan; Cao, Dapeng

    2011-06-01

    Adsorption of H(2)S and SO(2) pure gases and their selective capture from the H(2)S-CH(4), H(2)S-CO(2), SO(2)-N(2), and SO(2)-CO(2) binary mixtures by the single-walled carbon nanotubes (SWNT) are investigated via using the grand canonical Monte Carlo (GCMC) method. It is found that the (20, 20) SWNT with larger diameter shows larger capacity for H(2)S and SO(2) pure gases at T = 303 K, in which the uptakes reach 16.31 and 16.03 mmol/g, respectively. However, the (6,6) SWNT with small diameter exhibits the largest selectivity for binary mixtures containing trace sulfur gases at T = 303 K and P = 100 kPa. By investigating the effect of pore size on the separation of gas mixtures, we found that the optimized pore size is 0.81 nm for separation of H(2)S-CH(4), H(2)S-CO(2), and SO(2)-N(2) binary mixtures, while it is 1.09 nm for the SO(2)-CO(2) mixture. The effects of concentration and temperature on the selectivity of sulfide are also studied at the optimal pore size. It is found that the concentration (ppm) of sulfur components has little effect on selectivity of SWNTs for these binary mixtures. However, the selectivity decreases obviously with the increase of temperature. To improve the adsorption capacities, we further modify the surface of SWNTs with the functional groups. The selectivities of H(2)S-CO(2) and SO(2)-CO(2) mixtures are basically uninfluenced by the site density, while the increase of site density can improve the selectivity of H(2)S-CH(4) mixture doubly. It is expected that this work could provide useful information for sulfur gas capture.

  1. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    PubMed

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  2. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  3. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.

    PubMed

    Pugliese, P; Conde, M M; Rovere, M; Gallo, P

    2017-11-16

    A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.

  4. On the vibrational characteristics of single- and double-walled carbon nanotubes containing ice nanotube in aqueous environment

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2015-10-01

    The properties and behavior of carbon nanotubes (CNTs) in aqueous environment due to their considerable potential applications in nanobiotechnology and designing nanobiosensors have attracted the attention of researchers. In this study, molecular dynamics simulations are carried out to investigate the vibrational characteristics of single- and double-walled CNTs containing ice nanotubes (a new phase of ice) in vacuum and aqueous environments. The results demonstrate that formation of ice nanotubes inside the CNTs reduces the natural frequency of pure CNTs. Moreover, it is demonstrated that increasing the number of walls considerably reduces the sensitivity of frequency to the presence of ice nanotube inside CNT. Additionally, it is shown that increasing the length decreases the effect of ice nanotube on reducing the frequency. The calculation of natural frequency of CNTs in aqueous media demonstrates that the interaction of CNTs with water molecules considerably reduces the natural frequency up to 50 %. Finally, it is demonstrated that in the case of CNTs with one free end in aqueous environment, the CNT does not vibrate in its first mode, and its frequency is between the frequencies of first and second modes of vibration.

  5. Thermal ablation therapeutics based on CNx multi-walled nanotubes

    PubMed Central

    Torti, Suzy V; Byrne, Fiona; Whelan, Orla; Levi, Nicole; Ucer, Burak; Schmid, Michael; Torti, Frank M; Akman, Steven; Liu, Jiwen; Ajayan, Pulickel M; Nalamasu, Omkaram; Carroll, David L

    2007-01-01

    We demonstrate that nitrogen doped, multi-walled carbon nanotubes (CNx-MWNT) result in photo-ablative destruction of kidney cancer cells when excited by near infrared (NIR) irradiation. Further, we show that effective heat transduction and cellular cytotoxicity depends on nanotube length: effective NIR coupling occurs at nanotube lengths that exceed half the wavelength of the stimulating radiation, as predicted in classical antenna theory. We also demonstrate that this radiation heats the nanotubes through induction processes, resulting in significant heat transfer to surrounding media and cell killing at extraordinarily small radiation doses. This cell death was attributed directly to photothermal effect generated within the culture, since neither the infrared irradiation itself nor the CNx-MWNT were toxic to the cells. PMID:18203437

  6. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    PubMed

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-28

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  7. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping

  8. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less

  9. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells.

    PubMed

    Naserzadeh, Parvaneh; Ansari Esfeh, Fatemeh; Kaviani, Mahboubeh; Ashtari, Khadijeh; Kheirbakhsh, Raheleh; Salimi, Ahmad; Pourahmad, Jalal

    2018-06-01

    Nanomaterials (NM) exhibit novel anticancer properties. The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe 2 O 3 nanoparticles, were compared with normal and melanoma cells. All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.

  10. Synthesis of Large Quantities of Single-Walled Aluminogermanante Nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levard,C.; Rose, J.; Mision, A.

