Sample records for wall piece manufactured

  1. Orbital Wall Reconstruction with Two-Piece Puzzle 3D Printed Implants: Technical Note

    PubMed Central

    Mommaerts, Maurice Y.; Büttner, Michael; Vercruysse, Herman; Wauters, Lauri; Beerens, Maikel

    2015-01-01

    The purpose of this article is to describe a technique for secondary reconstruction of traumatic orbital wall defects using titanium implants that act as three-dimensional (3D) puzzle pieces. We present three cases of large defect reconstruction using implants produced by Xilloc Medical B.V. (Maastricht, the Netherlands) with a 3D printer manufactured by LayerWise (3D Systems; Heverlee, Belgium), and designed using the biomedical engineering software programs ProPlan and 3-Matic (Materialise, Heverlee, Belgium). The smaller size of the implants allowed sequential implantation for the reconstruction of extensive two-wall defects via a limited transconjunctival incision. The precise fit of the implants with regard to the surrounding ledges and each other was confirmed by intraoperative 3D imaging (Mobile C-arm Systems B.V. Pulsera, Philips Medical Systems, Eindhoven, the Netherlands). The patients showed near-complete restoration of orbital volume and ocular motility. However, challenges remain, including traumatic fat atrophy and fibrosis. PMID:26889349

  2. A Novel Computer-Aided Design/Computer-Assisted Manufacture Method for One-Piece Removable Partial Denture and Evaluation of Fit.

    PubMed

    Ye, Hongqiang; Li, Xinxin; Wang, Guanbo; Kang, Jing; Liu, Yushu; Sun, Yuchun; Zhou, Yongsheng

    2018-02-15

    To investigate a computer-aided design/computer-aided manufacturing (CAD/CAM) process for producing one-piece removable partial dentures (RPDs) and to evaluate their fits in vitro. A total of 15 one-piece RPDs were designed using dental CAD and reverse engineering software and then fabricated with polyetheretherketone (PEEK) using CAM. The gaps between RPDs and casts were measured and compared with traditional cast framework RPDs. Gaps were lower for one-piece PEEK RPDs compared to traditional RPDs. One-piece RPDs can be manufactured by CAD/CAM, and their fits were better than those of traditional RPDs.

  3. Design and fabrication of one piece in-situ ribbed cell walls for application in an advanced AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, D.P.; McDougal, J.R.; Booher, R.A.

    1998-07-01

    Alkali Metal Thermal to Electrical Conversion (AMTEC) technology has been identified as a promising advanced space power technology with a predicted thermal to electrical conversion efficiency of {approximately}20%. The AMTEC technology has been the focus of several research endeavors in recent years and in essence it utilizes sodium and beta-alumina solid electrolyte tubes placed within a metal housing (cell wall) forming an AMTEC cell. The future application of the AMTEC technology, as the basis of an advanced power system for future deep space missions, is dependent on the development of AMTEC cells which will have the appropriate long term physicalmore » and mechanical properties to ensure the successful completion of the mission. The emphasis of this paper is on the design and fabrication of one piece in-situ ribbed cell walls for application in AMTEC cells. Novel machining and laser welding processes were employed which allowed the successful fabrication of the one piece thin walled 0.10mm--0.25mm (0.004--0.010in) cells. In-situ ribbed cell walls have the advantage over other cell wall designs in that the number of piece parts and the total weld area is reduced greatly simplifying fabrication. Test results show that the fabricated one piece cell walls were hermetic (helium leak rates of less than 1 {times} 10{sup {minus}8} cm{sup 3}/s) and had sufficient compression strength to meet mission requirements.« less

  4. Improved PMMA single-piece haptic materials

    NASA Astrophysics Data System (ADS)

    Healy, Donald D.; Wilcox, Christopher D.

    1991-12-01

    During the past fifteen years, Intraocular lens (IOL) haptic preferences have shifted from a variety of multi-piece haptic materials to single-piece PMMA. This is due in part to the research of David Apple, M.D., and other who have suggested that All-PMMA implants result in reduced cell flare and better centration. Consequently, single-piece IOLs now represent 45% of all IOL implants. However, many surgeons regard single-piece IOL designs as nonflexible and more difficult to implant than multipiece IOLs. These handling characteristics have slowed the shift from multi-piece to single-piece IOLs. As a result of these handling characteristics, single-piece lenses experience relatively high breakage rates because of handling before insertion and during insertion. To improve these characteristics, manufacturers have refined single-piece IOL haptic designs by pushing the limits of PMMA's physical properties. Furthermore, IOL manufacturers have begun to alter the material itself to change its physical properties. In particular, two new PMMA materials have emerged in the marketplace: Flexeon trademark, a crosslinked polymer and CM trademark, a material with molecularly realigned PMMA. This paper examines three specific measurements of a haptic's strength and flexibility: tensile strength, plastic memory and material plasticity/elasticity. The paper compares with Flexeon trademark and CM trademark lenses to noncrosslinked one-piece lenses and standard polypropylene multi-piece lenses.

  5. DETAIL VIEW, CARVED PIECE OF DORIC ENTABLATURE RESTING ON TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, CARVED PIECE OF DORIC ENTABLATURE RESTING ON TOP OF STONE RETAINING WALL NEAR ITS SOUTHWESTERN END. THIS PIECE OF CARVED STONE--LIKE SIMILAR PIECES USED IN THE HOUSE'S NORTH SHED AND THE SOUTH WALL OF THE GREENHOUSE--IS A LIKELY REMNANT OF AN ARCHITECTURAL SCHEME PURSUED AND LATER ABANDONED BY JOHN BARTRAM, SR. THE STONE IS NOT INTEGRAL TO THE WALL - John Bartram House & Garden, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  6. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    NASA Astrophysics Data System (ADS)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical

  7. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  8. "Build That Wall!": Manufacturing the Enemy, yet Again

    ERIC Educational Resources Information Center

    Santamaría Graff, Cristina C.

    2017-01-01

    The 2016 presidential campaign and the election of Donald Trump has amplified divisive anti-immigrant sentiment and has further positioned "Mexicans as enemy." Trump's "Build That Wall!" declarative has stoked nativist ire through manufactured narratives that rarely, if ever, consider the United States government's role in the…

  9. Retaining Device For One-Piece Battery

    DOEpatents

    Gilabert, Claude; Leturque, Michel; Verhoog, Roclof

    2000-08-01

    The present invention consists of a device for retaining a one-piece battery with a prismatic casing having two longitudinal walls and two transverse walls. The device contains two plates applied to respective transverse walls and at least one cinching mechanism for the plates consisting of at least one flat strip closed on itself surrounding the longitudinal walls and the transverse walls are provided with the plates. The device is characterized in that at least one of the plates contains at least one recessed housing and the strip closely follows the shape of the housing.

  10. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  11. Double wall vacuum tubing and method of manufacture

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1989-01-01

    An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.

  12. Product management of making large pieces through Rapid Prototyping PolyJet® technology

    NASA Astrophysics Data System (ADS)

    Belgiu, G.; Cărăuşu, C.; Şerban, D.; Turc, C. G.

    2017-08-01

    The rapid prototyping process has already become a classic manufacturing process for parts and assemblies, either polymeric or metal parts. Besides the well-known advantages and disadvantages of the process, the use of 3D printers has a great inconvenience: the overall dimensions of the parts are limited. Obviously, there is a possibility to purchase a larger (and more expensive) 3D printer, but there are always larger pieces to be manufactured. One solution to this problem is the splitting of parts into several components that can be manufactured. The component parts can then be assembled in a single piece by known methods such as welding, gluing, screwing, etc. This paper shows our experience in making large pieces on the Strarasys® Objet24 printer, pieces larger than the tray sizes. The results obtained are valid for any 3D printer using the PolyJet® process.

  13. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  14. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  15. Sealed One Piece Battery Having A Prism Shape Container

    DOEpatents

    Verhoog, Roelof; Barbotin, Jean-Loup

    2000-03-28

    A sealed one-piece battery having a prism-shaped container including: a tank consisting of a single plastic material, a member fixed and sealed to the tank and to partitions on the side of the tank opposite the transverse wall to seal the tank, two flanges fixed and sealed to longitudinal walls defining flow compartments for a heat-conducting fluid, and two tubes on the transverse wall of the tank forming an inlet and an outlet for fluid common to the compartments.

  16. Numerical Estimation of the Elastic Properties of Thin-Walled Structures Manufactured from Short-Fiber-Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.

    2003-05-01

    A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.

  17. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1992-11-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  18. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  19. Design, Manufacture and Test of Cryotank Components

    NASA Technical Reports Server (NTRS)

    McCarville, Douglas A.; Guzman, Juan C.; Dillon. Alexandra K.; Jackson, Justin R.; Birkland, Jordan O.

    2017-01-01

    On the composite cryotank technology development (CCTD) project, the Boeing Company built two cryotanks as a means of advancing technology and manufacturing readiness levels (TRL and MRL) and lowering the risk of fabricating full-scale fuel containment vessels.1 CCTD focused on upper stage extended duration applications where long term storage of propellants is required. The project involved the design, analysis, fabrication, and test of manufacturing demonstration units (MDU), a 2.4 m (precursor) and a 5.5 m composite cryotank. Key design features included one-piece wall construction to minimize overall weight (eliminating the need for a bellyband joint), 3-dimensionally (3D) reinforced y-joint material to alleviate stress concentrations at the tank to skirt interface and a purge-able ?uted core skirt to carry high axial launch loads. The tanks were made with OoA curing pre-impregnated (prepreg) carbon/epoxy (C/E) slit-tape tow (STT) that contained thin micro-crack resistant plies in the tank wall center to impede permeation. The tanks were fabricated at Boeing's Seattle-based Advanced Development Center (ADC) using RAFP and multipiece break-down tooling. The tooling was designed and built by Janicki Industries (JI) at Sedro Woolley, Washington. Tank assemblage consisted of co-bonded dome covers, one-piece ?uted core skirts and mechanical fastened cover/sump. Ultrasonic inspection was performed after every cure or bond and a structural health monitoring system (SHMS) was installed to identify potential impact damage events (in-process and/or during transportation). The tanks were low temperature tested at NASA's George C. Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The testing, which consisted of a sequence of ?ll/drain pressure and thermal cycles using LH2, was successfully concluded in 2012 on the 2.4 m tank and in 2014 on the 5.5 m tank. Structural, thermal, and permeation performance data was obtained. 2 Critical design features and

  20. Health surveillance study of workers who manufacture multi-walled carbon nanotubes.

    PubMed

    Lee, Jong Seong; Choi, Young Chul; Shin, Jae Hoon; Lee, Ji Hyun; Lee, Yurim; Park, So Young; Baek, Jin Ee; Park, Jung Duck; Ahn, Kangho; Yu, Il Je

    2015-01-01

    While many in vivo and in vitro toxicology studies of multi-walled carbon nanotubes (MWCNTs) have already indicated that exposure to MWCNTs can potentially induce health effects in humans, the actual health effects of MWCNTs among exposed workers are not yet known. Moreover, the levels of exposure and internal doses of MWCNTs are becoming more and more important for estimating the health effects resulting from exposure to MWCNTs. However, information on biomonitoring and exposure to MWCNTs remains limited. Therefore, the authors conducted a health surveillance study in a workplace that manufactures MWCNTs, including assessment of the personal and area exposure levels to MWCNTs, a walk-through evaluation of the manufacturing process, and collection of blood and exhaled breath condensates (EBCs) from the MWCNT manufacturing and office workers. In addition, a pulmonary function test was also conducted on the MWCNT manufacturing workers (9) and office workers (4). The worker exposure to elemental carbon was found to be 6.2-9.3 μg/m(3) in the personal samplings and 5.5-7.3 μg/m(3) in the area samplings. Notwithstanding, the workers exhibited a normal range of hematology and blood biochemistry values and normal lung function parameters. When analyzing the EBCs, the malondialdehyde (MDA), 4-hydroxy-2-hexenal (4-HHE) and n-hexanal levels in the MWCNT manufacturing workers were significantly higher than those in the office workers. The MDA and n-hexanal levels were also significantly correlated with the blood molybdenum concentration, suggesting MDA, n-hexanal and molybdenum as useful biomarkers of MWCNT exposure.

  1. Scanning electron microscopic characteristics of commercially available 1- and 3-piece intraocular lenses.

    PubMed

    Brockmann, Tobias; Brockmann, Claudia; Nietzsche, Sandor; Bertelmann, Eckart; Strobel, Juergen; Dawczynski, Jens

    2013-12-01

    To evaluate commercially available 1- and 3-piece intraocular lenses (IOLs) with scanning electron microscopy (SEM). Department of Ophthalmology and Electron Microscopy Center, University Hospital Jena, Jena, Germany. Experimental study. Seven +23.0 diopter IOLs of different design and material and from different manufacturers were chosen for a detailed assessment. Scanning electron microscopy was used at standardized magnifications to assess typical IOL characteristics. The particular focus was the optic edge, the optic surface, the haptic–optic junction, and the haptic. All square-edged IOLs had a curvature radius of less than 10 μm, while the mean optic edge thickness ranged between 216 μm and 382 μm. A 360-degree square-edged boundary was present in all 3-piece IOLs and in a single 1-piece model. Relevant production remnants on the optic edge were observed in 1 case. Regarding the haptic, 3-piece IOLs had uniformly shaped fibers with a mean thickness of 177 μm ± 51 (SD) (range 116 to 220 μm). Chemical adhesives were used to attach the haptic in 1 case, where alterations of the IOL material were observed. In another case, the haptic fiber was press-fitted into the optic, which resulted in bulging of the optic profile. Inspection of surface characteristics showed wavelike patterns in 2 IOLs. Taking clinical relevance into account, all IOLs were of high manufacturing quality. Certain attention was paid in creating a sharp optic edge. Surface irregularities of 2 IOLs were attributed to the manufacturing technique. Methods for implementing the haptic–optic junction were diverse.

  2. View of the demilune, a triangular piece of land that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the demilune, a triangular piece of land that protected the rear of gorge wall of the fort. After the civil war, large earthen mounds were built in the demilune area. These mounds overlay four powder magazines and passageways to several gun emplacements. - Fort Pulaski, Cockspur Island, Savannah, Chatham County, GA

  3. Bone microstrain values of 1-piece and 2-piece implants subjected to mechanical loading.

    PubMed

    Harel, Noga; Eshkol-Yogev, Inbar; Piek, Dana; Livne, Shiri; Lavi, David; Ormianer, Zeev

    2013-06-01

    The purpose of this study was to measure and compare the strain levels in peri-implant bone as generated by 1-piece (1P) and 2-piece (2P) implant systems. The implants (1P and 2P) were placed into bovine bone according to the manufacturer's protocol. Four linear strain gauges were placed around each implant neck and apex. Each model was loaded in static loading by a material testing machine in ascending forces ranging from 20 to 120 N. Microstrains (μ[Latin Small Letter Open E]) generated in the surrounding bone were measured by a strain gauge and recorded. Recorded microstrains were significantly higher for 1P implants than for 2P implants. Average recorded microstrain values were significantly lower in the neck (71.6 and 17.3 µs) compared with the apical (132 and 60 µs) regions of 1P and 2P implants, respectively (P < 0.0001). Within the limitations of this study, highest microstrains were generated in apical regions regardless of implant design, but the 2P implant ap-peared to provide a stress-damping effect in both the cervical and apical regions compared with the 1P implant.

  4. Do puzzle pieces and autism puzzle piece logos evoke negative associations?

    PubMed

    Gernsbacher, Morton Ann; Raimond, Adam R; Stevenson, Jennifer L; Boston, Jilana S; Harp, Bev

    2018-02-01

    Puzzle pieces have become ubiquitous symbols for autism. However, puzzle-piece imagery stirs debate between those who support and those who object to its use because they believe puzzle-piece imagery evokes negative associations. Our study empirically investigated whether puzzle pieces evoke negative associations in the general public. Participants' ( N = 400) implicit negative associations were measured with an Implicit Association Task, which is a speeded categorization task, and participants' explicit associations were measured with an Explicit Association Task, which is a standard task for assessing consumers' explicit associations with brands (and images of those brands). Puzzle pieces, both those used as autism logos and those used more generically, evoked negative implicit associations ( t(399) = -5.357, p < 0.001) and negative explicit associations ( z = 4.693, p < 0.001, d = 0.491). Participants explicitly associated puzzle pieces, even generic puzzle pieces, with incompleteness, imperfection, and oddity. Our results bear public policy implications. If an organization's intention for using puzzle-piece imagery is to evoke negative associations, our results suggest the organization's use of puzzle-piece imagery is apt. However, if the organization's intention is to evoke positive associations, our results suggest that puzzle-piece imagery should probably be avoided.

  5. Do Puzzle Pieces and Autism Puzzle Piece Logos Evoke Negative Associations?

    ERIC Educational Resources Information Center

    Gernsbacher, Morton Ann; Raimond, Adam R.; Stevenson, Jennifer L.; Boston, Jilana S.; Harp, Bev

    2018-01-01

    Puzzle pieces have become ubiquitous symbols for autism. However, puzzle-piece imagery stirs debate between those who support and those who object to its use because they believe puzzle-piece imagery evokes negative associations. Our study empirically investigated whether puzzle pieces evoke negative associations in the general public.…

  6. Systems Modeling of a Hypothetical SSME Channel-Wall Nozzle

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Thames, Mignon P.; Polsgrove, Robert H.

    2003-01-01

    A future upgrade to the Space Shuttle Main Engine (SSME) may be the replacement of the current regenerative cooled tube-wall nozzle with a nozzle using a regeneratively-cooled channel-wall design. The current tube-wall design represents the only major piece of SSME hardware that has not been dramatically updated throughout thc long history of the engine. There are a number of advantages to a channel-wall design including the promise of faster and lower cost fabrication and greater reliability in the field. The technical obstacles in the path of making this happen are many, particularly in the realms of metallurgy and manufacturing techniques. However, one technical area that can and should be addressed in the near term as part of the development of detailed component requirements is a systems type model of the fluid flow and heat transfer processes to which the new design will be exposed. This paper presents the results of an effort to develop a mathematical model of the internal flow for a generic channel-wall nozzle functioning as a direct replacement for the current tube-wall nozzle with a minimum of systems-level changes. Comparisons will be made to mathematical modeling results for the current tube-wall design and the results of various geometrical trade studies will be presented. It is the intent of this work to examine the feasibility of the concept of a direct replacement component with minimum systems-!eve impacts and to highlight potential areas of concern requiring further work in the future.

  7. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rim wheel onto a vehicle axle hub. Removing means the opposite of installing. Mounting a tire means... 29 Labor 5 2011-07-01 2011-07-01 false Servicing multi-piece and single piece rim wheels. 1910.177... § 1910.177 Servicing multi-piece and single piece rim wheels. (a) Scope. (1) This section applies to the...

  8. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... means the transfer and attachment of an assembled rim wheel onto a vehicle axle hub. Removing means the... 29 Labor 5 2014-07-01 2014-07-01 false Servicing multi-piece and single piece rim wheels. 1910.177... § 1910.177 Servicing multi-piece and single piece rim wheels. (a) Scope. (1) This section applies to the...

  9. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rim wheel onto a vehicle axle hub. Removing means the opposite of installing. Mounting a tire means... 29 Labor 5 2010-07-01 2010-07-01 false Servicing multi-piece and single piece rim wheels. 1910.177... § 1910.177 Servicing multi-piece and single piece rim wheels. (a) Scope. (1) This section applies to the...

  10. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means the transfer and attachment of an assembled rim wheel onto a vehicle axle hub. Removing means the... 29 Labor 5 2013-07-01 2013-07-01 false Servicing multi-piece and single piece rim wheels. 1910.177... § 1910.177 Servicing multi-piece and single piece rim wheels. (a) Scope. (1) This section applies to the...

  11. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means the transfer and attachment of an assembled rim wheel onto a vehicle axle hub. Removing means the... 29 Labor 5 2012-07-01 2012-07-01 false Servicing multi-piece and single piece rim wheels. 1910.177... § 1910.177 Servicing multi-piece and single piece rim wheels. (a) Scope. (1) This section applies to the...

  12. Effect of Premolar Axial Wall Height on Computer-Aided Design/Computer-Assisted Manufacture Crown Retention.

    PubMed

    Martin, Curt; Harris, Ashley; DuVall, Nicholas; Wajdowicz, Michael; Roberts, Howard Wayne

    2018-03-28

    To evaluate the effect of premolar axial wall height on the retention of adhesive, full-coverage, computer-aided design/computer-assisted manufacture (CAD/CAM) restorations. A total of 48 premolar teeth randomized into four groups (n = 12 per group) received all-ceramic CAD/CAM restorations with axial wall heights (AWH) of 3, 2, 1, and 0 mm and 16-degree total occlusal convergence (TOC). Specimens were restored with lithium disilicate material and cemented with self-adhesive resin cement. Specimens were loaded to failure after 24 hours. The 3- and 2-mm AWH specimens demonstrated significantly greater failure load. Failure analysis suggests a 2-mm minimum AWH for premolars with a TOC of 16 degrees. Adhesive technology may compensate for compromised AWH.

  13. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  14. Space Launch System Launch Vehicle Stage Adapter Hardware Completes Manufacturing

    NASA Image and Video Library

    2017-08-28

    The Launch Vehicle Stage Adapter for the first flight of the Space Launch System, NASA’s new deeps space rocket, recently completed manufacturing at NASA’s Marshal Space Flight Center in Huntsville, Alabama. The LVSA, the largest piece of the rocket welded together in Marshall’s Huntsville manufacturing area, will connect two major sections of SLS – the 27.6-foot diameter core stage and the 16.4-foot interim cryogenic propulsion stage – for the first integrated flight of SLS and the Orion spacecraft. Teledyne Brown Engineering of Huntsville, the prime contractor for the adapter, has completed manufacturing, and engineers are preparing to apply thermal insulation. It will be the largest piece of hardware that Marshall. The LVSA was moved from the NASA welding area to NASA’s Center for Advanced Manufacturing where the thermal protection system will be applied.

  15. On Limitations of the Ultrasonic Characterization of Pieces Manufactured with Highly Attenuating Materials

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.

    Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.

  16. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  17. HEB spool pieces design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D.; Strube, D.

    1994-02-01

    The many varied types of spool pieces for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) Laboratory are presented. Each type of spool piece is discussed, and the specific components are identified. The spool piece components allow each spool piece to perform as a unique electromechanical device positioned in series with large superconducting magnets to provide electrical and mechanical support for each superconducting magnet in areas of cryogenics, electrical power, instrumentation, diagnostics, and vacuum. A specialized HEB superspool is identified that perhaps has the potential to aid in the overall configuration management of the HEB lattice bymore » combining HEB superconducting quadrupole magnets and spool pieces within a common cryostat.« less

  18. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  19. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  20. Comparison of decentration and tilt between one piece and three piece polymethyl methacrylate intraocular lenses

    PubMed Central

    Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F.

    1998-01-01

    BACKGROUND—The extent of the decentration and tilt was prospectively compared between one piece polymethyl methacrylate (PMMA) and three piece PMMA intraocular lenses (IOLs) which were implanted in the capsular bag after performing continuous curvilinear capsulorhexis.
METHODS—91 patients underwent a one piece PMMA IOL implantation in one eye as well as the implantation of the three piece PMMA IOL with polyvinylidene fluoride loops in the opposite eye. The length of the lens decentration and the angle of the tilt were quantitated using the anterior eye segment analysis system (EAS-1000) at 1 week as well as 1, 3, and 6 months postoperatively.
RESULTS—The mean length of the decentration in the one piece IOL was smaller than that in the three piece IOL at 1 week (p=0.0092), 1 month (p=0.0044), 3 months (p=0.0069), and 6 months (p=0.0010) postoperatively. However, no significant difference was found in the degree of the tilt between the two types of IOLs throughout the observation periods.
CONCLUSION—These results clarified that the one piece PMMA IOL with rigid PMMA haptics implanted in the capsular bag provides a better centration than the three piece PMMA IOL with flexible haptics, whereas the tilt was the same between the two types of IOLs.

 Keywords: intraocular lens; decentration; tilt; continuous curvilinear capsulorhexis PMID:9640193

  1. One-Piece Battery Incorporating A Circulating Fluid Type Heat Exchanger

    DOEpatents

    Verhoog, Roelof

    2001-10-02

    A one-piece battery comprises a tank divided into cells each receiving an electrode assembly, closure means for the tank and a circulating fluid type heat exchanger facing the relatively larger faces of the electrode assembly. The fluid flows in a compartment defined by two flanges which incorporate a fluid inlet orifice communicating with a common inlet manifold and a fluid outlet orifice communicating with a common outlet manifold. The tank comprises at least two units and each unit comprises at least one cell delimited by walls. The wall facing a relatively larger face of the electrode assembly constitutes one of the flanges. Each unit further incorporates a portion of an inlet and outlet manifold. The units are fastened together so that the flanges when placed face-to-face form a sealed circulation compartment and the portions of the same manifold are aligned with each other.

  2. Additive manufacturing of transparent fused quartz

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Hostetler, John M.; Gilbert, Luke; Goldstein, Jonathan T.; Urbas, Augustine M.; Bristow, Douglas A.; Landers, Robert G.; Kinzel, Edward C.

    2018-04-01

    This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing material onto the workpiece. Spectroscopy and pyrometry are used to measure the thermal radiation incandescently emitted from the molten region. The effects of the laser power and scan speed are determined by measuring the morphology of single tracks. Thin walls are printed to study the effects of layer-to-layer height. This information is used to deposit solid pieces including a cylindrical-convex shape capable of focusing visible light. The transmittance and index homogeneity of the printed fused quartz are measured. These results show that the filament-fed process has the potential to print transmissive optics.

  3. Internal temperature monitor for work pieces

    DOEpatents

    Berthold, John W.

    1993-01-01

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  4. Internal temperature monitor for work pieces

    DOEpatents

    Berthold, J.W.

    1993-07-13

    A method and apparatus for measuring the internal temperature of a work piece comprises an excitation laser for generating laser pulses which are directed through a water cooled probe, and in an optical fiber, to a first surface of the work piece. The laser is of sufficient intensity to ablate the surface of the work piece, producing a displacement and a resulting ultrasonic pulse which propagates within the thickness of the work piece to an opposite surface. The ultrasonic pulse is reflected from the opposite surface and returns to the first surface to create a second displacement. A second continuous laser also shines its light through an optical fiber in the probe into the first surface and is used in conjunction with signal processing equipment to measure the time between the first and second displacements. This time is proportional to the time-of-flight of the ultrasonic pulse in the work piece which, with a known or detected thickness of the work piece, can be used to calculate the internal temperature of the work piece.

  5. New Single Piece Blast Hardware design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Andri; Steinzig, Michael Louis; Aragon, Daniel Adrian

    W, Q and PF engineers and machinists designed and fabricated, on the new Mazak i300, the first Single Piece Blast Hardware (unclassified design shown) reducing fabrication and inspection time by over 50%. The first DU Single Piece is completed and will be used for Hydro Test 3680. Past hydro tests used a twopiece assembly due to a lack of equipment capable of machining the complex saddle shape in a single piece. The i300 provides turning and milling 5-axis machining on one machine. The milling head on the i300 can machine past 90 relative to the spindle axis. This makes itmore » possible to machine the complex saddle surface on a single piece. Going to a single piece eliminates tolerance problems, such as tilting and eccentricity, that typically occurred when assembling the two pieces together« less

  6. Additive manufacturing of glass for optical applications

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-04-01

    Glasses including fused quartz have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of fused quartz. Additive manufacturing has several potential benefits including increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research in AM of glasses is limited and has focused on non-optical applications. Fused quartz is studied here because of its desirability for high-quality optics due to its high transmissivity and thermal stability. Fused quartz also has a higher working temperature than soda lime glass which poses a challenge for AM. In this work, fused quartz filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the work piece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed fused quartz. A spectrometer is used to measure the thermal radiation incandescently emitted from the melt pool. Thin-walls are printed to study the effects of layer-to-layer height. Finally, a 3D fused quartz cube is printed using the newly acquired layer height and polished on each surface. The transmittance and index homogeneity of the polished cube are both measured. These results show that the filament fed process has the potential to print fused quartz with optical transparency and of index of refraction uniformity approaching bulk processed glass.

  7. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

    PubMed

    Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi

    2017-05-01

    Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Laser-induced breakdown spectroscopy study of silversmith pieces: the case of a Spanish canopy of the nineteenth century

    NASA Astrophysics Data System (ADS)

    Gómez-Morón, M. A.; Ortiz, P.; Ortiz, R.; Martín, J. M.; Mateo, M. P.; Nicolás, G.

    2016-05-01

    Canopies of needlework velvet or silversmith pieces placed on twelve or more battens are widely employed in Spanish catholic ceremonies to cover the image of the virgin. In this paper, we focus our interest on those pieces made of silver. These silver crafts suffered a revolution in the nineteenth century with the development of an electrolyte system that can be applied over carved metal pieces, in order to obtain a silver layer by electrodeposition similar in appearance to the original sterling silver and cheaper. The aim of this research was the application of laser-induced breakdown spectroscopy (LIBS) to the study of a canopy of the nineteenth century in order to assess the techniques used for its manufacturing and the identification of replacement and restoration of original pieces. The LIBS depth profiles show the presence of a micron silver layer over an alloy of copper and zinc in most of the surfaces. Corrosion products, alloy missing, and the restoration with copper layers were detected. These results are consistent with those obtained by scanning electron microscopy with energy-dispersive of X-ray with the advantage that LIBS is a methodology that allows analysing metal pieces without sampling or preparation. In summary, LIBS is a technique that allows the study of silversmith pieces with electrochemical preparation according to the Ruolz technique, and it is also possible to detect subsequent restoration or corrosion zones.

  9. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering.

    PubMed

    Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina

    2018-06-01

    New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.

  10. [Suggestions to strengthen quality management of herbal decoction pieces--based on production chain of herbal decoction pieces].

    PubMed

    Liu, Yan; Nie, Qing; Chen, Jing

    2015-08-01

    With the development of society and the improvement of people's living standards, the effect of Chinese medicine in treatment and health care is more and more prominent. The herbal decoction pieces are the important part of Chinese medicine,it can be applied directly to clinical treatment and it's also the raw material of Chinese patent medicine. Therefore, the quality of herbal decoction pieces is quite important. The parts of the production of herbal decoction pieces are numerous, and there are possibilities of adverse effects on the quality of the herbal decoction pieces in every part. In this paper, we based on the production chain of herbal decoction pieces, analyzed the main problem that affect the quality of herbal decoction pieces in the part of selection of Chinese herbal medicines, planting, purchasing, processing, packaging, storage and transport, such as the poor quality of seed and seedlings of plant-based Chinese medicines, some plants left their place of origin and have been introduced in the place that is not suitable for this kind of plant, the insufficient growth time and the excessive harmful substances. The purchasers and the accepters lack of professional knowledge and professional ethics. The mechanism of processing is not clear, the standards can not be uniformed, and lack of qualified person in processing, etc. So we suggest: intensify the basic research of key scientific issues. Improve the quality of persons who work in herbal decoction pieces; Establish an "integration" mode of operation in herbal decoction pieces enterprise; Breeding high quality plant resources, establish the large-scale planting basement; Make the packing of herbal decoction pieces standard; Establish the modernization traditional Chinese medicine logistics enterprise.

  11. Multiple piece turbine rotor blade

    DOEpatents

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  12. 7 CFR 51.1442 - Piece.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Shelled Pecans Definitions § 51.1442 Piece. Piece means a portion of a kernel which is less than seven-eighths of a half-kernel, but which will not pass through a round opening two...

  13. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  14. USCA, a codeveloped piece of technology, is presented to Bridges, KSC Director, by Saputo, L-3 Commu

    NASA Technical Reports Server (NTRS)

    1997-01-01

    William Saputo, L-3 Communications, presents a new piece of technology, developed through a National Aeronautics and Space Administration (NASA) partnership with industry, to Kennedy Space Center (KSC) Director Roy Bridges, Jr. (second from left). The piece of technology being presented, the Universal Signal Conditioning Amplifier (USCA), is a key component of the codeveloped Automated Data Acquisition System (ADAS) that measures temperature, pressure and vibration at KSC's launch pads. The breakthrough technology is expected to reduce sensor setup and configuration times from hours to seconds. KSC teamed up with Florida's Technological Research and Development Authority and manufacturer L-3 Communications to produce a system that would benefit the aerospace industry and other commercial markets.

  15. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses.

    PubMed

    Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li

    2016-09-01

    Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.

  16. Musings on the puzzle piece.

    PubMed

    Goin-Kochel, Robin P

    2016-02-01

    Following is a brief musing on Roy Grinker's discussion of what the puzzle piece symbolizes for autism during his presentation at the 2015 International Meeting for Autism Research. In his words, "The puzzle piece is ubiquitous." It likely holds a different meaning for each of us, and this is how one autism researcher sees it. © The Author(s) 2015.