    2008-01-01

    A simple aqueous synthesis yielded about 100 times more structurally well-organized single-walled aluminogermanate nanotubes than previously reported 'standard' procedures. The structure analyses using XRD, IRTF, TEM, and XAS were greatly facilitated by the high concentrations available, and they ascertained the imogolite-like structure of the nanotubes. Simplicity and yield of the synthesis protocol are likely to favor commercial applications of theses materials as well as simplified syntheses of other nanophases.

  11. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.

    PubMed

    Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji

    2014-12-12

    Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.

  12. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  13. Ultra-low frequency Raman spectroscopy of SWNTs under high pressure

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Quirke, N.; Zerulla, D.

    2016-09-01

    Radial deformation phenomena of carbon nanotubes (CNTs) are attracting increased attention because even minimal changes of the CNT's cross section can result in significant changes of their electronic and optical properties. It is therefore important to have the ability to sensitively probe and characterize this radial deformation. High pressure Raman spectroscopy offers a general and powerful method to study such effects in SWNTs. In this experimental work, we focus in particular on one theoretically predicted Raman vibrational mode, the so-called "Squash Mode" (SM), named after its vibrational mode pattern, which has an E2g symmetry representation and exists at shifts below the radial breathing mode (RBM) region. The Squash mode was predicted to be more sensitive to environmental changes than the RBM. Here we report on a detailed, experimental detection of SMs of aligned SWNT arrays with peaks as close as 18 cm-1 to the laser excitation energy. Furthermore, we investigate how the SM of aligned CNT arrays reacts when exposed to a high pressure environment of up to 9 GPa. The results confirm the theoretical predictions regarding the angular and polarization dependent variations of the SM's intensity with respect to their excitation. Furthermore, clear Raman upshifts of SM under pressures of up to 9 GPa are presented. The relative changes of these upshifts, and hence the sensitivity, are much higher than that of RBMs because of larger radial displacement of some of the participating carbon atoms during the SM vibration. These novel ultra-sensitive Raman SM shifts of SWNTs provide enhanced sensitivity and demonstrate new opportunities for nano-optical sensors applications.

  14. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hata, Kenji; Futaba, Don N.; Mizuno, Kohei; Namai, Tatsunori; Yumura, Motoo; Iijima, Sumio

    2004-11-01

    We demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water. Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned, highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis.

  15. Compositions and methods for cancer treatment using targeted carbon nanotubes

    DOEpatents

    Harrison, Jr., Roger G; Resasco, Daniel E; Neves, Luis Filipe Ferreira

    2013-08-27

    The present invention is a method for detecting and destroying cancer tumors. The method is based on the concept of associating a linking protein or linking peptide such as, but not limited to, annexin V or other annexins to carbon nanotubes such as single-walled carbon nanotubes (SWNTs) to form a protein-CNT complex. Said linking protein or peptide can selectively bind to cancerous cells, especially tumor vasculature endothelial cells, rather than to healthy ones by binding to cancer-specific external receptors such as anionic phospholipids including phosphatidylserine expressed on the outer surfaces of cancer cells only. Irradiation of bound CNTs with one or more specific electromagnetic wavelengths is then used to detect and destroy those cells to which the CNTs are bound via the linking protein or peptide thereby destroying the tumor or cancer cells and preferably an immunostimulant is provided to the patient to enhance the immune response against antigens released from the tumor or cancer cells.

  16. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    PubMed Central

    Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268

  17. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.

    PubMed

    Shim, Bong Sup; Zhu, Jian; Jan, Edward; Critchley, Kevin; Ho, Szushen; Podsiadlo, Paul; Sun, Kai; Kotov, Nicholas A

    2009-07-28

    Efficient coupling of mechanical properties of SWNTs with the matrix leading to the transfer of unique mechanical properties of SWNTs to the macroscopic composites is a tremendous challenge of today's materials science. The typical mechanical properties of known SWNT composites, such as strength, stiffness, and toughness, are assessed in an introductory survey where we focused on concrete numerical parameters characterizing mechanical properties. Obtaining ideal stress transfer will require fine optimization of nanotube-polymer interface. SWNT nanocomposites were made here by layer-by-layer (LBL) assembly with poly(vinyl alcohol) (PVA), and the first example of optimization in respect to key parameters determining the connectivity at the graphene-polymer interface, namely, degree of SWNT oxidation and cross-linking chemistry, was demonstrated. The resulting SWNT-PVA composites demonstrated tensile strength (σ(ult)) = 504.5 ± 67.3 MPa, stiffness (E) = 15.6 ± 3.8 GPa, and toughness (K) = 121.2 ± 19.2 J/g with maximum values recorded at σ(ult) = 600.1 MPa, E = 20.6 GPa, and K = 152.1 J/g. This represents the strongest and stiffest nonfibrous SWNT composites made to date outperforming other bulk composites by 2-10 times. Its high performance is attributed to both high nanotube content and efficient stress transfer. The resulting LBL composite is also one of the toughest in this category of materials and exceeding the toughness of Kevlar by 3-fold. Our observation suggests that the strengthening and toughening mechanism originates from the synergistic combination of high degree of SWNT exfoliation, efficient SWNT-PVA binding, crack surface roughening, and fairly efficient distribution of local stress over the SWNT network. The need for a multiscale approach in designing SWNT composites is advocated.

  18. Electrospinning of single wall carbon nanotube reinforced aligned fibrils and yarns

    NASA Astrophysics Data System (ADS)

    Lam, Hoa Le

    Commercial carbon fibers produced from a polyacrylonitrile (PAN) precursor have reached their performance limit. The approach in this study involves the use of single carbon nanotubes (SWNT) with an ultra-high elastic modulus of approximately ˜1 TPa and tensile strength of ˜37 GPa at a breaking strain of ˜6% to reinforce PAN. In order to translate these extraordinary properties to a higher order structure, the need for a media to carry and assemble the SWNT into continuous fibers or yarns is necessary. Effective translation of properties can only be achieved through uniform distribution of SWNT and their alignment in the fiber axis. This has been one of the major challenges since SWNTs tend to agglomerate due to high van der Waals attraction between tubes. It is the goal of this study to develop dispersion technique(s) for the SWNT and process them into aligned fibers utilizing the electrospinning process. The electrospun nanofibers were then characterized by various techniques such as ESEM, Raman microspectroscopy, HRTEM, and tensile testing. Composite nanofibers containing various contents of SWNT up to 10 wt. % with diameter ranging from 40--300 nm were successfully electrospun through varying the polymer concentration and spinning parameters. The inclusion of SWNTs and their alignment in the fiber axis were confirmed by Raman microspectroscopy, polarized Raman and HRETEM. The failure mechanism of the nanofibers was investigated by HRTEM through fiber surface fracture. A two stage rupture mechanism was observed where crazing initiates at a surface defect followed by SWNTs pulling out of the PAN matrix. Such mechanisms consume energy therefore strengthening and toughening the fibers. Mechanical drawing of the fiber prior to heat treatment induced molecular orientation resulting in oriented graphite layers in the carbonized fibers. This study has established a processing base and characterization techniques to support the design and development of SWNT

  19. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    PubMed

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication of ceramic oxide-coated SWNT composites by sol-gel process with a polymer glue

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Gao, Lei; Chen, Yongming

    2011-09-01

    The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]- co-[(1-pyrene-methyl) methacrylate] (TEPM13- co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π-π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol-gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.

  1. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  2. A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods

    DTIC Science & Technology

    2012-01-24

    REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube

  3. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

    PubMed Central

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  4. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Shuchen; Kang, Lixing; Wang, Xiao; Tong, Lianming; Yang, Liangwei; Wang, Zequn; Qi, Kuo; Deng, Shibin; Li, Qingwen; Bai, Xuedong; Ding, Feng; Zhang, Jin

    2017-02-01

    The semiconductor industry is increasingly of the view that Moore’s law—which predicts the biennial doubling of the number of transistors per microprocessor chip—is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions

  5. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-01

    The structural, electronic, and magnetic properties of single-walled Mo2C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo2C nanotubes can be rolled up from a graphene-like Mo2C monolayer with H- or T-type phase, i.e. H-Mo2C and T-Mo2C nanotubes. The armchair-type T-Mo2C nanotubes are more energetically stable than H-Mo2C nanotubes with the same diameter, while zigzag-type H-Mo2C nanotubes are more energetically stable than T-Mo2C nanotubes. In particular, (8, 0) H-Mo2C nanotube are more stable than Mo2C monolayer due to structural deformation. All Mo2C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo2C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  6. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study.

    PubMed

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-18

    The structural, electronic, and magnetic properties of single-walled Mo 2 C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo 2 C nanotubes can be rolled up from a graphene-like Mo 2 C monolayer with H- or T-type phase, i.e. H-Mo 2 C and T-Mo 2 C nanotubes. The armchair-type T-Mo 2 C nanotubes are more energetically stable than H-Mo 2 C nanotubes with the same diameter, while zigzag-type H-Mo 2 C nanotubes are more energetically stable than T-Mo 2 C nanotubes. In particular, (8, 0) H-Mo 2 C nanotube are more stable than Mo 2 C monolayer due to structural deformation. All Mo 2 C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo 2 C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  7. Composite electronic materials based on poly(3,4-propylenedioxythiophene) and highly charged poly(aryleneethynylene)-wrapped carbon nanotubes for supercapacitors.