  17. Management of sulcus-fixated single-piece intraocular lens-induced pigmentary glaucoma with 3-piece IOL exchange.

    PubMed

    Rabie, Hossein Mohammad; Esfandiari, Hamed; Rikhtegar, Mohammad Hassan; Hekmat, Vahid

    2018-02-01

    To describe our experience with exchanging sulcus-fixated single-piece intraocular lens (IOL) with 3-piece IOLs for management of pigmentary glaucoma. In this retrospective study, records of patients who underwent sulcus-fixated single-piece IOL exchanged with 3-piece IOLs were retrieved, and demographic and baseline data of patients, type of IOL, pre- and post-IOL exchange BCVA, IOP, number of anti-glaucoma medications, and optic nerve head examination were documented. Baseline and final examinations were analyzed and compared. Mean age of the patients was 59 ± 10 years, and 5 (41.6%) were female. Mean interval between primary cataract extraction operation and IOL exchange was 17 ± 5 months. Nine patients received in sulcus implantation of Alcon SA60AT, and three patients had SN60WF model at the end of primary surgery. BCVA changed insignificantly from 0.06 ± 0.06 logMAR to 0.06 ± 0.06 after IOL exchange. (P = 0.22) IOP was controlled in 8 cases (66.6%), but four cases (33.3%) needed glaucoma surgery to further control glaucoma condition. IOP decreased significantly from preoperative 17 ± 3 to 14 ± 1 mmHg postoperatively. Patients with advanced age and higher baseline IOP were more likely to undergo glaucoma surgery after IOL exchange. (P = 0.07 and 0.00, respectively). single-piece IOL exchange with 3-piece IOL dramatically decreases pigment release and reduces IOP. Those with advanced age and higher IOP are less likely to respond to IOL exchange and may need glaucoma surgery to control high intraocular pressure.

  18. Exposure Assessment in a Single-Walled Carbon Nanotube Primary Manufacturer.

    PubMed

    Kouassi, Serge; Catto, Cyril; Ostiguy, Claude; L'Espérance, Gilles; Kroeger, Jens; Debia, Maximilien

    2017-03-01

    This study was aimed at documenting and characterizing occupational exposure to single-walled carbon nanotubes (SWCNTs) generated in a primary manufacturing plant. It also compared various strategies of exposure monitoring. A 6-day measurement protocol was scheduled (D1-D6) including both (i) quasi-personal monitoring with an array of direct reading instruments (DRIs) and (ii) offline electron microscopy analyses of surface and breathing zone filter-based samples. The first step (D1 and D2) consisted of contamination screenings resulting from the various SWCNT production tasks using a multimetric approach. Surface sampling was also carried out to assess workplace cross-contamination. The second step (D3-D6) focused on the exposure monitoring during recovery/cleaning task, by comparing three personal elemental carbon (EC) measurements [respirable EC using a cyclone following the NIOSH 5040 method (REC-CYC), respirable and thoracic EC using parallel particle impactors [REC-PPI and TEC-PPI, respectively)] and gravimetric mass concentration measurements. DustTrak DRX and electrical low-pressure impactor measurements indicated that particles were released during weighing, transferring, and recovery/cleaning tasks of the manufacturing process. Electron microscopy revealed the presence of agglomerated SWCNTs only during the recovery/cleaning task. REC-CYC concentrations remained under the limits of quantification; REC-PPI showed levels up to 58 µg m-3; and TEC-PPI ranged from 40 to 70 µg m-3. Ratios calculated between gravimetric measurements and estimated DustTrak mass concentrations ranged from 2.8 to 4.9. Cross-contamination appeared to be limited since SWCNTs was only found on surface samples collected close to the reactor in the production room. This case study showed that the DustTrak DRX should be the preferred device among DRIs to identify potential exposure to SWCNTs. However, there is a risk of false positive since it is a non-specific instrument; therefore

  19. Evaluation of maintenance procedures for bridge spalling on parapet walls : final report.

    DOT National Transportation Integrated Search

    2017-03-01

    Deterioration of parapet walls is a concern to the Ohio Department of Transportation. Spalling of the parapets : presents a danger as pieces of deteriorated concrete may fall onto the road below. The current repair method : is to chip off the deterio...

  20. Orthodontic Bracket Manufacturing Tolerances and Dimensional Differences between Select Self-Ligating Brackets

    PubMed Central

    Major, Thomas W.; Carey, Jason P.; Nobes, David S.; Major, Paul W.

    2010-01-01

    In all manufacturing processes there are tolerances; however, orthodontic bracket manufacturers seldom state the slot dimensional tolerances. This experiment develops a novel method of analyzing slot profile dimensions using photographs of the slot. Five points are selected along each wall, and lines are fitted to define a trapezoidal slot shape. This investigation measures slot height at the slot's top and bottom, angles between walls, slot taper, and the linearity of each wall. Slot dimensions for 30 upper right central incisor self-ligating stainless steel brackets from three manufacturers were evaluated. Speed brackets have a slot height 2% smaller than the nominal 0.559 mm size and have a slightly convergent taper. In-Ovation brackets have a divergent taper at an average angle of 1.47 degrees. In-Ovation is closest to the nominal value of slot height at the slot base and has the smallest manufacturing tolerances. Damon Q brackets are the most rectangular in shape, with nearly 90-degree corners between the slot bottom and walls. Damon slot height is on average 3% oversized. PMID:20981299

  1. Fractal dimension analysis of complexity in Ligeti piano pieces

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  2. Surface dimpling on rotating work piece using rotation cutting tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less

  3. Heat Shield in Pieces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity shows the remains of the rover's heat shield, broken into two key pieces, the main piece on the left side and a broken-off flank piece near the middle of the image. The heat shield impact site is identified by the circle of red dust on the right side of the picture. In this view, Opportunity is approximately 20 meters (66 feet) away from the heat shield, which protected it while hurtling through the martian atmosphere.

    In the far left of the image, a meteorite called 'Heat Shield Rock,' sits nearby, The Sun is reflecting off the silver-colored underside of the internal thermal blankets of the heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is an approximately true-color rendering of the scene acquired around 1:22 p.m. local solar time on Opportunity sol 324 (Dec. 21, 2004) in an image mosaic using panoramic filters at wavelengths of 750, 530, and 430 nanometers.

  4. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE PAGES

    An, Ke; Yuan, Lang; Dial, Laura; ...

    2017-09-11

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  5. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ke; Yuan, Lang; Dial, Laura

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  6. Method and system rapid piece handling

    DOEpatents

    Spletzer, Barry L.

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  7. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    NASA Astrophysics Data System (ADS)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-02-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2-12 μg/m3. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10-420 nm were 10,000-40,000 particles/cm3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1-10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  8. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    PubMed

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Posterior capsule opacification in rabbit eyes implanted with 1-piece and 3-piece hydrophobic acrylic intraocular lenses.

    PubMed

    Werner, Liliana; Mamalis, Nick; Izak, Andrea M; Pandey, Suresh K; Davis, Brandon L; Nilson, Chistian D; Weight, Christopher; Apple, David J

    2005-04-01

    To evaluate the outcome of posterior capsule opacification (PCO) after implantation in rabbit eyes of currently available 3-piece and 1-piece hydrophobic acrylic intraocular lenses (IOLs) with square optic edges. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. The 3-piece designs evaluated were the AR40e (Advanced Medical Optics Inc.) and the MA60AC (Alcon, Inc.); the 1-piece designs were the SA60AT and the SA30AT (Alcon, Inc.). Nine lenses of each type were implanted in a randomized manner by the same surgeon in 18 Dutch Belted pigmented rabbits. After a follow-up of 3 weeks, the rabbits were killed and analyses of the enucleated eyes were performed from the posterior or Miyake-Apple view. The intensity of central PCO, peripheral PCO, and Soemmering's ring formation was scored from 0 to 4. The area of Soemmering's ring formation was also scored from 0 to 4 based on the number of quadrants involved. Other parameters analyzed were capsulorhexis coverage of the IOL anterior surface, IOL centration, fixation, and presence of striae. Results from the posterior view were complemented by histopathologic evaluation of the eyes. No statistically significant difference was found between the 4 groups of IOLs in the parameters analyzed from the posterior view. When cell ingrowth occurred with the 1-piece designs, causing peripheral and central PCO formation, it was more likely to start at the optic-haptic junctions, as observed during the clinical follow-up with slitlamp examination and confirmed by gross and histopathologic analyses of the enucleated eyes. The square, truncated optic edge is the most important IOL design feature for PCO prevention. The optic-haptic junctions of the 1-piece designs appear to be sites where the barrier effect of the truncated optic edge is less effective.

  10. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  11. Emission of ammonia from indoor concrete wall and assessment of human exposure.

    PubMed

    Bai, Z; Dong, Y; Wang, Z; Zhu, T

    2006-04-01

    Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same

  12. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    NASA Astrophysics Data System (ADS)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and

  13. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    NASA Technical Reports Server (NTRS)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  14. Don't Lose Your Marbles!: Game Project Teaches Introductory Manufacturing Skills

    ERIC Educational Resources Information Center

    Kapur, Arjun; Carter, Horlin; Dillon, Dave

    2006-01-01

    This article describes a lab activity conducted in an introductory manufacturing class. In this good, simple, mass-production project, the students designed and produced a small game composed of a piece of plywood and 14 glass marbles. In appearance, the game is something like Chinese checkers, but it involves jumping over marbles, then removing…

  15. Manufacture of Regularly Shaped Sol-Gel Pellets

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  16. Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping.

    PubMed

    Odoch, Martin; Buys, Elna M; Taylor, John R N

    2017-08-01

    Steeping of cassava root pieces in 0.75% NaOH in combination with wet milling was investigated to determine whether and how dilute NaOH modifies cassava cell walls. Gas chromatography data of cell wall constituent sugar composition and Fourier transform infrared (FTIR) data showed that NaOH steeping reduced the level of pectin in cassava cell walls. FTIR and wide-angle X-ray scattering spectroscopy also indicated that NaOH steeping combined with fine milling slightly reduced cellulose crystallinity. Scanning electron microscopy showed that NaOH steeping produced micropores in the cell walls and light microscopy revealed that NaOH steeping increased disaggregation of parenchyma cells. Steeping of ground cassava in NaOH resulted in a 12% decrease in large residue particles and approx. 4% greater starch yield with wet milling. Therefore dilute NaOH steeping can improve the effectiveness of wet milling in disintegrating cell walls through solubilisation of pectin, thereby reduced cell wall strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  18. 7 CFR 51.1438 - Size classifications for pieces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Shelled Pecans Size Classifications § 51.1438 Size classifications for pieces. The size of pecan pieces in a lot may be specified in accordance with one of the size...

  19. Simulation of Double-Seaming in a Two-piece Aluminum Can

    NASA Astrophysics Data System (ADS)

    Romanko, Anne; Berry, Dale; Fox, David

    2004-06-01

    The aluminum can industry in the United States and Canada manufactures over 100 billion cans per year. Two-piece aluminum cans are commonly used to seal and deliver foodstuffs such as soft drinks, beer, pet food, and other perishable items. In order to ensure product safety and performance, the double seam between the can body and lid is a critical component of the package. Double-seaming is a method by which the flange of the can body and the curl of the end are folded over together such that the final joint is composed of five metal thicknesses. There are a number of design challenges involved with the art of double seaming, especially with the push to lightweight. Although the requirements vary by product, the typical beer package must be able to hold pressures in excess of 90psi. In addition, in production, double seaming is a high-speed operation with speeds as high as 3000 cans/minute on an 18-spindle seamer. For this high volume, low cost industry, understanding and optimizing the seaming process can advance the industry as well as help prevent various manufacturing problems that produce a poor seal between the two pieces of the can. To aid in understanding the mechanics of the can parts during double-seaming, a simulation procedure was developed and carried out on a 202 diameter beverage can and lid. Simulations were run with the explicit dynamics solver ABAQUS/Explicit using the continuum shell element technology available in the ABAQUS general purpose FEA program. The continuum shell is a shear-deformable shell element with the topology of an eight node brick. The element's formulation allows continuously varying, solution-dependent shell thickness and through-thickness pinching stress. One important advantage of using the continuum shell as opposed to a traditional shell element is that true contact interactions at the top and bottom surfaces of the can body and lid can be accurately modeled. With a conventional shell element, contact is performed at the

  20. Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping.

    PubMed

    Marshall, Garrett J; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    An OPTOMEC Laser Engineered Net Shaping (LENS(™)) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti-6Al-4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.

  1. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping

    PubMed Central

    Marshall, Garrett J.; Thompson, Scott M.; Shamsaei, Nima

    2016-01-01

    An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials. PMID:27054180

  2. Developing an experimental case in aluminium foils 1100 to determine the maximum angle of formability in a piece by Dieless-SPIF process

    NASA Astrophysics Data System (ADS)

    Gabriel, Paramo; Adrian, Benitez

    2014-07-01

    Incremental sheet forming by the method of single point incremental forming Dieless-SPIF, is a widely studied process, experimented and developed in countries with high manufacturing technologies, with friendly costs when the productive configuration in a productivity system is based in small production batches. United states, United kingdom and France lead this type of studies and cases, developing various proof with experimental geometries, different from the national environment such as Colombia, Bolivia, Chile, Ecuador and Peru where this process where discretely studied. Previously mentioned, it pretends develop an experimental case of a particular geometry, identifying the maximum formability angle of material permissible for the forming of a piece in one pass, the analysis of forming limit curve (FLC), with the objective to emphasizes in this innovative method based in CAD-CAM technologies, compare with other analogous process of deformation sheet metal like embossing, take correct decisions about the viability and applicability of this process (Dieless) in a particular industrial piece, which responses to the necessities of productive configurations mentioned and be highly taken like a manufacturing alternative to the other conventional process of forming sheet metal like embossing, for systems with slow batches production.

  3. Method and apparatus for holding two separate metal pieces together for welding

    NASA Technical Reports Server (NTRS)

    Mcclure, S. R. (Inventor)

    1980-01-01

    A method of holding two separate metal pieces together for welding is described including the steps of overlapping a portion of one of the metal pieces on a portion of the other metal piece, encasing the overlapping metal piece in a compressible device, drawing the compressible device into an enclosure, and compressing a portion of the compressible device around the overlapping portions of the metal pieces for holding the metal pieces under constant and equal pressure during welding. The preferred apparatus for performing the method utilizes a support mechanism to support the two separate metal pieces in an overlapping configuration; a compressible device surrounding the support mechanism and at least one of the metal pieces, and a compressing device surrounding the compressible device for compressing the compressible device around the overlapping portions of the metal pieces, thus providing constant and equal pressure at all points on the overlapping portions of the metal pieces.

  4. Manufacturing and assembly of IWS support rib and lower bracket for ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Laad, R.; Sarvaiya, Y.; Pathak, H. A.; Raval, J. R.; Choi, C. H.

    2017-04-01

    ITER Vacuum Vessel (VV) is made of double walls connected by ribs structure and flexible housings. Space between these walls is filled up with In Wall Shielding (IWS) blocks to (1) shield neutrons streaming out of plasma and (2) reduce toroidal magnetic field ripple. These blocks will be connected to the VV through a supporting structure of Support Rib (SR) and Lower Bracket (LB) assembly. SR and LB are two independent components manufactured from SS 316L(N)-IG, Total 1584 support ribs and 3168 lower bracket of different sizes and shapes will be manufactured for the IWS. Two lower brackets will be welded with one support rib to make an assembly. The welding between SR and LB is a full penetration welding. Total 1584 assemblies of different sizes and shapes will be manufactured. Sufficient experience gained from manufacturing and testing of mock ups, final manufacturing of IWS support rib and lower bracket has been started at the site of IWS manufacturer M/s. Avasarala Technologies Limited (ATL). This paper will describe, optimization of water jet cutting speed on IWS material, selection criteria for K type weld joint, unique features of fixture of assembly, manufacturing of Mock ups, and welding processes with NDTs.

  5. Process for depositing I-125 onto a substrate used to manufacture I-125 sources

    DOEpatents

    McGovern, James J.; Olynyk, Joseph M.

    1988-01-01

    The invention relates to a process for depositing I-125 on a substrate which comprises contacting a predetermined surface area of substrate with Xe-125 gas, whereby the Xe-125 decays to I-125 and the I-125 in turn deposits as a solid on the surface of the substrate, the contact being for a time sufficient to deposit at least about 1 microcurie of I-125. I-125 is thereby deposited in a relatively uniform amount over the surface area of the substrate. The substrate is then assayed to determine how much I-125 has been deposited. The substrate is then divided into pieces of measured surface area, each piece therefore containing a measured amount of deposited I-125, and each piece can then be used in the manufacture of an I-125 source.

  6. 75 FR 28051 - Public Workshop: Pieces of Privacy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... DEPARTMENT OF HOMELAND SECURITY Office of the Secretary Public Workshop: Pieces of Privacy AGENCY: Privacy Office, DHS. ACTION: Notice announcing public workshop. SUMMARY: The Department of Homeland Security Privacy Office will host a public workshop, ``Pieces of Privacy.'' DATES: The workshop will be...

  7. ECO-WALL SYSTEMS: USING RECYCLED MATERIAL IN THE DESIGN OF COMMERCIAL INTERIOR WALL SYSTEMS FOR BUILDINGS

    EPA Science Inventory

    This proposal describes an interdisciplinary project involving students from several academic departments at Miami University in the design of commercial wall systems to be manufactured from recycled materials. The goal of Phase I of the project is to develop and conduct prelimi...

  8. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury

    PubMed Central

    Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.

    2016-01-01

    Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758

  9. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury.

    PubMed

    Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M

    2017-02-01

    Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.

  10. Process Development for the Design and Manufacturing of Personalizable Mouth Sticks.

    PubMed

    Berger, Veronika M; Pölzer, Stephan; Nussbaum, Gerhard; Ernst, Waltraud; Major, Zoltan

    2017-01-01

    To increase the independence of people with reduced hand/arm functionality, a process to generate personalizable mouth sticks was developed based on the participatory design principle. In a web tool, anybody can choose the geometry and the materials of their mouth piece, stick and tip. Manufacturing techniques (e.g. 3D printing) and materials used in the process are discussed and evaluated.

  11. Career Focus: CAD/CAM. A New Dimension in Design and Manufacturing

    ERIC Educational Resources Information Center

    Reese, Susan

    2005-01-01

    Many a great idea has first taken shape as a simple drawing sketched by hand on a piece of paper, but in an increasingly high-tech world, such drawings are more often being created--or at the very least perfected--with the aid of a computer. And in today's highly automated workplace, manufacturing a finished product from that great idea will…

  12. 7 CFR 51.1435 - U.S. Commercial Pieces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Commercial Pieces. 51.1435 Section 51.1435 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... STANDARDS) United States Standards for Grades of Shelled Pecans Grades § 51.1435 U.S. Commercial Pieces. The...

  13. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  14. Heat Shield's Main Piece

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity caught this view of the main piece of the spacecraft's heat shield during the rover's 328th martian day, or sol (Dec. 25, 2004). A separation spring can be seen on the ground to the lower left side of the heat shield.

  15. [Study on quality standards of decoction pieces of salt Alpinia].

    PubMed

    Li, Wenbing; Hu, Changjiang; Long, Lanyan; Huang, Qinwan; Xie, Xiuqiong

    2010-12-01

    To establish the quality criteria for decoction pieces of salt Alpinia. Decoction pieces of salt Alpinia were measured with moisture, total ash, acid-insoluble ash, water-extract and volatile oils according to the procedures recorded in the Chinese Pharmacopoeia 2010. The content of Nootkatone was determined by HPLC, and NaCl, by chloridion electrode method. We obtained results of total ash, acid-insoluble ash, water-extract and volatile oils of 10 batches of decoction pieces of salt Alpinia moisture; Meanwhile we set the HPLC and chloridion electrode method. This research established a fine quality standard for decoction pieces of salt Alpinia.

  16. A crack between two big pieces of rock is made up of different pieces. This controlled how much the rocks slipped last year.

    NASA Astrophysics Data System (ADS)

    Hubbard, J.; Almeida, R. V.; Foster, A. E.; Sapkota, S. N.; Burgi, P.; Tapponnier, P.

    2016-12-01

    The outside layer of the world is broken up into pieces that move. Some of these pieces are moving towards each other. For a very long time, two of these pieces of rock have been pushing together. This has pushed the ground up and has made the highest land in the world. When two big pieces of rock push together, the rocks between them move and change without breaking, because rocks are strong. But eventually, the force is too much, so they break and slip. The place where they slip is called a fault. Try this with a stick - you can force the two ends closer together without breaking it. But if you push the ends together too much, it will snap. Like your stick, when the rocks slip, it happens very suddenly. This makes the ground shake. Last year, the rocks under the highest land in the world broke and slipped. This made the ground shake. Houses and rocks fell down. It killed a lot of people. People knew that this was possible. For years, they have tried to understand how big the shaking might be in this area. To do this, they tried to figure out what the fault looks like. This was hard. They did not agree. They did not know enough about the fault. When the slip happened last year, people used boxes with things inside to learn more about it. Some boxes tell us how the ground moved. Others tell us how the ground shook. We used this to figure out what the fault is like. We think that the fault is made up of different pieces that join together. We colored the fault by how much the rocks slipped. In some places, the rocks slipped only a little bit. In other places, they slipped more than two times as far as a grown-up is tall. When we look at the colors on the fault, we can see that the area that slipped fits onto one piece. The slip stopped at the edges of this piece, where it is joined to other pieces of fault. We think that the way that the pieces of fault are joined controlled how the slip happened. If the slip on a fault stops at the edges of fault pieces both here

  17. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  18. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    NASA Astrophysics Data System (ADS)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2018-01-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  19. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... different types of items produced using stop watch time studies or other work measurement methods... Hour Division. (b) The fact that an employer bases piece rates on work measurements which indicate that... 29 Labor 3 2010-07-01 2010-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor...

  20. Bioprosthetic Mesh in Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454

  1. 29 CFR 530.202 - Piece rates-work measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Piece rates-work measurement. 530.202 Section 530.202 Labor... Piece rates—work measurement. (a) No certificate will be issued pursuant to § 530.101 of subpart B to an... different types of items produced using stop watch time studies or other work measurement methods...

  2. Manufacture of ionizers intended for electric propulsion

    NASA Technical Reports Server (NTRS)

    Hivert, A.; Labbe, J.

    1978-01-01

    An electric propulsion system which relies on the formation of cesium ions in contact with a porous wall made of a metal with a high work function when the wall is heated to 1500 K was described. The manufacture of porous walls on the mountings was considered. Erosion of the electrodes by slow ions was examined, and the life times of the ionizers was estimated by means of experimental studies. The purpose of the electric propulsion system was to bring about minor corrections in the orbits of geostationary satellites; the main advantage of this system was that it weighs less than currently used hydrazine systems.

  3. 43. CUTTING APART PIECES OF A MOSAIC. WHEN SEPARATED, THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. CUTTING APART PIECES OF A MOSAIC. WHEN SEPARATED, THE PIECES CAN BE INDIVIDUALLY GLAZED, SMOKED, OR FINISH FIRED TO PRODUCE A MULTI-COLORED IMAGE WHEN REASSEMBLED. NOTE THE SUBSTITUTION OF BUFF FOR RED CLAY IN SEVERAL PIECES OF MOSAIC ON THE LEFT. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  4. Bacteriological evaluation for one-and two-piece implant design supporting mandibular overdenture

    PubMed Central

    Abdelwahed, Ahmed; Mahrous, Ahmed I.; Abadallah, Mohamed Farouk; Asfour, Hani; Aldawash, Hussien A.; Alagha, Ebaa I.

    2015-01-01

    Background: This study evaluated and compared the bacteriological effect of two-piece implants and one-piece implants in complete overdenture cases on supporting structures. Materials and Methods: Ten male completely edentulous patients were selected and randomly divided into two equal groups according to the implant design and surgical technique for this study; Group 1: Patients were rehabilitated with complete mandibular overdenture supported by two-piece implants one on each side of the lower arch following two-stage surgical technique and Group 2: Patients were rehabilitated with complete mandibular overdenture supported by one-piece implants one on each side. Evaluation was made at the time of insertion, 6, 12, and 18 months after overdenture insertion, by measuring bacteriological changes around implants abutments. Results: Complete overdenture supported by one-piece implants showed better effect on the bacteriological changes as compared to that supported by two-piece implants. Conclusion: Complete overdenture supported by one-piece implants one on each side of the lower arch showed better effect on the bacteriological changes than using the same prosthesis supported by two-piece implants. PMID:26903697

  5. Two-phase flow measurements with advanced instrumented spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  6. JAERI instrumented spool piece performance in two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, J.B.; Gilbert, J.V.

    1979-01-01

    Instrumented spool pieces to be installed in horizontal piping on the Cylindrical Core Test Facility (CCTF) at the Japanese Atomic Energy Institute (JAERI) have been designed and tested. The instrumented spool pieces will provide measurements from which mass flow rates can be computed. The primary instruments included in the spool pieces are a full-flow turbine, a full-flow perforated drag plate, and a low energy three-beam photon densitometer. Secondary instruments are provided to measured absolute pressure, fluid temperature, and differential pressure across the full-flow perforated drag plate.

  7. Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.

    2009-11-01

    Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.

  8. Channel Wall Nozzle Hot-fire Tests

    NASA Image and Video Library

    2018-03-16

    A subscale channel wall nozzle is hot-fire tested in November 2017 at NASA's Marshall Space Flight Center. The nozzle was fabricated using three separate, state-of-the-art, advanced manufacturing technologies including a new process called Laser Wire Direct Closeout that was co-developed and advanced at Marshall.

  9. A Piece of Cake.

    ERIC Educational Resources Information Center

    Aceto, Jeffrey T.

    1995-01-01

    A civil engineer describes his first day as a substitute teacher. Despite detailed lesson plans and good intentions, maintaining an orderly class environment is far from a "piece of cake." Recess duty is an ordeal, and lunch in the shabby teacher's lounge is uninspiring. The biggest benefit is appreciation of what constitutes a full-time teacher's…

  10. The fracture and fragmentation behaviour of additively manufactured stainless steel 316L

    NASA Astrophysics Data System (ADS)

    Amott, Russell; Harris, Ernest; Winter, Ron; Stirk, Stewart; Chapman, David; Eakins, Daniel

    2015-06-01

    Expanding cylinder experiments using a gas gun technique allow investigations into the ductility of metals and the fracture and fragmentation mechanisms that occur during rapid tensile failure. These experiments allow the radial strain-rate of the expansion to be varied in the range 102 to 104 s-1. Presented here is a comparative study of the fracture and fragmentation behaviour of rapidly expanded stainless steel 316L cylinders manufactured from either wrought bar or by additive manufacturing techniques. The results show that in the strain-rate regime studied, an additively manufactured cylinder failed at a higher strain and produced larger fragment widths compared to cylinders manufactured from wrought bar. In addition, an investigation into the role of deliberate equispaced macroscopic voids introduced into a cylinder wall has been undertaken. Using the unique properties of additive manufacture, elongated voids were introduced to the cylinder wall at an angle of 45° to the cylinder radius, and the resulting fragment patterns will be discussed. A comparison of the expanding cylinder profiles with simulations using CTH will also be presented.

  11. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  12. Hydrogen gas sensor and method of manufacture

    DOEpatents

    McKee, John M.

    1991-01-01

    A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.

  13. Individuality in harpsichord performance: disentangling performer- and piece-specific influences on interpretive choices

    PubMed Central

    Gingras, Bruno; Asselin, Pierre-Yves; McAdams, Stephen

    2013-01-01

    Although a growing body of research has examined issues related to individuality in music performance, few studies have attempted to quantify markers of individuality that transcend pieces and musical styles. This study aims to identify such meta-markers by discriminating between influences linked to specific pieces or interpretive goals and performer-specific playing styles, using two complementary statistical approaches: linear mixed models (LMMs) to estimate fixed (piece and interpretation) and random (performer) effects, and similarity analyses to compare expressive profiles on a note-by-note basis across pieces and expressive parameters. Twelve professional harpsichordists recorded three pieces representative of the Baroque harpsichord repertoire, including three interpretations of one of these pieces, each emphasizing a different melodic line, on an instrument equipped with a MIDI console. Four expressive parameters were analyzed: articulation, note onset asynchrony, timing, and velocity. LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals. Some performers consistently deviated from the mean values for articulation and velocity across pieces and interpretations, suggesting that global measures of expressivity may in some cases constitute valid markers of artistic individuality. Similarity analyses detected significant associations among the magnitudes of the correlations between the expressive profiles of different performers. These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations. These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices

  14. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  15. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  16. Additive Manufacturing of Parts and Tooling in Robotic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Hassen, Ahmed A.; Chesser, Phillip C.

    ORNL worked with Transcend Robotics, LLC to explore additive manufacturing of the two-piece compression body for their ARTI mobile robot platform. Extrusion compression molding was identified as an effective means of manufacturing these parts. ORNL consulted on modifications to the housing design to accommodate the selected manufacturing process. Parts were printed using ORNL's FDM machines for testing and evaluation of the design as a precursor to molding the parts. The assembly and evaluation of the parts proved favorable and minor design changes to improve assembly and performance were identified.The goal is to develop a light weight and rugged two-part roboticmore » enclosure for an unmanned ground vehicle UGV) that will be used in search and rescue applications. The FDM parts fabricated by ORNL allowed Transcend Robotics to assemble a prototype robot and verify that the new parts will meet the performance requirements. ORNL fabricated enclosure parts out of ABS and Nylon 12 materials such that the design could be tested prior to fabricating tooling for compression molding of Nylon 6 with carbon fiber fill. The robot was performance tested and compared with the previous manufacturing techniques and found to have superior performance.« less

  17. Image analysis of multiple moving wood pieces in real time

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  18. Gas turbine combustor exit piece with hinged connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60)more » of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.« less

  19. Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts

    NASA Astrophysics Data System (ADS)

    Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.

    2017-07-01

    Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.

  20. 76 FR 20819 - Manufacturers Railway Company-Discontinuance Exemption-in St. Louis County, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB-1075X] Manufacturers Railway Company--Discontinuance Exemption--in St. Louis County, MO On March 24, 2011, Manufacturers... Mississippi River flood wall on the east to U.S. Interstate 55 on the west, in St. Louis, Mo. The lines...

  1. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  2. One-Piece Force-Transducer Body

    NASA Technical Reports Server (NTRS)

    Meyer, R. A.

    1986-01-01

    Rugged unit designed to operate in severe environment. Forcetransducer body designed for measurement of loads on specimens tested in hydrogen gas at temperatures up to 2,000 degree F (1,090 degree C). Body has symmetrical radial-shear-beam configuration and machined in one piece from bar stock.

  3. Multimedia in Education: Thought Pieces.

    ERIC Educational Resources Information Center

    Nicol, Anne; And Others

    1986-01-01

    The six "thought pieces" presented in this document summarize the personal perspectives of conference participants on issues raised in formal or information discussions, but not part of the central themes of the conference or conference papers. They include: (1) "Assuming That..." (Anne Nicol, Apple Computer, Inc.); (2) "A…

  4. [Development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry].

    PubMed

    Xiao, Yong-Qing; Li, Li; Liu, Ying; Ma, Yin-Lian; Yu, Ding-Rong

    2016-01-01

    To elucidate the key issues in the development and innovation of traditional Chinese medicine processing discipline and Chinese herbal pieces industry Chinese herbal pieces industry. According to the author's accumulated experience over years and demand of the development of the Chinese herbal pieces industry, the key issues in the development and innovation on the Chinese herbal pieces industry were summarized. According to the author, the traditional Chinese medicine processing discipline shall focus on a application basis research. The development of this discipline should be closely related to the development of Chinese herbal pieces. The traditional Chinese medicine processing discipline can be improved and its results can be transformed only if this discipline were correlated with the Chinese herbal pieces industry, matched with the development of the Chinese herbal pieces industry, and solved the problems in the development on the Chinese herbal pieces industry. The development of traditional Chinese medicine processing discipline and the Chinese herbal pieces industry also requires scientific researchers to make constant innovations, realize the specialty of the researches, and innovate based on inheritance. Copyright© by the Chinese Pharmaceutical Association.