    PubMed

    Rosario-Canales, Mariem R; Deria, Pravas; Therien, Michael J; Santiago-Avilés, Jorge J

    2012-01-01

    Supercapacitor charge storage media were fabricated using the semiconducting polymer poly(3,4-propylenedioxythiophene) (PProDOT) and single-walled carbon nanotubes (SWNTs) that were helically wrapped with ionic, conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES). These PNES-wrapped SWNTs (PNES-SWNTs) enable efficient dispersion of individualized nanotubes in a wide range of organic solvents. PNES-SWNT film-modified Pt electrodes were prepared by drop casting PNES-SWNT suspensions in MeOH; high stability, first-generation PProDOT/PNES/SWNT composites were realized via electropolymerization of the ProDOT parent monomer (3,4-propylenedioxythiophene) in a 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/propylene carbonate solution at the PNES-SWNT-modified electrode. The electrochemical properties of PProDOT and PProDOT/PNES/SWNT single electrodes and devices were examined using cyclic voltammetric methods. The hybrid composites were found to enhance key supercapacitor figures of merit (charge capacity and capacitance) by approximately a factor of 2 relative to those determined for benchmark Type I devices that exploited a classic PProDOT-based electrode material. The charge/discharge stability of the supercapacitors was probed by repeated rounds of cyclic voltammetric evaluation at a minimum depth of discharge of 73%; these experiments demonstrated that the hybrid PProDOT/PNES/SWNT composites retained ~90% of their initial charge capacity after 21,000 charge/discharge cycles, contrasting analogous data obtained for PProDOT-based devices, which showed only 84% retention of their initial charge capacity. © 2011 American Chemical Society

  8. Schematic construction of flanged nanobearings from double-walled carbon nanotubes.

    PubMed

    Shenai, Prathamesh Mahesh; Zhao, Yang

    2010-08-01

    The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.

  9. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  10. Hybrid integration of carbon nanotubes in silicon photonic structures

    NASA Astrophysics Data System (ADS)

    Durán-Valdeiglesias, E.; Zhang, W.; Alonso-Ramos, C.; Le Roux, X.; Serna, S.; Hoang, H. C.; Marris-Morini, D.; Cassan, E.; Intonti, F.; Sarti, F.; Caselli, N.; La China, F.; Gurioli, M.; Balestrieri, M.; Vivien, L.; Filoramo, A.

    2017-02-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects to accomplish high efficiency, low energy consumption, low cost and device miniaturization in one single chip. However, it is restricted by silicon itself. Silicon does not have efficient light emission or detection in the telecommunication wavelength range (1.3 μm-1.5 μm) or any electro-optic effect (i.e. Pockels effect). Hence, silicon photonic needs to be complemented with other materials for the realization of optically-active devices, including III-V for lasing and Ge for detection. The very different requirement of these materials results in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. For this purpose, carbon nanotubes (CNTs) have recently been proposed as an attractive one-dimensional light emitting material. Interestingly, semiconducting single walled CNTs (SWNTs) exhibit room-temperature photo- and electro-luminescence in the near-IR that could be exploited for the implementation of integrated nano-sources. They can also be considered for the realization of photo-detectors and optical modulators, since they rely on intrinsically fast non-linear effects, such as Stark and Kerr effect. All these properties make SWNTs ideal candidates in order to fabricate a large variety of optoelectronic devices, including near-IR sources, modulators and photodetectors on Si photonic platforms. In addition, solution processed SWNTs can be integrated on Si using spin-coating or drop-casting techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform. .

  11. Electro-Responsive Behaviour Multi-Wall Nanotubes/Gelatin Composites and Cross-Linked Gelatin Electrospun Mats

    DTIC Science & Technology

    2008-02-11

    sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats

  12. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    PubMed

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  13. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  14. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy.

    PubMed

    Li, Jie; He, Yujun; Han, Yimo; Liu, Kai; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2012-08-08

    Because of their excellent electrical and optical properties, carbon nanotubes have been regarded as extremely promising candidates for high-performance electronic and optoelectronic applications. However, effective and efficient distinction and separation of metallic and semiconducting single-walled carbon nanotubes are always challenges for their practical applications. Here we show that metallic and semiconducting single-walled carbon nanotubes on SiO(2) can have obviously different contrast in scanning electron microscopy due to their conductivity difference and thus can be effectively and efficiently identified. The correlation between conductivity and contrast difference has been confirmed by using voltage-contrast scanning electron microcopy, peak force tunneling atom force microscopy, and field effect transistor testing. This phenomenon can be understood via a proposed mechanism involving the e-beam-induced surface potential of insulators and the conductivity difference between metallic and semiconducting SWCNTs. This method demonstrates great promise to achieve rapid and large-scale distinguishing between metallic and semiconducting single-walled carbon nanotubes, adding a new function to conventional SEM.