  5. Contribution of Gypsum Wallboard to Racking Resistance of Light-Frame Walls.

    DTIC Science & Technology

    1983-12-01

    contribution to wall ’ ~sheathing to the framing members, and axial loads on racking resistance. Such information may lead to more diagonal braces used...wallboard was centered over the joint and fastened to the narrow face of the wood pieces using 1-1/4-inch drywall nails . Two nails were used to fasten...pulled apart placing a lateral load on the nailed connection, similar to the connector loading incurred at the nailed connection along the bottom plate of

  6. Case study on the orientation of phaco hand pieces during steam sterilization processes.

    PubMed

    van Doornmalen Gomez Hoyos, J P C M; van Wezel, R A C; van Doornmalen, H W J M

    2015-05-01

    Steam sterilization is an essential part of infection prevention. The literature shows that sterilization of medical instruments containing channels is not trivial. Phaco hand pieces have a simple configuration: a device contains a channel with a constant radius. No literature was found indicating whether the sterilization conditions on the inner surface of a phaco hand piece are influenced by the orientation of the hand piece. To determine whether the orientation of a phaco hand piece influences the results of a sterilization process of this device. A qualitative case study, including experiments, is performed with a protocolled combination of steam sterilizer, process, phaco hand piece, orientation of the phaco hand piece, and wrapping. In this specific case, the orientation of the hand piece influenced the result of the steam sterilization process; in vertically (upright) oriented phaco hand pieces with free water drainage, sterilization conditions are reproducibly established. In the same process, in horizontally oriented or vertically oriented hand pieces without free drainage, these conditions are not established in a reproducible way. In the investigated combination of sterilizer, process, load, loading pattern and wrapping, phaco hand pieces have to be oriented vertically (upright) with free water drainage to obtain steam sterilization conditions on the inner surface. It is likely that instruments with comparable configuration and dimensions will yield comparable results. It is therefore recommended that this issue is considered during the development of medical instruments and during performance qualifications of such instruments. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. A Piece of Paper Falling Faster than Free Fall

    ERIC Educational Resources Information Center

    Vera, F.; Rivera, R.

    2011-01-01

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls…

  8. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Amigo, R. C. R.; Vatanabe, S. L.; Silva, E. C. N.

    2013-03-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  9. A PIECE OF THE SPACE SHUTTLE CHALLENGER WASHED ASHORE AT COCOA BEACH

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A Cocoa Beach front-end loader holds a large piece of debris from the Space Shuttle orbiter Challenger after it washed ashore in Cocoa Beach near the Coconuts on the Beach restaurant and bar. Overseeing the recovery and protection of the piece is KSC criminal investigator Jan Seinkner, facing camera at center, of EG&G Florida Inc., base operations contractor. The piece, about 15 feet by 6 feet, is believed to be part of an elevon or rudder. It is one of the biggest pieces to wash ashore to date. A smaller piece was found several blocks south. NASA recovered thousands of pounds of debris from the Atlantic Ocean after the Jan. 28, 1986 accident which destroyed the Shuttle and claimed the lives of the seven crew members; about 50 percent of the orbiter remained in the ocean after search operations were suspended. Those remains are stored at Cape Canaveral Air Station, mostly in two Minutemen silos. The two newly recovered pieces will be brought to KSC's Security Patrol Headquarters on Contractor Road for examination and temporary storage.

  10. Design and Manufacture of Structurally Efficient Tapered Struts

    NASA Technical Reports Server (NTRS)

    Brewster, Jebediah W.

    2009-01-01

    Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.

  11. Mirror, mirror on the wall--evaluating Fair Market Value for manufacturer-physician consulting arrangements.

    PubMed

    Eaton, Fred; Reid, Jaimee

    2010-01-01

    Pharmaceutical and medical device manufacturers contract with thousands of physicians each year, and struggle to comply with the Fair Market Value requirements of the Anti-Kickback Statute's "personal services" safe harbor. Consultant arrangements between physicians and manufactures have come under increasing scrutiny by regulators. In 2007, the five leading Hip & Knee manufacturers entered into settlement agreements related to their contract practices with physician consultants. Government sources do not provide guidance for calculating Fair Market Value; however, this article recommends four principles to use when evaluating Fair Market Value methodologies.

  12. Pay Matters: The Piece Rate and Health in the Developing World.

    PubMed

    Davis, Mary E

    Piece rate pay remains a common form of compensation in developing-world industries. While the piece rate may boost productivity, it has been shown to have unintended consequences for occupational safety and health, including increased accident and injury risk. This paper explores the relationship between worker pay and physical and emotional health, and questions the modern day business case for piece rate pay in the developing world. The relationship between piece rate and self-reported measures of physical and emotional health is estimated using a large survey of garment workers in 109 Vietnamese factories between 2010 and 2014. A random effects logit model controls for factory and year, predicting worker health as a function of pay type, demographics, and factory characteristics. Workers paid by the piece report worse physical and emotional health than workers paid by the hour (OR = 1.38-1.81). Wage incentives provide the most consistently significant evidence of all demographic and factory-level variables, including the factory's own performance on occupational safety and health compliance measures. These results highlight the importance of how workers are paid to understanding the variability in worker health outcomes. More research is needed to better understand the business case supporting the continued use of piece rate pay in the developing world. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Use of a control film piece in radiochromic film dosimetry.

    PubMed

    Aldelaijan, Saad; Alzorkany, Faisal; Moftah, Belal; Buzurovic, Ivan; Seuntjens, Jan; Tomic, Nada; Devic, Slobodan

    2016-01-01

    Radiochromic films change their color upon irradiation due to polymerization of the sensitive component embedded within the sensitive layer. However, agents, other than monitored radiation, can lead to a change in the color of the sensitive layer (temperature, humidity, UV light) that can be considered as a background signal and can be removed from the actual measurement by using a control film piece. In this work, we investigate the impact of the use of control film pieces on both accuracy and uncertainty of dose measured using radiochromic film based reference dosimetry protocol. We irradiated "control" film pieces (EBT3 GafChromic(TM) film model) to known doses in a range of 0.05-1 Gy, and five film pieces of the same size to 2, 5, 10, 15 and 20 Gy, considered to be "unknown" doses. Depending on a dose range, two approaches to incorporating control film piece were investigated: signal and dose corrected method. For dose values greater than 10 Gy, the increase in accuracy of 3% led to uncertainty loss of 5% by using dose corrected approach. At lower doses and signals of the order of 5%, we observed an increase in accuracy of 10% with a loss of uncertainty lower than 1% by using the corrected signal approach. Incorporation of the signal registered by the control film piece into dose measurement analysis should be a judgment call of the user based on a tradeoff between deemed accuracy and acceptable uncertainty for a given dose measurement. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology.

    PubMed

    Tsai, Ming-June; Wu, Ching-Tsai

    2014-05-06

    This study aimed to establish surgical guiding techniques for completing mandible lesion resection and reconstruction of the mandible defect area with fibula sections in one surgery by applying additive manufacturing technology, which can reduce the surgical duration and enhance the surgical accuracy and success rate. A computer assisted mandible reconstruction planning (CAMRP) program was used to calculate the optimal cutting length and number of fibula pieces and design the fixtures for mandible cutting, registration, and arrangement of the fibula segments. The mandible cutting and registering fixtures were then generated using an additive manufacturing system. The CAMRP calculated the optimal fibula cutting length and number of segments based on the location and length of the defective portion of the mandible. The mandible cutting jig was generated according to the boundary surface of the lesion resection on the mandible STL model. The fibular cutting fixture was based on the length of each segment, and the registered fixture was used to quickly arrange the fibula pieces into the shape of the defect area. In this study, the mandibular lesion was reconstructed using registered fibular sections in one step, and the method is very easy to perform. The application of additive manufacturing technology provided customized models and the cutting fixtures and registered fixtures, which can improve the efficiency of clinical application. This study showed that the cutting fixture helped to rapidly complete lesion resection and fibula cutting, and the registered fixture enabled arrangement of the fibula pieces and allowed completion of the mandible reconstruction in a timely manner. Our method can overcome the disadvantages of traditional surgery, which requires a long and different course of treatment and is liable to cause error. With the help of optimal cutting planning by the CAMRP and the 3D printed mandible resection jig and fibula cutting fixture, this all

  15. A PIECE OF THE SPACE SHUTTLE CHALLENGER WASHED ASHORE AT COCOA BEACH

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A large piece of debris from the Space Shuttle orbiter Challenger washes up on Cocoa Beach near the Coconuts on the Beach restaurant and bar almost 11 years after Challenger exploded shortly after liftoff from KSC's Launch Pad 39B. The piece, about 15 feet by 6 feet, is believed to be part of an elevon or rudder. It is one of the biggest pieces to wash ashore to date. A smaller piece also was found Tuesday several blocks south. NASA recovered thousands of pounds of debris from the Atlantic Ocean after the Jan. 28, 1986 accident; about 50 percent of the orbiter remained in the ocean after search operations were suspended. The previously retrieved remains are stored at Cape Canaveral Air Station, mostly in two Minutemen silos. The two newly recovered pieces will be brought to KSC's Security Patrol Headquarters on Contractor Road for examination, documentation and temporary storage.

  16. Dots & dashes : piecing together transit's future.

    DOT National Transportation Integrated Search

    2008-11-01

    Dots & Dashes is an interactive board game that is used at public planning meetings to engage stakeholders in long range transit planning. Groups of three to six people use game pieces with monetary values to choose the priorities of transit projects...

  17. Technology Solutions Case Study: Stud Walls with Continuous Exterior Insulation for Factory Built Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  18. Measurement of behavior of secondary sealing areas of rotary engine apex seals - Two-piece nonsplit and three-piece slanted horizontal split types

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Terasaki, Kazuo; Yamane, Katsuki

    1992-12-01

    Behavior measurements have been made with two displacement sensors and an underseal pressure sensor, using an overhanging eccentric shaft-type single-rotor research engine equipped with a packaged multichannel slip ring. The two-piece seal was tilted to the leading and trailing sides of a seal slot during its travel along the rotor housing surface and vibrated on the top end of the leading side of the slot as a fulcrum after the shift from the trailing to the leading side of the slot after the minor axis on the spark plug side. As for the three-piece seal, its top part was also tilted in all operating conditions, although its bottom part made effective area contact with the side of the slot under light load conditions up to medium engine speeds. The working chamber pressure was induced in the underseal in the same manner as with the two-piece type.

  19. Y-piece temperature and humidification during mechanical ventilation.

    PubMed

    Solomita, Mario; Daroowalla, Feroza; Leblanc, Deniese S; Smaldone, Gerald C

    2009-04-01

    Practitioners often presume there is adequate humidification in the ventilator circuit if the Y-piece is at a specified temperature, but control of Y-piece temperature may be inadequate to ensure adequate humidification. In an in vitro bench model we measured water-vapor delivery with several heated humidification setups and a wide range of minute volume (V (E)) values. The setup included a condenser, hygrometry, and thermometer. First, we calibrated the system with a point-source humidifier and water pump. Then we tested the water-vapor delivery during non-heated-wire humidification and during heated-wire humidification with a temperature gradient of +3 degrees C, 0 degrees C, and -3 degrees C between the humidifier and the Y-piece. We compared the results to 2 recommended humidification values: 100% saturated (absolute humidity 44 mg H(2)O/L) gas at 37 degrees C (saturated/37 degrees C); and 75% saturated (absolute humidity 33 mg H(2)O/L), which is the humidity recommended by the International Organization for Standardization (the ISO standard). In all the experiments the setup was set to provide 35 degrees C at the Y-piece. Our method for measuring water-vapor delivery closely approximated the amount delivered by a calibrated pump, but slightly underestimated the water-vapor delivery in all the experiments and the whole V (E) range. At all V (E) values, water-vapor delivery during non-heated-wire humidification matched or exceeded saturated/37 degrees C and was significantly greater than that during heated-wire humidification. During heated-wire humidification, water-vapor delivery varied with the temperature gradient and did not reach saturated/37 degrees C at V (E) > 6 L/min. Water-vapor delivery with the negative temperature gradient was below the ISO standard. Maintaining temperature at one point in the inspiratory circuit (eg, Y-piece), does not ensure adequate water-vapor delivery. Other factors (humidification system, V (E), gradient setting) are critical

  20. Analysis of the plasma-wall interaction in the Heliotron E device

    NASA Astrophysics Data System (ADS)

    Motojima, O.; Mizuuchi, T.; Besshou, S.; Iiyoshi, A.; Uo, K.; Yamashina, T.; Mohri, M.; Satake, T.; Hashiba, M.; Amemiya, S.; Miwa, H.

    1984-12-01

    The plasma-wall interaction (PWI) of the currentless plasmas with temperature To, Tio ≤ 1.1 keV, density N¯e = (2-10)× 1013/cm3, and volume-averaged beta value of β$¯≤ 2% was investigated. We have observed that PWI took place mainly where the divertor field line intersected the chamber wall (called divertor traces). Boundary plasmas were measured with electrostatic probes, which showed the presence of the divertor region with the parameters in the range of Ned = 1010-1011/cm3 and Ted = 10-50 eV. Surface analysis techniques (ESCA, AES, and RBS) were applied to analyze the surface probes (Si, graphite and stainless steel) and the test pieces (SiC, TiC, and stainless steel), which were irradiated by plasmas for short and long times respectively.

  1. Energy absorption capabilities of complex thin walled structures

    NASA Astrophysics Data System (ADS)

    Tarlochan, F.; AlKhatib, Sami

    2017-10-01

    Thin walled structures have been used in the area of energy absorption during an event of a crash. A lot of work has been done on tubular structures. Due to limitation of manufacturing process, complex geometries were dismissed as potential solutions. With the advancement in metal additive manufacturing, complex geometries can be realized. As a motivation, the objective of this study is to investigate computationally the crash performance of complex tubular structures. Five designs were considered. In was found that complex geometries have better crashworthiness performance than standard tubular structures used currently.

  2. A Bootstrap Approach to Martian Manufacturing

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2004-01-01

    In-Situ Resource Utilization (ISRU) is an essential element of any affordable strategy for a sustained human presence on Mars. Ideally, Martian habitats would be extremely massive to allow plenty of room to comfortably live and work, as well as to protect the occupants from the environment. Moreover, transportation and power generation systems would also require significant mass if affordable. For our approach to ISRU, we use the industrialization of the U.S. as a metaphor. The 19th century started with small blacksmith shops and ended with massive steel mills primarily accomplished by blacksmiths increasing their production capacity and product size to create larger shops, which produced small mills, which produced the large steel mills that industrialized the country. Most of the mass of a steel mill is comprised of steel in simple shapes, which are produced and repaired with few pieces of equipment also mostly made of steel in basic shapes. Due to this simplicity, we expect that the 19th century manufacturing growth can be repeated on Mars in the 21st century using robots as the primary labor force. We suggest a "bootstrap" approach to manufacturing on Mars that uses a "seed" manufacturing system that uses regolith to create major structural components and spare parts. The regolith would be melted, foamed, and sintered as needed to fabricate parts using casting and solid freeform fabrication techniques. Complex components, such as electronics, would be brought from Earth and integrated as needed. These parts would be assembled to create additional manufacturing systems, which can be both more capable and higher capacity. These subsequent manufacturing systems could refine vast amounts of raw materials to create large components, as well as assemble equipment, habitats, pressure vessels, cranes, pipelines, railways, trains, power generation stations, and other facilities needed to economically maintain a sustained human presence on Mars.

  3. A PIECE OF THE SPACE SHUTTLE CHALLENGER WASHED ASHORE AT COCOA BEACH

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A Cocoa Beach front-end loader holds a large piece of debris from the Space Shuttle orbiter Challenger after it washed ashore in Cocoa Beach near the Coconuts on the Beach restaurant and bar. The piece, about 15 feet by 6 feet, is believed to be part of an elevon or rudder. It is one of the biggest pieces to wash ashore to date. A smaller piece was found several blocks south. NASA recovered thousands of pounds of debris from the Atlantic Ocean after the Jan. 28, 1986 accident which destroyed the Shuttle and claimed the lives of the seven crew members; about 50 percent of the orbiter remained in the ocean after search operations were suspended. Those remains are stored at Cape Canaveral Air Station, mostly in two Minutemen silos. The two newly recovered pieces will be brought by flatbed truck to KSC's Security Patrol Headquarters on Contractor Road for examination and temporary storage.

  4. Bits and Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    19 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the contact between an area of light-toned rock and an expanse of darker-toned materials on the floor of Coprates Chasma. Remnants -- bits and pieces -- of the light-toned material are scattered throughout the scene, indicating that this material once covered everything in this area. Coprates is one of several chasms that comprise the giant Valles Marineris trough system.

    Location near: 13.2oS, 61.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  5. Fabrication par injection flexible de pieces coniques pour des applications aerospatiales

    NASA Astrophysics Data System (ADS)

    Shebib Loiselle, Vincent

    Les materiaux composites sont presents dans les tuyeres de moteurs spatiaux depuis les annees soixante. Aujourd'hui, l'avenement des tissus tridimensionnels apporte une solution innovatrice au probleme de delamination qui limitait les proprietes mecaniques de ces composites. L'utilisation de ces tissus necessite toutefois la conception de procedes de fabrication mieux adaptes. Une nouvelle methode de fabrication de pieces composites pour des applications aerospatiales a ete etudiee tout au long de ce travail. Celle-ci applique les principes de l'injection flexible (procede Polyflex) a la fabrication de pieces coniques de fortes epaisseurs. La piece de validation a fabriquer represente un modele reduit de piece de tuyere de moteur spatial. Elle est composee d'un renfort tridimensionnel en fibres de carbone et d'une resine phenolique. La reussite du projet est definie par plusieurs criteres sur la compaction et la formation de plis du renfort et sur la formation de porosites de la piece fabriquee. Un grand nombre d'etapes ont ete necessaires avant la fabrication de deux pieces de validation. Premierement, pour repondre au critere sur la compaction du renfort, la conception d'un outil de caracterisation a ete entreprise. L'etude de la compaction a ete effectuee afin d'obtenir les informations necessaires a la comprehension de la deformation d'un renfort 3D axisymetrique. Ensuite, le principe d'injection de la piece a ete defini pour ce nouveau procede. Pour en valider les concepts proposes, la permeabilite du renfort fibreux ainsi que la viscosite de la resine ont du etre caracterisees. A l'aide de ces donnees, une serie de simulations de l'ecoulement pendant l'injection de la piece ont ete realisees et une approximation du temps de remplissage calculee. Apres cette etape, la conception du moule de tuyere a ete entamee et appuyee par une simulation mecanique de la resistance aux conditions de fabrication. Egalement, plusieurs outillages necessaires pour la fabrication

  6. [Grades evaluation of Phellodendri chinensis cortex pieces based on quality constant].

    PubMed

    Deng, Zhe; Jiao, Meng-Jiao; Zhang, Jun; Zhang, Qing; Cui, Wen-Jin; Shen, Li; Cheng, Jin-Tang; Liu, An

    2017-09-01

    Quality constant is a comprehensive grades evaluation method for traditional Chinese medicine decoction pieces, which is better but based on traditional way. In this paper, a new grading mode for Phellodendri chinensis pieces was established based on quality constant evaluation method. The results showed that the range of relative quality constant for 15 batches of different samples was from 0.41 to 0.96. As customary, if these samples were divided into three grades: the relative quality constant shall be ≥0.77 for first grade; <0.77 but ≥0.48 for the second grade; and <0.48 for the third grade. This research indicated that the quality constant mode can be used to effectively grade the P. chinensis pieces in a scientific, reasonable, objective and specific way. Simultaneously, it provided a beneficial reference for grading cortex herbal pieces or medicines. Copyright© by the Chinese Pharmaceutical Association.

  7. [Application of traditional Chinese medicine reference standards in quality control of Chinese herbal pieces].

    PubMed

    Lu, Tu-Lin; Li, Jin-Ci; Yu, Jiang-Yong; Cai, Bao-Chang; Mao, Chun-Qin; Yin, Fang-Zhou

    2014-01-01

    Traditional Chinese medicine (TCM) reference standards plays an important role in the quality control of Chinese herbal pieces. This paper overviewed the development of TCM reference standards. By analyzing the 2010 edition of Chinese pharmacopoeia, the application of TCM reference standards in the quality control of Chinese herbal pieces was summarized, and the problems exiting in the system were put forward. In the process of improving the quality control level of Chinese herbal pieces, various kinds of advanced methods and technology should be used to research the characteristic reference standards of Chinese herbal pieces, more and more reasonable reference standards should be introduced in the quality control system of Chinese herbal pieces. This article discussed the solutions in the aspect of TCM reference standards, and future development of quality control on Chinese herbal pieces is prospected.

  8. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Welker, Roger W.; Mitchell, Mark A.

    2015-01-01

    The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surface of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The six commonly used methods for establishing objective cleanliness acceptance limits will be discussed. Special emphasis shall focus on the use of multiple extraction, a technique that has been demonstrated for additively manufactured parts.

  9. A PIECE OF THE SPACE SHUTTLE CHALLENGER WASHED ASHORE AT COCOA BEACH

    NASA Technical Reports Server (NTRS)

    1996-01-01

    News media representatives and other onlookers get a close-up view of the piece of Space Shuttle orbiter Challenger debris which washed ashore in Cocoa Beach near the Coconuts on the Beach restaurant and bar. A Cocoa Beach front-end loader picks up the debris which will be carried by flatbed truck to Kennedy Space Center. The piece, about 15 feet by 6 feet, is believed to be part of an elevon or rudder. It is one of the biggest pieces to wash ashore to date. A smaller piece also was found Tuesday several blocks south. NASA recovered thousands of pounds of debris from the Atlantic Ocean after the Jan. 28, 1986 accident which destroyed the Shuttle and claimed the lives of the seven crew members; about 50 percent of the orbiter remained in the ocean after search operations were suspended. Those remains are stored at Cape Canaveral Air Station, mostly in two Minutemen silos. The two newly recovered pieces will be brought to KSC's Security Patrol Headquarters on Contractor Road for examination and temporary storage.

  10. Additive manufacturing method for SRF components of various geometries

    DOEpatents

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  11. T-piece resuscitator versus self-inflating bag for preterm resuscitation: an institutional experience.

    PubMed

    Jayaram, Archana; Sima, Adam; Barker, Gail; Thacker, Leroy R

    2013-07-01

    Manual ventilation in the delivery room is provided with devices such as self-inflating bags (SIBs), flow-inflating bags, and T-piece resuscitators. To compare the effect of type of manual ventilation device on overall response to resuscitation among preterm neonates born at < 35 weeks gestation. Retrospective data were collected in 2 time periods. Primary outcome was overall response to resuscitation, as measured by Apgar score. Secondary outcomes were incidence of air leaks, need for chest compressions/epinephrine, need for intubation, and surfactant use. We identified 294 resuscitations requiring ventilation. SIB was used for 135 neonates, and T-piece was used for 159 neonates. There was no significant difference between the 1-min and 5-min Apgar scores between SIB and T-piece (P = .77 and P = .11, respectively), nor were there significant differences in secondary outcomes. The rate of rise of Apgar score was higher, by 0.47, with T-piece, compared to SIB (95% CI 0.08-0.87, P = .02). Although some manikin studies favor T-piece for providing reliable and consistent pressures, our experience did not indicate significant differences in effectiveness of resuscitation between the T-piece and SIB in preterm resuscitations.

  12. Leadership Development--An Essential Piece of Leading Change at Community Colleges

    ERIC Educational Resources Information Center

    Haynes, Joan

    2009-01-01

    The Mississippi Gulf Coast community College (MGCCC) Leadership Development Program focuses on developing well-prepared community college leaders. This program is designed to give participants key pieces of leadership and show how they are an essential piece of the college. The curriculum is based on American Association of Community Colleges…

  13. Introduction of a method for presenting health-based impacts of the emission from products, based on emission measurements of materials used in manufacturing of the products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Rikke Bramming, E-mail: rikke.jorgensen@iot.ntnu.no

    A method for presenting the health impact of emissions from furniture is introduced, which could be used in the context of environmental product declarations. The health impact is described by the negative indoor air quality potential, the carcinogenic potential, the mutagenic and reprotoxic potential, the allergenic potential, and the toxicological potential. An experimental study of emissions from four pieces of furniture is performed by testing both the materials used for production of the furniture and the complete piece of furniture, in order to compare the results gained by adding emissions of material with results gained from testing the finished piecemore » of furniture. Calculating the emission from a product based on the emission from materials used in the manufacture of the product is a new idea. The relation between calculated results and measured results from the same products differ between the four pieces of furniture tested. Large differences between measured and calculated values are seen for leather products. More knowledge is needed to understand why these differences arise. Testing materials allows us to compare different suppliers of the same material. Four different foams and three different timber materials are tested, and the results vary between materials of the same type. If the manufacturer possesses this type of knowledge of the materials from the subcontractors it could be used as a selection criterion according to production of low emission products. -- Highlights: • A method for presenting health impact of emissions is introduced. • An experimental study of emissions from four pieces of furniture is performed. • Health impact is calculated based on sum of contribution from the materials used. • Calculated health impact is compared to health impact of the manufactured product. • The results show that health impact could be useful in product development and for presentation in EPDs.« less

  14. Economic assessment of single-walled carbon nanotube processes

    NASA Astrophysics Data System (ADS)

    Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.

    2010-02-01

    The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  15. Study of mandible reconstruction using a fibula flap with application of additive manufacturing technology

    PubMed Central

    2014-01-01

    Background This study aimed to establish surgical guiding techniques for completing mandible lesion resection and reconstruction of the mandible defect area with fibula sections in one surgery by applying additive manufacturing technology, which can reduce the surgical duration and enhance the surgical accuracy and success rate. Methods A computer assisted mandible reconstruction planning (CAMRP) program was used to calculate the optimal cutting length and number of fibula pieces and design the fixtures for mandible cutting, registration, and arrangement of the fibula segments. The mandible cutting and registering fixtures were then generated using an additive manufacturing system. The CAMRP calculated the optimal fibula cutting length and number of segments based on the location and length of the defective portion of the mandible. The mandible cutting jig was generated according to the boundary surface of the lesion resection on the mandible STL model. The fibular cutting fixture was based on the length of each segment, and the registered fixture was used to quickly arrange the fibula pieces into the shape of the defect area. In this study, the mandibular lesion was reconstructed using registered fibular sections in one step, and the method is very easy to perform. Results and conclusion The application of additive manufacturing technology provided customized models and the cutting fixtures and registered fixtures, which can improve the efficiency of clinical application. This study showed that the cutting fixture helped to rapidly complete lesion resection and fibula cutting, and the registered fixture enabled arrangement of the fibula pieces and allowed completion of the mandible reconstruction in a timely manner. Our method can overcome the disadvantages of traditional surgery, which requires a long and different course of treatment and is liable to cause error. With the help of optimal cutting planning by the CAMRP and the 3D printed mandible resection jig and

  16. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?

    PubMed

    Gui, Jiadong; Fu, Xiumin; Zhou, Ying; Katsuno, Tsuyoshi; Mei, Xin; Deng, Rufang; Xu, Xinlan; Zhang, Linyun; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-08-12

    It was generally thought that aroma of oolong tea resulted from hydrolysis of glycosidically bound volatiles (GBVs). In this study, most GBVs showed no reduction during the oolong tea manufacturing process. β-Glycosidases either at protein or gene level were not activated during the manufacturing process. Subcellular localization of β-primeverosidase provided evidence that β-primeverosidase was located in the leaf cell wall. The cell wall remained intact during the enzyme-active manufacturing process. After the leaf cell disruption, GBV content was reduced. These findings reveal that, during the enzyme-active process of oolong tea, nondisruption of the leaf cell walls resulted in impossibility of interaction of GBVs and β-glycosidases. Indole, jasmine lactone, and trans-nerolidol were characteristic volatiles produced from the manufacturing process. Interestingly, the contents of the three volatiles was reduced after the leaf cell disruption, suggesting that mechanical damage with the cell disruption, which is similar to black tea manufacturing, did not induce accumulation of the three volatiles. In addition, 11 volatiles with flavor dilution factor ≥4(4) were identified as relatively potent odorants in the oolong tea. These results suggest that enzymatic hydrolysis of GBVs was not involved in the formation of volatiles of oolong tea, and some characteristic volatiles with potent odorants were produced from the manufacturing process.

  17. The assessment of accuracy of inner shapes manufactured by FDM

    NASA Astrophysics Data System (ADS)

    Gapiński, Bartosz; Wieczorowski, Michał; Båk, Agata; Domínguez, Alejandro Pereira; Mathia, Thomas

    2018-05-01

    3D printing created a totally new manufacturing possibilities. It is possible e.g. to produce closed inner shapes with different geometrical features. Unfortunately traditional methods are not suitable to verify the manufacturing accuracy, because it would be necessary to cut workpieces. In the paper the possibilities of computed tomography (x-ray micro-CT) application for accuracy assessment of inner shapes are presented. This was already reported in some papers. For research works hollow cylindrical samples with 20mm diameter and 300mm length were manufactured by means of FDM. A sphere, cone and cube were put inside these elements. All measurements were made with the application of CT. The measurement results enable us to obtain a full geometrical image of both inner and outer surfaces of a cylinder as well as shapes of inner elements. Additionally, it is possible to inspect the structure of a printed element - size and location of supporting net and all the other supporting elements necessary to hold up the walls created over empty spaces. The results obtained with this method were compared with CAD models which were a source of data for 3D printing. This in turn made it possible to assess the manufacturing accuracy of particular figures inserted into the cylinders. The influence of location of the inner supporting walls on a shape deformation was also investigated. The results obtained with this way show us how important CT can be during the assessment of 3D printing of objects.

  18. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    NASA Astrophysics Data System (ADS)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  19. Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard

    2014-06-01

    The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.

  20. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites

    PubMed Central

    Thompson, Drew; Chen, Sheng-Chieh; Wang, Jing; Pui, David Y.H.

    2015-01-01

    Recent animal studies have shown that carbon nanotubes (CNTs) may pose a significant health risk to those exposed in the workplace. To further understand this potential risk, effort must be taken to measure the occupational exposure to CNTs. Results from an assessment of potential exposure to multi-walled carbon nanotubes (MWCNTs) conducted at an industrial facility where polymer nanocomposites were manufactured by an extrusion process are presented. Exposure to MWCNTs was quantified by the thermal-optical analysis for elemental carbon (EC) of respirable dust collected by personal sampling. All personal respirable samples collected (n = 8) had estimated 8-h time weighted average (TWA) EC concentrations below the limit of detection for the analysis which was about one-half of the recommended exposure limit for CNTs, 1 µg EC/m3 as an 8-h TWA respirable mass concentration. Potential exposure sources were identified and characterized by direct-reading instruments and area sampling. Area samples analyzed for EC yielded quantifiable mass concentrations inside an enclosure where unbound MWCNTs were handled and near a pelletizer where nanocomposite was cut, while those analyzed by electron microscopy detected the presence of MWCNTs at six locations throughout the facility. Through size selective area sampling it was identified that the airborne MWCNTs present in the workplace were in the form of large agglomerates. This was confirmed by electron microscopy where most of the MWCNT structures observed were in the form of micrometer-sized ropey agglomerates. However, a small fraction of single, free MWCNTs was also observed. It was found that the high number concentrations of nanoparticles, ~200000 particles/cm3, present in the manufacturing facility were likely attributable to polymer fumes produced in the extrusion process. PMID:26209597

  1. Selling bits and pieces of humans to make babies: The gift of the magi revisited.

    PubMed

    Cohen, C B

    1999-06-01

    Reproductive medicine, a sector of a health care system increasingly captured by the demands of the marketplace, is enmeshed in a drive to sell certain human bits and pieces, such as gametes, cells, fetal eggs, and fetal ovaries, for reproductive purposes. The ethical objection raised by Kant and Radin to the sale of human organs - that this is incompatible with human dignity and worth - also applies to these sales. Moreover, such sales nullify the reproductive paradigm, irretrievably replacing it with a manufacturing paradigm. This represents a change in kind, not just of degree, in the way that we view our capacity to generate children and destroys our concept of reproduction as an essentially human activity. In the face of a struggle to retain those common ethical values at the foundation of reproductive medicine, this form of commodification of the human body should be viewed as ethically unacceptable.

  2. A novel computer-aided method to fabricate a custom one-piece glass fiber dowel-and-core based on digitized impression and crown preparation data.

    PubMed

    Chen, Zhiyu; Li, Ya; Deng, Xuliang; Wang, Xinzhi

    2014-06-01

    Fiber-reinforced composite dowels have been widely used for their superior biomechanical properties; however, their preformed shape cannot fit irregularly shaped root canals. This study aimed to describe a novel computer-aided method to create a custom-made one-piece dowel-and-core based on the digitization of impressions and clinical standard crown preparations. A standard maxillary die stone model containing three prepared teeth each (maxillary lateral incisor, canine, premolar) requiring dowel restorations was made. It was then mounted on an average value articulator with the mandibular stone model to simulate natural occlusion. Impressions for each tooth were obtained using vinylpolysiloxane with a sectional dual-arch tray and digitized with an optical scanner. The dowel-and-core virtual model was created by slicing 3D dowel data from impression digitization with core data selected from a standard crown preparation database of 107 records collected from clinics and digitized. The position of the chosen digital core was manually regulated to coordinate with the adjacent teeth to fulfill the crown restorative requirements. Based on virtual models, one-piece custom dowel-and-cores for three experimental teeth were milled from a glass fiber block with computer-aided manufacturing techniques. Furthermore, two patients were treated to evaluate the practicality of this new method. The one-piece glass fiber dowel-and-core made for experimental teeth fulfilled the clinical requirements for dowel restorations. Moreover, two patients were treated to validate the technique. This novel computer-aided method to create a custom one-piece glass fiber dowel-and-core proved to be practical and efficient. © 2013 by the American College of Prosthodontists.

  3. Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

    DOE PAGES

    Feng, Guang; Zhao, Wei; Cummings, Peter T.; ...