  15. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    NASA Astrophysics Data System (ADS)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  16. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-01

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  17. Advances in NO2 sensing with individual single-walled carbon nanotube transistors

    PubMed Central

    Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046

  18. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    PubMed

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  19. Single Wall Carbon Nanotube Alignment Mechanisms for Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Hong, Seunghun

    2002-01-01

    As proposed in our original proposal, we developed a new innovative method to assemble millions of single wall carbon nanotube (SWCNT)-based circuit components as fast as conventional microfabrication processes. This method is based on surface template assembly strategy. The new method solves one of the major bottlenecks in carbon nanotube based electrical applications and, potentially, may allow us to mass produce a large number of SWCNT-based integrated devices of critical interests to NASA.

  20. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    NASA Astrophysics Data System (ADS)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  1. X-ray irradiation-induced structural changes on Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Bardi, N.; Jurewicz, I.; King, A. K.; Alkhorayef, M. A.; Bradley, D.; Dalton, A. B.

    2017-11-01

    Dosimetry devices based on Carbon Nanotubes are a promising new technology. In particular using devices based on single wall Carbon Nanotubes may offer a tissue equivalent response with the possibility for device miniaturisation, high scale manufacturing and low cost. An important precursor to device fabrication requires a quantitative study of the effects of X-ray radiation on the physical and chemical properties of the individual nanotubes. In this study, we concentrate on the effects of relatively low doses, 20 cGy and 45 cGy , respectively. We use a range of characterization techniques including scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to quantify the effects of the radiation dose on inherent properties of the nanotubes. Specifically we find that the radiation exposure results in a reduction in the sp2 nature of the nanotube bond structure. Moreover, our analysis indicates that the exposure results in nanotubes that have an increased defect density which ultimately effects the electrical properties of the nanotubes.

  2. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin; Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi

    2015-12-01

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  3. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    PubMed Central

    2012-01-01

    The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489

  4. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  5. Multi-walled Carbon Nanotubes Reduce Toxicity of Diphenhydramine to Ceriodaphnia dubia in Water and Sediment Exposures.

    PubMed

    Myer, Mark H; Black, Marsha C

    2017-09-01

    Multi-walled carbon nanotubes are adsorptive materials that have potential for remediation of organic contaminants in water. Sediment elutriate exposures were undertaken with Ceriodaphnia dubia to compare the toxic effects of diphenhydramine in the presence and absence of sediment and multi-walled carbon nanotubes. In both sediment and solution-only treatments, addition of 0.318 mg/g of carbon nanotubes significantly decreased 48-h mortality relative to control, with a 78.7%-90.1% reduction in treatments with nanotube-amended sediment and 40.7%-53.3% reduction in nanotube-amended water exposures. The greatest degree of relative mortality reduction occurred in sediments containing higher levels of natural organic matter, indicating a potential additive effect.

  6. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.

    PubMed

    Fu, Qiang; Liu, Jie

    2005-07-21

    A method to fabricate integrated single-walled carbon nanotube/microfluidic devices was developed. This simple process could be used to directly prepare nanotube thin film transistors within the microfluidic channel and to register SWNT devices with the microfludic channel without the need of an additional alignment step. The microfluidic device was designed to have several inlets that deliver multiple liquid flows to a single main channel. The location and width of each flow in the main channel could be controlled by the relative flow rates. This capability enabled us to study the effect of the location and the coverage area of the liquid flow that contained charged molecules on the conduction of the nanotube devices, providing important information on the sensing mechanism of carbon nanotube sensors. The results showed that in a sensor based on a nanotube thin film field effect transistor, the sensing signal came from target molecules absorbed on or around the nanotubes. The effect from adsorption on metal electrodes was weak.

  7. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.

    PubMed

    Siqueira, José R; Abouzar, Maryam H; Poghossian, Arshak; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J

    2009-10-15

    Silicon-based sensors incorporating biomolecules are advantageous for processing and possible biological recognition in a small, reliable and rugged manufactured device. In this study, we report on the functionalization of field-effect (bio-)chemical sensors with layer-by-layer (LbL) films containing single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. A capacitive electrolyte-insulator-semiconductor (EIS) structure modified with carbon nanotubes (EIS-NT) was built, which could be used as a penicillin biosensor. From atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) images, the LbL films were shown to be highly porous due to interpenetration of SWNTs into the dendrimer layers. Capacitance-voltage (C/V) measurements pointed to a high pH sensitivity of ca. 55 mV/pH for the EIS-NT structures. The biosensing ability towards penicillin of an EIS-NT-penicillinase biosensor was also observed as the flat-band voltage shifted to lower potentials at different penicillin concentrations. A dynamic response of penicillin concentrations, ranging from 5.0 microM to 25 mM, was evaluated for an EIS-NT with the penicillinase enzyme immobilized onto the surfaces, via constant-capacitance (ConCap) measurements, achieving a sensitivity of ca. 116 mV/decade. The presence of the nanostructured PAMAM/SWNT LbL film led to sensors with higher sensitivity and better performance.