    2016-03-29

    Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less

  4. Nanotubes May Break Through "Chip Wall"

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry

    2003-01-01

    In 1965, just four years after the first planar integrated circuit (IC) was discovered, Cordon Moore observed that the number of transistors per integrated circuit had grown exponentially. He predicted that this would continue, and the media soon began to call his prophesy "Moore's Law" For nearly forty years, Moore's Law has been validated by the technological progress achieved in the semiconductor industry. Now, however, industry experts are warning of a "Red Brick Wall" that may soon block the continued scaling predicted by by Moore's Law. The "red bricks" in the wall are those areas of technical challenge for which no known manufacturable solution exists. One such "brick" is the challenge of finding a new material and processing technology to replace the metals used today to interconnect transistors on a chip.

  5. METHOD FOR MANUFACTURING LAMINATED SHEETS FOR PROTECTION AGAINST RADIOACTIVE WASTES, AND PROTECTING AND PACKAGING MEANS MANUFACTURED WITH THESE SHEETS; Papierfabrik Wilhemstal Wilhelm Ernst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-15

    A description is given of laminated sheet, consisting of a first layer of absorbing and preferably fibrous material (e.g., filter or blotting paper, or felt), a second layer of adhesive, impermeable, and hydrophobic material (e.g., wax, bitumen, a polyvinyl or polyacrylic compound, or a polyhydrocarbon), and a third (and fourth) layer of rigid material more or less impermeable to liquids (e.g., metal (aluminum), polyvinyl chloride, polyethylene, or cardboard). These sheets can be used for covering laboratory tables and walls, for radiation protection (manufacture of clothes, etc.), or for packaging radioactive waste (manufacture of boxes, bags, etc.). (NPO)

  6. Manufacturing of tailored tubes with a process integrated heat treatment

    NASA Astrophysics Data System (ADS)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  7. The Effect of High Versus Low Teacher Affect and Passive Versus Active Student Activity During Music Listening on Preschool Children's Attention, Piece Preference, Time Spent Listening, and Piece Recognition.

    ERIC Educational Resources Information Center

    Sims, Wendy L.

    1986-01-01

    Small-group listening lessons and subsequent individual posttests were used to judge 94 three- through five-year-old subjects' attention, paired-comparison piece preference, time spent listening, and piece recognition. Research procedures included a modified multiple baseline design and split-screen video taping of instructional sessions.…

  8. Spacecraft wall design for increased protection against penetration by space debris impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Tullos, Randy J.

    1990-01-01

    All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.

  9. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  10. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    EPA Science Inventory

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  11. Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, K.G.; Davis, C.E.

    1979-01-01

    A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation.

  12. Progress in second-generation HTS wire development and manufacturing

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J.

    2008-09-01

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current × Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world’s first 2G device installed in the grid.

  13. One-Piece Leak-Proof Battery

    DOEpatents

    Verhoog, Roelof

    1999-03-23

    The casing of a leak-proof one-piece battery is made of a material comprising a mixture of at least a matrix based on polypropylene and an alloy of a polyamide and a polypropylene. The ratio of the matrix to the alloy is in the range 0.5 to 6 by weight. The alloy forms elongate arborescent inclusions in the matrix such that, on average, the largest dimension of a segment of the arborescence is at least twenty times the smallest dimension of the segment.

  14. The 400 microsphere per piece "rule" does not apply to all blood flow studies.

    PubMed

    Polissar, N L; Stanford, D C; Glenny, R W

    2000-01-01

    Microsphere experiments are useful in measuring regional organ perfusion as well as heterogeneity of blood flow within organs and correlation of perfusion between organ pieces at different time points. A 400 microspheres/piece "rule" is often used in planning experiments or to determine whether experiments are valid. This rule is based on the statement that 400 microspheres must lodge in a region for 95% confidence that the observed flow in the region is within 10% of the true flow. The 400 microspheres precision rule, however, only applies to measurements of perfusion to a single region or organ piece. Examples, simulations, and an animal experiment were carried out to show that good precision for measurements of heterogeneity and correlation can be obtained from many experiments with <400 microspheres/piece. Furthermore, methods were developed and tested for correcting the observed heterogeneity and correlation to remove the Poisson "noise" due to discrete microsphere measurements. The animal experiment shows adjusted values of heterogeneity and correlation that are in close agreement for measurements made with many or few microspheres/piece. Simulations demonstrate that the adjusted values are accurate for a variety of experiments with far fewer than 400 microspheres/piece. Thus the 400 microspheres rule does not apply to many experiments. A "rule of thumb" is that experiments with a total of at least 15,000 microspheres, for all pieces combined, are very likely to yield accurate estimates of heterogeneity. Experiments with a total of at least 25,000 microspheres are very likely to yield accurate estimates of correlation coefficients.

  15. In vivo wall shear measurements within the developing zebrafish heart.

    PubMed

    Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas

    2013-01-01

    Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  16. A Million Comet Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] A Million Comet Pieces (poster version)

    This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet's fragments and their tails, while the dusty comet trail is the line bridging the fragments.

    Comet 73P /Schwassman-Wachmann 3 began to splinter apart in 1995 during one of its voyages around the sweltering sun. Since then, the comet has continued to disintegrate into dozens of fragments, at least 36 of which can be seen here. Astronomers believe the icy comet cracked due the thermal stress from the sun.

    The Spitzer image provides the best look yet at the trail of debris left in the comet's wake after its 1995 breakup. The observatory's infrared eyes were able to see the dusty comet bits and pieces, which are warmed by sunlight and glow at infrared wavelengths. This comet debris ranges in size from pebbles to large boulders. When Earth passes near this rocky trail every year, the comet rubble burns up in our atmosphere, lighting up the sky in meteor showers. In 2022, Earth is expected to cross close to the comet's trail, producing a noticeable meteor shower.

    Astronomers are studying the Spitzer image for clues to the comet's composition and how it fell apart. Like NASA's Deep Impact experiment, in which a probe smashed into comet Tempel 1, the cracked Comet 73P/Schwassman-Wachmann 3 provides a perfect laboratory for studying the pristine interior of a comet.

    This image was taken from May 4 to May 6 by Spitzer's multi-band imaging photometer, using its 24-micron wavelength channel.

  17. A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Bennette, Charles L.; Chuss, David T.; Wollack, Edward J.

    2009-01-01

    Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approx. 14deg FWHM beam is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A power reflection below -28 dB was measured across the band.

  18. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap includingmore » tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.« less

  19. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  20. Shim for sealing transition pieces

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Demiroglu, Mehmet [Troy, NY; Sarawate, Neelesh Nandkumar [Niskayuna, NY

    2012-07-24

    According to one aspect of the invention, a shim for sealing two adjacent turbine transition pieces is disclosed. The shim includes a circumferential member that includes a first lateral flange and a second lateral flange. Further, the first and second lateral flanges each comprise a tab configured to mate to a first surface plane and the first and second lateral flanges are configured to mate to a second surface plane, wherein the first and second surface planes are substantially parallel. In addition, the shim includes a first flange extending substantially perpendicular from the circumferential member.

  1. [Application of relative quality constant in grades evaluation of Glycyrrizae Radix et Rhizome pieces].

    PubMed

    Deng, Zhe; Jiao, Meng-Jiao; Zhang, Jun; Xian, Jing; Zhang, Qing; Chen, Chang; Wang, Yue-Sheng; Liu, An

    2017-07-01

    Quality constant evaluation is a comprehensive method for grades evaluation of traditional Chinese medicine pieces, but when it comes to Glycyrrizae Radix et Rhizome pieces, grades evaluation is diverged due to significant difference in contents of liquiritin and glycyrrhizic acid and unreasonable weight of index. To solve this problem, we have established a relative quality constant method in this paper to evaluate grades of Glycyrrizae Radix et Rhizome pieces. Twenty-nine batches of different quality samples were collected and tested, and finally, 17 batches of them were chosen as researcher objects. The results revealed that the range of the relative quality constant of these samples was from 1.78 to 11.49. When Glycyrrizae Radix et Rhizome pieces are divided into three grades: the relative quality constant of first grade is greater than or equal to 9.19; the second grade is greater than or equal to 5.75 but less than 9.19; while the third grade is less than 5.75. This research indicates that relative quality constant can divide the grades of herbal pieces in a scientific, reasonable, objective and specific way and remedy the shortage of quality constant perfectly. It provides a novel mode for grading pieces of Chinese medicine that contains multi-target ingredients. Copyright© by the Chinese Pharmaceutical Association.

  2. Large-scale additive manufacturing with bioinspired cellulosic materials.

    PubMed

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  3. Novel Nanotube Manufacturing Streamlines Production

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  4. Tracking the course of the manufacturing process in selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  5. 7. VIEW OF BASEMENT, LOOKING NORTH ALONG EAST BASEMENT WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF BASEMENT, LOOKING NORTH ALONG EAST BASEMENT WALL TOWARD TURBINES. AT RIGHT IS A WATER-POWERED EAR CORN CRUSHER (manufacturer unknown), WHICH PERFORMED THE INITIAL COARSE GRINDING OF EAR CORN Photographer: Jet T. Lowe, 1985 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH

  6. Occurrence of coring in insulin vials and possibility of rubber piece contamination by self-injection.

    PubMed

    Asakura, T; Seino, H; Nozaki, S; Abe, R

    2001-06-01

    Coring is reported to occur because rubber pieces are shaved off from a rubber stopper when a needle is inserted into the rubber stopper of transfusion liquid formulation. We verified whether coring really occurs in insulin vials of self-injecting patients. We collected insulin cartridges from 30 hospitalized patients and used the primary injection (trial injection), the secondary injection and the cartridge remaining preparation as samples. We observed the rubber pieces using a microscope and measured the shape, number of pieces. The occurrence rate of coring was 73% for the primary injection, 47% for the secondary injection and 97% for the cartridge remaining preparation. The rubber pieces in the primary injection and the secondary injection which went through the needle are mostly in aggregate shape and the rubber pieces in the cartridge remaining preparation which did not go through the needle are mostly in needle-like shape. A number of small rubber pieces are found in both the primary injection and the secondary injection, indicating a high possibility that rubber pieces may be injected under subcutaneous tissue. The coring is considered to occur because needles are repeatedly inserted and rotated at the same spot. It is required to improve the structure to mount a needle to the pen-type injector in future. Coring is a very serious problem from the medical and pharmaceutical points of view. Further study should be made on the implication to latex allergy and lipodystrophy.

  7. Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces.

    PubMed

    Kourkoutas, Y; Bosnea, L; Taboukos, S; Baras, C; Lambrou, D; Kanellaki, M

    2006-05-01

    Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6 degrees C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists.

  8. Titanium dioxide, single-walled carbon nanotube composites

    DOEpatents

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  9. Mechanical seal having a single-piece, perforated mating ring

    DOEpatents

    Khonsari, Michael M [Baton Rouge, LA; Somanchi, Anoop K [Fremont, CA

    2007-08-07

    A mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) with reduced contact surface temperature, reduced contact surface wear, or increased life span. The mechanical seal comprises a rotating ring and a single-piece, perforated mating ring, which improves heat transfer by controllably channeling coolant flow through the single-piece mating ring such that the coolant is in substantially uniform thermal contact with a substantial portion of the interior surface area of the seal face, while maintaining the structural integrity of the mechanical seal and minimizing the potential for coolant flow interruptions to the seal face caused by debris or contaminants (e.g., small solids and trash) in the coolant.

  10. Ferroelectricity and piezoelectricity in soft biological tissue: Porcine aortic walls revisited

    NASA Astrophysics Data System (ADS)

    Lenz, Thomas; Hummel, Regina; Katsouras, Ilias; Groen, Wilhelm A.; Nijemeisland, Marlies; Ruemmler, Robert; Schäfer, Michael K. E.; de Leeuw, Dago M.

    2017-09-01

    Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical structure of the aortic wall with different extracellular matrices appears unlikely to be ferroelectric. The reason is that a prerequisite for ferroelectricity, which is the spontaneous switching of the polarization, is a polar crystal structure of the material. Although the PFM measurements were performed locally, the phase-voltage hysteresis loops could be reproduced at different positions on the tissue, suggesting that the whole aorta is ferroelectric. To corroborate this hypothesis, we analyzed entire pieces of porcine aorta globally, both with electrical and electromechanical measurements. We show that there is no hysteresis in the electric displacement as well as in the longitudinal strain as a function of applied electric field and that the strain depends on the electric field squared. By using the experimentally determined quasi-static permittivity and Young's modulus of the fixated aorta, we show that the strain can quantitatively be explained by Maxwell stress and electrostriction, meaning that the aortic wall is neither piezoelectric nor ferroelectric, but behaves as a regular dielectric material.

  11. SSC spool piece design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D.; Costin, K.; Hutton, D.

    1991-03-01

    The spool piece design for the standard arc half-cell of the Superconducting Super Collider collider ring is an electromechanical system which performs a variety of tasks. The components provide conditioning and control of the cryogenics and electrical bus routing and protection; they also accommodate the beam position monitor and corrector magnet families, vacuum separation, and connection points for control and instrumentation. The design uses unique locations for each component, mixing form and function in a limited amount of allocated length in the standard 90 m half-cell. This paper describes the purpose and positioning of the various components and the assemblymore » sequence required to achieve these space constraints. 5 refs., 6 figs., 3 tabs.« less

  12. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  13. Orion Heat Shield Manufacturing Producibility Improvements for the EM-1 Flight Test Program

    NASA Technical Reports Server (NTRS)

    Koenig, William J.; Stewart, Michael; Harris, Richard F.

    2018-01-01

    This paper describes how the ORION program is incorporating improvements in the heat shield design and manufacturing processes reducing programmatic risk and ensuring crew safety in support of NASA's Exploration missions. The approach for the EFT-1 heat shield utilized a low risk Apollo heritage design and manufacturing process using an Avcoat TPS ablator with a honeycomb substrate to provide a one piece heat shield to meet the mission re-entry heating environments. The EM-1 mission will have additional flight systems installed to fly to the moon and return to Earth. Heat shield design and producibility improvements have been incorporated in the EM-1 vehicle to meet deep space mission requirements. The design continues to use the Avcoat material, but in a block configuration to enable improvements in consistant and repeatable application processes using tile bonding experience developed on the Space Shuttle Transportation System Program.

  14. NASA SLS Booster Nozzle Plug Pieces Fly During Test

    NASA Image and Video Library

    2016-06-28

    On June 28, a test version of the booster that will help power NASA's new rocket, the Space Launch System, fired up at nearly 6,000 degrees Fahrenheit for a successful, two-minute qualification test at Orbital ATK's test facilities in Promontory, Utah. This video shows the booster's nozzle plug intentionally breaking apart. The smoky ring coming off the booster is condensed water vapor created by a pressure difference between the motor gas and normal air. The nozzle plug is an environmental barrier to prevent heat, dust and moisture from getting inside the booster before it ignites. The plug isn't always part of a static test but was included on this one due to changes made to the hardware. The foam on the plug is denser than previous NASA launch vehicles, as the engines are now in the same plane as the boosters. A numbered grid was placed on the exterior of the plug before the test so the pieces retrieved could support plug breakup assessment and reconstruction. Along with video, collecting the pieces helps determine the size and speed of them when they break apart. Nozzle plug pieces were found as far as 1,500 to 2,000 feet away from the booster. This is the last full-scale qualification test for the booster before the first, uncrewed flight of SLS with the Orion spacecraft in 2018.

  15. Short- and Long-Term Musical Preferences: What Makes a Favourite Piece of Music?

    ERIC Educational Resources Information Center

    Lamont, Alexandra; Webb, Rebecca

    2010-01-01

    Within the growing field of music preferences, little is currently known about the concept of a favourite piece of music. The current study explores listeners' nominated favourite pieces of music over short and longer time-spans, combining diary and interview methods to uncover what a favourite means, how stable it is, and what factors influence…

  16. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  17. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.

    PubMed

    Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M

    2005-10-01

    Hydroxyapatite (HA)/glass mixtures have shown a faster bioactive behaviour than HA itself. On the other hand, the gel-casting method is a simple and reproducible colloidal method to produce ceramic pieces with complex shapes. In this work, pieces of HA/glass mixtures were prepared by the gel-casting method. A study for obtaining concentrated slurries of these mixtures is reported; the bioactivity and biocompatibility of the obtained pieces have been studied also. The influence of pH, dispersant concentration, the content and milling of glass, and the way to prepare the suspensions were investigated. The lowest viscosity and better rheological properties were achieved with the lowest glass content, when the glass was added after the dispersion of the HA powder and when the glass was not milled after calcination. Fluid suspensions with a high solid content (50 vol.%) could be prepared and well-shaped pieces were obtained from these slurries. These pieces showed in vitro bioactive behavior in simulated body fluid; additionally, the proliferation and spreading assays with osteoblastic cells (HOS) showed that the pieces are biocompatible. The results obtained indicate that the gel-casting of HA/glass mixtures produces bioactive and biocompatible pieces with the required shapes. Therefore, these materials could be good candidates for clinical applications and scaffolds for tissue engineering. (c) 2005 Wiley Periodicals, Inc.

  18. 3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Yang, Tao; Yang, Ruixin

    2017-07-01

    Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.

  19. Porus electrode comprising a bonded stack of pieces of corrugated metal foil

    NASA Technical Reports Server (NTRS)

    Mccallum, J. (Inventor)

    1973-01-01

    An electrode suitable for use in an electrochemical cell is described. The electrode is composed of a porous conductive support with a bonded stack of pieces of thin corrugated nickel foil where the corrugations are oriented approximately perpendicular to the sides of the electrode and form an array of passages through the electrode. Active material such as cadmium hydroxide or nickel hydroxide is uniformly distributed within the passages. The support may comprise also a piece of thin flat nickel foil between adjacent pieces of the corrugated foil, forming a barrier between the passages formed on each side of it. Typically the corrugations in the odd corrugated layers are oriented at a small angle from the perpendicular in one direction and the corrugations in the even corrugated layers are oriented at a small angle from the perpendicular in the opposite direction.

  20. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  1. Single-phase helium recooling in a Tevatron spool piece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebaner, A.L.

    2000-01-27

    Plans call for upgrading existing Tevatron spool pieces by adding a single-phase to two-phase heat exchanger or recooler. This will enhance the single-phase to two-phase heat transfer and, along with other upgrades, allow for higher energy beam in the upcoming run. The performance of the heat exchanger was predicted numerically using a multi-node finite difference model. One Tevatron spool piece was modified to incorporate the recooler. Performance tests were conducted on this modified spool at the Magnet Test Facility within Technical Division in March and April 1999. The present paper reviews the design of the Tevatron spool recooler. The discussionmore » includes: a technical description of a Tevatron spool; the heat exchanger mathematical model; design criteria and constraints; fabrication and assembly procedure; tests and performance analysis.« less

  2. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  3. PIECE 2.0: an update for the plant gene structure comparison and evolution database

    USDA-ARS?s Scientific Manuscript database

    PIECE (Plant Intron Exon Comparision and Evolution) is a web-accessible database that houses intron and exon information of plant genes. PIECE serves as a resource for biologists interested in comparing intron-exon organization and provides valuable insights into the evolution of gene structure in ...

  4. Note Onset Deviations as Musical Piece Signatures

    PubMed Central

    Serrà, Joan; Özaslan, Tan Hakan; Arcos, Josep Lluis

    2013-01-01

    A competent interpretation of a musical composition presents several non-explicit departures from the written score. Timing variations are perhaps the most important ones: they are fundamental for expressive performance and a key ingredient for conferring a human-like quality to machine-based music renditions. However, the nature of such variations is still an open research question, with diverse theories that indicate a multi-dimensional phenomenon. In the present study, we consider event-shift timing variations and show that sequences of note onset deviations are robust and reliable predictors of the musical piece being played, irrespective of the performer. In fact, our results suggest that only a few consecutive onset deviations are already enough to identify a musical composition with statistically significant accuracy. We consider a mid-size collection of commercial recordings of classical guitar pieces and follow a quantitative approach based on the combination of standard statistical tools and machine learning techniques with the semi-automatic estimation of onset deviations. Besides the reported results, we believe that the considered materials and the methodology followed widen the testing ground for studying musical timing and could open new perspectives in related research fields. PMID:23935971

  5. Note onset deviations as musical piece signatures.

    PubMed

    Serrà, Joan; Özaslan, Tan Hakan; Arcos, Josep Lluis

    2013-01-01

    A competent interpretation of a musical composition presents several non-explicit departures from the written score. Timing variations are perhaps the most important ones: they are fundamental for expressive performance and a key ingredient for conferring a human-like quality to machine-based music renditions. However, the nature of such variations is still an open research question, with diverse theories that indicate a multi-dimensional phenomenon. In the present study, we consider event-shift timing variations and show that sequences of note onset deviations are robust and reliable predictors of the musical piece being played, irrespective of the performer. In fact, our results suggest that only a few consecutive onset deviations are already enough to identify a musical composition with statistically significant accuracy. We consider a mid-size collection of commercial recordings of classical guitar pieces and follow a quantitative approach based on the combination of standard statistical tools and machine learning techniques with the semi-automatic estimation of onset deviations. Besides the reported results, we believe that the considered materials and the methodology followed widen the testing ground for studying musical timing and could open new perspectives in related research fields.

  6. Piece2.0: an update for the pant gene structure comparison and evolution database

    USDA-ARS?s Scientific Manuscript database

    PIECE (Plant Intron Exon Comparison and Evolution) is a web-accessible database that houses intron and exon information of plant genes. PIECE serves as a resource for biologists interested in comparing intron–exon organization and provides valuable insights into the evolution of gene structure in pl...

  7. Stud Walls With Continuous Exterior Insulation for Factory Built Housing: New York, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research - stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less

  8. 76 FR 22166 - Manufacturers Railway Company-Discontinuance Exemption-in St. Louis County, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB-1075X] Manufacturers Railway Company--Discontinuance Exemption--in St. Louis County, MO AGENCY: Surface Transportation Board... Mississippi River flood wall on the east to U.S. Interstate 55 on the west, in St. Louis, MO. On April 13...

  9. One-Piece Faraday Generator: A Paradoxical Experiment from 1851

    ERIC Educational Resources Information Center

    Crooks, M. J.; And Others

    1978-01-01

    Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)

  10. Swiveling Lathe Jaw Concept for Holding Irregular Pieces

    NASA Technical Reports Server (NTRS)

    David, J.

    1966-01-01

    Clamp holds irregularly shaped pieces in lathe chuck without damage and eliminates excessive time in selecting optimum mounting. Interchangeable jaws ride in standard jaw slots but swivel so that the jaw face bears evenly against the workpiece regardless of contour. The jaws can be used on both engine and turret lathes.

  11. Flat-walled multilayered anechoic linings: Optimization and application

    NASA Astrophysics Data System (ADS)

    Xu, Jingfeng; Buchholz, Jörg M.; Fricke, Fergus R.

    2005-11-01

    The concept of flat-walled multilayered absorbent linings for anechoic rooms was proposed three decades ago. Flat-walled linings have the advantage of being less complicated and, hence, less costly to manufacture and install than the individual units such as wedges. However, there are difficulties in optimizing the design of such absorbent linings. In the present work, the design of a flat-walled multilayered anechoic lining that targeted a 250 Hz cut-off frequency and a 300 mm maximum lining thickness was first optimized using an evolutionary algorithm. Sixteen of the most commonly used commercial fibrous building insulation materials available in Australia were investigated and fourteen design options (i.e., material combinations) were found by the evolutionary algorithm. These options were then evaluated in accordance with their costs and measured acoustic absorption performances. Finally, the completed anechoic room, where the optimized design was applied, was qualified and the results showed that a large percentage (75%-85%) of the distance between the sound source and the room boundaries, on the traverses made, were anechoic.

  12. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  13. Two-Piece Screens for Decontaminating Granular Material

    NASA Technical Reports Server (NTRS)

    Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis

    2009-01-01

    Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is

  14. Characterization of Effect of Support Structures in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Järvinen, Jukka-Pekka; Matilainen, Ville; Li, Xiaoyun; Piili, Heidi; Salminen, Antti; Mäkelä, Ismo; Nyrhilä, Olli

    Laser additive manufacturing (LAM) of stainless steel is a layer wisetechnology for fabricating 3D parts from metal powder via selectively melting powder with laser beam. Support structures play a significant role in LAM process as they help to remove heat away from the process and on the other hand hold the work piece in its place. A successful design of support structures can help to achievea building process fast and inexpensive with high quality. Aimof this study was to characterize the usability of two types of support structures: web and tube supports. Purpose of this studywas also to analyze how suitable they are in two industrial application cases: case for dental application and case for jewelry application. It was concluded that the removability of web supports was much better than tube supports. It was noticed that support structures are an important part of LAM process and they strongly affect the manufacturability and the end quality of the part.

  15. Biomechanical properties of polymer-infiltrated ceramic crowns on one-piece zirconia implants after long-term chewing simulation.

    PubMed

    Baumgart, Pia; Kirsten, Holger; Haak, Rainer; Olms, Constanze

    2018-05-23

    Implant and superstructure provide a complex system, which has to withstand oral conditions. Concerning the brittleness of many ceramics, fractures are a greatly feared issue. Therefore, polymer-infiltrated ceramic networks (PICNs) were developed. Because of its low Young's modulus and high elastic modulus, the PICN crown on a one-piece zirconia implant might absorb forces to prevent the system from fracturing in order to sustain oral forces. Recommendations for the material of superstructure on zirconia implants are lacking, and only one study investigates PICN crowns on these types of implants. Accordingly, this study aimed to examine PICN crowns on one-piece zirconia implants regarding bond strength and surface wear after long-term chewing simulation (CS). Twenty-five hybrid ceramic crowns (Vita Enamic, Vita Zahnfabrik) were produced using computer-aided design/computer-aided manufacturing (CAD/CAM) technology and adhesively bonded (RelyX™ Ultimate, 3M ESPE) to zirconia implants. Twenty of the specimens underwent simultaneous mechanical loading and thermocycling simulating a 5-year clinical situation (SD Mechatronik GmbH). Wear depth and wear volume, based on X-ray micro-computed tomography volume scans (Skyscan 1172-100-50, Bruker) before and after CS, were evaluated. All crowns were removed from the implants using a universal testing machine (Z010, Zwick GmbH&Co.KG). Subsequently, luting agent was light microscopically localized (Stemi 2000-C, Zeiss). With a scanning electron microscope (SEM, Phenom™ G2 pro, Phenom World), the area of abrasion was assessed. 1. After CS, none of the tested crowns were fractured or loosened. 2. The maximum vertical wear after CS was M = 0.31 ± 0.04 mm (mean ± standard deviation), and the surface wear was M = 0.74 ± 0.23 mm 3 . 3. The pull-off tests revealed a 1.8 times higher bond strength of the control group compared to the experimental group (t(23) = 8.69, p < 0.001). 4. Luting agent was

  16. Comparative Study Of Artificial Intelligence Techniques As Applied To The Location Of Address Blocks On Mail Pieces

    NASA Astrophysics Data System (ADS)

    Koljonen, Juha T.; Glickman, Frederick R.

    1989-03-01

    Rule-based reasoning when applied to locating destination addresses on mail pieces can enhance system performance and accuracy. One of the critical steps in the automatic reading and sorting of mail by machine is in locating the block of text that is the destination address on a mail piece. This is complicated by the variation of global structure on mail piece faces, e.g., return and destination addresses can be anywhere on the mail piece, in any orientation and of any size. Compounding the problem is the addition of extraneous text and graphics such as advertising.

  17. One-piece transparent shell improves design of helmet assembly

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Okane, J. H.

    1966-01-01

    One-piece transparent helmet shell made of polycarbonate is equipped with a helmet protection pad, a visor assembly, a communications skull cap, and an emergency oxygen supply. This design offers improvements over previous designs in weight, visual field, comfort and protection.

  18. Design and Testing of a Hall Effect Thruster with Additively Manufactured Components

    NASA Astrophysics Data System (ADS)

    Hopping, Ethan

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville to study the application of low-cost additive manufacturing in the design and fabrication of Hall thrusters. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. The thruster features channel walls and a propellant distributor that were manufactured using 3D printing with a variety of materials including ABS, ULTEM, and glazed ceramic. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. The design of the thruster and the transient performance measurements are presented here. Measured thrust ranged from 17.2 mN to 30.4 mN over a discharge power of 280 W to 520 W with an anode Isp range of 870 s to 1450 s. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state. While the current thruster design is not yet ready for continuous operation, revisions to the device that could enable longer duration tests are discussed.

  19. Why Chalk Breaks into Three Pieces When Dropped

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2015-01-01

    It has been the author's experience over many years, no doubt shared by others, that a stick of chalk usually breaks into three pieces when accidentally dropped onto the floor. I rarely gave it any thought, apart from noting that the fundamental mode of vibration of a freely supported, rigid rod has two nodes at an equal distance from each end. For example, a baseball bat has a node in the barrel (the sweet spot) about 15 cm from the end and another node in the handle. However, chalk is not expected to break at the node points, since maximum stress arises at the antinode in the middle of the chalk where bending is a maximum. Richard Feynman described a similar problem with long sticks of spaghetti.1 He found that they always break into three or more pieces when bent slowly beyond their breaking point, rather than simply breaking in half. He was unable to figure out why, although the problem was solved many years later2 and is nicely illustrated by Vollmer and Mollmann.3

  20. Study of the Accelerating Channel Wall Property Influence on the Hall Thruster Discharge Characteristics

    DTIC Science & Technology

    2004-11-01

    Hall thruster characteristics there was prepared Hall thruster model of the SPT-100 type for these experiments and there were manufactured the required discharge chamber parts (rings) made of the Russian BN-SiO2 (borosil) ceramics and of the Russian AIN-BN (ABN) and Western ABN ceramics having secondary electron emission yield (SEEY) different from that one for borosil. These parts were replaceable during experiments. Thruster model was equipped by set of the near wall probes mounted at external discharge chamber wall. There was made characterization

  1. Decreased expression of fibulin-4 in aortic wall of aortic dissection.

    PubMed

    Huawei, P; Qian, C; Chuan, T; Lei, L; Laing, W; Wenlong, X; Wenzhi, L

    2014-02-01

    In this research, we will examine the expression of Fibulin-4 in aortic wall to find out its role in aortic dissection development. The samples of aortic wall were obtained from 10 patients operated for acute ascending aortic dissection and five patients for chronic ascending aortic dissection. Another 15 pieces of samples from patients who had coronary artery bypass were as controls. The aortic samples were stained with aldehyde magenta dyeing to evaluate the arrangement of elastic fibers. The Fibulin-4 protein and mRNA expression were both determined by Western blot and realtime quantitative polymerase chain reaction. Compared with the control group, both in acute and chronic ascending aortic dissection, elastic fiber fragments increased and the expression of fibulin-4 protein significantly decreased (P= 0.045 < 0.05). The level of fibulin-4 mRNA decreased in acute ascending aortic dissection (P= 0.034 < 0.05), while it increased in chronic ascending aortic dissection (P=0.004 < 0.05). The increased amounts of elastic fiber fragments were negatively correlated with the expression of fibulin-4 mRNA in acute ascending aortic dissection. In conclusion, in aortic wall of ascending aortic dissection, the expression of fibulin-4 protein decreased and the expression of fibulin-4 mRNA was abnormal. Fibulin-4 may play an important role in the pathogenesis of aortic dissection.

  2. The fracture and fragmentation behaviour of additively manufactured stainless steel 316L

    NASA Astrophysics Data System (ADS)

    Amott, R.; Harris, E. J.; Winter, R. E.; Stirk, S. M.; Chapman, D. J.; Eakins, D. E.

    2017-01-01

    Expanding cylinder experiments using a gas gun technique allow investigations into the ductility of metals and the fracture and fragmentation mechanisms that occur during rapid tensile failure. These experiments allow the radial strain-rate of the expansion to be varied in the range 102 to 104 s-1. Presented here is a comparative study of the fracture and fragmentation behaviour of rapidly expanded stainless steel 316L cylinders manufactured from either a wrought bar or additive manufacturing techniques. The results show that in the strain-rate regime studied, an additively manufactured cylinder failed at a higher strain and produced larger fragment widths when compared to cylinders manufactured from a wrought bar. In addition, an investigation into the role of macroscopic elongated voids that were introduced into the cylinder wall, at an angle of 45° to the cylinder radius, was undertaken. A comparison between experimental and simulated results (using the Eulerian hydrocode CTH) was also completed.

  3. Toluene diisocyanate caused electrophysiological disturbances in the upper airways wall.

    PubMed

    Piskorska, Elzbieta; Hołyńska-Iwan, Iga; Kaczorowski, Piotr; Soczywko-Ciudzińska, Julita; Wiciński, Michał; Lampka, Magdalena; Smuszkiewicz, Piotr; Tyrakowski, Tomasz

    2009-01-01

    Toluene diisocyanate (TDI) due to its widespread use in industry is one of the most common and well-known causes of occupational asthma and Reactive Airways Dysfunction Syndrome (RADS). In this study the impact of TDI on the electrophysiological properties of the airways wall, particularly on the mechanisms of absorption of sodium ions and chloride ions secretion was evaluated. Isolated rabbit tracheal wall (from outbred stock animals) was mounted in an apparatus for electrophysiological experiments by means of Ussing method and was mechanically stimulated by the jet flux of specified fluid directed onto the mucosal surface of the tissue from a peristaltic pump. The measured parameters were: transepithelial potential difference under control conditions (PD, mV), after mechanical stimulation (dPD or physiological reaction of hyperpolarization, mV) and electric resistance (R, Omega cm2). When TDI (0.035 mM) was added to stimulation fluid, only the immediate reaction was identified and when it was added to incubation fluid and other experimental fluids, the late (post-incubation) reaction was determined. The experiments involving the inhibition of Na+ by amiloride and Cl- by bumetanide were also performed. A series of functional tests for 72 pieces of tracheal wall from 36 animals were performed. It has been shown that short-term exposure to TDI significantly changed the course of reactions to mechanical stimulation. Also after incubation in the presence of TDI, the reactions to mechanical stimulation were changed in relation to control conditions. The immediate reaction of the isolated rabbit tracheal wall after exposure to TDI depends on the duration of exposure and on the physiological condition of the tissue in respect of sodium and chloride ion transport.

  4. Sustainability issues in laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sreenivasan, R.; Goel, A.; Bourell, D. L.

    Sustainability is a consideration of resource utilization without depletion or adverse environmental impact. In manufacturing, important sustainability issues include energy consumption, waste generation, water usage and the environmental impact of the manufactured part in service. This paper deals with three aspects of sustainability as it applies to additive manufacturing. First is a review of the research needs for energy and sustainability as applied to additive manufacturing based on the 2009 Roadmap for Additive Manufacturing Workshop. The second part is an energy assessment for selective laser sintering (SLS) of polymers. Using polyamide powder in a 3D Systems Vanguard HiQ Sinterstation, energy loss during a build was measured due to the chamber heaters, the roller mechanism, the piston elevators and the laser. This accounted for 95% of the total energy consumption. An overall energy assessment was accomplished using eco-indicators. The last topic is electrochemical deposition of porous SLS non-polymeric preforms. The goal is to reduce energy consumption in SLS of non-polymeric materials. The approach was to mix a transient binder with the material, to create an SLS green part, to convert the binder, and then to remove the open, connected porosity and to densify the part by chemical deposition at room temperature within the pore network. The model system was silicon carbide powder mixed with a phenolic transient binder coupled with electrolytic deposition of nickel. Deposition was facilitated by inserting a conductive graphite cathode in the part center to draw the positive nickel ions through the interconnected porous network and to deposit them on the pore walls. The Roadmap for Additive Manufacturing Workshop was sponsored by the National Science Foundation under Grant CMMI-0906212 and by the Office of Naval Research under Grant N00014-09-1-0558. The electrolytic deposition research was sponsored by the National Science Foundation, Grant CMMI-0926316.

  5. Methods and systems to facilitate reducing NO.sub.x emissions in combustion systems

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Lipinski, John Joseph [Simpsonville, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    A method for assembling a gas turbine combustor system is provided. The method includes providing a combustion liner including a center axis, an outer wall, a first end, and a second end. The outer wall is orientated substantially parallel to the center axis. The method also includes coupling a transition piece to the liner second end. The transition piece includes an outer wall. The method further includes coupling a plurality of lean-direct injectors along at least one of the liner outer wall and the transition piece outer wall such that the injectors are spaced axially apart along the wall.

  6. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru

    2015-07-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.

  7. Laboratory research of hydraulic fracturing with tangential loading of borehole wall

    NASA Astrophysics Data System (ADS)

    Kurlenya, MV; Patutin, AV; Rybalkin, LA; Serdyukov, SV; Shilova, TV

    2017-02-01

    Under study is transverse fracturing of an organic glass block through secondary shearing stress applied to the borehole wall. To this effect, a system composed of a press sealer and a collet anchor manufactured in two options has been designed. It is shown than an anchor with a circular groove allows reducing breakdown pressure and enables effective transverse fracture at the borehole bottom.

  8. 6. DECK #4 TOPSIDE FROM NORTHEAST CORNER END PIECE FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DECK #4 TOPSIDE FROM NORTHEAST CORNER END PIECE FOR ROBOTIC ARM FOR ANCHORING ASTRONAUT FOR MECHANICAL WORK. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  9. Additively manufactured hierarchical stainless steels with high strength and ductility.

    PubMed

    Wang, Y Morris; Voisin, Thomas; McKeown, Joseph T; Ye, Jianchao; Calta, Nicholas P; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T; Santala, Melissa K; Depond, Philip J; Matthews, Manyalibo J; Hamza, Alex V; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  10. Additively manufactured hierarchical stainless steels with high strength and ductility

    NASA Astrophysics Data System (ADS)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  11. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE PAGES

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; ...

    2017-10-30

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  12. Additively manufactured hierarchical stainless steels with high strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength–ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearlymore » six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.« less

  13. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    PubMed Central

    Huang, Shiping; Hu, Mengyu; Cui, Nannan; Wang, Weifeng

    2018-01-01

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry. PMID:29673176

  14. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    PubMed

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  15. 22. RW Meyer Sugar Mill: 18761889. Sorghum Pan. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. RW Meyer Sugar Mill: 1876-1889. Sorghum Pan. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: Historical view, 1934, T.T. Waterman Collection, Hawaiian Sugar Planters' Association, Oahu, Hawaii. View looking toward east end of sorghum pan and interior of east end of the boiling house. Walls and final compartment of the sorghum pan are still intact. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  16. Role of Outgassing of ITER Vacuum Vessel In-Wall Shielding Materials in Leak Detection of ITER Vacuum Vessel

    NASA Astrophysics Data System (ADS)

    Maheshwari, A.; Pathak, H. A.; Mehta, B. K.; Phull, G. S.; Laad, R.; Shaikh, M. S.; George, S.; Joshi, K.; Khan, Z.

    2017-04-01

    ITER Vacuum Vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with In-Wall Shielding Blocks (IWS) and Water. The main purpose of IWS is to provide neutron shielding during ITER plasma operation and to reduce ripple of Toroidal Magnetic Field (TF). Although In-Wall Shield Blocks (IWS) will be submerged in water in between the walls of the ITER Vacuum Vessel (VV), Outgassing Rate (OGR) of IWS materials plays a significant role in leak detection of Vacuum Vessel of ITER. Thermal Outgassing Rate of a material critically depends on the Surface Roughness of material. During leak detection process using RGA equipped Leak detector and tracer gas Helium, there will be a spill over of mass 3 and mass 2 to mass 4 which creates a background reading. Helium background will have contribution of Hydrogen too. So it is necessary to ensure the low OGR of Hydrogen. To achieve an effective leak test it is required to obtain a background below 1 × 10-8 mbar 1 s-1 and hence the maximum Outgassing rate of IWS Materials should comply with the maximum Outgassing rate required for hydrogen i.e. 1 x 10-10 mbar 1 s-1 cm-2 at room temperature. As IWS Materials are special materials developed for ITER project, it is necessary to ensure the compliance of Outgassing rate with the requirement. There is a possibility of diffusing the gasses in material at the time of production. So, to validate the production process of materials as well as manufacturing of final product from this material, three coupons of each IWS material have been manufactured with the same technique which is being used in manufacturing of IWS blocks. Manufacturing records of these coupons have been approved by ITER-IO (International Organization). Outgassing rates of these coupons have been measured at room temperature and found in acceptable limit to obtain the required Helium Background. On the basis of these measurements, test reports have been generated and got

  17. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  18. [Radiological control intraoperatory of a surgical piece in non palpable breast lesions].

    PubMed

    Ruvalcaba Limón, Eva; Espejo Fonseca, Ruby; Bautista Piña, Verónica; Madero Preciado, Luis; Capurso Garcia, Marino; Serratos Garduño, José Eduardo; Hohenstein, Fernando Guisa; Rodríguez Cuevas, Sergio

    2009-09-01

    nonconcrete the mammary injuries are frequent in programs of detection of breast cancer, estereotaxic or ecographic marking is required to realize its split. The intrasurgical radiation control of the surgical piece is indispensable to evaluate the margins of the mammary cancer. to determine the effectiveness of the intrasurgical radiation control of the surgical piece in nonconcrete mammary injuries to diminish the surgical reinterventions to extend margins. women with nonconcrete mammary injuries to those who biopsy by split became, previous marking and intraoperating radiation control of the surgical piece to value margins (suitable margin the same or major of 10 mm, smaller inadequate margin of 10 mm). Intrasurgical reesicion in inadequate radiological margins became. The demographic characteristics, masto-ecographics images, histopathology of the injuries and the radiological-histopatol6gica correlation of the margins studied. Cross-sectional, prospective and descriptive study. 103 patients with 113 nonconcrete mammary injuries included themselves, with age average of 51,35 (32-73) years. In all the injuries the intrasurgical radiation control became of the surgical piece. The prevalence of mammary cancer was of 28.3% (32/113), that corresponds to stellar images (42.8%), suspicious microcalcifications with density (39.2%), microcalcifications (31.2%) and nodules (20%). Of the 32 cancers, 16 had inadequate radiological margins that required intraoperating reescision; suitable histopatologic margins in 100% were obtained (16/16). The 16 (62.5%) cancers without intraoperating reescisi6n by suitable radiological margins had suitable histopatologic margins and 37.5% (6/16) inadequate ones that required surgical reinterventionn to control the margins. The discrepancy between margins was related to microcalcifications in 83.3% of the injuries. the intrasurgical radiation control of the surgical piece is effective to evaluate margins; the intrasurgical reescisi

  19. Exfoliation syndrome: assembling the puzzle pieces.

    PubMed

    Pasquale, Louis R; Borrás, Terete; Fingert, John H; Wiggs, Janey L; Ritch, Robert

    2016-09-01

    To summarize various topics and the cutting edge approaches to refine XFS pathogenesis that were discussed at the 21st annual Glaucoma Foundation Think Tank meeting in New York City, Sept. 19-20, 2014. The highlights of three categories of talks on cutting edge research in the field were summarized. Exfoliation syndrome (XFS) is a systemic disorder with a substantial ocular burden, including high rates of cataract, cataract surgery complications, glaucoma and retinal vein occlusion. New information about XFS is akin to puzzle pieces that do not quite join together to reveal a clear picture regarding how exfoliation material (XFM) forms. Meeting participants concluded that it is unclear how the mild homocysteinemia seen in XFS might contribute to the disarrayed extracellular aggregates characteristic of this syndrome. Lysyl oxidase-like 1 (LOXL1) variants are unequivocally genetic risk factors for XFS but exactly how these variants contribute to the assembly of exfoliation material (XFM) remains unclear. Variants in a new genomic region, CACNA1A associated with XFS, may alter calcium concentrations at the cell surface and facilitate XFM formation but much more work is needed before we can place this new finding in proper context. It is hoped that various animal model and ex vivo systems will emerge that will allow for proper assembly of the puzzle pieces into a coherent picture of XFS pathogenesis. A clear understanding of XFS pathogenesis may lead to 'upstream solutions' to reduce the ocular morbidity produced by XFS. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  1. Why Chalk Breaks into Three Pieces When Dropped

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    It has been the author's experience over many years, no doubt shared by others, that a stick of chalk usually breaks into three pieces when accidentally dropped onto the floor. I rarely gave it any thought, apart from noting that the fundamental mode of vibration of a freely supported, rigid rod has two nodes at an equal distance from each…

  2. Research on the effect of wall corrosion and rim seal on the withdrawal loss for a floating roof tank.

    PubMed

    Wang, Yongqiang; Liu, Minmin; Liu, Fang; Zhao, Chaocheng; Zhao, Dongfeng; Han, Fenglei; Liu, Chunshuang

    2018-04-25

    Storage tanks are important parts of volatile organic compound (VOC) fugitive emission sources of the petrochemical industry; the floating roof tank is the main oil storage facility at present. Based on the mechanism of withdrawal loss and the type of rim seal, octane and gasoline were taken as the research objects. A model instrument for simulating the oil loading process by the 316 stainless steel and A3 carbon steel as the test piece was designed, and the film thickness was measured by wet film thickness gauge to investigate the influence of the corrosion of the tank wall and rim seal on the withdrawal loss for floating roof tanks. It was found that withdrawal loss was directly proportional to the shell factor, and the oil thickness of the octane and gasoline increased with the strength of the wall corrosion with the same wall material and rim seal. Compared with the untreated test piece, the oil film thickness of the octane/gasoline was increased by 7.04~8.57 μm/13.14~21.93 μm and 5.59~11.49 μm/11.61~25.48 μm under the corrosion of hydrochloric acid for 32 and 75 h, respectively. The oil film thickness of octane and gasoline decreased with the increasing of the rim seal, and the oil film thickness of the octane decreased by 11.97~28.90% and 37.32~73.83% under the resilient-filled seal and the double seal, respectively. The gasoline dropped by 11.97~31.18% and 45.98~75.34% under the resilient-filled seal and the double seal, respectively. In addition, the tank surface roughness reduced the compression of the rim seal on the tank wall, and the effect of scraping decreased. The API withdrawal loss formula for a floating roof tank was recommended to take into account the effect of the rim seal to improve the accuracy of the loss evaluation. Finally, some measures of reducing the withdrawal loss were proposed.

  3. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  4. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

  5. One-piece, composite crucible with integral withdrawal/discharge section

    DOEpatents

    Besser, Matthew; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.; Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2002-07-30

    A one-piece, composite open-bottom casting mold with integral withdrawal section is fabricated by thermal spraying of materials compatible with and used for the continuous casting of shaped products of reactive metals and alloys such as, for example, titanium and its alloys or for the gas atomization thereof.

  6. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    PubMed

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P < 0.0001) increased for all materials, with increasing precompaction RDP decreased for plastic materials (P < 0.05), whereas with increasing speed MDP decreased for all materials (P < 0.05). During decompression, microcrystalline cellulose and pre-gelatinized starch showed higher axial relaxation, whereas mannitol and lactose showed higher radial relaxation, calcium hydrogen phosphate showed high axial and radial relaxations. Plastic and brittle materials showed increased tendencies for friction because of high radial relaxation. Die-wall monitoring is suggested as a valuable tool for characterizing compaction behavior of materials and detecting friction phenomena in the early stage of development.

  7. Health-hazard evaluation report HETA 91-298-2182, Gibson Flatiron, Erica Shell Manufacturing, Bozeman, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, C.S.

    1992-02-01

    In response to a request from the Montana State Health Department, an evaluation was undertaken of exposures to wood dust and lacquer vapors at the Gibson Flatiron/Erica Shell Manufacturing Companies (SIC-3931), Bozeman, Montana. Gibson Flatiron manufactured mandolins and banjoes. Erica Shell Manufacturing Company cuts and grinds abalone and other sea shells into small pieces to be used in designs inlayed into mandolins and banjos. Measured wood dust levels ranged from 0.8 to 32mg/cu m with an 8 hour time weighted average (TWA) of 1.2 to 30mg/cu m. Rib construction and assembly, and planing bulk ebony wood had TWA exposures abovemore » the OSHA permissible exposure limit of 5mg/cu m for wood dust. Application of dyes and finishes resulted in low exposures to acetone (67641), toluene (108883), xylene (1330207), and butyl-acetate (123864). No solvent air concentrations were above 10% of their respective PELs. The author concludes that a health hazard existed for exposure to wood dusts. The author recommends the establishment of a respiratory protection program and a hearing conservation program. Emergency egress routes should be marked in the buildings.« less

  8. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  9. Redundant Bearing Assembly

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    1995-01-01

    Proposed redundant bearing assembly consists of two modified ball or roller bearings, one held by other. Outer race of inner bearing press-fit into inner race of outer bearing. Within each bearing, side walls of inner and outer races extended radially toward each other leaving only small gap. In assembly, one bearing continues to allow free rotation when other fails. Bearing wear monitored by examination of gaps between races. In alternative design, inner race of outer bearing and outer race of inner bearing manufactured as single piece.

  10. Scleral fixation of one piece intraocular lens by injector implantation

    PubMed Central

    Can, Ertuğrul; Başaran, Reşat; Gül, Adem; Birinci, Hakkı

    2014-01-01

    Aim of Study: With an ab-interno technique of transscleral suturing of current one-piece posterior chamber intraocular lenses (PC IOLs) by injector implantation in the absence of capsular support, we aimed to demonstrate the possibility of the implantation of one-piece acrylic PC IOLs that might be produced in the future for only scleral fixation through small clear corneal incision. Materials and Methods: Case report and literature review. Results: This procedure has been performed in eight aphakic eyes with four different types of IOLs. Good centration was achieved with minimal technical effort. All patients had well-centered and stable lenses postoperatively during 9-18 months follow-up. Conclusion: We managed to decrease the risks of surgical trauma and intricate surgical maneuvers requirement. With this technique, excessive fluid leakage and consecutive hypotony can be minimized. PMID:25230961

  11. Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer.

    PubMed

    Sarkar, Sandip; Burriesci, Gaetano; Wojcik, Adam; Aresti, Nicholas; Hamilton, George; Seifalian, Alexander M

    2009-04-16

    Long-term patency of expanded polytetrafluoroethylene (ePTFE) small calibre cardiovascular bypass prostheses (<6mm) is poor because of thrombosis and intimal hyperplasia due to low compliance, stimulating the search for elastic alternatives. Wall porosity allows effective post-implantation graft healing, encouraging endothelialisation and a measured fibrovascular response. We have developed a novel poly (carbonate) urethane-based nanocomposite polymer incorporating polyhedral oligomeric silsesquioxane (POSS) nanocages (UCL-NANO) which shows anti-thrombogenicity and biostability. We report an extrusion-phase-inversion technique for manufacturing uniform-walled porous conduits using UCL-NANO. Image analysis-aided wall measurement showed that two uniform wall-thicknesses could be specified. Different coagulant conditions revealed the importance of low-temperature phase-inversion for graft integrity. Although minor reduction of pore-size variation resulted from the addition of ethanol or N,N-dimethylacetamide, high concentrations of ethanol as coagulant did not provide uniform porosity throughout the wall. Tensile testing showed the grafts to be elastic with strength being directly proportional to weight. The ultimate strengths achieved were above those expected from haemodynamic conditions, with anisotropy due to the manufacturing process. Elemental analysis by energy-dispersive X-ray analysis did not show a regional variation of POSS on the lumen or outer surface. In conclusion, the automated vertical extrusion-phase-inversion device can reproducibly fabricate uniform-walled small calibre conduits from UCL-NANO. These elastic microporous grafts demonstrate favourable mechanical integrity for haemodynamic exposure and are currently undergoing in-vivo evaluation of durability and healing properties.

  12. Study of the seismic performance of hybrid A-frame micropile/MSE (mechanically stabilized earth) wall

    NASA Astrophysics Data System (ADS)

    Chen, Yumin; Zhang, Zhichao; Liu, Hanlong

    2017-04-01

    The Hybrid A-Frame Micropile/MSE (mechanically stabilized earth) Wall suitable for mountain roadways is put forward in this study: a pair of vertical and inclined micropiles goes through the backfill region of a highway MSE Wall from the road surface and are then anchored into the foundation. The pile cap and grade beam are placed on the pile tops, and then a road barrier is connected to the grade beam by connecting pieces. The MSE wall's global stability, local stability and impact resistance of the road barrier can be enhanced simultaneously by this design. In order to validate the serviceability of the hybrid A-frame micropile/MSE wall and the reliability of the numerical method, scale model tests and a corresponding numerical simulation were conducted. Then, the seismic performance of the MSE walls before and after reinforcement with micropiles was studied comparatively through numerical methods. The results indicate that the hybrid A-frame micropile/MSE wall can effectively control earthquake-induced deformation, differential settlement at the road surface, bearing pressure on the bottom and acceleration by means of a rigid-soft combination of micropiles and MSE. The accumulated displacement under earthquakes with amplitude of 0.1‒0.5 g is reduced by 36.3%‒46.5%, and the acceleration amplification factor on the top of the wall is reduced by 13.4%, 15.7% and 19.3% based on 0.1, 0.3 and 0.5 g input earthquake loading, respectively. In addition, the earthquake-induced failure mode of the MSE wall in steep terrain is the sliding of the MSE region along the backslope, while the micropiles effectively control the sliding trend. The maximum earthquake-induced pile bending moment is in the interface between MSE and slope foundation, so it is necessary to strengthen the reinforcement of the pile body in the interface. Hence, it is proven that the hybrid A-frame micropile/MSE wall system has good seismic performance.

  13. Assessing your competitors' application of CIM/CIP. [Computer Integrated Manufacturing/Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M.J.; Evans, H.N.

    1993-07-01

    As part of the authors consulting assignments, they are frequently asked to describe what is best industry practice in the area of computer integrated manufacturing/processing (CIM/CIP). This might be specific to a particular piece, such as advanced controls or a laboratory system. Often it is in response to the enormous publicity given to CIM/CIP--begging the question, Who in the hydrocarbon industry is actually doing it '' Although much of this information is available to consultants, client confidentiality precludes its release. Instead, included is a questionnaire intended to be completed by representatives of manufacturing sites. The data gathered will be analyzedmore » and reported in a future issue. The intent is to give anyone who has completed the questionnaire the opportunity to assess the position of his or her site with respect to the competition. To show how this might work a prototype study was completed. This included an estimate of the advanced control benefits achieved in 68 refineries in Western Europe. So that sites could be compared, these were expressed as a percentage of the maximum economically achievable.« less

  14. In vitro evaluation of microbial contamination of orthodontic brackets as received from the manufacturer using microbiological and molecular tests.

    PubMed

    Dos Santos Gerzson, Darlene R; Simon, Daniel; Dos Anjos, Aline Lima; Freitas, Maria Perpétua Mota

    2015-11-01

    To test the null hypothesis that orthodontic brackets as supplied by manufacturers do not have microbial contamination. The sample comprised 140 brackets of four different commercially available brands, used directly from the manufacturer's packaging, divided into 14 groups (n  =  10 brackets each). Of the 140 pieces, 60 were full cases and 80 were replacement brackets. Materials were tested to detect bacterial growth, analyze types of bacteria present (biochemical test), and identify bacteria (molecular test with polymerase chain reaction [PCR]). In two of 12 groups the brackets showed microbial contamination: group 1, Morelli full case brackets, and group 12, Abzil-3M Unitek replacement brackets. Staphylococcus aureus and Staphylococcus epidermidis were the bacteria identified in groups 1 and 12, respectively (suggested by the biochemical test and confirmed by PCR). Brackets of two brands (Morelli and Abzil-3M Unitek) were found to be contaminated by bacteria in the original packages supplied by the manufacturers, which suggests a risk for patient contamination. These data suggest that the manufacturers of these materials should improve the quality control of the packaging used, including sterilization, for the security of patient health.

  15. Does milling one-piece titanium dental implants induce osteocyte and osteoclast changes?

    PubMed

    Russe, P; Pascaretti-Grizon, F; Aguado, E; Goyenvale, E; Filmon, R; Baslé, M-F; Chappard, D

    2011-06-01

    One-piece dental implants avoid adverse effects sometimes associated with the traditional implant-abutment interface and may provide a suitable alternative to two-piece implants; however, one-piece implants often need in situ milling, which may exacerbate cell apoptosis from excessive heat at the bone-implant interface and induce secondary crestal bone loss. Twelve implants were placed in the metaphyses of two sheep under general anesthesia. Six implants were milled with a diamond bur while the other six implants remained intact. Animals were euthanized after four days, and bone blocks were harvested. Bone samples were studied without decalcification. Osteocytes were stained with Hoechst 33342 and osteoclasts by the TRAcP reaction. Both cell types, in the cortical and trabecular bone around the implant's cervical region, were counted utilizing morphometric methods. Values were compared to areas at a distance from the cervical region. No difference was observed between milled and unmilled implants, which suggested that the amount of generated heat did not provoke osteocyte loss or induce osteoclastogenesis. Intraoral abutment preparations did not increase cellular apoptosis at the bone-implant interface after four days in the ovine model. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. An Automatic System of Testing the Best Stress of Installation for Semiconductor Refrigeration Piece

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Song, Ping

    Concerning the problems of the impact on the factors of installation about semiconductor refrigeration piece are rarely studied in China and abroad, a reasonable structure of test device is designed, using stepper motor to test the temperature of the cold surface under different stress of installation to get the best stress of installation for the semiconductor refrigeration piece. Experiments shows that the system is of good noise immunity, high controlling and measuring precision.

  17. The Key Pieces of the Career Survival and Success Puzzle.

    ERIC Educational Resources Information Center

    Simonetti, Jack L.

    1999-01-01

    Analysis of career-success factors identified by 5,000 managers yielded 10 key pieces: excellent performance record, communication skills, interpersonal skills, personality, skill currency, significant work experiences, power, ability to withstand pressure, ability to make difficult decisions, and having a mentor. (SK)

  18. Let's Measure the Dielectric Constant of a Piece of Paper!

    ERIC Educational Resources Information Center

    Karlow, Edwin A.

    1991-01-01

    Described is a simple circuit with which students can observe the effect of common dielectric materials in a capacitor and measure the dielectric constant of a piece of paper. Discussed are the theory, apparatus construction, and experimental procedures for this activity. (CW)

  19. Comparative analgesic effect of Ligusticum chuanxiong pieces and its products in mice

    PubMed Central

    GAO, Demin; XU, Lingchuan

    2010-01-01

    The present study was undertaken with the objective of finding out the comparative analgesic effect of Ligusticum chuanxiong (LC) pieces decoction, LC formula granule decoction, liquored LC pieces decoction and liquored LC formula granule decoction. The analgesic effects were analyzed using the hot plate and acetic-induced writhing test in mice, and antidysmenorrheic effect was observed with primary dysmenorrhea model. The results showed that four kinds of LC decoction had definite effect in delaying incubation period and decreasing the writhing frequency within 30 min. They also effectively relieved dysmenorrhea. Moreover, liquored LC had better analgesic effect than crude LC in four decoctions. PMID:20668580

  20. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  1. FEA and microstructure characterization of a one-piece Y-TZP abutment.

    PubMed

    da Silva, Lucas Hian; Ribeiro, Sebastião; Borges, Alexandre Luís Souto; Cesar, Paulo Francisco; Tango, Rubens Nisie

    2014-11-01

    The most important drawback of dental implant/abutment assemblies is the need for a fixing screw. This study aimed to develop an esthetic one-piece Y-TZP abutment to suppress the use of the screw. Material characterization was performed using a bar-shaped specimen obtained by slip-casting to validate the method prior to prototype abutment fabrication by the same process. The mechanical behavior of the prototype abutment was verified and compared with a conventional abutment by finite element analysis (FEA). The abutment was evaluated by micro-CT analysis and its density was measured. FEA showed stress concentration at the first thread pitch during installation and in the cervical region during oblique loading for both abutments. However, stress concentration was observed at the base of the screw head and stem in the conventional abutment. The relative density for the fabricated abutment was 95.68%. Micro-CT analysis revealed the presence of elongated cracks with sharp edges over the surface and porosity in the central region. In the light of these findings, the behavior of a one-piece abutment is expected to be better than that of the conventional model. New studies should be conducted to clarify the performance and longevity of this one-piece Y-TZP abutment. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. 24 CFR 3280.405 - Standard for swinging exterior passage doors for use in manufactured homes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pre-production specimen test in accordance with AAMA 1702.2-95, Voluntary Standard Swinging Exterior... requirements. The design and construction of exterior door units must meet all requirements of AAMA 1702.2-95.... For homes designed to be located in Wind Zones II and III, manufacturers shall design exterior walls...

  3. 24 CFR 3280.405 - Standard for swinging exterior passage doors for use in manufactured homes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pre-production specimen test in accordance with AAMA 1702.2-95, Voluntary Standard Swinging Exterior... requirements. The design and construction of exterior door units must meet all requirements of AAMA 1702.2-95.... For homes designed to be located in Wind Zones II and III, manufacturers shall design exterior walls...

  4. 24 CFR 3280.405 - Standard for swinging exterior passage doors for use in manufactured homes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pre-production specimen test in accordance with AAMA 1702.2-95, Voluntary Standard Swinging Exterior... requirements. The design and construction of exterior door units must meet all requirements of AAMA 1702.2-95.... For homes designed to be located in Wind Zones II and III, manufacturers shall design exterior walls...

  5. 24 CFR 3280.405 - Standard for swinging exterior passage doors for use in manufactured homes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pre-production specimen test in accordance with AAMA 1702.2-95, Voluntary Standard Swinging Exterior... requirements. The design and construction of exterior door units must meet all requirements of AAMA 1702.2-95.... For homes designed to be located in Wind Zones II and III, manufacturers shall design exterior walls...

  6. 24 CFR 3280.405 - Standard for swinging exterior passage doors for use in manufactured homes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pre-production specimen test in accordance with AAMA 1702.2-95, Voluntary Standard Swinging Exterior... requirements. The design and construction of exterior door units must meet all requirements of AAMA 1702.2-95.... For homes designed to be located in Wind Zones II and III, manufacturers shall design exterior walls...

  7. KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date. More than 82,500 pieces of shuttle debris have been rcovered.

    NASA Image and Video Library

    2003-05-22

    KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date. More than 82,500 pieces of shuttle debris have been rcovered.

  8. Sequential cooling insert for turbine stator vane

    DOEpatents

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  9. Study of Using Excess Stock to Reduce Naval Aviation Depot-Level Repairable Piece Part Backorders

    DTIC Science & Technology

    2016-12-01

    Designator Code, may get involved to ensure timely receipt. When a high-priority (Issue Priority Group 1) requisition is backordered, a CAS...alternative source for acquiring bit-piece parts is Navy excess material. Excess material is inventory designated by Navy organizations as meeting...potential alternative source for acquiring bit-piece parts is Navy excess material. Excess material is inventory designated by Navy organizations as

  10. Diffuse reflectance study of the effects of bleaching agents in damaged dental pieces

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, J.; Trejo-Tzab, R.; Macias, J. D.; Quintana, P.; Alvarado-Gil, J. J.

    2011-03-01

    One of the most important subjects of interest in dentistry and teeth preservation is related to the effects of bleaching agents on the integrity of the dental pieces. This is especially crucial when teeth surface has received some damage, generated by chemical, biological and mechanical agents or weathering in the case of dental pieces recovered from burial sites. In this work the time evolution of the effects of bleaching agents on the surface of dental pieces is monitored using diffuse reflectance in the visible spectrum is reported. The effects were monitored in teeth previously subject to chemical agents. Bleaching was induced using commercial whitening products. It is shown that the time evolution of the reflectance depends strongly on the condition of the surface as well as on the thickness of enamel. Additionally the colorimetric analysis of the samples during the bleaching is presented. This is especially useful in for comparing with previous studies. In order to complement our studies, the effects of the bleaching on the surface of the teeth were monitored by scanning electron microscopy.

  11. Genesis: Sorting Out the Pieces

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Westphal, Andrew; Butterworth, A. L.; Burnett, D. S.

    2005-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a non-nominal reentry. The parachutes which were supposed to slow and stabilize the capsule throughout the return failed to deploy, causing the capsule to impact the desert floor at a speed of nearly 200 MPH. The result is that instead of receiving 301 intact solar wind collectors, mission personnel recovered and documented more than 10,000 collector fragments. Most of the fragments were pieces of the collector arrays but were not recovered on their original array locations. These were classified by size (longest dimension), identity (sometimes a guess) and found location (when known). The work took more than one month in Utah, and details are discussed elsewhere[1] The samples were transferred to their permanent home at the Johnson Space Center on October 4, 2004.

  12. [Determination of six alkaloids in six types of Coptidis Rhizoma pieces by RP-HPLC and spectrum-effect relationships with anti-diabetes pharmacodynamics data].