  8. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  9. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    PubMed

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Measurement of the elastic modulus of a multi-wall boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Chopra, Nasreen G.; Zettl, A.

    1998-02-01

    We have experimentally determined the elastic properties of an individual multi-wall boron nitride (BN) nanotube. From the thermal vibration amplitude of a cantilevered BN nanotube observed in a transmission electron microscope, we find the axial Young's modulus to be 1.22 ± 0.24 TPa, a value consistent with theoretical estimates. The observed Young's modulus exceeds that of all other known insulating fibers. Our elasticity results confirm that BN nanotubes are highly crystalline with very few defects.

  11. 40 CFR 721.10703 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10703 Multi-walled carbon nanotubes (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as...

  12. 40 CFR 721.10671 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10671 Multi-walled carbon nanotubes (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as...

  13. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.

    PubMed

    Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku

    2017-04-01

    To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1  W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  15. Ab initio study of edge effect on relative motion of walls in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.

    2013-01-01

    Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.

  16. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    NASA Astrophysics Data System (ADS)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-04-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  17. Fabrication and dispersion evaluation of single-wall carbon nanotubes produced by FH-arc discharge method.

    PubMed

    Chen, B; Zhao, X; Inoue, S; Ando, Y

    2010-06-01

    In this work, we produced SWNTs by a hydrogen DC arc discharge with evaporation of carbon anode containing 1 at% Fe catalyst in H2-Ar mixture gas. This was named as FH-arc discharge method. The as-grown SWNTs synthesized by FH-arc discharge method have high crystallinity. An oxidation purification process of as-grown SWNTs with H2O2 has been developed to remove the coexisting Fe catalyst nanoparticles. As a result, SWNTs with purity higher than 90 at% have been achieved. To exhibit remarkable characteristics, CNTs should be separated from the bundles and kept in homogeneous and stable suspensions. For this purpose, the SWNTs prepared by FH-arc discharge method also have been treated by Nanomizer process with some surfactants. SPM images showed that the SWNTs bundles had become thinner and shorter.

  18. Charge Transfer in Saturation Doping of Double-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Tchernatinsky, Alexander; Jayanthi, Chakram; Sumanasekera, Gamini; Wu, Shi-Yu

    2004-03-01

    Recent experimental evidences suggest that the outer tube of a double-wall carbon nanotube (DWCNT) may serve as a 'Faraday' cage (G. Chen, et al., Phys. Rev. Lett., 90, 257403 (2003)). In this presentation, we report the result of our systematic study of the effect of saturation doping of a (10,10) single-wall carbon nanotube, a (5,5)@(10,10) DWCNT, and a C_60@(10,10) peapod using DFT-based VASP computational package (G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993)). By comparing the resulting charge transfer of the above mentioned cases we shall provide the physics underlying the Faraday cage behavior of DWCNTs. Acknowledgments: This work was supported by the NSF (DMR-0112824) and the U.S.DOE (DE-FG02-00ER45832).

  19. Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography.

    PubMed

    Knight, Martha; Lazo-Portugal, Rodrigo; Ahn, Saeyoung Nate; Stefansson, Steingrimur

    2017-02-03

    Over the last decade man-made carbon nanostructures have shown great promise in electronic applications, but they are produced as very heterogeneous mixtures with different properties so the achievement of a significant commercial application has been elusive. The dimensions of single-wall carbon nanotubes are generally a nanometer wide, up to hundreds of microns long and the carbon nanotubes have anisotropic structures. They are processed to have shorter lengths but they need to be sorted by diameter and chirality. Thus counter-current chromatography methods developed for large molecules are applied to separate these compounds. A modified mixer-settler spiral CCC rotor made with 3 D printed disks was used with a polyethylene glycol-dextran 2-phase solvent system and a surfactant gradient to purify the major species in a commercial preparation. We isolated the semi-conducting single walled carbon nanotube chiral species identified by UV spectral analysis. The further development of spiral counter-current chromatography instrumentation and methods will enable the scalable purification of carbon nanotubes useful for the next generation electronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  1. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    PubMed

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.

  2. Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics

    PubMed Central

    Heller, Daniel A.; Pratt, George W.; Zhang, Jingqing; Nair, Nitish; Hansborough, Adam J.; Boghossian, Ardemis A.; Reuel, Nigel F.; Barone, Paul W.; Strano, Michael S.