    PubMed

    Lai, Xian-Rong; Zhou, Bang-Hua; Du, Ming-Sheng; Zheng, Hai-Jie; Geng, Zhi-Peng; Li, Jia-Chuan; Meng, Xian-Li; Zhang, Yi; Zhang, Jing

    2016-12-01

    To establish a method for determining the contents of six alkaloids (jatrorrhizine hydrochloride, columbamine hydrochloride, epiberberine hydrochloride, coptisine hydrochloride, palmatine hydrochloride, berberine hydrochloride) in six types of Coptidis Rhizoma pieces (crude pieces, ginger juice stir-fried pieces, vinegar stir-fried pieces, wine steamed pieces, wine stir-fried pieces, evodiae juice stir-fried pieces) by RP-HPLC, and explore the relationship with the curative effect of traditional Chinese medicine (TCM) and pharmacodynamics results. The chromatographic column was Welch XtimateTM C₁₈ (4.6 mm×250 mm, 5 μm), with 0.1% triethylamine solution (adjust pH at 10 with ammonium bicarbonate and ammonia) as mobile phase A and acetonitrile as mobile phase B for gradient elution (0-15 min, 10%-25%B; 15-25 min, 25%-30%B; 25-40 min, 30%-45%B) at a rate of 1.0 mL•min⁻¹. The column temperature was set at 30 ℃, and the wavelength was set at 270 nm. The six alkaloids showed a good linear relationship within the range of 0.85-16.96 mg•L⁻¹ (r=0.999 7), 1.25-24.96 mg•L⁻¹ (r=0.999 9), 2.05-40.96 mg•L⁻¹ (r=0.999 9), 3.65-72.96 mg•L⁻¹ (r=0.999 9), 2.88-57.60 mg•L⁻¹ (r=0.999 8), and 13.25-264.96 mg•L⁻¹ (r=0.999 6) respectively. The average recoveries (n=9) of the six alkaloids were 102.4% (RSD 1.2%), 101.8% (RSD 1.3%), 100.3% (RSD 1.8%), 100.7%(RSD 1.8%), 101.2% (RSD 1.5%) and 97.90% (RSD 2.0%) respectively, and their average contents were 3.55, 4.49, 9.12, 19.17, 15.69, 62.56 mg•g⁻¹, respectively. This determination method was accurate and repeatable, which could be used for the content determination in six types of Coptidis Rhizoma pieces. Data analysis on contents determination and preliminary pharmacodynamics results was conducted by using principal component analysis (PCA) and hierarchical clustering analysis (HCA). The analysis results showed that three types of Coptidis Rhizoma pieces (wine steamed pieces, wine stir

  13. Tube wall temperature monitoring technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granton, R.L.

    1985-07-01

    In 1977, Monsanto and Conoco undertook the construction of a new, modern technology ethylene plant at Chocolate Bayou, near Alvin, Texas. This plant included high severity cracking furnaces with potential tube wall temperatures considerably higher than any we had previously experienced. Furnace on-stream time between decokes, a factor in the economics of plant operation, was limited by tube wall temperature, thus requiring its accurate knowledge. Earlier work with other ethylene furnaces had also demonstrated our lack of knowledge concerning high temperature measurements in a furnace firebox environment. This had to change. An outside consultant was called upon to provide amore » threeday workshop on radiant tube temperature sensing. The workshop consisted of two days of formal training in the theory and practice of temperature measurement and one day of field training. This workshop was conducted at a site away from the plant. Approximately 20 engineers (manufacturing and technical groups) attended. The major topics covered by this workshop are as follows: radiant tube temperature sensing, radiation situation of radiant tubes, g.a. method: sample calculations, noncontact sensors: methods of specifying and purchasing, thermal imager strategies, calibration of noncontact sensors, avoiding problems with noncontact sensors, optical aids to radiant tube viewing, tube temperature management and its environmental implications, and contact temperature sensors.« less

  14. Exploiting fungal cell wall components in vaccines.

    PubMed

    Levitz, Stuart M; Huang, Haibin; Ostroff, Gary R; Specht, Charles A

    2015-03-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected.

  15. Exploiting fungal cell wall components in vaccines

    PubMed Central

    Levitz, Stuart M.; Huang, Haibin; Ostroff, Gary R.; Specht, Charles A.

    2014-01-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by Dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected. PMID:25404118

  16. The impact of fit manufacturing on green manufacturing: A review

    NASA Astrophysics Data System (ADS)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  17. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  18. A mathematical model for filtration and macromolecule transport across capillary walls.

    PubMed

    Facchini, L; Bellin, A; Toro, E F

    2014-07-01

    Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed of two coupled second-order ordinary differential equations for the hydrostatic and osmotic pressures, one, expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of

  19. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  20. Effects of hot water pasteurizing treatments on the microbiological condition of manufacturing beef used for hamburger patty manufacture.

    PubMed

    Gill, C O; Bryant, J; Badoni, M

    2001-02-15

    Ten 12-kg lots of manufacturing beef from a single packing plant were obtained from a hamburger patty manufacturing plant. Each lot was divided into two, 6-kg portions, one of which was not treated while the other was treated with water of 85 degrees C. A portion from one lot was treated for 15 s. A portion from each of three lots was treated for 30 s, three portions were treated for 45 s, and three were treated for 60 s. Twenty-five pieces of meat from each portion were swabbed over areas of 100 cm2. Subsequently, each portion was first coarsely ground then finely ground, with twenty-five 100-g samples being taken from each portion at each stage of grinding. Each swab and sample of ground meat was separately processed for the enumeration of total aerobic counts, coliforms and Escherichia coli at levels of detection of 1 cfu/cm2, 1 cfu/100 cm2 and 1 cfu/100 cm2, respectively, for swab samples; and at a level of detection of 1 cfu/g for all three types of bacteria in samples of ground beef. A 250-kg batch of manufacturing beef was treated with water of 85 degrees C for 60 s. The product was processed through commercial equipment for manufacturing frozen hamburger patties. The flavour of patties prepared from the pasteurized product was compared with the flavour of patties prepared during normal commercial operation of the equipment. The weight of the manufacturing beef was not affected by the treatments. Similar total numbers of coliforms or E. coli were recovered per 2500 cm2 from the 25 swab samples or per 25 g from the 25 ground beef samples from each untreated portion. As the ratio of the surface area in cm2 to the weight in g would likely be < or = 1, the similar numbers indicated that swab sampling was inefficient for recovering coliforms and E. coli from the meat. However, coliforms and E. coli were recovered more frequently from swab than from ground beef samples from treated portions. Thus, some swabs from all three portions of beef treated for 30 s yielded

  1. A study of Mariner 10 flight experiences and some flight piece part failure rate computations

    NASA Technical Reports Server (NTRS)

    Paul, F. A.

    1976-01-01

    The problems and failures encountered in Mariner flight are discussed and the data available through a quantitative accounting of all electronic piece parts on the spacecraft are summarized. It also shows computed failure rates for electronic piece parts. It is intended that these computed data be used in the continued updating of the failure rate base used for trade-off studies and predictions for future JPL space missions.

  2. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    PubMed

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  3. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    PubMed

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  4. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    PubMed Central

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  5. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, L.O.

    1985-12-10

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  6. Subaperture metrology technologies extend capabilities in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Tricard, Marc; Forbes, Greg; Murphy, Paul

    2005-10-01

    Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.

  7. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    NASA Technical Reports Server (NTRS)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  8. 29 CFR 778.420 - Combined hourly rates and piece rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS OVERTIME COMPENSATION Exceptions From the Regular Rate Principles Computing Overtime Pay on the Rate Applicable to the Type of Work... an employee works at a combination of hourly and piece rates, the payment of a rate not less than one...

  9. [Thermodynamic analysis of water adsorption and desorption process of Chinese herbal decoction pieces].

    PubMed

    Cheng, Lin; Luo, Xiao-Jian; Han, Xiu-Lin; Wang, Wen-Kai; Rao, Xiao-Yong; Xu, Shao-Zhong; He, Yan

    2016-09-01

    Based on the basic theory of thermodynamics, the thermodynamic parameters and related equations in the process of water adsorption and desorption of Chinese herbal decoction pieces were established, and their water absorption and desorption characteristics were analyzed. The physical significance of the thermodynamic parameters, such as differential adsorption enthalpy, differential adsorption entropy, integral adsorption enthalpy, integral adsorption entropy and the free energy of adsorption, were discussed in this paper to provide theoretical basis for the research on the water adsorption and desorption mechanism, optimum drying process parameters, storage conditions and packaging methods of Chinese herbal decoction pieces. Copyright© by the Chinese Pharmaceutical Association.

  10. Mass spectrometer with magnetic pole pieces providing the magnetic fields for both the magnetic sector and an ion-type vacuum pump

    NASA Technical Reports Server (NTRS)

    Sieradski, L. M.; Giffin, C. E.; Nier, A. O. (Inventor)

    1976-01-01

    A mass spectrometer (MS) with unique magnetic pole pieces which provide a homogenous magnetic field across the gap of the MS magnetic sector as well as the magnetic field across an ion-type vacuum pump is disclosed. The pole pieces form the top and bottom sides of a housing. The housing is positioned so that portions of the pole pieces form part of the magnetic sector with the space between them defining the gap region of the magnetic sector, through which an ion beam passes. The pole pieces extend beyond the magnetic sector with the space between them being large enough to accommodate the electrical parts of an ion-type vacuum pump. The pole pieces which provide the magnetic field for the pump, together with the housing form the vacuum pump enclosure or housing.

  11. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  12. Manufacturing of the 1070mm F/1.5 ellipsoid mirror

    NASA Astrophysics Data System (ADS)

    Guo, Peiji; Yu, Jingchi; Zhang, Yaoming; Qiu, Gufeng

    2009-05-01

    The manufacturing procedure of a φ1070mm in diameter F/1.5 ellipsoid mirror is introduced in detail. For testing the rough-ground surface, guiding shaping and fine grinding, a three dimension X-θ-Z profilometer is developed, the instrument measures surface profiles with 1μm accuracy and the biggest mirror being tested is φ1200mm in diameter. During polishing and fine figuring, we chose null test by null corrector with point source at infinity, the designed null corrector includes two piece of lenses and the designed residual wave front aberration is less than 0.008λ(λ=0.6328μm)PV. For avoiding the influence of gravity deformation during polishing and testing, a kind of support system with multipoint unequal support force is developed by applying FEA-based optimization. The mirror was finally figured to the shape accuracy of 0.016λRMS.

  13. Contemporary Patient Satisfaction Rates for Three-Piece Inflatable Penile Prostheses

    PubMed Central

    Bernal, Raymond M.; Henry, Gerard D.

    2012-01-01

    Among the many treatments for erectile dysfunction, implantation of a penile prosthesis has been associated with high patient satisfaction rates. Specifically, the placement of a three-piece inflatable penile prosthesis (IPP) confers the highest rates of satisfaction. We reviewed the literature over the past 20 years regarding satisfaction rates for penile prostheses, with a focus on patients who had undergone an initial IPP implantation for erectile dysfunction. In all, 194 articles were reviewed, and of these, nine met inclusion criteria for analysis and data collation. We determined contemporary satisfaction rates to reflect patients' experiences with newer products and surgical approaches. Of importance, we noted that varied metrics were used to determine patient satisfaction, and overall satisfaction could not be precisely determined. Nevertheless, we found that patients in general were quite satisfied with their three-piece IPPs and restoration of sexual function. We also identified reasons for patient dissatisfaction and reviewed the literature to find ways by which satisfaction could be improved. Given the various means by which patient satisfaction was determined, future efforts should include standardized and validated questionnaires. PMID:22899909

  14. Development of hermetic electrical connectors for SSC spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kountanis, B.; Kalny, L.

    1993-05-01

    The Superconducting Super Collider ring is about 54 miles (87 km circumference) and primarily includes a series of magnets. Spool piece assemblies are interspaced in the ring at predetermined intervals to provide specific functions such as cryogenic interfaces, vacuum interface, magnet power, magnet power dump, quench heater power, and special instrumentation. Electrical connectors serve as interfaces for instrumentation and quench heater circuits. These connectors have to meet stringent requirements.

  15. Research Advances on Fabricated Shear Wall System

    NASA Astrophysics Data System (ADS)

    Liu, Xudong; Wang, Donghui; Wang, Sheng; Zhai, Yu

    2018-03-01

    With the rapid development of the construction industry, building energy consumption has been increasing, has become a problem that can not be ignored. It is imperative to develop energy-saving buildings. A new type of prefabricated shear wall is assembled and partially assembled by prefabricated parts, and some concrete is spliced together. The new structure has good integrity, seismic resistance and excellent energy saving and environmental protection performance. It reduces building energy consumption to a great extent. Therefore, the design method, manufacturing process, site assembly process and key technical problems of the system are discussed. For the construction industry gradually entered the energy conservation, environmental protection, safety and durability of sustainable development laid the foundation.

  16. Analysis of defects of overhead facade systems and other light thin-walled structures

    NASA Astrophysics Data System (ADS)

    Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.

    2017-04-01

    This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.

  17. Medicare locals. 42+ pieces in the primary health care reform puzzle.

    PubMed

    Dragon, Natalie

    2011-02-01

    A central piece of federal Labor's health reform jigsaw is the establishment of primary health care organisations, or Medicare Locals. With much-awaited draft boundaries finally released for consultation in late 2010, there has been widespread debate about how these organisations will work on the ground.

  18. The Ayre's T-piece turns 80: A 21st century review.

    PubMed

    Oswald, Lauren; Smith, Emma-Jane; Mathew, Malcolm; Goonasekera, Chulananda

    2018-06-07

    Ayre's T-piece, first introduced 80 years ago, continues to be widely used in pediatric anesthesia despite colossal advances in equipment and technology. We present a review of its history, advantages, and disadvantages, and place in modern-day clinical practice. © 2018 John Wiley & Sons Ltd.

  19. [Correlation of HPLC Characteristic Spectra of Vinegar Corydalis Rhizoma Decoction Pieces, Water Decoction and Formula Granules].

    PubMed

    Wei, Mei; Du, Lan-zhe; Li, Hui; Zhang, Guang-da; Chen, Xiang-dong

    2015-05-01

    To study the correlation of characteristic spectra of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules by HPLC, and to investigate the transfer of the main chemical constituents between three different forms. The analysis was carried out by a Phenomenex Gemini C18 column (250 mm x 4.6 mm,5 μm) with acetonitrile-1% acetic acid and ammonium acetate buffer solution (pH 6.0) as the mobile phase in a gradient elution mode. The detection wavelength was 280 nm with a flow rate of 0.8 mL /min. The column temperature was 30 degrees C. The characteristic spectra from 11 batches of Vinegar Corydalis Rhizoma decoction pieces, 11 batches of water decoction and 11 batches of formula granules were established respectively. Ten peaks in the HPLC characteristic spectra from 11 batches of formula granules could be tracked in the water decoction, nine peaks in the HPLC characteristic spectra could be tracked in the decoction pieces. In the ten common peaks, four components such as protopine, palnatine chloride, berberine hydrochloride and tetrahydropalmatine were verified. The main chemical components of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules are basically the same, the common component contents have similar proportion.

  20. Electrification: Connecting the Pieces in the Broader View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Chris C

    Presented at the SELECT Annual Meeting on September 26, 2017, this PowerPoint presentation gives an overview of connectivity and automation and how these new technologies will impact society in both known and unknown ways. Electrification challenges and opportunities are also outlined as without electrification, connectivity and automation will just magnify the negative health, climate and economic problems of the current transportation systems. Electrification can provide benefits while mitigating the negative consequences. And with careful connection of all of the pieces from materials up through controls, a sustainable transportation eco-system is attainable.

  1. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    PubMed Central

    Chabriac, Pierre-Antoine; Fabbri, Antonin; Morel, Jean-Claude; Laurent, Jean-Paul; Blanc-Gonnet, Joachim

    2014-01-01

    Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR) principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior. PMID:28788603

  2. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  3. Steam generator feedwater nozzle transition piece replacement experience at Salem Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patten, D.B.; Perrin, J.S.; Roberts, A.T.

    Cracking of steam generator feedwater piping adjacent to the feedwater nozzles has been a recurring problem since 1979 at Salem Unit 1 owned and operated by Public Service Electric and Gas Company. In addition to the cracking problem, erosion-corrosion at the leading edge of the feedwater nozzle thermal sleeve was also observed in 1992. To provide a long-term solution for the pipe cracking and thermal sleeve erosion-corrosion problems, a unique transition piece forging was specially designed, fabricated, and installed for each of the four steam generators during the 1995 outage. This paper discusses the design, fabrication, and installation of themore » transition piece forgings at Salem Unit 1, and the experiences gained from this project. It is believed that these experiences may help other utilities when planning similar replacements in the future.« less

  4. Piecing It Together: The Effect of Background Music on Children's Puzzle Assembly.

    PubMed

    Koolidge, Louis; Holmes, Robyn M

    2018-04-01

    This study explored the effects of background music on cognitive (puzzle assembly) task performance in young children. Participants were 87 primarily European-American children (38 boys, 49 girls; mean age = 4.77 years) enrolled in early childhood classes in the northeastern United States. Children were given one minute to complete a 12-piece puzzle task in one of three background music conditions: music with lyrics, music without lyrics, and no music. The music selection was "You're Welcome" from the Disney movie "Moana." Results revealed that children who heard the music without lyrics completed more puzzle pieces than children in either the music with lyrics or no music condition. Background music without distracting lyrics may be beneficial and superior to background music with lyrics for young children's cognitive performance even when they are engaged independently in a nonverbal task.

  5. Clinical Performance of One-Piece, Screw-Retained Implant Crowns Based on Hand-Veneered CAD/CAM Zirconia Abutments After a Mean Follow-up Period of 2.3 Years.

    PubMed

    Schnider, Nicole; Forrer, Fiona Alena; Brägger, Urs; Hicklin, Stefan Paul

    The aim of this study was to evaluate the clinical performance of one-piece, screw-retained implant crowns based on hand-veneered computer-aided design/computer-aided manufacture (CAD/CAM) zirconium dioxide abutments with a crossfit connection at least 1 year after insertion of the crown. Consecutive patients who had received at least one Straumann bone level implant and one-piece, screw-retained implant crowns fabricated with CARES zirconium dioxide abutments were reexamined. Patient satisfaction, occlusal and peri-implant parameters, mechanical and biologic complications, radiologic parameters, and esthetics were recorded. A total of 50 implant crowns in the anterior and premolar region were examined in 41 patients. The follow-up period of the definitive reconstructions ranged from 1.1 to 3.8 years. No technical and no biologic complications had occurred. At the reexamination, 100% of the implants and reconstructions were in situ. Radiographic evaluation revealed a mean distance from the implant shoulder to the first visible bone-to-implant contact of 0.06 mm at the follow-up examination. Screw-retained crowns based on veneered CAD/CAM zirconium dioxide abutments with a crossfit connection seem to be a promising way to replace missing teeth in the anterior and premolar region. In the short term, neither failures of components nor complications were noted, and the clinical and radiographic data revealed stable hard and soft tissue conditions.

  6. "Pieces of a Puzzle": Seeing the Light in a Darkened Room.

    ERIC Educational Resources Information Center

    Lang, Frederick K.

    The film "Pieces of a Puzzle" (part of the series "Writers Writing" that was coproduced by WNET and Learning Designs and televised by WNET in 1985), helped students become better writers and facilitated the discovery of material and techniques appropriate to academic writing. First, students were introduced to reader response…

  7. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  8. Pigment dispersion and chronic intraocular pressure elevation after sulcus placement of 3-piece acrylic intraocular lens.

    PubMed

    Almond, M Camille; Wu, Michael C; Chen, Philip P

    2009-12-01

    A 55-year-old man had phacoemulsification and implantation of a 3-piece acrylic intraocular lens (IOL) (AcrySof MA60AC) in the right eye. One month postoperatively, the intraocular pressure (IOP) was 48 mm Hg and peripheral transillumination defects were noted in the iris circumferentially, with the IOL optic edge visible as a silhouette. Gonioscopy showed dense pigmentation of the trabecular meshwork in the right eye, but in the left eye, only mild trabecular meshwork pigment was seen, along with a concave peripheral iris insertion. At 21 months, the right eye required 3 medications for IOP control. While pigment dispersion has been widely reported after placement of 1-piece acrylic IOLs in the ciliary sulcus, we conclude that in susceptible individuals with a concave peripheral iris insertion, pigment dispersion can occur with sulcus placement of a 3-piece acrylic model despite its thinner optic and angulated haptics.

  9. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  10. Effect of pieces size of Empty Fruit Bunches (EFB) on composting of EFB mixed with activated liquid organic fertilizer

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    This research was to determine the effect of pieces sizes of oil palm empty fruit bunch (EFB) on the composting of EFB mixed with activated liquid organic fertilizer (ALOF) in a basket composter in order to obtain high quality compost. The composting process was started by cutting the EFB into pieces with varies sizes, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The sizes of the EFB pieces were varied into <1, 1-3, 4-7, 8-11, and 12-15 cm. The parameters analysed during the composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at EFB pieces size was 1-3 cm with compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0. 95%.

  11. Manufactured volvulus.

    PubMed

    Zweifel, Noemi; Meuli, Martin; Subotic, Ulrike; Moehrlen, Ueli; Mazzone, Luca; Arlettaz, Romaine

    2013-06-01

    Malrotation with a common mesentery is the classical pathology allowing midgut volvulus to occur. There are only a few reports of small bowel volvulus without malrotation or other pathology triggering volvulation. We describe three cases of small bowel volvulus in very premature newborns with a perfectly normal intra-abdominal anatomy and focus on the question, what might have set off volvulation. In 2005 to 2008, three patients developed small bowel volvulus without any underlying pathology. Retrospective patient chart review was performed with special focus on clinical presentation, preoperative management, intraoperative findings, and potential causative explanations. Mean follow-up period was 46 months. All patients were born between 27 and 31 weeks (mean 28 weeks) with a birth weight between 800 and 1,000 g (mean 887 g). They presented with an almost identical pattern of symptoms including sudden abdominal distension, abdominal tenderness, erythema of the abdominal wall, high gastric residuals, and radiographic signs of ileus. All of them were treated with intensive abdominal massage or pelvic rotation to improve bowel movement before becoming symptomatic. Properistaltic maneuvers including abdominal massage and pelvic rotation may cause what we term a "manufactured" volvulus in very premature newborns. Thus, this practice was stopped. Georg Thieme Verlag KG Stuttgart · New York.

  12. Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.

  13. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  14. [The study of new soft one-piece PHEMA keratoprosthesis implanted into alkali burned rabbits cornea].

    PubMed

    Bai, Hua; Huang, Yi-fei; Wang, Li-qiang

    2013-10-01

    This study was to evaluate clinical results of two types soft one-piece keratoprosthesis (KPros) made of PHEMA implanted to alkali burned rabbit corneas. Experimental study. Twelve pieces KPros were implanted alkali burned rabbit corneas(type I and II, 6 pieces respectively). The examinations including slit-lamp, fundus photography,B-ultrasound and ultrasound biomicroscopy (UBM) were carried out. All Kpros were stable and no complications happened including conjunctiva flap dehiscence, aqueous leak and infection. IOP were normal by finger touch. B-ultrasound show no retina detachment and UBM show synechia in most animals (10 case). Retroprosthetic membrane happened in type I (3 case) . Visible conjunctiva hyperplasia covering the optical region happened in all KPros. (1) The same material, integrated design, maybe eliminating the material interface problem. (2)Simple surgical skills. (3)IOP measurement is possible because of soft material. (4)KPro I do not need removal of the lens and vitrectomy. The projecting portion of KPro II may reduce the incidence of proliferative membrane. Long term effects need more cases and further observation.

  15. Photoelastic Analysis of Cracked Thick Walled Cylinders

    NASA Astrophysics Data System (ADS)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

  16. Wind tunnels with adapted walls for reducing wall interference

    NASA Technical Reports Server (NTRS)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  17. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  18. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  19. Dynamics of ultrasonic additive manufacturing.

    PubMed

    Hehr, Adam; Dapino, Marcelo J

    2017-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state technology for joining similar and dissimilar metal foils near room temperature by scrubbing them together with ultrasonic vibrations under pressure. Structural dynamics of the welding assembly and work piece influence how energy is transferred during the process and ultimately, part quality. To understand the effect of structural dynamics during UAM, a linear time-invariant model is proposed to relate the inputs of shear force and electric current to resultant welder velocity and voltage. Measured frequency response and operating performance of the welder under no load is used to identify model parameters. Using this model and in-situ measurements, shear force and welder efficiency are estimated to be near 2000N and 80% when welding Al 6061-H18 weld foil, respectively. Shear force and welder efficiency have never been estimated before in UAM. The influence of processing conditions, i.e., welder amplitude, normal force, and weld speed, on shear force and welder efficiency are investigated. Welder velocity was found to strongly influence the shear force magnitude and efficiency while normal force and weld speed showed little to no influence. The proposed model is used to describe high frequency harmonic content in the velocity response of the welder during welding operations and coupling of the UAM build with the welder. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide.

    PubMed

    Jadhav, Umesh; Su, C; Hocheng, Hong

    2016-12-01

    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H 2 O 2 ) was used to leach the metals from CPCB piece. The influence of system variables such as H 2 O 2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H 2 O 2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H 2 O 2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  1. Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans.

    PubMed

    Resmeriță, Ana-Maria; Coroaba, Adina; Darie, Raluca; Doroftei, Florica; Spiridon, Iuliana; Simionescu, Bogdan C; Navard, Patrick

    2018-02-01

    A sea water wave tank fitted in an artificial UV light weathering chamber was built to study the behaviour of polypropylene (PP) injected pieces in close ocean-like conditions. In air, the same pieces sees a degradation in the bulk with a decrease of mechanical properties, a little change of crystal properties and nearly no change of surface chemistry. Weathering in the sea water wave tank shows only a surface changes, with no effect on crystals or mechanical properties with loss of small pieces of matter in the sub-micron range and a change of surface chemistry. This suggests an erosion dispersion mechanism. Such mechanism could explain why no particle smaller than about one millimeter is found when collecting plastic debris at sea: there are much smaller, eroded from plastic surfaces by a mechano-chemical process similar to the erosion mechanism found in the dispersion of agglomerate under flow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  3. Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.

    PubMed

    Cabañas, M V; Peña, J; Román, J; Vallet-Regí, M

    2006-09-01

    An original shaping technique has been applied to prepare porous bodies at room temperature. Agarose, a biodegradable polysaccharide, was added as binder of a sol-gel glass in powder form, yielding an easy to mold paste. Interconnected tailored porous bodies can be straightforwardly prepared by pouring the slurry into a polymeric scaffold, previously designed by stereolitography, which is subsequently eliminated by alkaline dissolution at room temperature. The so obtained pieces behave like a hydrogel with an enhanced consistency that makes them machinable and easy to manipulate. These materials generate an apatite-like layer when immersed in a simulated body fluid, indicating a potential in vivo bioactivity. The proposed method can be applied to different powdered materials to produce pieces, at room temperature, with various shapes and sizes and with tailored interconnected porosity.

  4. Recovery of piece of the aft center segment tang joint of SRB

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A 4000 pound, 11' x 20' piece of the aft center segment tang joint of the Shuttle Challenger's right-hand solid rocket booster is off loaded from the Stena Workhorse after its recovery on April 13, 1986. The burned out area is 15' x 28'.

  5. Sensory, physical and chemical characteristics of cooked ham manufactured from rapidly chilled and earlier deboned M. semimembranosus.

    PubMed

    Tomović, Vladimir M; Jokanović, Marija R; Petrović, Ljiljana S; Tomović, Mila S; Tasić, Tatjana A; Ikonić, Predrag M; Sumić, Zdravko M; Sojić, Branislav V; Skaljac, Snežana B; Sošo, Milena M

    2013-01-01

    Effects of rapid chilling of carcasses (at -31°C in the first 3h of chilling, and then at 2-4°C) and earlier deboning (8h post-mortem), compared to rapid (till 24h post-mortem) and conventional chilling (at 2-4°C, till 24h post-mortem), on quality characteristics of pork M. semimebranosus and cooked ham were investigated. Quality measurements included pH value, colour (CIEL a b values) and total aerobic count of M. semimebranosus, as well as sensory (colour, juiciness, texture, and flavour), physical (pH value, colour - CIEL a b values and texture - Warner-Bratzler shear and penetration forces) and chemical (protein, total fat, and moisture content) characteristics of cooked ham. The cooked ham was manufactured from pieces of M. semimebranosus with ultimate lightness (CIEL value) lower than 50. Rapid chilling and earlier deboning significantly increased quantity of M. semimebranosus desirable for cooked ham manufacturing. Earlier start of pork fabrication did not affect important quality characteristics of cooked ham. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Strength of One-Piece Solid, Build-Up and Laminated Wood Airplane Wing Beams

    NASA Technical Reports Server (NTRS)

    Nelson, John H

    1920-01-01

    The purpose of this report is to summarize the results of all wood airplane wing beams tested to date in the Bureau of Standards Laboratory in order that the various kinds of wood and methods of construction may be compared. All beams tested were of an I section and the majority were somewhat similar in size and cross section to the front wing beam of the Curtiss JN-4 machine. Construction methods may be classed as (1) solid beams cut from solid stock; (2) three-piece beams, built up of three pieces, web and flanges glued together by a tongue-and-groove joint and (3) laminated beams built up of thin laminations of wood glued together.

  7. Flexible Manufacturing Systems: What's in It for the Manufacturer.

    ERIC Educational Resources Information Center

    Chowdhury, A. R.; Peckman, Donald C.

    1987-01-01

    The authors define the Flexible Manufacturing System and outline its history. They describe what the processing time includes and provide advantages and disadvantages of Flexible Manufacturing Systems compared to conventional manufacturing. (CH)

  8. 7 CFR 51.1431 - U.S. No. 1 Halves and Pieces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. No. 1 Halves and Pieces. 51.1431 Section 51.1431... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Grades § 51.1431 U.S. No. 1 Halves and...

  9. 7 CFR 51.1431 - U.S. No. 1 Halves and Pieces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false U.S. No. 1 Halves and Pieces. 51.1431 Section 51.1431... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Grades § 51.1431 U.S. No. 1 Halves and...

  10. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it

  11. [Simultaneous intrusion and retraction of the anterior teeth using a three-piece base arch].

    PubMed

    Liu, D; Bai, D; Wang, C; Sun, W; Guo, J; Xi, R

    2000-06-01

    To evaluate the effects of the three-piece base arch on overbite correction of Class II malocclusion. 20 patients with high angle, flared incisors were treated using a three-piece base arch appliance. The intrusion force of four upper incisors was adjusted to approximately 50 g. The line of force action was 2 mm distally to the resistant center(RC) and the retraction force was 20 g, the right and left posterior segments were joined by a palatal bar. Cephalograms were taken before treatment (T1) and six months after treatment (T2). The upper molars moved mesially 0.60 +/- 0.35 mm and the distance of the vertical extrusion was 0.80 +/- 0.52 mm. The distances of the upper central incisor retraction and intrusion were -4.20 +/- 2.12 mm and 3.10 +/- 0.54 mm respectively. The RC of the central incisor retracted -4.12 +/- 1.96 mm and intruded 3.20 +/- 0.66 mm. The axial inclination of the upper incisor-palatal plane changed from 123.21 degrees +/- 4.26 degrees to 116.00 degrees +/- 3.96 degrees. The three-piece segmented approach can effectively intrude and retract the upper anterior teeth for flared incisors and deep overbite.

  12. Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall

    NASA Astrophysics Data System (ADS)

    Jabbar, Hussam; Naguib, Ahmed

    2017-11-01

    Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).

  13. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  14. Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas

    PubMed Central

    Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.

    2009-01-01

    BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626

  15. 3D fiber deposited polymeric scaffolds for external auditory canal wall.

    PubMed

    Mota, Carlos; Milazzo, Mario; Panetta, Daniele; Trombi, Luisa; Gramigna, Vera; Salvadori, Piero A; Giannotti, Stefano; Bruschini, Luca; Stefanini, Cesare; Moroni, Lorenzo; Berrettini, Stefano; Danti, Serena

    2018-05-07

    The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young's modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. This study demonstrated the fabrication feasibility of outer ear canal wall scaffolds via additive manufacturing. Aimed to match several important requirements for biomaterial application to ear replacements under the Tissue Engineering paradigm, including shape, porosity and pore size, surface area, mechanical properties and favorable in vitro interaction with osteo-differentiated mesenchymal stromal cells.

  16. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  17. Distribution Methods and End-Uses For Hardwood Face Veneer and Plywood Manufactured In Michigan and Wisconsin In 1964

    Treesearch

    Lewis T. Hendrics

    1966-01-01

    A number of distribution methods are currently used to market a wide variety of products manufactured by the hardwood face veneer and plywood industry in Michigan and Wisconsin. Wall paneling, door skins, and kitchen cabinet stock are major products, but specialty lines such as curved and molded plywood components for furniture, shoe heels, and golf club heads are...

  18. Food equipment manufacturer takes a slice out of its scrap rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, D.; Hannahs, J.; Carter, M.

    1996-09-01

    The PMI Food Equipment Group began manufacturing circular slicer knives for its commercial Hobart line of slicers in the early 1930s. The company manufacturers the only cast knife in the food industry. The cast knives offer superior edge retention and overall corrosion resistance. The slicer knives are cast in PMI`s foundry. The casting process sometimes produces shrinkage voids or gas bubbles in the knife blank. Surface discontinuities often do not appear until rough cutting or final machining, i.e., after several hours of value-added manufacturing. Knife blanks with these discontinuities were scrapped and sent back to the foundry for remelting. Tomore » scrap the knives at that point meant the cost for casting plus the value-added machining added up to a considerable amount. Weld repair allows the recovery of casting and machining expenses equal to a significant percentage of the total manufacturing cost of slicer knives. Repair costs include welding, grinding, shipping, surface finishing and material handling. Other good applications for this GMAW-P process include repair of jet engine components, rotating process industry equipment, and hardfacing of cutting tools and dies. In addition, dissimilar metals and any material that is heat treated to develop its properties such as precision investment castings are excellent applications. The low resultant distortion, elimination of postweld heat treatment and non-line-of-site welding capability solves thin wall, limited access and precision machined component repair challenges.« less

  19. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  20. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then

  1. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  2. 29 CFR 780.314 - Operations customarily * * * paid on a piece rate basis * * *.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FAIR LABOR STANDARDS ACT Employment in Agriculture That Is Exempted From the Minimum Wage and Overtime... 29 Labor 3 2010-07-01 2010-07-01 false Operations customarily * * * paid on a piece rate basis * * *. 780.314 Section 780.314 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  3. 19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ELECTRICAL JUNCTION BOXES, BUILT-IN WALL CABINETRY, AND ELECTRICAL WALL HEATER. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  4. Operating characteristics of a three-piece-inner-ring large-bore roller bearing to speeds of 3 million DN

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.