    2011-01-01

    A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide–nanotube complexes form a virtual “chaperone sensor,” which reports modulation of the peptide secondary structure via changes in single-walled carbon nanotubes, near-infrared photoluminescence. A split-channel microscope constructed to image quantized spectral wavelength shifts in real time, in response to nitroaromatic adsorption, results in the first single-nanotube imaging of solvatochromic events. The described indirect detection mechanism, as well as an additional exciton quenching-based optical nitroaromatic detection method, illustrate that functionalization of the carbon nanotube surface can result in completely unique sites for recognition, resolvable at the single-molecule level. PMID:21555544

  3. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns

    PubMed Central

    Sarkar, Saugata; Gurjarpadhye, Abhijit A.; Rylander, Christopher G.; Nichole Rylander, Marissa

    2011-01-01

    The degree by which optical properties of tumors are altered following introduction of carbon nanotubes (CNTs) of varying concentration and type is poorly understood, making it difficult to predict the impact of CNT inclusion on the photothermal response to laser therapies. Optical properties were measured of phantoms representative of breast tumor tissue incorporated with multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), and single-walled carbon nanohorns (SWNHs) of varying concentration (0.01–0.1 mg/ml). Tissue phantoms were made from sodium alginate (3 g/ml) incorporated with polystyrene microbeads (3 μm diam and 1 mg/ml) and talc-France powder (40 mg/ml). Absorption (μa) and reduced scattering (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu^\\prime _s\\end{equation*} \\end{document}μs′) coefficients of phantoms containing CNTs were determined by the inverse adding-doubling algorithm for the wavelength range of 400–1300 nm. Optical properties of phantoms without CNTs were in the range of μa = 1.04–0.06 mm−1 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu^\\prime _s\\end{equation*} \\end{document}μs′ = 0.05–0.07 mm−1 at a wavelength of 900 nm, which corresponds with published data for human breast tumor tissue. Incorporating MWNTs, SWNTs, and SWNHs in phantoms with a concentration of 0.1 mg/ml increased (μa) by 20- to 30-fold, 5- to 6-fold, and 9- to 14-fold, respectively, for the wavelength range of 800–1100 nm with minimal change in \\documentclass[12pt]{minimal} \\usepackage

  4. Radiation Protection Using Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  5. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    PubMed

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.

  6. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method.

    PubMed

    Lei, Ting; Pochorovski, Igor; Bao, Zhenan

    2017-04-18

    Electronics that are soft, conformal, and stretchable are highly desirable for wearable electronics, prosthetics, and robotics. Among the various available electronic materials, single walled carbon nanotubes (SWNTs) and their network have exhibited high mechanical flexibility and stretchability, along with comparable electrical performance to traditional rigid materials, e.g. polysilicon and metal oxides. Unfortunately, SWNTs produced en masse contain a mixture of semiconducting (s-) and metallic (m-) SWNTs, rendering them unsuitable for electronic applications. Moreover, the poor solubility of SWNTs requires the introduction of insulating surfactants to properly disperse them into individual tubes for device fabrication. Compared to other SWNT dispersion and separation methods, e.g., DNA wrapping, density gradient ultracentrifugation, and gel chromatography, polymer wrapping can selectively disperse s-SWNTs with high selectivity (>99.7%), high concentration (>0.1 mg/mL), and high yield (>20%). In addition, this method only requires simple sonication and centrifuge equipment with short processing time down to 1 h. Despite these advantages, the polymer wrapping method still faces two major issues: (i) The purified s-SWNTs usually retain a substantial amount of polymers on their surface even after thorough rinsing. The low conductivity of the residual polymers impedes the charge transport in SWNT networks. (ii) Conjugated polymers used for SWNT wrapping are expensive. Their prices ($100-1000/g) are comparable or even higher than those of SWNTs ($10-300/g). These utilized conjugated polymers represent a large portion of the overall separation cost. In this Account, we summarize recent progresses in polymer design for selective dispersion and separation of SWNTs. We focus particularly on removable and/or recyclable polymers that enable low-cost and scalable separation methods. First, different separation methods are compared to show the advantages of the polymer

  7. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.

    PubMed

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-07-07

    BACKGROUND The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. MATERIAL AND METHODS A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. RESULTS Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. CONCLUSIONS The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells.

  8. Hydrogen Storage in metal-modified single-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Ahn

    2004-04-30

    It has been known for over thirty years that potassium-intercalated graphites can readily adsorb and desorb hydrogen at {approx}1 wt% at 77 K. These levels are much higher than can be attained in pure graphite, owing to a larger thermodynamic enthalpy of adsorption. This increased enthalpy may allow hydrogen sorption at higher temperatures. Potassium has other beneficial effects that enable the design of a new material: (a) Increased adsorption enthalpy in potassium-intercalated graphite compared to pure graphite reduces the pressure and increases the temperature required for a given fractional coverage of hydrogen adsorption. We expect the same effects in potassium-intercalatedmore » SWNTs. (b) As an intercalant, potassium separates c-axis planes in graphite. Potassium also separates the individual tubes of SWNTs ropes producing swelling and increased surface area. Increased surface area provides more adsorption sites, giving a proportionately higher capacity. The temperature of adsorption depends on the enthalpy of adsorption. The characteristic temperature is roughly the adsorption enthalpy divided by Boltzmann's constant, k{sub B}. For the high hydrogen storage capacity of SWNTs to be achieved at room temperature, it is necessary to increase the enthalpy of adsorption. Our goal for this project was to use metal modifications to the carbon surface of SWNTs in order to address both enhanced adsorption and surface area. For instance, the enthalpy of sorption of hydrogen on KC8 is 450 meV/H{sub 2}, whereas it is 38 meV/H{sub 2} for unmodified SWNTs. By adsorption thermodynamics we expect approximately that the same performance of SWNTs at 77 K will be achieved at a temperature of [450/38] 77 K = 900 K. This is a high temperature, so we expect that adsorption on nearly all the available sites for hydrogen will occur at room temperature under a much lower pressure. This pressure can be estimated conveniently, since the chemical potential of hydrogen is

  9. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  10. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE PAGES

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...

    2017-05-08

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  11. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.

    2017-05-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  12. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  13. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids

    DOE PAGES

    Jin, Haibao; Ding, Yan-Huai; Wang, Mingming; ...

    2018-01-18

    Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less

  14. Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Haibao; Ding, Yan-Huai; Wang, Mingming

    Despite recent advances in assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly-designable and dynamic single-walled nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers (APOs) crystallized to form well-defined nanosheets which were then folded to form single-walled peptoid nanotubes (SW-PNTs). These SW-PNTs undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of APOs, we demonstrate the tuning of PNT wall thickness andmore » diameter, and mechanical properties. AFM-based mechanical measurements indicate that PNTs are highly stiff (Young’s Modulus ~13-17 GPa), comparable to the stiffest known biological materials. We further demonstrate that the precise incorporation of functional groups within PNTs and the application of functional PNTs in water decontamination. We believe these SW-PNTs can provide a robust platform for development of biomimetic materials tailored to specific applications.« less

  15. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  16. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  17. Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities

    PubMed Central

    2018-01-01

    We demonstrate the formation and tuning of charged trion-polaritons in polymer-sorted (6,5) single-walled carbon nanotubes in a planar metal-clad microcavity at room temperature. The positively charged trion-polaritons were induced by electrochemical doping and characterized by angle-resolved reflectance and photoluminescence spectroscopy. The doping level of the nanotubes within the microcavity was controlled by the applied bias and thus enabled tuning from mainly excitonic to a mixture of exciton and trion transitions. Mode splitting of more than 70 meV around the trion energy and emission from the new lower polariton branch corroborate a transition from exciton-polaritons (neutral) to trion-polaritons (charged). The estimated charge-to-mass ratio of these trion-polaritons is 200 times higher than that of electrons or holes in carbon nanotubes, which has exciting implications for the realization of polaritonic charge transport.

  18. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  19. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    PubMed Central

    2014-01-01

    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. PMID:24479647

  20. Dispersion of carbon nanotubes in vinyl ester polymer composites

    NASA Astrophysics Data System (ADS)

    Pena-Paras, Laura

    This work focused on a parametric study of dispersions of different types of carbon nanotubes in a polymer resin. Single-walled (SWNTs), double-walled (DWNTs), multi-walled (MWNTs) and XD-grade carbon nanotubes (XD-CNTs) were dispersed in vinyl ester (VE) using an ultra-sonic probe at a fixed frequency. The power, amplitude, and mixing time parameters of sonication were correlated to the electrical and mechanical properties of the composite materials in order to optimize dispersion. The quality of dispersion was quantified by Raman spectroscopy and verified through optical and scanning electron microscopy. By Raman, the CNT distribution, unroping, and damage was monitored and correlated with the composite properties for dispersion optimization. Increasing the ultrasonication energy was found to improve the distribution of all CNT materials and to decrease the size of nanotube ropes, enhancing the electrical conductivity and storage modulus. However, excessive amounts of energy were found to damage CNTs, which negatively affected the properties of the composite. Based on these results the optimum dispersion energy inputs were determined for the different composite materials. The electrical resistivity was lowered by as much as 14, 13, 13, and 11 orders of magnitude for SWNT/VE, DWNT/VE, MWNT/VE, and XD-CNT/VE respectively, compared to the neat resin. The storage modulus was also increased compared to the neat resin by 77%, 82%, 45%, 40% and 85% in SWNT, SAP-f-SWNT, DWNT, MWNT and XD-CNT/VE composites, respectively. This study provides a detailed understanding of how the properties of, nanocomposites are determined by the composite mixing parameters and the distribution, concentration, shape and size of the CNTs. Importantly, it indicates the importance of the need for dispersion metrics to correlate and understand these properties.