    1984-01-01

    A 118 mm bore roller bearing with a three piece inner ring ran successfully at 300,000 DN for 20 hr. Provisions were made for lubrication and cooling through the inner ring. In some tests the outer ring was also cooled. Power loss within the bearing increased with both speed and total oil flow rate to the inner ring. Outer ring temperature decreased by as much as 22 K (40 F) when outer ring cooling was employed whereas inner ring temperature remained essentially constant. Cage slip was greatly reduced or even eliminated by using a bearing with a very tight clearance at operating speed. A three piece inner ring bearing had higher inner ring temperatures and less temperature difference between the inner and outer rings than a conventional one piece inner ring bearing.

  5. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  6. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. Copyright © 2016 Elsevier B.V. All rights

  7. Exponentially accurate approximations to piece-wise smooth periodic functions

    NASA Technical Reports Server (NTRS)

    Greer, James; Banerjee, Saheb

    1995-01-01

    A family of simple, periodic basis functions with 'built-in' discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representations of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions.

  8. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  9. Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina".

    PubMed

    Lorenzo, José M

    2014-01-01

    The changes in the physico-chemical and textural properties, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina" were studied. The pH increased during the last stages of processing but gradually declined over the curing period. TBARS values, hardness and chewiness increased with processing time from 0.14, 2.74 and 0.83 to 3.49 mg malonaldehyde/kg, 20.33 kg and 5.05 kg∗mm, respectively. Ripening time also affected the colour parameters: lightness (L*), redness (a*) and yellowness (b*) (P<0.001). The total average content of free fatty acid (FFA) increased significantly from 433.7 mg/100 g of fat in the raw pieces to 2655.5 mg/100 g of fat at the end of the drying-ripening stage. The main FFA at the end of the manufacturing process was palmitic acid (C16:0), followed by oleic (C18:1cis9), stearic (C18:0) and linoleic (C18:2n-6). A total of fifty five volatile compounds were identified during the manufacture of dry-cured foal "cecina", including esters, aldehydes, aliphatic hydrocarbons, branched hydrocarbons, alcohols, aromatic hydrocarbons, furans, ketones. Aldehydes reached their maximum level at the end of the post-salting stage. In the final product, esters became the dominant chemical compounds. © 2013.

  10. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study.

    PubMed

    Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.

  11. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study

    PubMed Central

    De Silva, R. K.; Zafar, S.

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) (p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) (p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions. PMID:28058261

  12. Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing.

    PubMed

    Burcham, Christopher L; Florence, Alastair J; Johnson, Martin D

    2018-06-07

    The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.

  13. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  14. Reflective Written Pieces: Inquiry into the Practices of Pre-Service Literacy Teachers

    ERIC Educational Resources Information Center

    McIntosh, Janet

    2017-01-01

    The purpose of this action research project was to explore whether a reflective writing strategy, developed and used with pre-service teachers in a literacy methods course, assisted them with integrating theory and practice. The teacher educator analyzed the written reflective pieces and determined common categories. Study findings revealed some…

  15. 5. Detail of bin wall, showing the thinner exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail of bin wall, showing the thinner exterior wall next to the inner wall with its alternating courses of channel tile and hollow tile. - Saint Anthony Elevator No. 3, 620 Malcom Avenue, Southeast, Minneapolis, Hennepin County, MN

  16. Preparing Teacher Candidates to Integrate Reading and Writing Instruction: A Conceptual Piece

    ERIC Educational Resources Information Center

    Nicholas, Erika L.

    2017-01-01

    This piece focuses on increasing writing instruction for secondary English teacher candidates in the form of integrating reading and writing. Often, teacher candidates are not sufficiently prepared in university coursework to teach writing and are left to rely on formulaic writing that merely prepares their students for the end-of-year tests.…

  17. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  18. Additive manufactured push-fit implant fixation with screw-strength pull out.

    PubMed

    van Arkel, Richard J; Ghouse, Shaaz; Milner, Piers E; Jeffers, Jonathan R T

    2017-10-11

    Additive manufacturing offers exciting new possibilities for improving long-term metallic implant fixation in bone through enabling open porous structures for bony ingrowth. The aim of this research was to investigate how the technology could also improve initial fixation, a precursor to successful long-term fixation. A new barbed fixation mechanism, relying on flexible struts was proposed and manufactured as a push-fit peg. The technology was optimized using a synthetic bone model and compared with conventional press-fit peg controls tested over a range of interference fits. Optimum designs, achieving maximum pull-out force, were subsequently tested in a cadaveric femoral condyle model. The barbed fixation surface provided more than double the pull-out force for less than a third of the insertion force compared to the best performing conventional press-fit peg (p < 0.001). Indeed, it provided screw-strength pull out from a push-fit device (1,124 ± 146 N). This step change in implant fixation potential offers new capabilities for low profile, minimally invasive implant design, while providing new options to simplify surgery, allowing for one-piece push-fit components with high levels of initial stability. © 2017 The Authors. Journal of Orthopaedic Research Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-11, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society.

  19. [Bile-resistant Gram-negative bacteria effect of different kinds of root decoction pieces].

    PubMed

    Deng, Yan; Wang, Ya-Ke; Han, Xiao-Yu; Wang, Ya-Qi; Jiang, Zhen-Yu; Yu, Zhi-Jun; Deng, Hai-Ying

    2017-11-01

    To investigate the microbial contamination in Chinese herbal decoction pieces with different functional types by studying the total aerobic microbial count (TAMC), and total yeast and mould count (TYMC) in 40 samples of 8 types of root decoction pieces; further evaluate the contamination load of bile-resistant Gram-negative bacteria, and identify the Gram-negative bacteria by using biochemical identification system for Gram-negative bacteria. Our results showed that the TAMC value was more than 1 000 CFU•g⁻¹ in 85% (34/40) samples, and was more than 100 CFU•g⁻¹ in 30% (12/40) samples; the contamination of bile-resistant Gram-negative bacteria was detected in 45% (18/40) of the samples. The bile-resistant Gram-negative bacteria load of seven batches of samples was N>1 000 MPN•g⁻¹. Sixteen bacterium strains including Serratia plymouthensis, Cedecea neteri, Escherichia vulneris, Klebsiella oxytoca, Enterobacter amnigenus, E. cloacae, E. sakazakii, Proteus penneri and E. gergoviae were obtained and identified. E. cloacae was the predominant bacterium that was isolated from Salviae Miltiorrhizae Radix et Rhizoma, while E. amnigenus, Yersinia pseudotuberculosis was the typical bacterium of Ophiopogonis Radix and Codonopsis Radix, respectively. All these suggested that the contamination of bile-resistant Gram-negative bacteria was severe for the root decoction pieces in Wuhan city. Microbial species have certain selection specificity for medicinal ingredients, so the type and limit of control bacteria for detection should be formulated according to the pollution type and quantity of bile-resistant Gram-negative bacteria. Copyright© by the Chinese Pharmaceutical Association.

  20. Newly designed "pieced" stent in a rabbit model of benign esophageal stricture.

    PubMed

    Liu, Jin; Shang, Liang; Liu, Ji-Yong; Qin, Cheng-Yong

    2015-07-28

    To investigate a newly designed stent and its dilatation effect in a rabbit model of benign esophageal stricture. Thirty-four New Zealand white rabbits underwent a corrosive injury in the middle esophagus for esophageal stricture formation. Thirty rabbits with a successful formation of esophageal strictures were randomly allocated into two groups. The control group (n = 15) was implanted with a conventional stent, and the study group (n = 15) was implanted with a detachable "pieced" stent. The study stent (30 mm in length, 10 mm in diameter) was composed of three covered metallic pieces connected by surgical suture lines. The stent was collapsed by pulling the suture lines out of the mesh. Two weeks after stricture formation, endoscopic placement of a conventional stent or the new stent was performed. Endoscopic extraction was carried out four weeks later. The extraction rate, ease of extraction, migration, complications, and survival were evaluated. Stent migration occurred in 3/15 (20%) animals in the control group and 2/15 (13%) animals in the study group; the difference between the two groups was not statistically significant. At the end of four weeks, the remaining stents were successfully extracted with the endoscope in 100% (11/11) of the animals in the study group, and 60% (6/10) of the animals in the control group; this difference was statistically significant (P < 0.05). There was no difference in the mean number of follow-up days between the control and study groups (25.33 vs 25.85). Minor bleeding was reported in five cases in the study group and four in the control group. There were no severe complications directly associated with stent implantation or extraction in either of the two groups. In this experimental protocol of benign esophageal strictures, the novel "pieced" stent demonstrated a superior removal rate with a similar migration rate compared to a conventional stent.

  1. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species.

    PubMed

    Larkin, Daniel J; Jacobi, Sarah K; Hipp, Andrew L; Kramer, Andrea T

    2016-01-01

    Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P < 0.001), i.e., collections comprised less phylogenetic diversity than would be expected had species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the 'PIECES' index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet

  2. Method and Apparatus for Remote Delivery and Manipulation of a Miniature Tool Adjacent a Work Piece in a Restricted Space

    DOEpatents

    Sale, Christopher H.; Kaltenbaugh, Daniel R.

    2004-08-10

    An apparatus for remote delivery and manipulation of a miniature tool adjacent a work piece in a restricted space, includes a tool camer, a camage for manipulating the tool carrier relative to the work piece, a first actuator for operating the carnage, and an optional remote secondary operating actuator for operating the first actuator.

  3. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  4. Identification of the source of permanent glare from a three-piece IOL.

    PubMed

    Wolffe, M; Landry, R J; Alpar, J J

    2007-08-01

    To identify the source of unwanted glare images from a three-piece intraocular lens (IOL) implant following cataract surgery. The IOL and posterior capsule were examined under mydriatic and nonmydriatic conditions using direct focal illumination from a slit lamp biomicroscope. Direct focal illumination was undertaken with both a narrow beam (0.1 mm in width) and small spot (0.1 mm in diameter) to identify the points at which the glare images were stimulated. While observing the location of the beam with the slit lamp biomicroscope, the patient indicated when the glare images were stimulated. The nasal haptic insertion into the optic was identified as the source of temporal line images arising from lights such as headlamps from oncoming cars and street lamps. The adjacent edge of the IOL was also identified as the likely source of additional cob web-like light rays. The haptic insertions in three-piece IOLs may, under certain conditions, interfere with light entering the pupil and produce extraneous images. Large mesopic pupils and decentred IOLs are conditions that increase the likelihood of unwanted glare images.

  5. Effect of end-wall riblets on radial turbine performance

    NASA Astrophysics Data System (ADS)

    Khader, M. A.; Sayma, A. I.

    2017-08-01

    This paper presents a detailed study of the impact of manufacturing residual riblets at the rotor hub surface of a radial inflow turbine on the flow within the rotor passages and their contribution to drag reduction. Numerical analysis has been used to study the effects of those features at design point conditions. Riblets with different height and spacing have been examined to determine the riblet geometry where the maximum drag reduction is achieved. The relative height of the riblets to rotor inlet blade height was introduced to generalise the results. At the end of this study the results were compared with the available data in literature. It was found that the introduction of riblets could reduce the wall shear stress at the hub surface, while they contribute to increasing the streamwise vorticity within the rotor passage. For the geometries tested, the minimum drag was achieved using riblets with relative height hrel = 2.5% equivalent to 19.3 wall units. The results revealed that the spacing between riblets have a minor effect on their performance, this is due to the size of the streamwise vortex above the hub surface which will be discussed in this work.

  6. Quality management of manufacturing process based on manufacturing execution system

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  7. A digital process for additive manufacturing of occlusal splints: a clinical pilot study

    PubMed Central

    Salmi, Mika; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Ingman, Tuula; Mäkitie, Antti

    2013-01-01

    The aim of this study was to develop and evaluate a digital process for manufacturing of occlusal splints. An alginate impression was taken from the upper and lower jaws of a patient with temporomandibular disorder owing to cross bite and wear of the teeth, and then digitized using a table laser scanner. The scanned model was repaired using the 3Data Expert software, and a splint was designed with the Viscam RP software. A splint was manufactured from a biocompatible liquid photopolymer by stereolithography. The system employed in the process was SLA 350. The splint was worn nightly for six months. The patient adapted to the splint well and found it comfortable to use. The splint relieved tension in the patient's bite muscles. No sign of tooth wear or significant splint wear was detected after six months of testing. Modern digital technology enables us to manufacture clinically functional occlusal splints, which might reduce costs, dental technician working time and chair-side time. Maximum-dimensional errors of approximately 1 mm were found at thin walls and sharp corners of the splint when compared with the digital model. PMID:23614943

  8. Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham.

    PubMed

    Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2015-12-01

    The effect of muscle type on volatile compounds throughout the manufacture of Celta dry-cured ham was studied. Thirty Celta ham were taken from the fresh pieces, after the end of the salting stage, after 120 days of post-salting, after the end of drying-ripening stage, and after 165 and 330 days of "bodega" step. The volatile compounds from semimembranosus (SM) and biceps femoris (BF) muscles were extracted by using headspace-solid phase microextraction (SPME) and analysed by gas chromatographic/mass spectrometry (GC/MS). Fifty-five volatile compounds were identified and quantified. The number of volatile compounds increased during the different steps of the process, reaching at 550 days of process 39 and 40 volatile compounds in SM and BF muscles, respectively. Results indicated that the most abundant chemical family in flavour at the end of the manufacturing process were esters in the two muscles studied, followed by aliphatic hydrocarbons and aldehydes. During the manufacturing process, an increase in the total amount of volatile compounds was observed, being this increase more marked in samples from BF muscle (from 550.7 to 1118.9 × 10(6) area units) than in samples from SM muscle (from 459.3 to 760.4 × 10(6) area units). Finally, muscle type displayed significant (P < 0.05) differences for four esters, two alcohols, one aldehyde, one ketone and four aliphatic hydrocarbons. © The Author(s) 2014.

  9. Comparison of Infrapubic vs Penoscrotal Approaches for 3-Piece Inflatable Penile Prosthesis Placement: Do We Have a Winner?

    PubMed

    Palmisano, Franco; Boeri, Luca; Cristini, Cristiano; Antonini, Gabriele; Spinelli, Matteo Giulio; Franco, Giorgio; Longo, Fabrizio; Gadda, Franco; Colombo, Fulvio; Montanari, Emanuele

    2018-05-02

    The 3-piece inflatable penile prosthesis (IPP) is the gold standard treatment for male erectile dysfunction when other less invasive approaches are contra-indicated or unacceptable for the patient. There are currently 2 surgical approaches for IPP implantation: the penoscrotal (PS) and the infrapubic (IP) incision. To assess the most recent evidence on the impact of surgical approach for 3-piece IPP implantation in patients with erectile dysfunction. A systematic literature review was performed using the MEDLINE (PubMed) and Cochrane Libraries databases in November 2017 to identify all studies investigating 3-piece IPP with a specified surgical access. The following key words were used in combination: "infrapubic," "transcrotal," "penoscrotal," "peno-scrotal," and "penile prosthesis." Additional references were obtained from the reference lists of full-text manuscripts. We used a narrative synthesis for the analyses of the studies. 22 Studies reporting data on 3-piece IPP implantation with a specified surgical approach were found in the literature. While IPPs are most commonly positioned through a PS incision, the IP approach is a faster procedure. No cases of glans hypoesthesia after IPP placement with an IP approach were reported, and the overall peri-prosthetic infection rate was 3.3% or less. Patient satisfaction rates were higher than 80% in both groups. Both the IP and PS approaches are viable and effective strategies for a 3-piece IPP placement, and result in high satisfaction rates. To date there is no evidence that an incision strategy may reduce infection rates. Penile sensory loss following an IP approach remains a virtual risk. It is recommended that the surgeon executing the implant have knowledge of both accesses and be capable of tailoring the incision strategy for complex cases. The chosen method should be based on the patient's specific anatomy, surgical history, and surgeon experience. Palmisano F, Boeri L, Cristini C, et al. Comparison of

  10. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  11. Development of a shear stress sensor to analyse the influence of polymers on the turbulent wall shear stress.

    PubMed

    Nottebrock, Bernardo; Grosse, Sebastian; Schröder, Wolfgang

    2011-05-11

    The drag reducing effect of polymers in a channel flow is well known and it is assumed that the polymer filaments interfere with the turbulent structures in the very near-wall flow. To analyse their precise effect, a micro-pillar shear stress sensor (MPS³) measurement system is developed which allows the detection of wall shear stress at high spatial and temporal resolutions. Different manufacturing techniques for the required micro-pillars are discussed and their influence on the flow is investigated evidencing the non-intrusive character of the pillars. Subsequently, a complete calibration is presented to relate the recorded deflection to wall shear stress values and to assure the correct detection over the whole expected frequency spectrum. A feasibility study about the ability to visualize the two-dimensional wall shear stress distribution completes the discussion about the validity of MPS³. In the last step, the drag reduction of a polymer filament grafted on a micro-pillar compared to a plain pillar and the application of MPS³ in an ocean-type polymer solution are investigated. The results confirm the expected behaviour found in the literature.

  12. Multiple piece turbine engine airfoil with a structural spar

    DOEpatents

    Vance, Steven J [Orlando, FL

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  13. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  14. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Zhang, Guangjun

    2013-11-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.

  15. Microfluidic chambers using fluid walls for cell biology.

    PubMed

    Soitu, Cristian; Feuerborn, Alexander; Tan, Ann Na; Walker, Henry; Walsh, Pat A; Castrejón-Pita, Alfonso A; Cook, Peter R; Walsh, Edmond J

    2018-06-12

    Many proofs of concept have demonstrated the potential of microfluidics in cell biology. However, the technology remains inaccessible to many biologists, as it often requires complex manufacturing facilities (such as soft lithography) and uses materials foreign to cell biology (such as polydimethylsiloxane). Here, we present a method for creating microfluidic environments by simply reshaping fluids on a substrate. For applications in cell biology, we use cell media on a virgin Petri dish overlaid with an immiscible fluorocarbon. A hydrophobic/fluorophilic stylus then reshapes the media into any pattern by creating liquid walls of fluorocarbon. Microfluidic arrangements suitable for cell culture are made in minutes using materials familiar to biologists. The versatility of the method is demonstrated by creating analogs of a common platform in cell biology, the microtiter plate. Using this vehicle, we demonstrate many manipulations required for cell culture and downstream analysis, including feeding, replating, cloning, cryopreservation, lysis plus RT-PCR, transfection plus genome editing, and fixation plus immunolabeling (when fluid walls are reconfigured during use). We also show that mammalian cells grow and respond to stimuli normally, and worm eggs develop into adults. This simple approach provides biologists with an entrée into microfluidics. Copyright © 2018 the Author(s). Published by PNAS.

  16. The Numerical Range of the Luoshu Is a Piece of Cake--Almost

    ERIC Educational Resources Information Center

    Trenkler, Gotz; Trenkler, Dietrich

    2012-01-01

    The numerical range, easy to understand but often tedious to compute, provides useful information about a matrix. Here we describe the numerical range of a 3 x 3 magic square. Applying our results to one of the most famous of those squares, the Luoshu, it turns out that its numerical range is a piece of cake--almost.

  17. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.

    PubMed

    Mazel, Vincent; Diarra, Harona; Busignies, Virginie; Tchoreloff, Pierre

    2015-12-01

    Capping is a classical manufacturing problem for tablets, which is known to affect more biconvex tablets than flat-faced ones. One reason could be the development of a higher residual die-wall pressure during unloading. Unfortunately, contradictory results were published on the subject. In this work, the evolution of the die-wall pressure during the compaction of biconvex tablets was studied experimentally and using finite element method (FEM) modeling. It was compared with the case of flat-faced tablets. Experimental and numerical results showed that during the compression of biconvex tablet, a lower maximum die-wall pressure and a higher residual die-wall pressure were obtained compared with the case of flat-faced tablet. Moreover, both approaches showed, for biconvex tablets, a temporary increase of the die-wall pressure at the end of the unloading phase. FEM demonstrated that this phenomenon was due to a gradual loss of contact between the punch and the tablet from the side to the center. This complex unloading behavior causes the temporary increase of the die-wall pressure and the development of a shear stress between the convex part and the land of the tablet. This could explain the capping tendency of biconvex tablets. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Consideration Of The Toxicity of Manufactured Nanoparticles

    NASA Astrophysics Data System (ADS)

    Haasch, Mary L.; McClellan-Green, Patricia; Oberdörster, Eva

    2005-09-01

    Fullerene (C60 and single- and multi-wall carbon nanotubes, SWCNT and MWCNT, respectively) is engineered to be redox active and it is thought that the potential toxicity of fullerene exposure is related to the formation of reactive oxygen species. During manufacture, transport or during scientific investigation, there is a potential for human or environmental exposure to nanoparticles. Several studies regarding human exposure have indicated reasons for concern. There is a lack of studies addressing the toxicity of engineered nanoparticles in aquatic species but one study using the fish, largemouth bass, exposed to fullerene has shown increased (10-17-fold) lipid peroxidation (LPO) in the brain. It is likely that repair enzymes or anti-oxidants may have been induced in gill and liver tissues that had reduced LPO compared to control tissues (Oberdörster, 2004). In support of that hypothesis, suppressive subtractive hybridization was used with liver tissue and the biotransformation enzyme, cytochrome P450, specifically CYP2K4, and other oxidoreductases related to metabolism, along with repair enzymes, were increased while proteins related to normal physiological homeostasis were decreased in fullerene-exposed fish. In a new study involving the exposure of a toxicological model fish species, the fathead minnow (Pimephales promelas) to water-soluble fullerene (nC60), uptake and distribution indicated that nC60 elevated LPO in the brain and induced expression of CYP2 family isozymes in the liver. In an in vitro study, BSA-coated SWCNT interfered with biotransformation enzyme activity. These studies taken together provide support to the hypothesis that the toxicity of manufactured nanoparticles is related to oxidative stress and provide insight into possible mechanisms of toxicity as well as providing information for evaluating the risk to aquatic organisms exposed to manufactured nanoparticles.

  19. Brief Report: Examining children’s disruptive behavior in the wake of trauma - A two-piece growth curve model before and after a school shooting

    PubMed Central

    Liao, Yue; Shonkoff, Eleanor T.; Barnett, Elizabeth; Wen, CK Fred; Miller, Kimberly A.; Eddy, J. Mark

    2015-01-01

    School shootings may have serious negative impacts on children years after the event. Previous research suggests that children exposed to traumatic events experience heightened fear, anxiety, and feelings of vulnerability, but little research has examined potential aggressive and disruptive behavioral reactions. Utilizing a longitudinal dataset in which a local school shooting occurred during the course of data collection, this study sought to investigate whether the trajectory of disruptive behaviors was affected by the shooting. A two-piece growth curve model was used to examine the trajectory of disruptive behaviors during the pre-shooting years (i.e., piece one) and post-shooting years (i.e., piece two). Results indicated that the two-piece growth curve model fit the data better than the one-piece model and that the school shooting precipitated a faster decline in aggressive behaviors. This study demonstrated a novel approach to examining effects of an unexpected traumatic event on behavioral trajectories using an existing longitudinal data set. PMID:26298676

  20. Surgical management of cross-bites in orthognathic surgery: Surgically assisted rapid maxillary expansion (SARME) versus two-piece maxilla.

    PubMed

    Seeberger, Robin; Gander, Evelyn; Hoffmann, Jürgen; Engel, Michael

    2015-09-01

    The surgical treatment of cross-bites includes surgically-assisted maxillary expansion (SARME) or maxillary-bipartition during bimaxillary surgery. This study evaluates and compares the changes in the teeth and lower nasal passage, as well as the stability of the expansion. The measurements were performed on the cone-beam computed tomography (CBCT) scans of 32 patients with transverse (width) deficiencies of the maxilla. To expand the maxilla, 12 patients underwent the two-piece maxilla method, while 20 patients received SARME. The mean distraction width for SARME was 6.8 mm (SD 3.7), while that for the two-piece maxilla was 4.1 mm (SD 1.6). The expansion with SARME was over the entire length of the maxilla, from anterior to posterior, whereas the expansion of the two-piece patient group was only in the posterior part of the maxilla. The segments of the maxilla opened nearly parallel in SARME, while they were reverse V-shaped in the two-piece maxilla, from anterior to posterior. A key point in the planning of combined orthodontic-orthognathic therapy with surgical correction of a cross-bite is the precise determination of the area where the width needs to be increased, and the amount of correction needed to treat the patient using minimal surgical procedures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. A quantitative comparison of resolution, scanning speed and lifetime behavior of CVD grown Single Wall Carbon Nanotubes and silicon SPM probes using spectral methods

    NASA Astrophysics Data System (ADS)

    Krause, O.; Bouchiat, V.; Bonnot, A. M.

    2007-03-01

    Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.

  2. An Investigation into the Comparative Costs of Additive Manufacture vs. Machine from Solid for Aero Engine Parts

    DTIC Science & Technology

    2006-05-01

    welding power sources are not totally efficient at converting power drawn from the wall into heat energy used for the welding process . TIG sources are...Powder bed + Laser • Wire + Laser • Wire + Electron Beam • Wire + TIG Each system has its own unique attributes in terms of process variables...relative economics of producing a near net shape by Additive Manufacturing (AM) processes compared with traditional machine from solid processes (MFS

  3. Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.

  4. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    NASA Technical Reports Server (NTRS)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  5. 75 FR 43143 - Certain Steel Grating from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... certain steel grating, consisting of two or more pieces of steel, including load-bearing pieces and cross pieces, joined by any assembly process, regardless of: (1) size or shape; (2) method of manufacture; (3.... The scope of this order excludes expanded metal grating, which is comprised of a single piece or coil...

  6. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    NASA Astrophysics Data System (ADS)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  7. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  8. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  9. Measurement of Interfacial Profiles of Wavy Film Flow on Inclined Wall

    NASA Astrophysics Data System (ADS)

    Rosli, N.; Amagai, K.

    2016-02-01

    Falling liquid films on inclined wall present in many industrial processes such as in food processing, seawater desalination and electronic devices manufacturing industries. In order to ensure an optimal efficiency of the operation in these industries, a fundamental study on the interfacial flow profiles of the liquid film is of great importance. However, it is generally difficult to experimentally predict the interfacial profiles of liquid film flow on inclined wall due to the instable wavy flow that usually formed on the liquid film surface. In this paper, the liquid film surface velocity was measured by using a non-intrusive technique called as photochromic dye marking method. This technique utilizes the color change of liquid containing the photochromic dye when exposed to the UV light source. The movement of liquid film surface marked by the UV light was analyzed together with the wave passing over the liquid. As a result, the liquid film surface was found to slightly shrink its gradual movement when approached by the wave before gradually move again after the intersection with the wave.

  10. KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date, as well as tables on the left that hold tiles. More than 82,500 pieces of shuttle debris have been rcovered.

    NASA Image and Video Library

    2003-05-22

    KENNEDY SPACE CENTER, FLA. - An overview of the Columbia debris hangar shows the orbiter outline on the floor with some of the 78,760 pieces identified to date, as well as tables on the left that hold tiles. More than 82,500 pieces of shuttle debris have been rcovered.

  11. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  12. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. Multiple sclerosis pathogenesis: missing pieces of an old puzzle.

    PubMed

    Rahmanzadeh, Reza; Brück, Wolfgang; Minagar, Alireza; Sahraian, Mohammad Ali

    2018-06-08

    Traditionally, multiple sclerosis (MS) was considered to be a CD4 T cell-mediated CNS autoimmunity, compatible with experimental autoimmune encephalitis model, which can be characterized by focal lesions in the white matter. However, studies of recent decades revealed several missing pieces of MS puzzle and showed that MS pathogenesis is more complex than the traditional view and may include the following: a primary degenerative process (e.g. oligodendroglial pathology), generalized abnormality of normal-appearing brain tissue, pronounced gray matter pathology, involvement of innate immunity, and CD8 T cells and B cells. Here, we review these findings and discuss their implications in MS pathogenesis.

  14. 75 FR 38078 - Manufacturing and Services' Manufacture America Initiative and Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Manufacturing and Services' Manufacture America Initiative and Events ACTION: Notice of series of regional events and supportive resources to promote growth and retooling in manufacturing. SUMMARY: The International Trade Administration's...

  15. Dual mode fuel injector with one piece needle valve member

    DOEpatents

    Lawrence, Keith E.; Hinrichsen, Michael H.; Buckman, Colby

    2005-01-18

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.

  16. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  17. Magnetic translator bearings

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  18. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  19. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature, thermal protection materials (TPM), is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heatshield of Orbiter 105, Endeavor.

  20. Conceptions of Woodwind Students Regarding the Process of Learning a Piece of Music

    ERIC Educational Resources Information Center

    Marín, Cristina; Pérez-Echeverría, María-Puy; Scheuer, Nora

    2014-01-01

    The way in which students and teachers conceive the nature of knowledge and its acquisition has been deeply investigated in recent decades since these conceptions underlie teaching and learning processes themselves. In this study, we analysed how woodwind students from different levels of expertise conceive the process of learning a musical piece.…

  1. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  2. One-Piece Implant-Retained Mandibular Overdentures By Pre-Fabricated Titanium Telescopic Attachments and Frictional Varnish: A Two-Year Prospective Study.

    PubMed

    Nik, Shahram Namjoy; Nejatian, Touraj

    2016-12-01

    Clinical efficiency of one-piece screw-type implants with telescopic were attachments evaluated in this study. Twenty-four patients received a mandibular implant-supported overdenture and maxillary complete denture. Ninety-six one-piece implants were inserted in the inter-foraminal area. Implants were immediately loaded with an implant-retained overdenture and telescopic attachments which had frictional retention elements. There was 0.25±0.24 mm, 0.32±0.25 mm, 0.43±0.30 mm, 0.61±0.30 mm and of bone resorption after 3, 6, 12 and 24 months, respectively. The need to activate the frictional retention was the most common complication. Treatment outcomes for prefabricated telescopic retained overdentures on one-piece implants are similar to that obtained in cases of delayed loading. Copyright© 2016 Dennis Barber Ltd.

  3. Integrating post-manufacturing issues into design and manufacturing decisions

    NASA Technical Reports Server (NTRS)

    Eubanks, Charles F.

    1996-01-01

    An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.

  4. Experimental investigation of wall shock cancellation and reduction of wall interference in transonic testing

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Roffe, G.

    1975-01-01

    A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.

  5. Exploring manufacturing competencies of a two wheeler manufacturing unit

    NASA Astrophysics Data System (ADS)

    Deep Singh, Chandan; Singh Khamba, Jaimal; Singh, Rajdeep; Singh, Navdeep

    2014-07-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry.

  6. Microbial safety and overall quality of cantaloupe fresh-cut pieces prepared from whole fruit after wet steam treatment.

    PubMed

    Ukuku, Dike O; Geveke, David J; Chau, Lee; Niemira, Brendan A

    2016-08-16

    Fresh-cut cantaloupes have been associated with outbreaks of Salmonellosis. Minimally processed fresh-cut fruits have a limited shelf life because of deterioration caused by spoilage microflora and physiological processes. The objectives of this study were to use a wet steam process to 1) reduce indigenous spoilage microflora and inoculated populations of Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on the surface of cantaloupes, and 2) reduce the populations counts in cantaloupe fresh-cut pieces after rind removal and cutting. The average inocula of Salmonella, E. coli O157:H7 and Listeria monocytogenes was 10(7)CFU/ml and the populations recovered on the cantaloupe rind surfaces after inoculation averaged 4.5, 4.8 and 4.1logCFU/cm(2), respectively. Whole cantaloupes were treated with a wet steam processing unit for 180s, and the treated melons were stored at 5°C for 29days. Bacterial populations in fresh-cut pieces prepared from treated and control samples stored at 5 and 10°C for up to 12days were determined and changes in color (CIE L*, a*, and b*) due to treatments were measured during storage. Presence and growth of aerobic mesophilic bacteria and Salmonella, E. coli O157:H7 and L. monocytogenes were determined in fresh-cut cantaloupe samples. There were no visual signs of physical damage on all treated cantaloupe surfaces immediately after treatments and during storage. All fresh-cut pieces from treated cantaloupes rind surfaces were negative for bacterial pathogens even after an enrichment process. Steam treatment significantly (p<0.05) changed the color of the fresh-cut pieces. Minimal wet steam treatment of cantaloupes rind surfaces designated for fresh-cut preparation will enhance the microbial safety of fresh-cut pieces, by reducing total bacterial populations. This process holds the potential to significantly reduce the incidence of foodborne illness associated with fresh-cut fruits. Published by Elsevier B.V.

  7. A Generalized Wall Function

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.

    1999-01-01

    The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

  8. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  9. Dramatherapy and Family Therapy in Education: Essential Pieces of the Multi-Agency Jigsaw

    ERIC Educational Resources Information Center

    McFarlane, Penny; Harvey, Jenny

    2012-01-01

    A collaborative therapeutic approach often proves the best way to assess and meet the needs of children experiencing barriers to learning. This book gives a concise overview of drama and family therapy and describes how both therapies can work together to provide essential pieces of the jigsaw of emotional support for troubled children within an…

  10. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  11. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  12. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  13. Exploring Manufacturing Occupations. Student's Manual. The Manufacturing Cluster.

    ERIC Educational Resources Information Center

    Fairleigh Dickinson Univ., Rutherford, NJ.

    This student manual and the accompanying instructor's guide (CE 010 376) are directed toward exploring manufacturing occupations. It is designed to help the student explore the various career, occupational, and job related fields found within the manufacturing occupations. Four sections are included. An overview of career education and…

  14. 78 FR 17642 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Agreements (``CITA'') has determined that certain piece dyed three-thread fleece fabric, as specified below... behalf of Garan Manufacturing, Inc. for certain piece dyed three-thread fleece fabric, as specified below... Commercial Availability proceedings. SPECIFICATIONS: Certain Piece Dyed Three-thread Fleece Fabric HTS: 6001...

  15. Fracture resistance of welded thick-walled high-pressure vessels in power plants. Report No. 2. Approach to evaluating static strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorynin, I.V.; Filatov, V.M.; Ignatov, V.A.

    1986-07-01

    The authors examine data on the effect of defects on the fracture resistance of high-pressure vessels and their models obtained within the framework of the HSST program. Results of internal-pressure tests of two types of vessels with a wall thickness of 152 mm made from forgings of steels SA508 and SA533, as well as small vessels with a wall thickness of 11.5 and 23mm made of steel SA533 are shown. The authors state that testing thick-walled welded high-pressure vessels and thin-walled vessels with surface defects of different sizes has demonstrated that there are substantial static-strength reserves in structures designed bymore » existing domestic and foreign standards on the strength of power-plant equipment. A correction was proposed for the presently used method of calculating the resistance of highpressure vessels to brittle fracture that allows for the dimensions of the defects in relation to the type of vessel, the manufacturing technology, and the method of inspection.« less

  16. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  17. Spall fracture in additive manufactured Ti-6Al-4V

    DOE PAGES

    Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia; ...

    2016-10-07

    Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less

  18. Spall fracture in additive manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Jones, D. R.; Fensin, S. J.; Dippo, O.; Beal, R. A.; Livescu, V.; Martinez, D. T.; Trujillo, C. P.; Florando, J. N.; Kumar, M.; Gray, G. T.

    2016-10-01

    We present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.

  19. Case study of lean manufacturing application in a die casting manufacturing company

    NASA Astrophysics Data System (ADS)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  20. My Child Needs a Piece of Adaptive Equipment: Now What? Well, It Depends!

    ERIC Educational Resources Information Center

    Maly, Jennifer McLaughlin

    2007-01-01

    As a pediatric physical therapist, the author usually hears this question, "Now What?," after months of frustration as parents attempt to figure out the procedure of getting an item for their child. Unfortunately, there is not a specific answer except "it depends," which can be just as frustrating as the question at hand. Typically, a piece of…

  1. One- and two-piece colostomy appliances: merits and indications.

    PubMed

    Burch, Jennie; Sica, Jo

    Approximately 10000 new colostomies are formed each year (IMS, 2006), most of which will be permanent. There is currently a wide range of colostomy products available, and new appliances are constantly coming onto the Drug Tariff. While this gives colostomates greater choice and ensures that their various needs are met, it can make the selection of an appropriate appliance difficult. This article discusses the merits of, and indications for, the one- and two-piece colostomy appliances currently available in the UK. It gives a brief overview of the anatomy and physiology of the gastrointestinal tract in relation to colostomy formation, and outlines the more common types of operation that may result in the formation of a colostomy.

  2. Exploring Manufacturing Occupations. Instructor's Guide. The Manufacturing Cluster.

    ERIC Educational Resources Information Center

    Fairleigh Dickinson Univ., Rutherford, NJ.

    The major focus of this guide and its accompanying student manual (CE 010 397) is to help the student understand the manufacturing enterprise. (The guide and student manual are part of a manufacturing cluster series which addresses itself to career awareness, orientation, exploration, and preparation.) Seven sections are included. An overview of…

  3. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  4. Using a Flying Thing in the Sky to See How Much Water is in the Cover of Tiny Ice Pieces in the High Places

    NASA Astrophysics Data System (ADS)

    Skiles, M.

    2016-12-01

    Groups of tiny ice pieces fall from the sky in the cold times and cover the high places. Later, the tiny ice pieces become water that moves to the lower places, where people can use it for drinking and stuff. The time when the tiny ice pieces turn to water is controlled by the sun. New tiny ice pieces from the sky, which are very white and don't take up much sun, group up and grow tall. When they become dark from getting old and large, and from getting covered in tiny dark bits from the sky, they take up more sun and turn to water. The more tiny dark bits, the faster they become water. Using a flying thing over the high places we can see how much water will come from the cover of tiny ice pieces by using ground looking things to see how tall it is, and and when it will become water by using picture taking things to see how much sun is taken up. The low places are happy to know how much water is in the high places.

  5. Investigation of discharge channel wall material influence on lifetime of hall effect thruster with high specific impulse

    NASA Astrophysics Data System (ADS)

    Abashkin, V. V.; Belikov, M. B.; Gorshkov, O. A.; Lovtsov, A. S.; Khrapach, I. N.

    2011-10-01

    Results of 500-hour life tests of the 900-watt Hall-thruster laboratory model with the specific impulse of 2000 s are presented. The thruster discharge channel walls were manufactured from 60% BN + 40% SiO2 and >90% BN hot-pressed ceramics. The predicted total lifetime was ˜3000 h for both wall materials in spite of greater erosion resistance of pure BN in comparison with BN-SiO2 mixture. To clarify the accompanying phenomena, the following diagnostics were carried out. The surface microstructure and composition insulators were investigated by means of electron microscopy and X-ray fluorescence analysis and nearwall plasma parameters were measured with flat Langmuir probes. The obtained distributions of plasma parameters were compared with the results of stationary one-dimensional (1D) hydrodynamic modeling of discharge channel.

  6. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  7. "You Have to Count the Squares": Applying Knowledge in Pieces to Learning Rectangular Area

    ERIC Educational Resources Information Center

    Izsak, Andrew

    2005-01-01

    This article extends and strengthens the knowledge in pieces perspective (diSessa, 1988, 1993) by applying core components to analyze how 5th-grade students with computational knowledge of whole-number multiplication and connections between multiplication and discrete arrays constructed understandings of area and ways of using representations to…

  8. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  9. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  10. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    PubMed

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  11. Typical Window, Interior Wall Paint Sequence, Wall Section, and Foundation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Window, Interior Wall Paint Sequence, Wall Section, and Foundation Sections - Civilian Conservation Corps (CCC) Camp NP-5-C, Barracks No. 5, CCC Camp Historic District at Chapin Mesa, Cortez, Montezuma County, CO

  12. Regulation of cell wall biosynthesis.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  13. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  14. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  15. Abdominal wall fat pad biopsy

    MedlinePlus

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...

  16. Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi

    NASA Astrophysics Data System (ADS)

    Taheri Andani, Mohsen

    In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase

  17. [Finite element analysis of the stress distribution of two-piece post crown with different adhesives ].

    PubMed

    He, Lihui; Liu, Lijie; Gao, Bei; Gao, Shang; Chen, Yifu; Zhihui, Liu

    2013-08-01

    To establish three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots, and analyze the stress distribution characteristic to the residual roots with different adhesives, so as to get the best combination under different conditions. The complete mandibular first molar in vitro was selected, the crown was removed along the cemento-enamel junction, then the residual roots were scanned by CT. CT images were imported into a reverse engineering software, and the three-dimensional finite element model of the mandibular first molar residual roots was reconstructed. Titanium two-piece post crown of the mandibular first molar residual roots was produced, then was scanned by CT. The model was reconstructed and assembled by MIMICS. The stress distribution of the root canal and root section under the vertical load and lateral load with different bonding systems were analyzed. Three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots was established. With the increasing of elastic modulus of the adhesives, the maximum stress within the root canal was also increasing. Elastic modulus of zinc phosphate was the biggest, so the stress within the root canal was the biggest; elastic modulus of Superbond C&B was the smallest, so the stress within the root canal was the smallest. Lateral loading stress was much larger than the vertical load. Under vertical load, the load on the root section was even with different bonding systems. Under lateral load, the maximum stress was much larger than the vertical load. The stress on the root section was minimum using zinc phosphate binder, and the stress on the root section was maximum using Superbond C&B. In two-piece post crown restorations, there is significant difference between different adhesives on tooth protection. When the tooth structure of the root canal orifices is weak, in order to avoid the occurrence of splitting, the larger elastic

  18. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1980-01-01

    The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions.

  19. Design and analysis of the Collider SPXA/SPRA spool piece vacuum barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, G.; Aksel, G.

    1993-04-01

    A design for the Collider SPXA/SPRA spool piece vacuum barrier was developed to meet a variety of thermal and structural performance requirements. Both composite and stainless steel alternatives were investigated using detailed finite-element analysis before selecting an optimized version of the ASST SPR spool vacuum barrier design. This design meets the structural requirements and will be able to meet the thermal performance requirements by using some newer thermal strapping configurations.

  20. Fabrication of trough-shaped solar collectors

    DOEpatents

    Schertz, William W.

    1978-01-01

    There is provided a radiant energy concentration and collection device formed of a one-piece thin-walled plastic substrate including a plurality of nonimaging troughs with certain metallized surfaces of the substrate serving as reflective side walls for each trough. The one-piece plastic substrate is provided with a seating surface at the bottom of each trough which conforms to the shape of an energy receiver to be seated therein.

  1. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  2. 12. Interior view of north wall of Chapel. The wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of north wall of Chapel. The wall panel is one of two carved with lists of those missing in nearby combat. - Flanders Field American Cemetery & Memorial, Chapel, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  3. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  4. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  5. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  6. Wonderful Walls

    ERIC Educational Resources Information Center

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  7. Additive manufacturing.

    PubMed

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  8. 75 FR 36421 - Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0283] Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing Changes... guidance describes chemistry, manufacturing, and controls (CMC) postapproval manufacturing changes that FDA...

  9. Sand moulds milling for one-of-a-kind pieces

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Calleja, A.; Olvera, D.; Peñafiel, F. J.; López de Lacalle, L. N.

    2012-04-01

    Time to market is a critical measurement for today's foundry market. Combining 3D digitizing and sand blocks milling is possible to reduce this time. Avoiding the use of a wood pattern, this technique is useful for art pieces or unique parts, when only one component is necessary. The key of the proposed methodology is to achieve enough tool life with conventional tool qualities, avoiding the risk of sand destruction or damage. A special study of tool wear is presented in this work, studying different tool materials and different sand types. Two examples of unique parts are also presented in this work following the proposed methodology in order to reduce time and cost for the rapid reproduction of very short batches.

  10. Spool piece aperture: warm to cold temperature position changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInturff, A.D.

    1982-12-01

    In an effort to determine the position of the correction coil system contained in the spool piece in operation, a series of experiments were done in Lab 2 during the cryogenic testing of the spools. A special turn-around box was constructed which had a window through which a sighting could be made of the aperture of the coil packages. A set of four survey monuments were constructed with three point suspension, which were back-lighted by placing a small bulb behind each target which could be turned on individually external to the spool string while under vacuum and at any temperature.more » The targets were located at the ends of each correction coil package in their beam tube.« less

  11. Comparison of airfoil results from an adaptive wall test section and a porous wall test section

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1989-01-01

    Two wind tunnel investigations were conducted to assess two different wall interference alleviation/correction techniques: adaptive test section walls and classical analytical corrections. The same airfoil model has been tested in the adaptive wall test section of the NASA-Langley 0.3 m Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment (NAE) High Reynolds Number 2-D facility. The model has a 9 in. chord and a CAST 10-2/DOA 2 airfoil section. The 0.3 m TCT adaptive wall test section has four solid walls with flexible top and bottom walls. The NAE test section has porous top and bottom walls and solid side walls. The aerodynamic results corrected for top and bottom wall interference at Mach numbers from 0.3 to 0.8 at a Reynolds number of 10 by 1,000,000. Movement of the adaptive walls was used to alleviate the top and bottom wall interference in the test results from the NASA tunnel.

  12. Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery.

    PubMed

    Adhapure, N N; Dhakephalkar, P K; Dhakephalkar, A P; Tembhurkar, V R; Rajgure, A V; Deshmukh, A M

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple.

  13. EAST WALL OF CRYSTALLIZER WING TO THE LEFT, END WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST WALL OF CRYSTALLIZER WING TO THE LEFT, END WALL OF CRUSHING MILL IN CENTER. GABLE END OF BOILING HOUSE IN LEFT BACKGROUND. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  14. Industrial Arts 7-9. Manufacturing: Metalwork, Plastics, Woodwork, Manufacturing.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg. Div. of Vocational Education.

    This curriculum guide provides materials for the industrial arts (grades 7-9) subject cluster of manufacturing. This subject cluster has four areas of study: metalwork, plastics, woodwork, and manufacturing. Introductory materials include an overview of the industrial arts curriculum in its entirety, a listing of program objectives for each of the…

  15. 40 CFR 94.209 - Special provisions for post-manufacture marinizers and small-volume manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-manufacture marinizers and small-volume manufacturers. 94.209 Section 94.209 Protection of Environment... COMPRESSION-IGNITION ENGINES Certification Provisions § 94.209 Special provisions for post-manufacture... demonstrate one of the following: (1) It is a post-manufacture marinizer and that the base engines used for...

  16. Electroweak bubble wall speed limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bödeker, Dietrich; Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speedmore » of light, they carry an infinitesimal share of the plasma's energy.« less

  17. Mechanical Properties of Additively Manufactured Thick Honeycombs.

    PubMed

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-07-23

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson's ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  18. Mechanical Properties of Additively Manufactured Thick Honeycombs

    PubMed Central

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions. PMID:28773735

  19. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    PubMed Central

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  20. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells.

    PubMed

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

  1. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    PubMed

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  2. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  4. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  5. 5. 'Stones for Wing Walls, Tunnel Walls, BeltCourse and Coping,' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. 'Stones for Wing Walls, Tunnel Walls, Belt-Course and Coping,' Southern Pacific Standard Plan Tunnels, ca. 1909. - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  6. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  7. Influence of manufacturing practices on quality of pharmaceutical products manufactured in Kenya.

    PubMed

    Orwa, J A; Keter, L K; Ouko, S P A; Kibwage, I O; Rukunga, G M

    2004-06-01

    To establish the quality of pharmaceutical products manufactured by the respective industries in Kenya and determine the effect of manufacturing practices on the quality of these products. Cross-sectional study. Industries examined are in Nairobi, Kenya. Laboratory analysis was carried out using available facilities at Kenya Medical Research Institute and University of Nairobi, Faculty of Pharmacy. Structured Questionnaires were administered to examine how the code of good manufacturing practices has been used in the production of each pharmaceutical product by respective companies. Questionnaires designed to evaluate the distribution and carry out limited post-market surveillance study were administered to community pharmacy outlets. Drugs were sampled and analyzed for their quality according to the respective monographs. The questionnaires administered to the industry included the source of raw materials, quarantine procedure before and after manufacture, manufacturing procedure, quality audit, quality assurance procedure, equipment, and staff. That administered to the pharmacy outlet included availability, affordability and acceptability of locally manufactured pharmaceutical products. Quality analysis of products involved the establishment of the chemical content, dissolution profile, friability, uniformity of weight and identity. For antibiotic suspensions the stability after reconstitution was also determined. There were 15 respondents and two non-respondents from the industry and six out of nine respondents from the pharmacy outlets. The ratio of qualified staff to product range produced seemed to influence product quality. Industries producing several products with only limited number of pharmaceutical staff had more products failing to comply with pharmacopoeia specifications compared to those producing only few products. Nevertheless, all companies are well equipped with quality control equipment, in accordance with type of product manufactured. Private

  8. Connecting American Manufacturers (CAM) Virtual Manufacturing Marketplace (VMM)

    DTIC Science & Technology

    2013-11-01

    88ABW-2013-5037 1.0 SUMMARY The Connecting American Manufacturing (CAM) initiative was designed to improve the sourcing capability for Department...addition, CAM was designed to increase the number of US companies bidding on DoD business. The team’s overall approach was based on three major...is to designate a North American Industry Classification System (NAICS) code for each opportunity. Every manufacturing opportunity is posted to

  9. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, Cressie E.; Pfeiler, William A.

    1994-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material.

  10. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  11. Bacterial contamination of stethoscope chest pieces and the effect of daily cleaning.

    PubMed

    Fujita, H; Hansen, B; Hanel, R

    2013-01-01

    Stethoscopes are a potential source of nosocomial infection for hospitalized humans, a phenomenon not previously studied in companion animals. To determine if daily cleaning of stethoscope chest pieces reduces bacterial contamination between cleanings. Client-owned dogs and cats. Prospective observational study. In phase 1, bacterial cultures were obtained from the chest pieces of 10 participant stethoscopes once weekly for 3 weeks. In phase 2, stethoscopes were cleaned daily and 2 culture samples were obtained once weekly, immediately before and after cleaning with 70% isopropyl alcohol, for 3 weeks. Daily cleaning eliminated bacteria immediately after each cleaning (P = .004), but did not reduce the rate of positive cultures obtained before cleaning in phase 2. Cultures were positive for 20/30 (67%) samples during phase 1 and 18/30 (60%) obtained before daily cleaning during phase 2. Recovered organisms included normal skin flora, agents of opportunistic infections, and potential pathogens. The only genus that was repeatedly recovered from the same stethoscope for 2 or more consecutive weeks was Bacillus sp. Daily cleaning was highly effective at removing bacteria, but provided no reduction in precleaning contamination. Cleaning stethoscopes after use on dogs or cats infected with pathogenic bacteria and before use on immunocompromised animals should be considered. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  12. Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Kuhl, David D.; Walker, Eric L.

    2004-01-01

    This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.

  13. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  14. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  16. Resolving the Aerosol Piece of the Global Climate Picture

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  17. Modified section method for laser-welding of ill-fitting cp Ti and Ni-Cr alloy one-piece cast implant-supported frameworks.

    PubMed

    Tiossi, R; Falcão-Filho, H; Aguiar Júnior, F A; Rodrigues, R C; Mattos, M da G; Ribeiro, R F

    2010-05-01

    This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P < 0.05). With both screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27.57 +/- 5.06 microm) than other groups (I: 11.19 +/- 2.54 microm, III: 12.88 +/- 2.93 microm, IV: 13.77 +/- 1.51 microm) (P < 0.05). In the single-screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58.66 +/- 14.30 microm) was significantly different from cp Ti group after diagonal section (IV: 27.51 +/- 8.28 microm) (P < 0.05). On the tightened side, no significant differences were found between groups (P > 0.05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.

  18. 13. LONG WEST WALL (LEFT) AND SHORT SOUTH WALL (RIGHT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. LONG WEST WALL (LEFT) AND SHORT SOUTH WALL (RIGHT) OF AR-9, ALSO SHOWING MORE RECENT CONTROL ROOM BUILDING AT RIGHT. VIEW IS TO THE NORTHEAST. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA

  19. 7. INTERIOR, MAIN GARAGE, SOUTHERN WALL, FROM CLOSE TO WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR, MAIN GARAGE, SOUTHERN WALL, FROM CLOSE TO WALL, LOOKING SOUTH, SHOWING 'GAMEWELL' FIRE ALARM TAPE CONTROL SYSTEM (TECHNOLOGY CIRCA 1910) AT CENTER, AND ENTRY TO OFFICE AT FAR RIGHT. - Oakland Naval Supply Center, Firehouse, East of Fourth Street, between A & B Streets, Oakland, Alameda County, CA

  20. Efficacy of Sanitizer Treatments on Survival and Growth Parameters of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on Fresh-Cut Pieces of Cantaloupe during Storage.

    PubMed

    Ukuku, Dike O; Huang, Lihan; Sommers, Christopher

    2015-07-01

    For health reasons, people are consuming fresh-cut fruits with or without minimal processing and, thereby, exposing themselves to the risk of foodborne illness if such fruits are contaminated with bacterial pathogens. This study investigated survival and growth parameters of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and aerobic mesophilic bacteria transferred from cantaloupe rind surfaces to fresh-cut pieces during fresh-cut preparation. All human bacterial pathogens inoculated on cantaloupe rind surfaces averaged ∼4.8 log CFU/cm(2), and the populations transferred to fresh-cut pieces before washing treatments ranged from 3 to 3.5 log CFU/g for all pathogens. A nisin-based sanitizer developed in our laboratory and chlorinated water at 1,000 mg/liter were evaluated for effectiveness in minimizing transfer of bacterial populations from cantaloupe rind surface to fresh-cut pieces. Inoculated and uninoculated cantaloupes were washed for 5 min before fresh-cut preparation and storage of fresh-cut pieces at 5 and 10°C for 15 days and at 22°C for 24 h. In fresh-cut pieces from cantaloupe washed with chlorinated water, only Salmonella was found (0.9 log CFU/g), whereas E. coli O157:H7 and L. monocytogenes were positive only by enrichment. The nisin-based sanitizer prevented transfer of human bacteria from melon rind surfaces to fresh-cut pieces, and the populations in fresh-cut pieces were below detection even by enrichment. Storage temperature affected survival and the growth rate for each type of bacteria on fresh-cut cantaloupe. Specific growth rates of E. coli O157:H7, Salmonella, and L. monocytogenes in fresh-cut pieces were similar, whereas the aerobic mesophilic bacteria grew 60 to 80 % faster and had shorter lag phases.

  1. Cooling profile following prosthetic preparation of 1-piece dental implants.

    PubMed

    Cohen, Omer; Gabay, Eran; Machtei, Eli E

    2010-01-01

    The aim of this study was to evaluate the effect of water irrigation on heat dissipation kinetics following abutment preparation of 1-piece dental implants. UNO 1-piece dental implants were mounted on Plexiglas apparatus clamping the implant at the collar. T-type thermocouple was attached to the first thread of the implant and recorded thermal changes at 100 millisecond intervals. Implants were prepared using highspeed dental turbine at 400,000 RPM with a coarse diamond bur. Once temperature reached 47 degrees C, abutment preparation was discontinued. Thirty implants were divided into 2 groups. Group A: Passive cooling without water irrigation. Group B: Cooling with turbine's water spray adjacent to the implant (30 mL/min). The following parameters were measured: T47 (time from peak temperature to 47 degrees C), T50%, T75% (time until the temperature amplitude decayed by 50% and 75%, respectively), dTemp50%/dt decay, and dTemp75%/dt decay (cooling rate measured at 50% and 75% of amplitude decay, respectively). Water spray irrigation significantly reduced T47 (1.37+/-0.29 seconds vs 19.97+/-3.06 seconds, P<0.0001), T50% (3.04+/-0.34 seconds vs 27.37+/-2.56 seconds, P<0.0001), and T75% (5.71+/-0.57 seconds vs 57.61+/-5.47 seconds, P<0.0001). Water spray irrigation also increased cooling capacity ninefold: dTemp50%/dt decay (4.14+/-0.61 degrees C/s vs 0.48+/-0.06 degrees C/s, P<0.0001), and dTemp50%/dt decay (1.70+/-0.29 degrees C/s vs 0.19+/-0.03 degrees C/s, P<0.0001). The continuous use of water spray adjacent to the abutment following the cessation of implant preparation might prove beneficial for rapid cooling of the implant.

  2. Agile manufacturing concept

    NASA Astrophysics Data System (ADS)

    Goldman, Steven L.

    1994-03-01

    The initial conceptualization of agile manufacturing was the result of a 1991 study -- chaired by Lehigh Professor Roger N. Nagel and California-based entrepreneur Rick Dove, President of Paradigm Shifts, International -- of what it would take for U.S. industry to regain global manufacturing competitiveness by the early twenty-first century. This industry-led study, reviewed by senior management at over 100 companies before its release, concluded that incremental improvement of the current system of manufacturing would not be enough to be competitive in today's global marketplace. Computer-based information and production technologies that were becoming available to industry opened up the possibility of an altogether new system of manufacturing, one that would be characterized by a distinctive integration of people and technologies; of management and labor; of customers, producers, suppliers, and society.

  3. Ultimate Cost of Building Walls.

    ERIC Educational Resources Information Center

    Grimm, Clayford T.; Gross, James G.

    The need for economic analysis of building walls is discussed, and the factors influencing the ultimate cost of exterior walls are studied. The present worth method is used to analyze three types of exterior non-loadbearing panel or curtain walls. Anticipated costs are expressed in terms of their present value per square foot of wall area. The…

  4. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  5. [Development of whole process quality control and management system of traditional Chinese medicine decoction pieces based on traditional Chinese medicine quality tree].

    PubMed

    Yu, Wen-Kang; Dong, Ling; Pei, Wen-Xuan; Sun, Zhi-Rong; Dai, Jun-Dong; Wang, Yun

    2017-12-01

    The whole process quality control and management of traditional Chinese medicine (TCM) decoction pieces is a system engineering, involving the base environment, seeds and seedlings, harvesting, processing and other multiple steps, so the accurate identification of factors in TCM production process that may induce the quality risk, as well as reasonable quality control measures are very important. At present, the concept of quality risk is mainly concentrated in the aspects of management and regulations, etc. There is no comprehensive analysis on possible risks in the quality control process of TCM decoction pieces, or analysis summary of effective quality control schemes. A whole process quality control and management system for TCM decoction pieces based on TCM quality tree was proposed in this study. This system effectively combined the process analysis method of TCM quality tree with the quality risk management, and can help managers to make real-time decisions while realizing the whole process quality control of TCM. By providing personalized web interface, this system can realize user-oriented information feedback, and was convenient for users to predict, evaluate and control the quality of TCM. In the application process, the whole process quality control and management system of the TCM decoction pieces can identify the related quality factors such as base environment, cultivation and pieces processing, extend and modify the existing scientific workflow according to their own production conditions, and provide different enterprises with their own quality systems, to achieve the personalized service. As a new quality management model, this paper can provide reference for improving the quality of Chinese medicine production and quality standardization. Copyright© by the Chinese Pharmaceutical Association.

  6. An experimental study of near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, Rakesh K.; Raj, Rishi S.

    1989-01-01

    The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly

  7. Use of large pieces of printed circuit boards for bioleaching to avoid ‘precipitate contamination problem’ and to simplify overall metal recovery

    PubMed Central

    Adhapure, N.N.; Dhakephalkar, P.K.; Dhakephalkar, A.P.; Tembhurkar, V.R.; Rajgure, A.V.; Deshmukh, A.M.

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple. PMID:26150951

  8. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-12-31

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face themore » plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI.« less

  9. Fuel retention under elevated wall temperature in KSTAR with a carbon wall

    NASA Astrophysics Data System (ADS)

    Cao, B.; Hong, S. H.

    2018-03-01

    The fuel retention during KSTAR discharges with elevated wall temperature (150 °C) has been studied by using the method of global particle balance. The results show that the elevated wall temperature could reduce the dynamic retention via implantation and absorption, especially for the short pulse shots with large injected fuel particles. There is no signature changing of long-term retention, which related to co-deposition, under elevated wall temperature. For soft-landing shots (normal shots), the exhausted fuel particles during discharges is larger with elevated wall temperature than without, but the exhausted particles after discharges within 90 s looks similar. The outgassing particles because of disruption could be exhausted within 15 s.

  10. Tomato Fruit Cell Wall 1

    PubMed Central

    Koch, James L.; Nevins, Donald J.

    1989-01-01

    Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the

  11. 75 FR 30781 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... . Please visit the Manufacturing Council Web site at: http://www.manufacturing.gov/council/index.asp?dName... broader applicant pool to reflect the full diversity of the U.S. manufacturing industry in terms of... the diversity of American manufacturing by representing a balanced cross-section of the U.S...

  12. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  13. Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1986-01-01

    Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration.

  14. 10. VIEW OF LAMINARFLOW FILTER WALL NEAR SOUTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF LAMINAR-FLOW FILTER WALL NEAR SOUTH WALL OF CLEAN ROOM (102). NOTE GROUNDING CABLES NEAR BASEBOARD IN LOWER RIGHT BACKGROUND. WHITE SQUARE IN FOREGROUND IS A FLOOR DRAIN COVERED WITH TAPE. - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Manufacture of reconstruction-bricks in Mexico

    NASA Astrophysics Data System (ADS)

    Rojas-Valencia, Ma. Neftalí; Penagos, Armando Aguilar; Rojas, Denise Y. Fernández; López, Alberto López; Gálves, David Morillón

    2017-12-01

    In Mexico, around 33.600 tons of construction wastes are generated every day, Mexico City contributing for around tons/day, with fewer than 1.000 tons/day being sent to be recycled. For that reason the purpose of this study was to manufacture sustainable bricks, based on three types of wastes generated in the building industry: wood cutting residues, wastes from the excavation process (From Coapa and Cuautlancingo, Puebla, Mexico) and recycled aggregates. Water was added as kneading material, and Opuntia ficus-indica (mucilage) was supplemented as natural additive to improve the workability of the mixtures. Conventional firing process was substituted by drying in a solar drying chamber. Nine mixtures were prepared using 62% excavation wastes, 4% wood cutting residues and 11%, 17% and 34% recycled aggregates. These mixtures were classified in two groups depending on their granulometry: the first one denominated cementitious recycled aggregates only having granulometry from 25.4 mm, 9.52 mm to 6.35 mm to fines and the second group denominated all in one recycled aggregates having granulometry of 6.35 mm to fines. The quality of the sustainable bricks was evaluated according to compressive strength and water absorption parameters. The results of nine mixtures showed that the reconstruction-bricks manufactured with the mixture seven consisting of 9.52 mm and 6.35 mm construction residues (all in one) fines presented the highest strength values, lowest maximum initial absorption (4 g/min) compared to the norm NMX-C-037-ONNCCE-2013 which establishes that the maximum limit for walls exposed to the outside is 5 g/min. Using a solar desiccator made from construction residues, the bricks were dried in 11 days, the maximum temperature was 76 °C and the maximum solar radiation captured was 733.4 W/m2.

  16. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  17. 78 FR 49546 - Manufacturer of Controlled Substances; Notice of Application; IRIX Manufacturing, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...; Notice of Application; IRIX Manufacturing, Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on January 18, 2013, IRIX Manufacturing, Inc., 309 Delaware...) to be registered as a bulk manufacturer of Noroxymorphone (9668), a basic class of controlled...

  18. A Heuristic Bioinspired for 8-Piece Puzzle

    NASA Astrophysics Data System (ADS)

    Machado, M. O.; Fabres, P. A.; Melo, J. C. L.

    2017-10-01

    This paper investigates a mathematical model inspired by nature, and presents a Meta-Heuristic that is efficient in improving the performance of an informed search, when using strategy A * using a General Search Tree as data structure. The work hypothesis suggests that the investigated meta-heuristic is optimal in nature and may be promising in minimizing the computational resources required by an objective-based agent in solving high computational complexity problems (n-part puzzle) as well as In the optimization of objective functions for local search agents. The objective of this work is to describe qualitatively the characteristics and properties of the mathematical model investigated, correlating the main concepts of the A * function with the significant variables of the metaheuristic used. The article shows that the amount of memory required to perform this search when using the metaheuristic is less than using the A * function to evaluate the nodes of a general search tree for the eight-piece puzzle. It is concluded that the meta-heuristic must be parameterized according to the chosen heuristic and the level of the tree that contains the possible solutions to the chosen problem.

  19. 1. AIR/MANWAY SHAFT WALL AND FAN HOUSE FOUNDATION WALL FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AIR/MANWAY SHAFT WALL AND FAN HOUSE FOUNDATION WALL FROM NORTHWEST. AEROVANE FAN AT UPPER LEFT, SCAFFOLD AND LEPLEY VENTILATOR AT UPPER RIGHT. - Consolidation Coal Company Mine No. 11, Air-Manway Shaft, East side of State Route 936, Midlothian, Allegany County, MD

  20. 32. DETAIL OF WALL SHOWN IN SD231. BEHIND WALL FRAMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF WALL SHOWN IN SD-2-31. BEHIND WALL FRAMING IS SAMPLING ROOM WITH WOOD SAMPLING ELEVATOR. CRUSHED OXIDIZED ORE BIN ON LEFT (SOUTH). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD