NASA Technical Reports Server (NTRS)
Ruf, J. H.; Hagemann, G.; Immich, H.
2003-01-01
A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.
High energy efficient solid state laser sources. [slab geometry laser sources
NASA Technical Reports Server (NTRS)
Byer, R. L.
1983-01-01
Slab glass performance studies demonstate 18 J of output at 2 Hz with 2.3% wall plug efficiency. The goal is to achieve 10 J per pulse at 10 Hz and 3% wall plug efficiency during the next annual period. The slab concept was extended to Nd:YAG and to Nd:GGG. To date over 80 W of CW output power at 2% efficiency was generated in slab Nd:YAG. A multiplexed slab Nd:YAG pre-amplifier was invented and a Nd:YAG oscillator was demonstrated with 100kHz linewidth for eventual use in wind velocity measurements.
High power, 1060-nm diode laser with an asymmetric hetero-waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Zhang, Yu; Hao, E
2015-07-31
By introducing an asymmetric hetero-waveguide into the epitaxial structure of a diode laser, a 6.21-W output is achieved at a wavelength of 1060 nm. A different design in p- and n-confinement, based on optimisation of energy bands, is used to reduce voltage loss and meet the requirement of high power and high wall-plug efficiency. A 1060-nm diode laser with a single quantum well and asymmetric hetero-structure waveguide is fabricated and analysed. Measurement results show that the asymmetric hetero-structure waveguide can be efficiently used for reducing voltage loss and improving the confinement of injection carriers and wall-plug efficiency. (lasers)
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2016-06-01
The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
2015-01-01
Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.
Improved power and efficiency for tapered lasers with optimized photonic crystal structures
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Shaoyu; Zhou, Xuyan; Lin, Yuzhe; Zheng, Wanhua
2017-10-01
High power and high beam quality laser sources are required in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, material processing and others. Tapered lasers can provide a high output power while keeping a high beam quality. However, the conventional tapered lasers suffer from a large vertical beam divergence. We have demonstrated 2-mm long tapered lasers with photonic crystal structures. A high beam quality and a narrow vertical divergence are achieved. In this paper, we optimized the photonic crystal structure and fabricated a 4-mm long tapered laser to further increase the output power and the wall-plug efficiency. Compared with our precious wafer, the optimized structure has a lower doping level to reduce the internal loss. The period of the photonic crystal structure and the thickness of the upper cladding are also reduced. The device has a 1-mm long ridge-waveguide section and a 3-mm long tapered section. The taper angle is 4°. An output power of 7.3 W is achieved with a peak wall-plug efficiency of 46% in continuous-wave mode. The threshold current is around 500 mA and the slope efficiency is 0.93 W/A. In pulsed mode, the output power is 15.6 W and the maximum wall-plug efficiency is 48.1%. The far-field divergence with full width at half maximum is 6.3° for the lateral direction at 3 A. The vertical far-field beam divergence is around 11° at different injection levels. High beam qualities are demonstrated by beam quality factor M2 of 1.52 for the lateral direction and 1.54 for the vertical direction.
Method of measuring material properties of rock in the wall of a borehole
Overmier, David K.
1985-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Method of measuring material properties of rock in the wall of a borehole
Overmier, D.K.
1984-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Thermophotonics for ultra-high efficiency visible LEDs
NASA Astrophysics Data System (ADS)
Ram, Rajeev J.
2017-02-01
The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.
Electrically heated particulate matter filter with recessed inlet end plugs
Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI
2012-02-21
A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.
NASA Astrophysics Data System (ADS)
Yonkee, B. P.; Young, E. C.; DenBaars, S. P.; Nakamura, S.; Speck, J. S.
2016-11-01
A molecular beam epitaxy regrowth technique was demonstrated on standard industrial patterned sapphire substrate light-emitting diode (LED) epitaxial wafers emitting at 455 nm to form a GaN tunnel junction. By using an HF pretreatment on the wafers before regrowth, a voltage of 3.08 V at 20 A/cm2 was achieved on small area devices. A high extraction package was developed for comparison with flip chip devices which utilize an LED floating in silicone over a BaSO4 coated header and produced a peak external quantum efficiency (EQE) of 78%. A high reflectivity mirror was designed using a seven-layer dielectric coating backed by aluminum which has a calculated angular averaged reflectivity over 98% between 400 and 500 nm. This was utilized to fabricate a flip chip LED which had a peak EQE and wall plug efficiency of 76% and 73%, respectively. This flip chip could increase light extraction over a traditional flip chip LED due to the increased reflectivity of the dielectric based mirror.
Hot cell shield plug extraction apparatus
Knapp, Philip A.; Manhart, Larry K.
1995-01-01
An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.
NASA Astrophysics Data System (ADS)
Yagi, Tetsuya; Shimada, Naoyuki; Nishida, Takehiro; Mitsuyama, Hiroshi; Miyashita, Motoharu
2013-03-01
Laser based displays, as pico to cinema laser projectors have gathered much attention because of wide gamut, low power consumption, and so on. Laser light sources for the displays are operated mainly in CW, and heat management is one of the big issues. Therefore, highly efficient operation is necessitated. Also the light sources for the displays are requested to be highly reliable. 638 nm broad stripe laser diode (LD) was newly developed for high efficiency and highly reliable operation. An AlGaInP/GaAs red LD suffers from low wall plug efficiency (WPE) due to electron overflow from an active layer to a p-cladding layer. Large optical confinement factor (Γ) design with AlInP cladding layers is adopted to improve the WPE. The design has a disadvantage for reliable operation because the large Γ causes high optical density and brings a catastrophic optical degradation (COD) at a front facet. To overcome the disadvantage, a window-mirror structure is also adopted in the LD. The LD shows WPE of 35% at 25°C, highest record in the world, and highly stable operation at 35°C, 550 mW up to 8,000 hours without any catastrophic optical degradation.
Advanced thermal management of high-power quantum cascade laser arrays for infrared countermeasures
NASA Astrophysics Data System (ADS)
Barletta, Philip; Diehl, Laurent; North, Mark T.; Yang, Bao; Baldasaro, Nick; Temple, Dorota
2017-10-01
Next-generation infrared countermeasure (IRCM) systems call for compact and lightweight high-power laser sources. Specifically, optical output power of tens of Watts in the mid-wave infrared (MWIR) is desired. Monolithically fabricated arrays of quantum cascade lasers (QCLs) have the potential to meet these requirements. Single MWIR QCL emitters operating in continuous wave at room temperature have demonstrated multi-Watt power levels with wall-plug efficiency of up to 20%. However, tens of Watts of output power from an array of QCLs translates into the necessity of removing hundreds of Watts per cm2, a formidable thermal management challenge. A potential thermal solution for such high-power QCL arrays is active cooling based on high-performance thin-film thermoelectric coolers (TFTECs), in conjunction with pumped porous-media heat exchangers. The use of active cooling via TFTECs makes it possible to not only pump the heat away, but also to lower the QCL junction temperature, thus improving the wall-plug efficiency of the array. TFTECs have shown the ability to pump >250W/cm2 at ΔT=0K, which is 25 times greater than that typically seen in commercially available bulk thermoelectric devices.
Steady propagation of Bingham plugs in 2D channels
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James
2009-11-01
The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.
Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf
2007-10-15
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.
Holewinski, Adam; Sakwa-Novak, Miles A.; Jones, Christopher W.
2015-08-26
Composites of poly(ethylenimine) (PEI) and mesoporous silica are effective, reversible adsorbents for CO 2, both from flue gas and in direct air-capture applications. The morphology of the PEI within the silica can strongly impact the overall carbon capture efficiency and rate of saturation. Here, we directly probe the spatial distribution of the supported polymer through small-angle neutron scattering (SANS). Combined with textural characterization from physisorption analysis, the data indicate that PEI first forms a thin conformal coating on the pore walls, but all additional polymer aggregates into plug(s) that grow along the pore axis. This model is consistent with observedmore » trends in amine-efficiency (CO 2/N binding ratio) and pore size distributions, and points to a trade-off between achieving high chemical accessibility of the amine binding sites, which are inaccessible when they strongly interact with the silica, and high accessibility for mass transport, which can be hampered by diffusion through PEI plugs. In conclusion, we illustrate this design principle by demonstrating higher CO 2 capacity and uptake rate for PEI supported in a hydrophobically modified silica, which exhibits repulsive interactions with the PEI, freeing up binding sites.« less
PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...
PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Effect of p-GaN layer grown with H2 carrier gas on wall-plug efficiency of high-power LEDs
NASA Astrophysics Data System (ADS)
Lu, Kuan Fu; Lin, Tien Kun; Liou, Jian Kai; Yang, Chyi Da; Lee, Chong Yi; Tsai, Jeng Da
2017-06-01
The effect of employing different carrier gases (H2 only and 1:1 vol% N2:H2) in the p-type GaN (p-GaN) layer on the wall-plug efficiency (WPE) of high-power light-emitting diodes (LEDs) is studied. Since GaN crystal could be a two-dimension (2-D) growth mode in H2 ambient, better quality and smoother surface of the p-GaN were obtained. The current spreading performance of the p-GaN layer using H2 alone as the carrier gas was enhanced, resulting in advanced light output power (LOP). In addition, turn-on voltage and dynamic resistance at 500 mA, which can strongly contribute to the WPE, were also reduced by 0.12 V and 0.13 Ω, respectively. The studied device with H2 as the carrier gas in the p-GaN layer (p-H2 layer) exhibits 9.5% and 12.4% improvements in LOP and WPE at 500 mA over the device (N2/H2 = 1:1), as well as significantly better electrostatic discharge robustness. Therefore, the use of a p-H2 layer can effectively improve the performance of GaN-based LEDs for high power applications.
Plug into a Great Outlet for Creativity
ERIC Educational Resources Information Center
Skophammer, Karen
2009-01-01
Is there beauty in the wall socket that people plug their appliances into daily? Can one find beauty in the grate covering the heat vent in his classroom? The author posed these very questions to her third-grade students. She had the students take a good look at the outlet cover (or plate) on the wall. After thinking and discussing the outlets,…
Recording Rapidly Changing Cylinder-wall Temperatures
NASA Technical Reports Server (NTRS)
Meier, Adolph
1942-01-01
The present report deals with the design and testing of a measuring plug suggested by H. Pfriem for recording quasi-stationary cylinder wall temperatures. The new device is a resistance thermometer, the temperature-susceptible part of which consists of a gold coating applied by evaporation under high vacuum and electrolytically strengthened. After overcoming initial difficulties, calibration of plugs up to and beyond 400 degrees C was possible. The measurements were made on high-speed internal combustion engines. The increasing effect of carbon deposit at the wall surface with increasing operating period is indicated by means of charts.
Analysis of supersonic plug nozzle flowfield and heat transfer
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Sheu, W. H.
1988-01-01
A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.
Transient motion of mucus plugs in respiratory airways
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.
2011-11-01
Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2018-01-01
We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.
3D Model of Surfactant Replacement Therapy
NASA Astrophysics Data System (ADS)
Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel
2015-11-01
Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.
Active mirror amplifiers for HiPER kiloJoule beamlines
NASA Astrophysics Data System (ADS)
Chanteloup, J.-C.; Lucianetti, A.
2013-11-01
A major challenge the HiPER [1] project is facing is to derive laser architectures satisfying simultaneously all HiPER requirements; among them, high wall-plug efficiency (15 to 20%) and repetition rate (around 10 Hz) are the most challenging constraints. Several groups over the world are actively pursuing research in the field of High average power Diode Pumped Solid State Lasers (DPSSL) [2]. We propose a comprehensive solution for a 1 kJ DPSSL beamline as the unit brick of a 12 beams bundle.
In Vitro Microfluidic Models of Mucus-Like Obstructions in Small Airways
NASA Astrophysics Data System (ADS)
Mulligan, Molly K.; Grotberg, James B.; Sznitman, Josué
2012-11-01
Liquid plugs can form in the lungs as a result of a host of different diseases, including cystic fibrosis and chronic obstructive pulmonary disease. The existence of such fluid obstructions have been found as far down in the bronchiole tree as the sixteenth generation, where bronchiole openings have diameters on the order of a hundred to a few hundred microns. Understanding the propagation of liquid plugs within the bifurcating branches of bronchiole airways is important because their presence in the lungs, and their rupture and break-up, can cause injury to the epithelial cells lining the airway walls as a result of high wall shear stresses. In particular, liquid plug rupture and break-up frequently occurs at airway bifurcations. Until present, however, experimental studies of liquid plugs have generally been restricted to Newtonian fluids that do not reflect the actual pseudoplastic properties of lung mucus. The present work attempts to uncover the propagation, rupture and break-up of mucus-like liquid plugs in the lower generations of the airway tree using microfluidic models. Our approach allows the dynamics of mucus-like plug break-up to be studied in real-time, in a one-to-one in vitro model, as a function of mucus rheology and bronchial tree geometry.
Deeken, Corey R.; Matthews, Brent D.
2013-01-01
Purpose. Poly-4-hydroxybutyrate (P4HB) is a naturally derived, absorbable polymer. P4HB has been manufactured into PHASIX Mesh and P4HB Plug designs for soft tissue repair. The objective of this study was to evaluate mechanical strength, resorption properties, and histologic characteristics in a porcine model. Methods. Bilateral defects were created in the abdominal wall of n = 20 Yucatan minipigs and repaired in a bridged fashion with PHASIX Mesh or P4HB Plug fixated with SorbaFix or permanent suture, respectively. Mechanical strength, resorption properties, and histologic characteristics were evaluated at 6, 12, 26, and 52 weeks (n = 5 each). Results. PHASIX Mesh and P4HB Plug repairs exhibited similar burst strength, stiffness, and molecular weight at all time points, with no significant differences detected between the two devices (P > 0.05). PHASIX Mesh and P4HB Plug repairs also demonstrated significantly greater burst strength and stiffness than native abdominal wall at all time points (P < 0.05), and material resorption increased significantly over time (P < 0.001). Inflammatory infiltrates were mononuclear, and both devices exhibited mild to moderate granulation tissue/vascularization. Conclusions. PHASIX Mesh and P4HB Plug demonstrated significant mechanical strength compared to native abdominal wall, despite significant material resorption over time. Histological assessment revealed a comparable mild inflammatory response and mild to moderate granulation tissue/vascularization. PMID:23781348
Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow
NASA Astrophysics Data System (ADS)
Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.
2005-01-01
Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.
Plugging micro-leaks in multi-component, ceramic tubesheets with material leached therefrom
Bieler, B.H.; Tsang, F.Y.
1985-03-19
Cracks, in ceramic wall members, on the order of 1 micron or less in width are plugged helium-tight by selectively leaching a component of the wall member with a solvent, letting the resultant leach form a liquid bridge within the crack, removing the solvent and sintering the resultant residue. This method is of particular value for remedying microcracks or channels in a cell member constituting a tubesheet in a hollow fiber type, high temperature battery cell, such as a sodium/sulfur cell, for example. 1 fig.
Plugging micro-leaks in multi-component, ceramic tubesheets with material leached therefrom
Bieler, Barrie H.; Tsang, Floris Y.
1985-03-19
Cracks, in ceramic wall members, on the order of 1 micron or less in width are plugged helium-tight by selectively leaching a component of the wall member with a solvent, letting the resultant leach form a liquid bridge within the crack, removing the solvent and sintering the resultant residue. This method is of particular value for remedying microcracks or channels in a cell member constituting a tubesheet in a hollow fiber type, high temperature battery cell, such as a sodium/sulfur cell, for example.
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, A.V.
1983-10-12
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, Anthony V.
1985-01-01
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Tunnel junction enhanced nanowire ultraviolet light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.
Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less
NASA Technical Reports Server (NTRS)
Nosek, S. M.; Straight, D. M.
1976-01-01
Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe.
OROSCO, Fernando Accorsi; BRAMANTE, Clovis Monteiro; GARCIA, Roberto Brandão; BERNARDINELI, Norberti; de MORAES, Ivaldo Gomes
2010-01-01
Objective This study used dye leakage assay and scanning electron microscopy to evaluate, respectively, the sealing ability and marginal adaptation of three root-end filling materials used as apical plugs, as well as the possible correlation between these properties. Material and Methods Ninety-eight single-rooted human teeth were prepared to simulate an open apex. The teeth were allocated to three experimental groups (n = 30), which received a 5-mm thick apical plug of (1) gray MTA AngelusTM, (2) CPMTM and (3) MBPc, and two controls groups (n = 4). After immersion in 0.2% Rhodamine B solution for 48 h, the teeth were sectioned longitudinally and analyzed by Image Tool 3.0 software. The marginal adaptation between apical plugs and the root canal walls were analyzed by SEM. Results MBPc had significantly less (p<0.05) apical leakage than the other materials. Regarding marginal adaptation, CPMTM showed the best numerical results, though without statistical significance from the other materials (p<0.05). There was no correlation between the two properties. Conclusions When used as apical plugs, the tested root-end filling materials had similar marginal adaptation to the dentin walls, but MBPc had the best sealing ability, as demonstrated by the least apical leakage from all tested materials. PMID:20485923
Quantum cascade lasers: a game changer for defense and homeland security IR photonics
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.
2011-06-01
I will describe recent developments of continuous wave, room temperature (CW/RT) high power QCLs at wavelengths < 3.8 μm to > 12 μm. QCLs now provide, on a commercial basis, CW/RT power of over 3 W at 4.6 μm, with a wall plug efficiency of over 15%, over 2 W at 4.0 μm, and over 1.2 W at 7.1 μm, with a wallplug efficiency >8%. I will describe insertion of QCLs into applications including MWIR countermeasures (IRCM), MWIR and LWIR target illuminators and designators, MWIR beacons (IFF), test equipment for measuring the efficacy of IRCM and sources for MWIR and LWIR radiation for detection of chemical warfare agents and explosives.
NASA Astrophysics Data System (ADS)
Xu, Chang-Qing; Gan, Yi; Sun, Jian
2012-03-01
Laser displays require red, green and blue (RGB) laser sources each with a low-cost, a high wall-plug efficiency, and a small size. However, semiconductor chips that directly emit green light with sufficient power and efficiency are not currently available on the market. A practical solution to the "green" bottleneck is to employ diode pumped solid state laser (DPSSL) technology, in which a frequency doubling crystal is used. In this paper, recent progress of MgO doped periodically poled lithium niobate (MgO:PPLN) frequency doubling optical chips will be presented. It is shown that MgO:PPLN can satisfy all of the requirements for laser displays and is ready for mass production.
High efficiency quantum cascade laser frequency comb.
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-03-06
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm -1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.
High efficiency quantum cascade laser frequency comb
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-01-01
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, Robert C.; Quigley, Gerard P.
1996-01-01
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.
3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model
NASA Astrophysics Data System (ADS)
Hoi, Cory; Raessi, Mehdi
2017-11-01
Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.
Output limitations to single stage and cascaded 2-2.5 mum light emitting diodes
NASA Astrophysics Data System (ADS)
Hudson, Andrew Ian
Since the advent of precise semiconductor engineering techniques in the 1960s, considerable effort has been devoted both in academia and private industry to the fabrication and testing of complex structures. In addition to other techniques, molecular beam epitaxy (MBE) has made it possible to create devices with single mono-layer accuracy. This facilitates the design of precise band structures and the selection of specific spectroscopic properties for light source materials. The applications of such engineered structures have made solid state devices common commercial quantities. These applications include solid state lasers, light emitting diodes and light sensors. Band gap engineering has been used to design emitters for many wavelength bands, including the short wavelength (SWIR) infrared region which ranges from 1.5 to 2.5mum. Practical devices include sensors operating in the 2-2.5mum range. When designing such a device, necessary concerns include the required bias voltage, operating current, input impedance and especially for emitters, the wall-plug efficiency. Three types of engineered structures are considered in this thesis. These include GaInAsSb quaternary alloy bulk active regions, GaInAsSb multiple quantum well devices (MQW) and GaInAsSb cascaded light emitting diodes. The three structures are evaluated according to specific standards applied to emitters of infrared light. The spectral profiles are obtained with photo or electro-luminescence, for the purpose of locating the peak emission wavelength. The peak wavelength for these specimens is in the 2.2-2.5mum window. The emission efficiency is determined by employing three empirical techniques: current/voltage (IV), radiance/current (LI), and carrier lifetime measurements. The first verifies that the structure has the correct electrical properties, by measuring among other parameters the activation voltage. The second is used to determine the energy efficiency of the device, including the wall-plug and quantum efficiencies. The last provides estimates of the relative magnitude of the Shockley Read Hall, radiative and Auger coefficients. These constants illustrate the overall radiative efficiency of the material, by noting comparisons between radiative and non-radiative recombination rates.
NASA Astrophysics Data System (ADS)
Simonin, A.; Achard, Jocelyn; Achkasov, K.; Bechu, S.; Baudouin, C.; Baulaigue, O.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; de Esch, H. P. L.; Fiorucci, D.; Fubiani, G.; Furno, I.; Futtersack, R.; Garibaldi, P.; Gicquel, A.; Grand, C.; Guittienne, Ph.; Hagelaar, G.; Howling, A.; Jacquier, R.; Kirkpatrick, M. J.; Lemoine, D.; Lepetit, B.; Minea, T.; Odic, E.; Revel, A.; Soliman, B. A.; Teste, P.
2015-11-01
Since the signature of the ITER treaty in 2006, a new research programme targeting the emergence of a new generation of neutral beam (NB) system for the future fusion reactor (DEMO Tokamak) has been underway between several laboratories in Europe. The specifications required to operate a NB system on DEMO are very demanding: the system has to provide plasma heating, current drive and plasma control at a very high level of power (up to 150 MW) and energy (1 or 2 MeV), including high performances in term of wall-plug efficiency (η > 60%), high availability and reliability. To this aim, a novel NB concept based on the photodetachment of the energetic negative ion beam is under study. The keystone of this new concept is the achievement of a photoneutralizer where a high power photon flux (~3 MW) generated within a Fabry-Perot cavity will overlap, cross and partially photodetach the intense negative ion beam accelerated at high energy (1 or 2 MeV). The aspect ratio of the beam-line (source, accelerator, etc) is specifically designed to maximize the overlap of the photon beam with the ion beam. It is shown that such a photoneutralized based NB system would have the capability to provide several tens of MW of D0 per beam line with a wall-plug efficiency higher than 60%. A feasibility study of the concept has been launched between different laboratories to address the different physics aspects, i.e. negative ion source, plasma modelling, ion accelerator simulation, photoneutralization and high voltage holding under vacuum. The paper describes the present status of the project and the main achievements of the developments in laboratories.
Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Gubin, K. V.; Lotov, K. V.; Trunov, V. I.; Pestryakov, E. V.
2016-09-01
Powerful femtosecond laser pulses that propagate through narrow ablating capillaries cause modification of capillary walls, which is studied experimentally and theoretically. At low intensities, the laser-induced periodic surface structures and porous coating composed of sub-micron particles appear on the walls. At higher intensities, the surface is covered by deposited droplets of the size up to 10 μm. In both cases, the ablated material forms a solid plug that completely blocks the capillary after several hundreds or thousands of pulses. The suggested theoretical model indicates that the plug formation is a universal effect. It must take place in any narrow tube subject to ablation under the action of short laser pulses.
Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications
NASA Astrophysics Data System (ADS)
Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.
2018-02-01
We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.
Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)
NASA Astrophysics Data System (ADS)
Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.
2016-03-01
We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, R.C.; Quigley, G.P.
1996-12-17
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.
Dual Spark Plugs For Stratified-Charge Rotary Engine
NASA Technical Reports Server (NTRS)
Abraham, John; Bracco, Frediano V.
1996-01-01
Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo
2016-01-26
Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.
Xiao, Yong Jie; Chen, Fu Quan; Dong, Yi Zhi
2016-01-01
During driving sleeve of cast-in-place piles by vibratory hammers, soils were squeezed into sleeve and then soil plugging was formed. The physic-mechanical properties of the soil plug have direct influence on the load transmission between the sleeve wall and soil plug. Nevertheless, the researches on this issue are insufficient. In this study, finite element and infinite element coupling model was introduced, through the commercial code ABAQUS, to simulate the full penetration process of the sleeve driven from the ground surface to the desired depth by applying vibratory hammers. The research results indicated that the cyclic shearing action decreases both in soil shear strength and in granular cementation force when the sleeve is driven by vibratory hammers, which leads to a partially plugged mode of the soil plug inside the sleeve. Accordingly, the penetration resistance of sleeve driven by vibratory hammers is the smallest compared to those by other installation methods. When driving the sleeve, the annular soil arches forming in the soil plug at sleeve end induce a significant rise in the internal shaft resistance. Moreover, the influence of vibration frequencies, sleeve diameters, and soil layer properties on the soil plug was investigated in detail, and at the same time improved formulas were brought forward to describe the soil plug resistance inside vibratory driven sleeve.
A Plug-and-Play Duct System Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, Robert; Dickson, Bruce; Grisolia, Anthony
This report describes an air distribution system composed of a series of uniformly-sized ducts that terminate in rooms throughout the home and return to a central manifold, similar in fashion to a “home-run” cross-linked polyethylene plumbing system. With a well-designed manifold, each duct receives an equal static pressure potential for airflow from the air handling unit, and the number of needed ducts for each room are simply attached to fittings located on the manifold; in this sense, the system is plug-and-play (PnP). As indicated, all ducts in the PnP system are identical in size and small enough to fit inmore » the ceiling and wall cavities of a house (i.e., less than 3.5-in. outer diameter). These ducts are also more appropriately sized for the lower airflow requirements of modern, energy-efficient homes; therefore, the velocity of the air moving through the duct is between that of conventional duct systems (approximately 700 ft/min) and high-velocity systems (more than 1,500 ft/min) on the market today. The PnP duct system uses semi-rigid plastic pipes, which have a smooth inner wall and are straightforward to install correctly, resulting in a system that has minimal air leakage. However, plastic ducts are currently not accepted by code for use in residential buildings; therefore, the project team considered other duct materials for the system that are currently accepted by code, such as small-diameter, wirehelix, flexible ductwork.« less
A Plug-and-Play Duct System Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, R.; Dickson, B.; Grisolia, A.
2017-07-01
This report describes an air distribution system composed of a series of uniformly-sized ducts that terminate in rooms throughout the home and return to a central manifold, similar in fashion to a “home-run” cross-linked polyethylene plumbing system. With a well-designed manifold, each duct receives an equal static pressure potential for airflow from the air handling unit, and the number of needed ducts for each room are simply attached to fittings located on the manifold; in this sense, the system is plug-and-play (PnP). As indicated, all ducts in the PnP system are identical in size and small enough to fit inmore » the ceiling and wall cavities of a house (i.e., less than 3.5-in. outer diameter). These ducts are also more appropriately sized for the lower airflow requirements of modern, energy-efficient homes; therefore, the velocity of the air moving through the duct is between that of conventional duct systems (approximately 700 ft/min) and high-velocity systems (more than 1,500 ft/min) on the market today. The PnP duct system uses semi-rigid plastic pipes, which have a smooth inner wall and are straightforward to install correctly, resulting in a system that has minimal air leakage. However, plastic ducts are currently not accepted by code for use in residential buildings; therefore, the project team considered other duct materials for the system that are currently accepted by code, such as small-diameter, wirehelix, flexible ductwork.« less
Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel
NASA Astrophysics Data System (ADS)
Zheng, Y.; Fujioka, H.; Grotberg, J. B.
2007-08-01
Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. Studies have shown that the effectiveness of these treatments may depend on how liquids distribute in the lung. Better understanding of the fundamental fluid mechanics of liquid plug transport will facilitate treatment strategies. In this paper, we develop a numerical model of steady plug propagation driven by gravity and pressure in a two-dimensional liquid-lined channel oriented at an angle α with respect to gravity. We investigate the effects of gravity through the Bond number, Bo, and α; the plug propagation speed through the capillary number, Ca, or the Reynolds number, Re; the plug length LP, and the surfactant concentration C0. Without gravity, i.e., Bo =0, the plug is symmetric, and there are two regimes for the flow: two wall layers and two trapped vortices in the core. There is no flow interaction between the upper and lower half plug domains. When Bo ≠0 and α ≠0, π, fluid is found to flow from the upper precursor film, through the core and into the lower trailing film. Then the number of vortices can be zero, one, or two, depending on the flow parameters. The vortices have stagnation points on the interface when C0=0, however when the surfactant is present (C0>0), the vortices detach from the interface and create saddle points inside the core. The front meniscus develops a capillary surface wave extending into the precursor film. This is where the film is thinnest and thus the wall shear stress is highest, as high as ˜100dyn /cm2 in adult airways, which indicates a significant risk of pulmonary airway epithelial cell damage. Adding surfactant can decrease the peak magnitude of the shear stress, thus reducing the risk of cell damage. The prebifurcation asymmetry of the plug is quantified by the volume ratio, Vr, defined as the ratio of the liquid above to that below the center line of the channel. Vr is found to increase with LP, Ca, Re, and C0, while it decreases with Bo. The total mass left behind in the trailing films increases with Bo for any α at α >2π/5, Ca and α for any value of Bo >0.
Song, Helen; Li, Hung-Wing; Munson, Matthew S.; Van Ha, Thuong G.; Ismagilov, Rustem F.
2006-01-01
This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0–1.5 μg/mL) into plugs and measurement of the resulting APTTs at room temperature (23 °C) and physiological temperature (37 °C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor’s blood samples (both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 °C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other. PMID:16841902
Photoelectron linear accelerator for producing a low emittance polarized electron beam
Yu, David U.; Clendenin, James E.; Kirby, Robert E.
2004-06-01
A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.
NASA Technical Reports Server (NTRS)
Turner, James E.; Mccluney, D. Scott
1991-01-01
Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.
Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser
2012-08-27
ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less
High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.
2011-02-01
The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.
Plug-Load Control and Behavioral Change Research in GSA Office Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Cutler, D.; Sheppy, M.
2012-10-01
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less
Hybrid indium phosphide-on-silicon nanolaser diode
NASA Astrophysics Data System (ADS)
Crosnier, Guillaume; Sanchez, Dorian; Bouchoule, Sophie; Monnier, Paul; Beaudoin, Gregoire; Sagnes, Isabelle; Raj, Rama; Raineri, Fabrice
2017-04-01
The most-awaited convergence of microelectronics and photonics promises to bring about a revolution for on-chip data communications and processing. Among all the optoelectronic devices to be developed, power-efficient nanolaser diodes able to be integrated densely with silicon photonics and electronics are essential to convert electrical data into the optical domain. Here, we report a demonstration of ultracompact laser diodes based on one-dimensional (1D) photonic crystal (PhC) nanocavities made in InP nanoribs heterogeneously integrated on a silicon-waveguide circuitry. The specific nanorib design enables an efficient electrical injection of carriers in the nanocavity without spoiling its optical properties. Room-temperature continuous-wave (CW) single-mode operation is obtained with a low current threshold of 100 µA. Laser emission at 1.56 µm in the silicon waveguides is obtained with wall-plug efficiencies greater than 10%. This result opens up exciting avenues for constructing optical networks at the submillimetre scale for on-chip interconnects and signal processing.
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes
Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...
2016-11-09
Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth
NASA Astrophysics Data System (ADS)
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-04-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
100W high-brightness multi-emitter laser pump
NASA Astrophysics Data System (ADS)
Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.
2011-03-01
We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Qi, Aiyi; Zhou, Xuyan; Ma, Pijie; Liu, Anjin; Zheng, Wanhua
2018-04-01
High power tapered lasers are designed and fabricated. A one-dimensional photonic crystal structure in the vertical direction is adopted to narrow the far field divergence. The thickness of the defect layer and the photonic crystal layers are optimized by analyzing the optical field theoretically. For tapered lasers, the continuous-wave power is 7.3 W and the pulsed power is 17 W. A maximum wall-plug efficiency of 46% under continuous-wave operation and 49.3% in pulsed mode are obtained. The beam divergences are around 11° and 6° for the vertical and lateral directions, respectively. High beam qualities are also obtained with a vertical M2 value of 1.78 and a lateral M2 value of 1.62. As the current increases, the lateral M2 value increases gradually while the vertical M2 value remains around 2.
Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors
2016-01-01
We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079
NASA Technical Reports Server (NTRS)
Chen, C. J.; Bhanji, A. M.; Russell, G. R.
1978-01-01
A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.
Latest developments on the Dutch 1MW free electron maser
NASA Astrophysics Data System (ADS)
Caplan, M.; Verhoeven, A. G. A.; Urbanus, W.
1999-05-01
The FOM Institute (Rijnhuizen, Netherlands), as part of their fusion technology program, has undertaken the development of a Free Electron Maser with the goal of producing 1MW long pulse to CW microwave output in the range 130 GHz-250GHz with wall plug efficiencies of 60%. This project has been carried out as a collaborative effort with Institute of Applied Physics, Nizhny Novgorod Russia, Kurchatov Institute, Moscow Russia, Lawrence Livermore Laboratory, U.S.A and CPI, U.S.A. The key design features of this FEM consists first of a conventional DC acceleration system at high voltage (2MV) which supplies only the unwanted beam interception current and a depressed collector system at 250kV which provides the main beam power. Low body current interception (<25mA) is ensured by using robust inline beam focussing, a low emittance electron gun with halo suppression and periodic magnet side array focussing in the wiggler. The second key feature is use of a low-loss step corrugated waveguide circuit for broad band CW power handling and beam/RF separation. Finally, the required interaction efficiency and mode control is provided by a two stage stepped wiggler. The FEM has been constructed and recently undergone initial short pulse (<10 usec) testing in an inverted mode with the depressed collector absent. Results to date have demonstrated 98.8% beam transmission (over 5 Meters) at currents as high as 8.4 Amps, with 200GHz microwave output at 700kW. There has been good agreement between theory and experiment at the beam current levels tested so far. Details of the most recent experimental results will be presented, in particular the output frequency characteristics with detailed comparisons to theory. The immediate future plans are to operate the system at the design value of 12 Amps with at least 1MW output. The system will then be reconfigured with a 3 stage depressed collector to demonstrate, in the next year, long pulse operation (100 msec) and high wall plug efficiency. Long term future plans call for upgrading the FEM to 2MW and extrapolations up to 5MW are shown to be theoretically possible.
NASA Astrophysics Data System (ADS)
Simonin, A.; Agnello, R.; Bechu, S.; Bernard, J. M.; Blondel, C.; Boeuf, J. P.; Bresteau, D.; Cartry, G.; Chaibi, W.; Drag, C.; Duval, B. P.; de Esch, H. P. L.; Fubiani, G.; Furno, I.; Grand, C.; Guittienne, Ph; Howling, A.; Jacquier, R.; Marini, C.; Morgal, I.
2016-12-01
In parallel to the developments dedicated to the ITER neutral beam (NB) system, CEA-IRFM with laboratories in France and Switzerland are studying the feasibility of a new generation of NB system able to provide heating and current drive for the future DEMOnstration fusion reactor. For the steady-state scenario, the NB system will have to provide a high NB power level with a high wall-plug efficiency (η ˜ 60%). Neutralization of the energetic negative ions by photodetachment (so called photoneutralization), if feasible, appears to be the ideal solution to meet these performances, in the sense that it could offer a high beam neutralization rate (>80%) and a wall-plug efficiency higher than 60%. The main challenge of this new injector concept is the achievement of a very high power photon flux which could be provided by 3 MW Fabry-Perot optical cavities implanted along the 1 MeV D- beam in the neutralizer stage. The beamline topology is tall and narrow to provide laminar ion beam sheets, which will be entirely illuminated by the intra-cavity photon beams propagating along the vertical axis. The paper describes the present R&D (experiments and modelling) addressing the development of a new ion source concept (Cybele source) which is based on a magnetized plasma column. Parametric studies of the source are performed using Langmuir probes in order to characterize and compare the plasma parameters in the source column with different plasma generators, such as filamented cathodes, radio-frequency driver and a helicon antenna specifically developed at SPC-EPFL satisfying the requirements for the Cybele (axial magnetic field of 10 mT, source operating pressure: 0.3 Pa in hydrogen or deuterium). The paper compares the performances of the three plasma generators. It is shown that the helicon plasma generator is a very promising candidate to provide an intense and uniform negative ion beam sheet.
Rotating shielded crane system
Commander, John C.
1988-01-01
A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.
NREL Validates Plug-In Hybrid Truck for Pacific Gas and Electric Company |
Energy Systems Integration Facility | NREL Pacific Gas and Electric Company NREL Validates Plug -In Hybrid Truck for Pacific Gas and Electric Company NREL is evaluating and analyzing a Pacific Gas and Electric Company (PG&E) plug-in hybrid electric utility truck developed by Efficient
Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y
2014-03-03
ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less
Integrated, Reactor Relevant Solutions for Lower Hybrid Range of Frequencies Actuators
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Bonoli, P. T.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.
2017-10-01
RF (radiofrequency) actuators with high system efficiency (wall-plug to plasma) and ability for continuous operation have long be recognized as essential tools for realizing a steady state tokamak. A number of physics and technological challenges to utilization remain including current drive efficiency and location, efficient coupling, and impurity contamination. In a reactor environment, plasma material interaction (PMI) issues associated with coupling structures are similar to the first wall and have been identified as a potential show-stopper. High field side (HFS) launch of LHRF power represents an integrated solution that both improves core wave physics and mitigates PMI/coupling issues. For HFS LHRF, wave penetration is vastly improves because wave accessibility scales as 1/B allowing for launching the wave at lower n|| (parallel refractive index). The lower n|| penetrate to higher electron temperature resulting in higher current drive efficiency (1/n||2). HFS RF launch also provides for a means to dramatically improve launcher robustness in a reactor environment. On the HFS, the SOL is quiescent; local density profile is steep and controlled through magnetic shape; fast particle, neutron, turbulent heat and particle fluxes are eliminated or minim Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative.
Defect specific maintenance of SG tubes -- How safe is it?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cizelj, L.; Mavko, B.; Dvorsek, T.
1997-02-01
The efficiency of the defect specific plugging criterion for outside diameter stress corrosion cracking at tube support plates is assessed. The efficiency is defined by three parameters: (1) number of plugged tubes, (2) probability of steam generator tube rupture and (3) predicted accidental leak rate through the defects. A probabilistic model is proposed to quantify the probability of tube rupture, while procedures available in literature were used to define the accidental leak rates. The defect specific plugging criterion was then compared to the performance of traditional (45%) plugging criterion using realistic data from Krsko nuclear power plant. Advantages of themore » defect specific approach over the traditional one are clearly shown. Some hints on the optimization of safe life of steam generator are also given.« less
NASA Astrophysics Data System (ADS)
Nietubyć, Robert; Lorkiewicz, Jerzy; Sekutowicz, Jacek; Smedley, John; Kosińska, Anna
2018-05-01
Superconducting photoinjectors have a potential to be the optimal solution for moderate and high current cw operating free electron lasers. For this application, a superconducting lead (Pb) cathode has been proposed to simplify the cathode integration into a 1.3 GHz, TESLA-type, 1.6-cell long purely superconducting gun cavity. In the proposed design, a lead film several micrometres thick is deposited onto a niobium plug attached to the cavity back wall. Traditional lead deposition techniques usually produce very non-uniform emission surfaces and often result in a poor adhesion of the layer. A pulsed plasma melting procedure reducing the non-uniformity of the lead photocathodes is presented. In order to determine the parameters optimal for this procedure, heat transfer from plasma to the film was first modelled to evaluate melting front penetration range and liquid state duration. The obtained results were verified by surface inspection of witness samples. The optimal procedure was used to prepare a photocathode plug, which was then tested in an electron gun. The quantum efficiency and the value of cavity quality factor have been found to satisfy the requirements for an injector of the European-XFEL facility.
NASA Astrophysics Data System (ADS)
Hoffman, Anthony J.
Every instant, light and matter are interacting in ways that shape the world around us. This dissertation examines the interaction of mid-infrared light with stacks of thin semiconductor layers. The work is divided into two parts: mid-infrared metamaterials and high wall plug efficiency (WPE) Quantum Cascade (QC) lasers. The mid-infrared metamaterials represent an entirely new class of material and have great potential for enabling highly-desired applications such as sub-diffraction imaging, confinement, and waveguiding. High WPE QC lasers greatly enhance the commercial feasibility of sensing, infrared countermeasures and free-space infrared communications. The first part of this dissertation describes the first three-dimensional, optical metamaterial. The all-semiconductor metamaterial is based on a strongly anisotropic dielectric function and exhibits negative refraction for a large bandwidth in the mid-infrared. The underlying theory of strongly anisotropic metamaterials is discussed, detailed characterization of several metamaterials is presented, and a macroscopic beam experiment is employed to demonstrate negative refraction. A detailed study of waveguides with strongly anisotropic cores is also presented and the low-order mode cutoff for such left-handed waveguides is observed. The second part of this dissertation discusses improvements in QC laser WPE through improved processing, packaging, and design. Devices using conventional QC design strategies processed as buried heterostructures operate with 5% WPE at room temperature in continuous wave mode, a significant improvement over previous generation devices. To further improve WPE, QC lasers based on ultra-strong coupling between the injector and upper-laser levels are designed and characterized. These devices operate with nearly 50% pulsed WPE---a true milestone for QC technology. A new type of QC laser design incorporating heterogeneous injector regions to reduce the voltage defect and thus improve WPE is also presented. Optimized devices exhibit efficiencies in excess of 30% at cryogenic temperatures. Finally, a new measurement technique to characterize lasers in continuous wave operation is described in detail. The technique is used to measure the instantaneous threshold, active core heating, device thermal resistance, and laser current efficiency as well as determine the cause of light power roll-over. This new characterization technique allows for improved understanding of QC lasers and further improvements in device performance.
Johnson, Timothy J; Locascio, Laurie E
2002-08-01
Recently, a series of slanted wells on the floor of a microfluidic channel were experimentally shown to successfully induce off-axis transport and mixing of two confluent streams when operating under electroosmotic (EO) flow. This paper will further explore, through numerical simulations, the parameters that affect off-axis transport under EO flow with an emphasis on optimizing the mixing rate of (a). two confluent streams in steady-state or (b). the transient scenario of two confluent plugs of material, which simulates mixing after an injection. For the steady-state scenario, the degree of mixing was determined to increase by changing any of the following parameters: (1). increasing the well depth, (2). decreasing the well angle relative to the axis of the channel, and (3). increasing the EO mobility of the well walls relative to the mobility of the main channel. Also, it will be shown that folding of the fluid can occur when the well angle is sufficiently reduced and/or when the EO mobility of the wells is increased relative to the channel. The optimum configuration for the transient problem of mixing two confluent plugs includes shallow wells to minimize the well residence time, and an increased EO mobility of the well walls relative to the main channel as well as small well angles to maximize off-axis transport. The final design reported here for the transient study reduces the standard deviation of the concentration across the channel by 72% while only increasing the axial dispersion of the injected plug by 8.6 % when compared to a plug injected into a channel with no wells present. These results indicate that a series of slanted wells on the wall of a microchannel provides a means for controlling and achieving a high degree of off-axis transport and mixing in a passive manner for micro total analysis system (microTAS) devices that are driven by electroosmosis.
NASA Astrophysics Data System (ADS)
Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng
2018-02-01
High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.
Corona discharge induced snow formation in a cloud chamber.
Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan
2017-09-18
Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.
Highly temperature insensitive quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Y.; Bandyopadhyay, N.; Tsao, S.
2010-12-20
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mmmore » and a ridge width of 8 {mu}m.« less
The effect of alcohol blends on the performance of an air cooled Rotary Trochoidal Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, M.; Iuster, I.
Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.
The effect of alcohol blends on the performance of an air cooled rotary trochoidal engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, M.; Iuster, I.
Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.
Hybrid and Plug-in Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-05-20
Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.
Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth
2018-02-01
We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.
Bennett, Gloria A.; Moore, Troy K.
1988-01-01
An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.
NASA Astrophysics Data System (ADS)
Feng, Bo; Deng, Biao; Fu, Yi; Liu, Le Gong; Li, Zeng Cheng; Feng, Mei Xin; Zhao, Han Min; Sun, Qian
2017-07-01
This work reports a significant improvement in efficiency by optimizing the via-like n-electrode architecture design of a GaN-based thin-film LED grown on a 6-inch silicon substrate. The external quantum efficiency of the as-fabricated 1.1 mm × 1.1 mm via-thin-film LED chip at 350 mA was increased by 11.3% compared to that of a vertical thin-film LED chip with a conventional finger-like n-electrode. Detailed analysis of encapsulation gain and false color emission patterns illustrated that the significantly improved LED performance was due to enhanced light extraction efficiency and more uniform current spreading, both of which can be attributed to the optimized via-thin-film chip structure. Minimizing the light loss at the periphery of the Ag mirror was demonstrated to be a critical factor for improving light extraction, rather than simply replacing the finger-like n-electrodes with via-like ones. After encapsulation, the median blue lamp power and the wall-plug efficiency of the via-thin-film LED at 350 mA reached 659 mW and 63.7%, respectively.
Progress on ITER Diagnostic Integration
NASA Astrophysics Data System (ADS)
Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael
2013-10-01
On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.
New design of a PEFC cathode separator of for water management
NASA Astrophysics Data System (ADS)
Sugiura, K.; Takahashi, N.; Kamimura, T.
2017-11-01
Generally, polymer electrolyte fuel cells (PEFCs) need humidifiers to prevent the drying of the membrane, but this use of humidifiers creates water management issues, such as the flooding/plugging phenomena and decreased system efficiency because of an increase in the electric energy needed for auxiliary equipment. Although most researchers have developed high-temperature membranes that do not need humidifiers, a lot of time is necessary for the development of these membranes, and these membranes drive up costs. Therefore, we propose a new cathode separator design that can recycle water generated by power generation in the same cell and a stack structure that can redistribute water collected in the cathode outlet manifold to drying cells. Because the new cathode separator has a bypass channel from the gas outlet to the gas inlet to transport excess water, a dry part in the gas inlet is supplied with excess water in the gas outlet through the bypass channel even if the PEFC is operated under dry conditions. Excess water in the PEFC stack can be transported from the cell with excess water to the drying cell through the cathode outlet manifold with a porous wall. Therefore, we confirm the influence of the plugging phenomenon in the cathode gas outlet manifold on the cell performance of each cell in the stack. As a result, the cell performance of the new cathode separator design is better than that of the standard separator under the low humidity conditions. We confirm that the plugging phenomenon in the cathode outlet manifold affects the cell performance of each cell in the stack.
Two-dimensional over-all neutronics analysis of the ITER device
NASA Astrophysics Data System (ADS)
Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi
1993-07-01
The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.
Medical Device Plug-and-Play Interoperability Standards and Technology Leadership
2017-10-01
Award Number: W81XWH-09-1-0705 TITLE: “Medical Device Plug-and-Play Interoperability Standards and Technology Leadership” PRINCIPAL INVESTIGATOR...Sept 2016 – 20 Sept 2017 4. TITLE AND SUBTITLE “Medical Device Plug-and-Play Interoperability 5a. CONTRACT NUMBER Standards and Technology ...efficiency through interoperable medical technologies . We played a leadership role on interoperability safety standards (AAMI, AAMI/UL Joint
Experimental Study of Ignition by Hot Spot in Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Serruys, Max
1938-01-01
In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris
2016-12-01
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.
High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth.
Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo
2017-12-01
Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm 2 was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.
High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Norman, Justin; Kennedy, M. J.; Shang, Chen; Shin, Bongki; Wan, Yating; Gossard, Arthur C.; Bowers, John E.
2017-09-01
We demonstrate highly efficient, low threshold InAs quantum dot lasers epitaxially grown on on-axis (001) GaP/Si substrates using molecular beam epitaxy. Electron channeling contrast imaging measurements show a threading dislocation density of 7.3 × 106 cm-2 from an optimized GaAs template grown on GaP/Si. The high-quality GaAs templates enable as-cleaved quantum dot lasers to achieve a room-temperature continuous-wave (CW) threshold current of 9.5 mA, a threshold current density as low as 132 A/cm2, a single-side output power of 175 mW, and a wall-plug-efficiency of 38.4% at room temperature. As-cleaved QD lasers show ground-state CW lasing up to 80 °C. The application of a 95% high-reflectivity coating on one laser facet results in a CW threshold current of 6.7 mA, which is a record-low value for any kind of Fabry-Perot laser grown on Si.
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers
Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris
2016-01-01
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing. PMID:27991574
Ghasemi, Negin; Janani, Maryam; Razi, Tahmineh; Atharmoghaddam, Faezeh
2017-03-01
It is necessary apical plug material to exhibit proper adaptation with the root canal walls. Presence of voids at the interface between the root canal wall and this material result in micro leakage, which might have a relationship with post treatment disease. The aim of the present study was to evaluate the effect of different mixing (manual and ultrasonic) and placement (manual and manual in association with indirect ultrasonic) method of Mineral Trioxide Aggregate (MTA) on the void count and dimension in the apical plug in natural teeth with simulated open apices. Eighty human maxillary central incisors were selected. After simulation of the open apex model, the teeth were assigned to 4 groups based on the mixing and placement techniques of MTA: group 1, manual mixing and manual placement; group 2, manual mixing and manual placement in association with indirect ultrasonic; group 3, ultrasonic mixing and and manual placement; and group 4, ultrasonic mixing and manual placement in association with indirect ultrasonic. The prepared samples were placed within gypsum sockets in which the periodontal ligament was reconstructed with polyether impression material. In group 1, after mixing, the material was condensed with a hand plugger. In group 2, after mixing, the ultrasonic tip was contacted with the hand plugger for 2 seconds. In groups 3 and 4, mixing was carried out with the ultrasonic tip for 5 seconds and in groups 3 and 4, similar to groups 1 and 2, respectively, the materials were placed as apical plugs, measuring 3 mm in length. A wet cotton pellet was placed at canal orifices and dressed with Cavit. After one week, the cone beam computed tomography (CBCT) technique was used to count the number of voids between the material and root canal walls. The void dimensions were determined using the following scoring system: score 1, absence of voids; score 2, the void size less than half of the dimensions of the evaluated cross-section; score 3, the void size larger than half of the dimensions of the evaluated cross-section. Chi-squared and Fisher's exact tests were used for statistical analyses. Statistical significance was set at P <0.05. The maximum (13) and minimum (3) number of voids were detected in groups 2 and 3, respectively. There were no significant differences between groups 1 and 3 in the number of voids ( p >0.05). Evaluation of void dimensions showed no score 3 in any of the study groups and the dimensions of all the voids conformed to score 2. Under the limitations of the present study, use of ultrasonic mixing and manual placement techniques resulted in a decrease in the number of voids in the apical plug. Key words: Apical plug, MTA, ultrasonic, void.
Numerical investigation on pulsating heat pipes with nitrogen or hydrogen
NASA Astrophysics Data System (ADS)
Y Han, D.; Sun, X.; Gan, Z. H.; Y Luo, R.; Pfotenhauer, J. M.; Jiao, B.
2017-12-01
With flexible structure and excellent performance, pulsating heat pipes (PHP) are regarded as a great solution to distribute cooling power for cryocoolers. The experiments on PHPs with cryogenic fluids have been carried out, indicating their efficient performances in cryogenics. There are large differences in physical properties between the fluids at room and cryogenic temperature, resulting in their different heat transfer and oscillation characteristics. Up to now, the numerical investigations on cryogenic fluids have rarely been carried out. In this paper, the model of the closed-loop PHP with multiple liquid slugs and vapor plugs is performed with nitrogen and hydrogen as working fluids, respectively. The effects of heating wall temperature on the performance of close-looped PHPs are investigated and compared with that of water PHP.
LEO to ground optical communications from a small satellite platform
NASA Astrophysics Data System (ADS)
Rose, T. S.; Janson, S. W.; LaLumondiere, S.; Werner, N.; Hinkley, D. H.; Rowen, D. W.; Fields, R. A.; Welle, R. P.
2015-03-01
A pair of 2.2 kg CubeSats using COTS hardware is being developed for a proof-of-principle optical communications demo from a 450-600 km LEO orbit to ground. The 10x10x15 cm platform incorporates a 25% wall-plug efficient 10-W Yb fiber transmitter emitting at 1.06 μm. Since there are no gimbals on board, the entire spacecraft is body-steered toward the ground station. The pointing accuracy of the LEO craft, which governs the data rate capability, is expected to be ~ 0.1-0.2 deg. Two optical ground stations, located at the Mt. Wilson observatory, have receiver apertures of 30 and 80 cm. Launch of the CubeSat pair is anticipated to be mid to late 2015.
Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.
2010-01-01
A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Teaching Introductory Mineralogy With the GeoWall
NASA Astrophysics Data System (ADS)
Anderson, C. D.; Haymon, R. M.
2003-12-01
Mineralogy, like many topics in Earth Sciences, contains inherently three-dimensional topics that are difficult to teach. Concepts such as crystal symmetry and forms, Miller indices, the polymerization of silica tetrahedra and resulting structures of silicate mineral groups, and the interaction of light and minerals are particularly difficult. Two-dimensional diagrams are limited in their effectiveness, and physical models, while effective, are expensive and do not work as well in large class settings. The GeoWall system brings the effectiveness of physical models to the large classroom. In Fall 2003, we will integrate the GeoWall into our introductory mineralogy classes at UCSB using a combination of commercial software, atomic structure models available on the web, and custom content created in-house. The commercial software SHAPE (www.shapesoftware.com) allows users to build and display crystal shapes and their symmetry. Though not designed for the GeoWall, the software's stereopair display mode works perfectly on the system. Using the Chime web browser plug-in (www.mdl.com), computer models of silicate minerals available from the Virtual Museum of Minerals and Molecules (www.soils.umn.eduvirtual_museum) provide an interactive display of silicate mineral structure that illustrates the tetrahedral framework. Again, while not developed for the GeoWall, the Chime plug-in works seamlessly with the GeoWall hardware. 3-D GeoWall images that display light paths through minerals, and reveal relationships between crystal symmetry and optical indicatrix properties, have been developed in-house using a combination of SHAPE and 3D modeling software. The 3-D GeoWall images should convey in an instant these difficult concepts that students historically have struggled to visualize. Initial assessment of the GeoWall's effectiveness as a mineralogy teaching aid at UCSB in Fall 2003 will come from the instructor's impressions and by comparing test scores with classes from previous years.
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
In Situ Repair of Deteriorated Concrete in Hydraulic Structures: Feasibility Study
1987-05-01
because of its severe deterioration. Examination of the structure had revealed extensive cracking in the beams , columns , and walls as well as pockets of...used extensively in hydraulic structures, such as dams, spill- ways, lock chambers, and bridge support columns and piers. The Corps of Engineers...Figure 6. Repair of crack by post reinforcement. lli FORM KEY WITH PRECAST CONCRETE OR MORTAR PLUGS SET IN BITI.MEN, HoLE DRILLED IN STEM OF WALL
Nietubyc, Robert; Lorkiewicz, Jerzy; Sekutowicz, Jacek; ...
2018-02-14
Superconducting photoinjectors have a potential to be the optimal solution for moderate and high current cw operating free electron lasers. For this application, a superconducting lead (Pb) cathode has been proposed to simplify the cathode integration into a 1.3 GHz, TESLA-type, 1.6-cell long purely superconducting gun cavity. In the proposed design, a lead film several micrometres thick is deposited onto a niobium plug attached to the cavity back wall. Traditional lead deposition techniques usually produce very non-uniform emission surfaces and often result in a poor adhesion of the layer. A pulsed plasma melting procedure reducing the non-uniformity of the leadmore » photocathodes is presented. In order to determine the parameters optimal for this procedure, heat transfer from plasma to the film was first modelled to evaluate melting front penetration range and liquid state duration. The obtained results were verified by surface inspection of witness samples. The optimal procedure was used to prepare a photocathode plug, which was then tested in an electron gun. In conclusion, the quantum efficiency and the value of cavity quality factor have been found to satisfy the requirements for an injector of the European-XFEL facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nietubyc, Robert; Lorkiewicz, Jerzy; Sekutowicz, Jacek
Superconducting photoinjectors have a potential to be the optimal solution for moderate and high current cw operating free electron lasers. For this application, a superconducting lead (Pb) cathode has been proposed to simplify the cathode integration into a 1.3 GHz, TESLA-type, 1.6-cell long purely superconducting gun cavity. In the proposed design, a lead film several micrometres thick is deposited onto a niobium plug attached to the cavity back wall. Traditional lead deposition techniques usually produce very non-uniform emission surfaces and often result in a poor adhesion of the layer. A pulsed plasma melting procedure reducing the non-uniformity of the leadmore » photocathodes is presented. In order to determine the parameters optimal for this procedure, heat transfer from plasma to the film was first modelled to evaluate melting front penetration range and liquid state duration. The obtained results were verified by surface inspection of witness samples. The optimal procedure was used to prepare a photocathode plug, which was then tested in an electron gun. In conclusion, the quantum efficiency and the value of cavity quality factor have been found to satisfy the requirements for an injector of the European-XFEL facility.« less
Fraioli, F; Serra, G; Ciarlo, G; Massaccesi, V; Liberali, S; Fiorelli, A; Macrì, F; Catalano, C
2013-04-01
The authors evaluated the role of magnetic resonance (MR) imaging of the chest in comparison with chest X-ray in the follow-up of pulmonary abnormalities detected by computed tomography (CT) in paediatric patients with middle lobe syndrome. Seventeen patients with middle lobe syndrome (mean age 6.2 years) underwent chest CT at the time of diagnosis (100 kV, CARE dose with quality reference of 70 mAs; collimation 24×1.2 mm; rotation time 0.33 s; scan time 5 s); at follow-up after a mean of 15.3 months, all patients were evaluated with chest MR imaging with a respiratory-triggered T2-weighted BLADE sequence (TR 2,000; TE 27 ms; FOV 400 mm; flip angle 150°; slice thickness 5 mm) and chest X-ray. Images from each modality were assessed for the presence of pulmonary consolidations, bronchiectases, bronchial wall thickening and mucous plugging. Hilar and mediastinal lymphadenopathies were assessed on CT and MR images. Baseline CT detected consolidations in 100% of patients, bronchiectases in 35%, bronchial wall thickening in 53% and mucous plugging in 35%. MR imaging and chest X-ray identified consolidations in 65% and 35%, bronchiectases in 35% and 29%, bronchial wall thickening in 59% and 6% and mucous plugging in 25% and 0%, respectively. Lymphadenopathy was seen in 64% of patients at CT and in 47% at MR imaging. Patients with middle lobe syndrome show a wide range of parenchymal and bronchial abnormalities at diagnosis. Compared with MR imaging, chest X-ray seems to underestimate these changes. Chest MR imaging might represent a feasible and radiation-free option for an overall assessment of the lung in the follow-up of patients with middle lobe syndrome.
Plug cluster engine concept for in-space missions
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Aukerman, C. A.
1979-01-01
The development of a suitable orbital transfer vehicle (OTV) engine is discussed. The OTV's dimensions are limited by those of the Space Shuttle payload bay on which it will be carried. An approach to utilize the available diameter to achieve high area ratio and thus high engine performance, is presented. Unconventional nozzles, such as clusters of small thrusters around a large diameter contoured plug, are investigated to arrive at engine designs which feature lower chamber pressures, with attendant lower heat flux, lower wall temperature, longer fatigue life, and less critical turbomachinery. Attention is also given to plug nozzle technology, high area ratio module- and scarfed bell- Plug Cluster Engine (PCE) concepts, as well as PCE performance, weight, and assessment. A conceptual design of a PCE formed from a cluster of high area ratio, scarfed, bell nozzles proved to be competitive with bell and spike nozzle engines. PCE advantages cited include increased payload length due to shorter engine length, ability to increase or decrease the number of modules and thereby the thrust, and low cost due to utilization of off-the-shelf technology.
NASA Astrophysics Data System (ADS)
Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.
2017-11-01
Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.
Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.
2010-07-01
Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.
Venditti, Tullio; D'hallewin, Guy; Ladu, Gianfranca; Petretto, Giacomo L; Pintore, Giorgio; Labavitch, John M
2018-03-25
The present study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with NaHCO 3 , at two different pH (5 and 8.3), on cell wall-degrading enzymes activity, over a period of 72 h. The treatment with NaHCO 3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, if compared to the control or the same treatment at pH 5. On the contrary, the pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5 treated plugs up to 72 h. The rapid increase in pectin methyl esterase activity, under alkaline conditions, is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. This article is protected by copyright. All rights reserved.
Secretion clearance strategies in Australian and New Zealand Intensive Care Units.
Ntoumenopoulos, George; Hammond, Naomi; Watts, Nicola R; Thompson, Kelly; Hanlon, Gabrielle; Paratz, Jennifer D; Thomas, Peter
2017-06-26
To describe the processes of care for secretion clearance in adult, intubated and mechanically ventilated patients in Australian and New Zealand Intensive Care Units (ICUs). A prospective, cross-sectional study was conducted through the Australian and New Zealand Intensive Care Society Clinical Trials Group (ANZICS CTG) Point Prevalence Program. Forty-seven ICUs collected data from 230 patients intubated and ventilated on the study day. Secretion clearance techniques beyond standard suctioning were used in 84/230 (37%) of patients during the study period. Chest wall vibration 34/84 (40%), manual lung hyperinflation 24/84 (29%), chest wall percussion 20/84 (24%), postural drainage/patient positioning 17/84 (20%) and other techniques including mobilisation 15/84 (18%), were the most common secretion clearance techniques employed. On average (SD), patients received airway suctioning 8.8 (5.0) times during the 24-h study period. Mucus plugging events were infrequent (2.7%). The additional secretion clearance techniques were provided by physiotherapy staff in 24/47 (51%) ICUs and by both nursing and physiotherapy staff in the remaining 23/47 (49%) ICUs. One-third of intubated and ventilated patients received additional secretion clearance techniques. Mucus plugging events were infrequent with these additional secretion clearance approaches. Prospective studies must examine additional secretion clearance practices, prevalence of mucus plugging episodes and impact on patient outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Can eccentric arterial plaques alone cause flow stagnation points and favour thrombus incorporation?
Beneli, Cristina T; Barbosa, Priscila F; Floriano, Elaine M; Abreu, Mônica A; Ramalho, Fernando S; Júnior, Jorge Elias; Rossi, Marcos A; Ramos, Simone G
2009-01-01
We have used an experimental model of aorta stenosis, with a Plexiglas plug, simulating a stable atheromatous plaque that promotes local turbulence and thrombosis. With animal survival of more than 24 h, we followed the partial fibrinolysis of the thrombus as well as its posterior organization and incorporation to the arterial wall as a neointima for up to 30 days. The mushroom plug form permitted the development of recirculation and stasis areas around it, favouring this evolution. Despite noted limitations, this study demonstrates that thrombus incorporation can contribute to plaque extension, as it can promote recirculation and stasis areas. PMID:19563612
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).
ICESat-2 laser technology development
NASA Astrophysics Data System (ADS)
Edwards, Ryan; Sawruk, Nick W.; Hovis, Floyd E.; Burns, Patrick; Wysocki, Theodore; Rudd, Joe; Walters, Brooke; Fakhoury, Elias; Prisciandaro, Vincent
2013-09-01
A number of ICESat-2 system requirements drove the technology evolution and the system architecture for the laser transmitter Fibertek has developed for the mission.. These requirements include the laser wall plug efficiency, laser reliability, high PRF (10kHz), short-pulse (<1.5ns), relatively narrow spectral line-width, and wave length tunability. In response to these requirements Fibertek developed a frequency-doubled, master oscillator/power amplifier (MOPA) laser that incorporates direct pumped diode pumped Nd:YVO4 as the gain media, Another guiding force in the system design has been extensive hardware life testing that Fibertek has completed. This ongoing hardware testing and development evolved the system from the original baseline brass board design to the more robust flight laser system. The final design meets or exceeds all NASA requirements and is scalable to support future mission requirements.
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Septon, Kendall K
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).
Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries
NASA Astrophysics Data System (ADS)
Sankar, D. S.; Lee, Usik
2009-07-01
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel-Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.
Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality
NASA Astrophysics Data System (ADS)
Liu, Bo
2017-03-01
Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.
Engaging Tenants in Reducing Plug Load Energy Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schantz, Marta; Langner, Rois
Plug and Process Loads (PPLs) account for an increasingly large percentage of commercial building energy use in the U.S. due to the rising number of energy intensive plug-in devices. In addition, buildings are becoming more and more efficient and plug load energy use has become an increasingly pertinent component to achieving aggressive energy targets and netzero energy status. For multi-tenant buildings, controlling plug loads in tenant spaces can be a significant challenge. Luckily, there are a number of PPL reduction strategies, best practices, and lessons learned from numerous commercial real estate and higher education leaders who have successfully engaged buildingmore » occupants and tenants in reducing PPL energy use. This paper provides actionable PPL reduction strategies and best practices that building owners and managers can immediately apply to their own buildings.« less
Porous plug for Gravity Probe B
NASA Astrophysics Data System (ADS)
Wang, Suwen; Everitt, C. W. Francis; Frank, David J.; Lipa, John A.; Muhlfelder, Barry F.
2015-11-01
The confinement of superfluid helium for a Dewar in space poses a unique challenge due to its propensity to minimize thermal gradients by essentially viscous-free counterflow. This poses the risk of losing liquid through a vent pipe, reducing the efficiency of the cooling process. To confine the liquid helium in the Gravity Probe B (GP-B) flight Dewar, a porous plug technique was invented at Stanford University. Here, we review the history of the porous plug and its development, and describe the physics underlying its operation. We summarize a few missions that employed porous plugs, some of which preceded the launch of GP-B. The design, manufacture and flight performance of the GP-B plug are described, and its use resulted in the successful operation of the 2441 l flight Dewar on-orbit for 17.3 months.
Jet noise suppression by porous plug nozzles
NASA Technical Reports Server (NTRS)
Bauer, A. B.; Kibens, V.; Wlezien, R. W.
1982-01-01
Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.
Ceramic Borehole Seals for Nuclear Waste Disposal Applications
NASA Astrophysics Data System (ADS)
Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.
2015-12-01
Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural effects the plug will have on surrounding media. This paper will report on the state of the development effort and plans for a field demonstration in early 2016 in a cased well with traditional plug seal and strength measurements.
Delaney, Paul T.; Pollard, David D.
1981-01-01
We have studied a small group of minette dikes and plugs that crop out within a flat-lying sequence of siltstone and shale near Ship Rock, a prominent volcanic throat of tuff breccia in northwestern New Mexico. Seven dikes form a radial pattern about Ship Rock we describe in detail the northeastern dike, which has an outcrop length of about 2,900 m, an average thickness of 2.3 m, and a maximum thickness of 7.2 m. The dike is composed of 35 discrete segments arranged in echelon; orientation. of dike segments ranges systematically from N. 52? E. to N. 66? E. A prominent joint set strikes parallel to the segments and is localized within several tens of meters of the dike. Regional joint patterns display no obvious relation to dike orientation. Small offsets of segment contacts, as well as wedge-shaped bodies of crumpled host rock within segments mark the sites of coalescence of smaller segments during dike growth. Bulges in the dike contact, which represent a nondilational component of growth, indicate that wall rocks were brecciated and eroded during the flow of magma. Breccias make up about 9 percent of the 7,176-m 2 area of the dike, are concentrated in its southwest half, and are commonly associated with its thickest parts. We also describe three subcircular plugs; each plug is smaller than 30 m in diameter, is laterally associated with a dike, and contains abundant breccias. Field evidence indicates that these plugs grew from the dikes by brecciation and erosion of wallrocks and that the bulges in the contact of the northeastern dike represent an initial stage of this process. From continuum-mechanical models of host-rock deformation, we conclude that dike propagation was the dominant mechanism for creating conduits for magma ascent where the host rock was brittle and elastic. At a given driving pressure, dikes dilate to accept greater volumes of magma than plugs, and for a given dilation, less work is done on the host rocks. In addition, the pressure required for dike growth decreases with dike length. From numerical solutions for dilation of cracks oriented like segments of the northeastern dike, we find that we can best model the form of the dike by treating it as composed of 10 cracks rather than 35. We attribute this result to coalescence of adjacent segments below the present outcrop and to inelastic deformation at segment ends. Using a driving pressure of 2 MPa (20 bars), we estimate a shear modulus of about 10^3 MPa for the host rocks, in agreement with laboratory tests on soft shale. A propagation criterion based on stress intensity at the segment ends indicates a fracture toughness of the host rocks of about 100 MPa-m^? , a hundredfold greater than values reported from laboratory tests. Segmentation of fractures is common in many materials and has been observed during fissure eruptions at Kilauea Volcano in Hawaii. At the northeastern dike, we attribute segmentation to local rotation of the direction of least principal compressive stress. From continuum-mechanical models of magma and heat flow in idealized conduits, we conclude that magma flows far more rapidly and with less relative heat loss in plugs than in dikes. Although dikes are the preferred form for emplacement, plugs are the preferred form for the flow of magma. We present a numerical solution for volumetric flow rate and wall heat flux for the northeastern dike and find that although the flow rate is extremely sensitive to conduit geometry, the rate of heat loss to wall rocks is not. During emplacement of the northeastern dike, local flow rate increased where wall rocks were eroded and reached a maximum of about 45 times the mean initial rate, whereas the maximum rate of heat loss to wallrocks increased to only 1.6 times the mean initial rate. An inferred progression from continuous magma flow along a dike to flow from a plug agrees well with observations of volcanic eruptions that begin from fissures and later are localized at discrete vents. We
High-efficiency Light-emitting Devices based on Semipolar III-Nitrides
NASA Astrophysics Data System (ADS)
Oh, Sang Ho
In the future, the light-emitting diodes (LEDs) are expected to fully penetrate into the lighting market. A tremendous amount of energy will be saved through the LED-based lighting. Apparently, the amount of the energy saving strongly depends on the efficiency of the LEDs: this dissertation is all about the efficiency. First, the III-nitride LEDs grown on free-standing semipolar (202¯1¯) GaN substrates will be discussed. In many studies, LEDs grown on semipolar III-nitride substrates exhibited high efficiency at high current density. In this dissertation, "droop-free" (202¯1¯) blue LEDs will be demonstrated, especially for the standard industrial chip size. In addition, contact optimization process for (202¯1¯) LEDs will be discussed. Series resistance of the (202¯1¯) LED devices has been improved through the contact optimization. As a result, the wall-plug efficiency (WPE) of the device was boosted by ˜50%, compared to that of the previously reported (202¯1¯) LEDs. Also, chip shaping for the semipolar LEDs to enhance the extraction efficiency will be covered as well. A new mesa design will be introduced, and the cleaving scheme for semipolar LED wafers will be thoroughly discussed. Lastly, as a future work, selective area growth of ZnO light extraction features will be introduced and its preliminary result will be demonstrated.
Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric
AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles electricity to improve fuel efficiency. Pre-Owned Vehicles Learn about buying and selling pre-owned and plug-in electric vehicles. Learn more about the benefits and considerations of electricity as a
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis.
Kautz, Roger A; Goetzinger, Wolfgang K; Karger, Barry L
2005-01-01
An automated system for loading samples into a microcoil NMR probe has been developed using segmented flow analysis. This approach enhanced 2-fold the throughput of the published direct injection and flow injection methods, improved sample utilization 3-fold, and was applicable to high-field NMR facilities with long transfer lines between the sample handler and NMR magnet. Sample volumes of 2 microL (10-30 mM, approximately 10 microg) were drawn from a 96-well microtiter plate by a sample handler, then pumped to a 0.5-microL microcoil NMR probe as a queue of closely spaced "plugs" separated by an immiscible fluorocarbon fluid. Individual sample plugs were detected by their NMR signal and automatically positioned for stopped-flow data acquisition. The sample in the NMR coil could be changed within 35 s by advancing the queue. The fluorocarbon liquid wetted the wall of the Teflon transfer line, preventing the DMSO samples from contacting the capillary wall and thus reducing sample losses to below 5% after passage through the 3-m transfer line. With a wash plug of solvent between samples, sample-to-sample carryover was <1%. Significantly, the samples did not disperse into the carrier liquid during loading or during acquisitions of several days for trace analysis. For automated high-throughput analysis using a 16-second acquisition time, spectra were recorded at a rate of 1.5 min/sample and total deuterated solvent consumption was <0.5 mL (1 US dollar) per 96-well plate.
Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization.
Rodriguez-Navarro, Carlos; Rodriguez-Gallego, Manuel; Ben Chekroun, Koutar; Gonzalez-Muñoz, Maria Teresa
2003-04-01
Increasing environmental pollution in urban areas has been endangering the survival of carbonate stones in monuments and statuary for many decades. Numerous conservation treatments have been applied for the protection and consolidation of these works of art. Most of them, however, either release dangerous gases during curing or show very little efficacy. Bacterially induced carbonate mineralization has been proposed as a novel and environmentally friendly strategy for the conservation of deteriorated ornamental stone. However, the method appeared to display insufficient consolidation and plugging of pores. Here we report that Myxococcus xanthus-induced calcium carbonate precipitation efficiently protects and consolidates porous ornamental limestone. The newly formed carbonate cements calcite grains by depositing on the walls of the pores without plugging them. Sonication tests demonstrate that these new carbonate crystals are strongly attached to the substratum, mostly due to epitaxial growth on preexisting calcite grains. The new crystals are more stress resistant than the calcite grains of the original stone because they are organic-inorganic composites. Variations in the phosphate concentrations of the culture medium lead to changes in local pH and bacterial productivity. These affect the structure of the new cement and the type of precipitated CaCO(3) polymorph (vaterite or calcite). The manipulation of culture medium composition creates new ways of controlling bacterial biomineralization that in the future could be applied to the conservation of ornamental stone.
Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization
Rodriguez-Navarro, Carlos; Rodriguez-Gallego, Manuel; Ben Chekroun, Koutar; Gonzalez-Muñoz, Maria Teresa
2003-01-01
Increasing environmental pollution in urban areas has been endangering the survival of carbonate stones in monuments and statuary for many decades. Numerous conservation treatments have been applied for the protection and consolidation of these works of art. Most of them, however, either release dangerous gases during curing or show very little efficacy. Bacterially induced carbonate mineralization has been proposed as a novel and environmentally friendly strategy for the conservation of deteriorated ornamental stone. However, the method appeared to display insufficient consolidation and plugging of pores. Here we report that Myxococcus xanthus-induced calcium carbonate precipitation efficiently protects and consolidates porous ornamental limestone. The newly formed carbonate cements calcite grains by depositing on the walls of the pores without plugging them. Sonication tests demonstrate that these new carbonate crystals are strongly attached to the substratum, mostly due to epitaxial growth on preexisting calcite grains. The new crystals are more stress resistant than the calcite grains of the original stone because they are organic-inorganic composites. Variations in the phosphate concentrations of the culture medium lead to changes in local pH and bacterial productivity. These affect the structure of the new cement and the type of precipitated CaCO3 polymorph (vaterite or calcite). The manipulation of culture medium composition creates new ways of controlling bacterial biomineralization that in the future could be applied to the conservation of ornamental stone. PMID:12676699
NASA Astrophysics Data System (ADS)
Done, Bogdan
2017-10-01
Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.
Ultrasonic level sensors for liquids under high pressure
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.
1986-01-01
An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.
Abadeh, Aryan; Lew, Roger R
2013-11-01
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
[Plug-technique for umbilical hernia repair in the adult].
Brancato, G; Privitera, A; Gandolfo, L; Donati, M; Caglià, P
2002-02-01
Umbilical hernia represents 6% of all abdominal wall hernias in the adult. Surgical repair should always be carried out due to possible occurrence of complications. Aim of this paper is to evaluate the efficacy of the plug-technique. From October 1995 to April 2000, the authors performed 21 operations for acquired umbilical hernia with a defect smaller than 4 cm. Local anesthesia was used and a light intravenous sedation added in particularly anxious patients. The repair was achieved by insertion of a polypropylene dart plug sutured to the margins of the hernial defect. All patients were up and about straightaway and were discharged within 24 hours of surgery. Postoperative pain was mild and required hospital analgesia in only 19% of cases and domiciliary analgesia in 24%. During a follow-up ranging from 6 to 60 months (mean 30), only one recurrence has been recorded. This tension-free technique allows immediate rehabilitation, with few complications and a low recurrence rate.
Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.
2004-03-02
Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less
NASA Astrophysics Data System (ADS)
Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau
2018-05-01
Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.
NASA Astrophysics Data System (ADS)
Vijayamohan, Prithvi
As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed in water. These experiments indicate that the partially dispersed systems tend to be problematic and are more severe cases with respect to flow assurance when compared to systems where the water is completely dispersed in oil. We have found that the partially dispersed systems are distinct, and are not an intermediate case between water dominated, and water-in-oil emulsified systems. Instead the experiments indicate that the hydrate formation and plugging mechanism for these systems are very complex. Hydrate growth is very rapid for such systems when compared to 100% water cut systems. The plugging mechanism for these systems is a combination of various phenomena (wall growth, agglomeration, bedding/settling, etc). Three different oils with different viscosities have been used to investigate the transportability of hydrates with respect to oil properties. The experiments indicate that the transportability of hydrates increases with increase in oil viscosity. The data from the tests performed provide the basis for a mechanistic model for hydrate formation and plugging in partially dispersed systems. It is found that in systems that were in stratified flow regime before hydrate onset, the hydrates eventually settled on the pipe walls thereby decreasing the flow area for the flow of fluids. In systems that were in the slug flow regime before hydrate formation, moving beds of hydrates were the main cause for plugging. In both the flow regimes, the systems studied entered a plugging regime beyond a certain hydrate concentration. This is termed as φplugging onset and can be used as an indicator to calculate the amount of hydrates that can be transported safely without requiring any additional treatment for a given set of flow characteristics. A correlation to calculate this hydrate concentration based on easily accessible parameters is developed in terms of flow characteristics and oil properties. The work performed in this thesis has enhanced the understanding of the hydrate plug mechanism in pipelines having high amounts of water. This work has also shown the effect of hydrate formation in different flow regimes thereby shedding light on the effects of hydrates on multiphase flow and vice versa. Lessons resulting from this work could be incorporated into flow assurance models, as well as operating company production strategies to reduce or mitigate hydrate plugging risks in complex multiphase systems.
Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun
2015-01-01
We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.
Low-Light-Level InGaAs focal plane arrays with and without illumination
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2010-04-01
Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.
Pulsed photonic fabrication of nanostructured metal oxide thin films
NASA Astrophysics Data System (ADS)
Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.
2017-09-01
Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.
ERIC Educational Resources Information Center
Rubin, Milton D.
1974-01-01
Attempts to show the feasibility of an energy conservation policy based on a greatly improved efficiency of use of energy. Considers efficiency in the industrial, residential, commercial, and transporation sectors. (GS)
Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-04-01
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less
Portal vein embolization with plug/coils improves hepatectomy outcome.
Malinowski, Maciej; Geisel, Dominik; Stary, Victoria; Denecke, Timm; Seehofer, Daniel; Jara, Maximillian; Baron, Annekathrin; Pratschke, Johann; Gebauer, Bernhard; Stockmann, Martin
2015-03-01
Portal vein embolization (PVE) has become the standard of care before extended hepatectomy. Various PVE methods using different embolization materials have been described. In this study, we compared PVE with polyvinyl alcohol particles alone (PVA only) versus PVA with plug or coils (PVA + plug/coils). Patients undergoing PVE before hepatectomy were included. PVA alone was used until December 2013, thereafter plug or coils were placed in addition. The volume of left lateral liver lobe (LLL), clinical parameters, and liver function tests were measured before PVE and resection. A total of 43 patients were recruited into the PVA only group and 42 were recruited into the PVA + plug/coils group. There were no major differences between groups except significantly higher total bilirubin level before PVE in the PVA only group, which improved before hepatectomy. Mean LLL volume increased by 25.7% after PVE in the PVA only group and by 44% in the PVA + plug/coils group (P < 0.001). Recanalization was significantly less common in the PVA + plug/coils group. In multivariate regression, initial LLL volume and use of plug or coils were the only parameters influencing LLL volume increase. The postoperative liver failure rate was significantly reduced in PVA + plug/coils group (P = <0.001). PVE using PVA particles together with plug or coils is a safe and efficient method to increase future liver remnant volume. The additional central embolization with plug or coils led to an increased hypertrophy, due to lower recanalization rates, and subsequently decreased incidence of postoperative liver failure. No additional procedure-specific complications were observed in this series. Copyright © 2015 Elsevier Inc. All rights reserved.
Design and force analysis of end-effector for plug seedling transplanter.
Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua
2017-01-01
Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.
Design and force analysis of end-effector for plug seedling transplanter
Hu, Yang; Jiang, Huanyu; Tong, Junhua
2017-01-01
Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting. PMID:28678858
NREL's Work for the U.S. Navy Illuminates Energy and Cost Savings | News
load controls and whole-building energy efficiency retrofits as good investments for the Navy. " Program Director Steve Gorin said. Advanced power strips, a plug load control technology that cuts power and an office building with capacity for roughly 100 staff. While plug load savings depend on what can
Selecting a Control Strategy for Plug and Process Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.; Sheppy, M.; Brackney, L.
2012-09-01
Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less
Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility
Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon
2015-01-01
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets. PMID:26594263
Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility.
Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon
2015-11-01
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets.
Plug identification in drainage system using electromagnetic wave
NASA Astrophysics Data System (ADS)
Hijriani, Arifa; Utama, Aji Surya; Boas, Andrianus; Mukti, M. Ridho; Widodo
2017-07-01
The evaluation of drainage system's performance is an important thing to do to prevent flooding. Conventionally the Government evaluates the drainage system by opening one by one the lid of drainage and detects the plug manually. This method is not effective and efficient because this method need many people, much time and relatively expensive. The purpose of this paper is to identify plugs in drainage system in G St. at Bandung Institute of Technology by using electromagnetic wave. Ground Penetrating Radar (GPR) is one of geophysics method that using electromagnetic wave with high frequency. GPR is a non-destructive method with high resolution imaging for shallow depth (˜100m) and relatively cheap. We could identify the plug without opening the lid manually so that we could save much time. GPR's sensitivity is depends on resistivity, magnetic permeability, and permittivity of an object. The result of this research is we could identify the plug on the radargram that observed by a build-up amplitude anomaly.
Comparison of Performance of AN-F-58 Fuel and Gasoline in J34-WE-22 Turbojet Engine
NASA Technical Reports Server (NTRS)
Dowman, Harry W; Younger, George G
1949-01-01
As part of an investigation of the performance of AN-F-58 fuel in various types of turbojet engine, the performance of this fuel in a 3000-pound-thrust turbojet engine has been investigated in an altitude test chamber together with the comparative performance of 62-octane gasoline. The investigation of normal engine performance, which covered a range of engine speeds at altitudes from 5000 to 50,000 feet and flight Mach numbers up to 1.00, showed that both the net thrust and average turbine-outlet temperatures were approximately the same for both fuels. The specific fuel consumption and the combustion efficiency at the maximum engine speeds investigated were approximately the same for both fuels at altitudes up to 35,000 feet, but at an altitude of 50,000 feet the specific fuel consumption was about 9 percent higher and the combustion efficiency was correspondingly lower with the AN-F-58 fuel than with gasoline. The low-engine-speed blow-out limits were about the same for both fuels. Ignition of AN-F-58 fuel with the standard spark plug was possible only with the spark plug in a clean condition; ignition was impossible at all flight conditions investigated when the plug was fouled by an accumulation of liquid fuel from a preceding false start. Use of an extended-electrode spark plug provided satisfactory ignition over a slightly smaller range of altitudes and flight Mach numbers than for gasoline with the standard spark plug.
A&M. TAN607. Special service cubicle (hot cell). Details include Zpipe ...
A&M. TAN-607. Special service cubicle (hot cell). Details include Z-pipe and stepped plug penetrations through shielding wall. Ralph M. Parsons 902-3-ANP-607-A116. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-693-106767 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Optimization of a radiative membrane for gas sensing applications
NASA Astrophysics Data System (ADS)
Lefebvre, Anthony; Boutami, Salim; Greffet, Jean-Jacques; Benisty, Henri
2014-05-01
To engineer a cheap, portable and low-power optical gas sensor, incandescent sources are more suitable than expensive quantum cascade lasers and low-efficiency light-emitting diodes. Such sources of radiation have already been realized, using standard MEMS technology, consisting in free standing circular micro-hotplates. This paper deals with the design of such membranes in order to maximize their wall-plug efficiency. Specification constraints are taken into account, including available energy per measurement and maximum power delivered by the electrical supply source. The main drawback of these membranes is known to be the power lost through conduction to the substrate, thus not converted in (useful) radiated power. If the membrane temperature is capped by technological requirements, radiative flux can be favored by increasing the membrane radius. However, given a finite amount of energy, the larger the membrane and its heat capacity, the shorter the time it can be turned on. This clearly suggests that an efficiency optimum has to be found. Using simulations based on a spatio-temporal radial profile, we demonstrate how to optimally design such membrane systems, and provide an insight into the thermo-optical mechanisms governing this kind of devices, resulting in a nontrivial design with a substantial benefit over existing systems. To further improve the source, we also consider tailoring the membrane stack spectral emissivity to promote the infrared signal to be sensed as well as to maximize energy efficiency.
Maximum drag reduction asymptotes and the cross-over to the Newtonian plug
NASA Astrophysics Data System (ADS)
Benzi, R.; de Angelis, E.; L'Vov, V. S.; Procaccia, I.; Tiberkevich, V.
2006-03-01
We employ the full FENE-P model of the hydrodynamics of a dilute polymer solution to derive a theoretical approach to drag reduction in wall-bounded turbulence. We recapture the results of a recent simplified theory which derived the universal maximum drag reduction (MDR) asymptote, and complement that theory with a discussion of the cross-over from the MDR to the Newtonian plug when the drag reduction saturates. The FENE-P model gives rise to a rather complex theory due to the interaction of the velocity field with the polymeric conformation tensor, making analytic estimates quite taxing. To overcome this we develop the theory in a computer-assisted manner, checking at each point the analytic estimates by direct numerical simulations (DNS) of viscoelastic turbulence in a channel.
Small Scale Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
Evaluation of using ferrofluid as an interface material for a field-reversible thermal connector
NASA Astrophysics Data System (ADS)
Yousif, Ahmed S.
The electrical functionality of an avionics chassis is limited due to heat dissipation limits. The limits arise due to the fact that components in an avionic computer boxes are packed very compactly, with the components mounted onto plug-in cards, and the harsh environment experienced by the chassis limits how heat can be dissipated from the cards. Convective and radiative heat transfer to the ambient are generally not possible. Therefore it is necessary to have heat transferred from the components conducted to the edge of the plug-in cards. The heat then needs to conduct from the card edge to a cold block that not only holds the card in place, but also removes the generated heat by some heat transfer fluid that is circulated through the cold block. The interface between the plug-in card and the cold block typically has a high thermal resistance since it is necessary for the card to have the capability to be re-workable, meaning that the card can be removed and then returned to the chassis. Reducing the thermal resistance of the interface is the objective of the current study and the topic of this thesis. The current design uses a pressure interface between the card and cold block. The contact pressure is increased through the addition of a wedgelock, which is a field-reversible mechanical connector. To use a wedgelock, the cold block has channels milled on the surface with widths that are larger than the thickness of the plug-in card and the un-expanded wedgelock. The card edge is placed in the channel and placed against one of the channel walls. A wedgelock is then placed between the card and the other channel wall. The wedgelock is then expanded by using either a screw or a lever. As the wedgelock expands it fills in the remaining channel gap and bears against the other face of the plug-in card. The majority of heat generated by the components on the plug-in card is forced to conduct from the card into the wall of the cold block, effectively a single sided, dry conduction heat transfer path. Having started as a student design competition named RevCon Challenge, work was performed to evaluate the use of new field-reversible thermal connectors. The new design proposed by the University of Missouri utilized oil based iron nanoparticles, commonly known as a ferrofluid, as a thermal interface material. By using a liquid type of interface material the channel gap can be reduced to a few micrometers, within machining tolerances, and heat can be dissipated off both sides of the card. The addition of nanoparticles improves the effective thermal conductivity of base fluid. The use of iron nanoparticles allows magnets to be used to hold the fluid in place, so the electronic cards may be easily inserted and removed while keeping the ferrofluid in the cold block channel. The ferrofluid-based design which was investigated has shown lower thermal resistance than the current wedgelock design. These results open the door for further development of electronic cards by using higher heat emitting components without compromising the simplicity of attaching/detaching cards from cooling plates.
Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen
2017-09-01
This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S.; Van Berkel, Gary J.
2011-08-10
The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) (J. Am. Soc. Mass Spectrom, 2011) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injectionmore » plug peak widths were consistent for plug hold times as long as the 8 minute maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Lastly, using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.« less
Susceptibility-matched plugs for microcoil NMR probes
NASA Astrophysics Data System (ADS)
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.
Susceptibility-matched plugs for microcoil NMR probes.
Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Susceptibility-matched plugs for microcoil NMR probes
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-01-01
For mass limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5 to 2 μL) and larger volume (15 to 20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6 to 12 fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Cheung, Iris; Lanzisera, Steven
This report documents the technical evaluation of a collaborative research, development, and demonstration (RD&D) project that aims to address energy efficiency of Miscellaneous and Electronic Loads (MELs) (referred to as plug loads interchangeably in this report) using load monitoring and control devices. The goal s of this project are to identify and provide energy efficiency and building technologies to exemplary information technology (IT) office buildings, and to assist in transforming markets via technical assistance and engagement of Indian and U.S. stakeholders. This report describes the results of technology evaluation and United States – India collaboration between the Lawrence Berkeley Nationalmore » Laboratory (LBNL), Infosys Technologies Limited (India), and Smartenit, Inc. (U.S.) to address plug - load efficiency. The conclusions and recommendations focus on the larger benefits of such technologies and their impacts on both U.S. and Indian stakeholders.« less
Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars
NASA Astrophysics Data System (ADS)
Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.
2007-02-01
There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.
Influence of AZO stair-like transparent layers on GaN-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Liou, Syuan-Hao; Tsai, Jung-Hui; Liu, Wen-Chau; Lin, Pao-Sheng; Chen, Yu-Chi
2017-10-01
The GaN-based light-emitting diodes (LEDs) with various height ratios of aluminum-doped zinc oxide (AZO) stair-like transparent layers are fabricated and comparatively investigated. The characteristics of the LEDs with conventional plane AZO transparent layer (device A) and AZO stair-like transparent layers having height ratios of 1:1:1 (device B), 1.5:1:0.5 (device C), and 0.5:1:1.5 (device D) are compared. Attributed that the lower resistance is formed in the thinner AZO film of the stair-like structure, the current crowding effect is improved for extending the whole current-spreading area. Experimentally, the forward turn-on voltages of the LEDs are reduced from 3.68 V to 3.42 V as the plane AZO transparent layer is processed to form the stair-like transparent layers with height ratio of 1:1:1. In addition, the light luminous flux, output power, external quantum efficiency, and wall-plug efficiency of the device B are enhanced by 30.5, 12.1, 22.2, and 20.7%, respectively, as compared to the traditional device with plane AZO transparent layer.
760nm: a new laser diode wavelength for hair removal modules
NASA Astrophysics Data System (ADS)
Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen
2015-02-01
A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.
Influence of p-GaN annealing on the optical and electrical properties of InGaN/GaN MQW LEDs
NASA Astrophysics Data System (ADS)
Sun, Li; Weng, Guo-En; Liang, Ming-Ming; Ying, Lei-Ying; Lv, Xue-Qin; Zhang, Jiang-Yong; Zhang, Bao-Ping
2014-06-01
Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance.
MITHRA 1.0: A full-wave simulation tool for free electron lasers
NASA Astrophysics Data System (ADS)
Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.
2018-07-01
Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.
Design of a sample acquistion system for the Mars exobiological penetrator
NASA Technical Reports Server (NTRS)
Thomson, Ron; Gwynne, Owen
1988-01-01
The Mars Exobiological Penetrator will be imbedded into several locations on the Martian surface. It contains various scientific instruments, such as an Alpha-Particle Instrument (API), Differential Scanning Calorimeter (DSC), Evolved Gas Analyzer (EGA) and accelerometers. A sample is required for analysis in the API and DSC. To avoid impact contaminated material, this sample must be taken from soil greater than 2 cm away from the penetrator shell. This study examines the design of a dedicated sampling system including deployment, suspension, fore/after body coupling, sample gathering and placement. To prevent subsurface material from entering the penetrator sampling compartment during impact, a plug is placed in the exit hole of the wall. A U-lever device is used to hold this plug in the penetrator wall. The U-lever rotates upon initial motion of the core-grinder mechanism (CGM), releasing the plug. Research points to a combination of coring and grinding as a plausible solution to the problem of dry drilling. The CGM, driven by two compressed springs, will be deployed along a tracking system. A slowly varying load i.e., springs, is favored over a fixed displacement motion because of its adaptability to different material hardness. However, to accommodate sampling in a low density soil, two dash pots set a maximum transverse velocity. In addition, minimal power use is achieved by unidirectional motion of the CGM. The sample will be transported to the scientific instruments by means of a sample placement tray that is driven by a compressed spring to avoid unnecessary power usage. This paper also explores possible modifications for size, weight, and time as well as possible future studies.
Article removal device for glovebox
Guyer, R.H.; Leebl, R.G.
1973-12-01
An article removal device for a glovebox is described comprising a conduit extending through a glovebox wall which may be closed by a plug within the glovebox, and a fire-resistant container closing the outer end of the conduit and housing a removable container for receiving pyrophoric or otherwise hazardous material without disturbing the interior environment of the glovebox or adversely affecting the environment outside of the glovebox. (Official Gazette)
Forisome performance in artificial sieve tubes.
Knoblauch, Michael; Stubenrauch, Mike; van Bel, Aart J E; Peters, Winfried S
2012-08-01
In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca(2+)-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca(2+)-driven deformation that is possible in forisomes of Vicia faba, the standard object of earlier research, has been underestimated substantially. Forisomes deform particularly strongly under reducing conditions and high sugar concentrations, as typically found in sieve tubes. In contrast to our previous inference, Ca(2+)-inducible forisome swelling certainly seems sufficient to plug sieve tubes. This conclusion was supported by 3D-reconstructions of forisome plugs in Canavalia gladiata. For a direct test, we built microfluidics chips with artificial sieve tubes. Using fluorescent dyes to visualize flow, we demonstrated the complete blockage of these biomimetic microtubes by Ca(2+)-induced forisome plugs, and concluded by analogy that forisomes are capable of regulating phloem flow in vivo. © 2012 Blackwell Publishing Ltd.
Alternate tube plugging criteria for steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cueto-Felgueroso, C.; Aparicio, C.B.
1997-02-01
The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned themore » Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.« less
NASA Technical Reports Server (NTRS)
Forouhar, Siamak; Soibel, Alexander; Frez, Clifford; Qiu, Yueming; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; Tsvid, G.; Belenky, G.;
2010-01-01
The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. The minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental frequency of the target gases which are mostly in the 3.0-5.0 micrometers wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 micrometers and quantum cascade (QC) lasers in the 4.0-5.0 micrometers range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.
Unidirectional photonic wire laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.
Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less
High-power and highly reliable 638-nm band BA-LD for CW operation
NASA Astrophysics Data System (ADS)
Nishida, Takehiro; Kuramoto, Kyosuke; Abe, Shinji; Kusunoki, Masatsugu; Miyashita, Motoharu; Yagi, Tetsuya
2018-02-01
High-power laser diodes (LDs) are strongly demanded as light sources of display applications. In multiple spatial light modulator-type projectors or liquid crystal displays, the light source LDs are operated under CW condition. The high-power 638-nm band broad-area LD for CW operation was newly developed. The LD consisted of two stripes with each width of 75 μm to reduce both an optical power density at a front facet and a threshold current. The newly improved epitaxial technology was also applied to the LD to suppress an electron overflow from an active layer. The LD showed superior output characteristics, such as output of 1.77 W at case temperature of 55 °C with wall plug efficiency (WPE) of 23%, which was improved by 40% compared with the current product. The peak WPE at 25 °C reached 40.6% under the output power of 2.37 W, CW, world highest.
Assessment of commercial optical amplifiers for potential use in space applications
NASA Astrophysics Data System (ADS)
Barbero, Juan; Sotom, Michel; Benazet, Benoit; Esquivias, Ignacio; López Hernández, Francisco José
2017-11-01
This paper describes the activities and results of an ESA-funded project concerned with the assessment of optical amplifier technologies and products for applications in fiber optic subsystems of future satellite payloads. On-board applications are briefly introduced, together with associated system-level requirements. Optical amplifier technologies, research achievements and products are reviewed. They are compared in terms of current performance, perspectives and suitability for the target space applications. Optical fibre amplifiers, not limited to Erbium-doped amplifiers, Erbium-doped waveguide amplifiers and Semiconductor Optical Amplifiers are covered. The review includes analysis and trade-off of all performance parameters including saturation output power, noise figure, polarisation maintaining capability, wall-plug efficiency, and mass and size. A selection of optical amplifier products for further evaluation and testing is presented. Results of extensive testing covering both functional performance and environmental behaviour (mechanical, thermal vacuum, radiations) aspects are reported. Most of the work has been completed, but an extension has been proposed for checking and comparing the behaviour of doped fibers under gamma radiation.
Lai, Fang-I; Yang, Jui-Fu
2013-05-17
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.
Terahertz GaAs/AlAs quantum-cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Rozas, G.
2016-03-07
We have realized GaAs/AlAs quantum-cascade lasers operating at 4.75 THz exhibiting more than three times higher wall plug efficiencies than GaAs/Al{sub 0.25}Ga{sub 0.75}As lasers with an almost identical design. At the same time, the threshold current density at 10 K is reduced from about 350 A/cm{sup 2} for the GaAs/Al{sub 0.25}Ga{sub 0.75}As laser to about 120 A/cm{sup 2} for the GaAs/AlAs laser. Substituting AlAs for Al{sub 0.25}Ga{sub 0.75}As barriers leads to a larger energy separation between the subbands reducing the probability for leakage currents through parasitic states and for reabsorption of the laser light. The higher barriers allow for a shift of themore » quasi-continuum of states to much higher energies. The use of a binary barrier material may also reduce detrimental effects due to the expected composition fluctuations in ternary alloys.« less
NASA Astrophysics Data System (ADS)
Forouhar, S.; Frez, C.; Franz, K. J.; Ksendzov, A.; Qiu, Y.; Soibel, K. A.; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; Belenky, G.
2011-01-01
The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. Achieving a minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental absorption lines of the target gases, which are mostly in the 3.0-5.0 μm wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 μm and quantum cascade (QC) lasers in the 4.0-5.0 μm range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.
Unidirectional photonic wire laser
Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.; ...
2017-08-07
Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less
NASA Astrophysics Data System (ADS)
Schneider, R. P.; Lott, J. A.; Lear, K. L.; Choquette, K. D.; Crawford, M. H.; Kilcoyne, S. P.; Figiel, J. J.
1994-12-01
Metalorganic vapor phase epitaxy (MOVPE) is used for the growth of vertical-cavity surface-emitting laser (VCSEL) diodes. MOVPE exhibits a number of important advantages over the more commonly-used molecular-beam epitaxial (MBE) techniques, including ease of continuous compositional grading and carbon doping for low-resistance p-type distributed Bragg reflectors (DBRs), higher growth rates for rapid throughput and greater versatility in choice of materials and dopants. Planar gain-guided red VCSELs based on AlGaInP/AlGaAs heterostructures lase continuous-wave at room temperature, with voltage thresholds between 2.5 and 3 V and maximum power outputs of over 0.3 mW. Top-emitting infra-red (IR) VCSELs exhibit the highest power-conversion (wall-plug) efficiencies (21%), lowest threshold voltage (1.47 V), and highest single mode power (4.4 mW from an 8 μm device) yet reported. These results establish MOVPE as a preferred growth technique for this important new family of photonic devices.
Distributed feedback interband cascade lasers with top grating and corrugated sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Feng; Stocker, Michael; Pham, John
Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFBmore » ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Jeraputra, Chuttchaval; Tiptipakorn, Supun
2017-05-01
This paper presents performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators. The proposed regenerative brake recycles the energy loss of a dynamic brake and feeds into the grid while an elevator inverter is operating in the braking mode. According to field measurement of energy consumption, it reveals that the efficiency can be improved as much as 18%. The prototype of a regenerative brake 12 kW, 400V, 3ϕ is developed and tested on an elevator simulator. It is shown that it can transfer energy out of a DC capacitor before the dynamic brake kicks in. Further, an economic analysis is provided to carry out the payback period and the present worth equivalent to confirm economic feasibility.
NASA Astrophysics Data System (ADS)
Younse, Paulo
Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.
Three-dimensional model of surfactant replacement therapy
Filoche, Marcel; Tai, Cheng-Feng; Grotberg, James B.
2015-01-01
Surfactant replacement therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. It is widely successful for treating surfactant deficiency in premature neonates who develop neonatal respiratory distress syndrome (NRDS). However, when applied to adults with acute respiratory distress syndrome (ARDS), early successes were followed by failures. This unexpected and puzzling situation is a vexing issue in the pulmonary community. A pressing question is whether the instilled surfactant mixture actually reaches the adult alveoli/acinus in therapeutic amounts. In this study, to our knowledge, we present the first mathematical model of SRT in a 3D lung structure to provide insight into answering this and other questions. The delivery is computed from fluid mechanical principals for 3D models of the lung airway tree for neonates and adults. A liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug deposits a coating film on the airway wall and then splits unevenly at the bifurcation due to gravity. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published procedural methods, we show the neonatal lung is a well-mixed compartment, whereas the adult lung is not. The earlier, successful adult SRT studies show comparatively good index values implying adequate delivery. The later, failed studies used different protocols resulting in very low values of both indexes, consistent with inadequate acinar delivery. Reasons for these differences and the evolution of failure from success are outlined and potential remedies discussed. PMID:26170310
Narrowband infrared emitters for combat ID
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward
2007-04-01
There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.
Energy Efficient Engine Exhaust Mixer Model Technology
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Larkin, M.
1981-01-01
An exhaust mixer test program was conducted to define the technology required for the Energy Efficient Engine Program. The model configurations of 1/10 scale were tested in two phases. A parametric study of mixer design options, the impact of residual low pressure turbine swirl, and integration of the mixer with the structural pylon of the nacelle were investigated. The improvement of the mixer itself was also studied. Nozzle performance characteristics were obtained along with exit profiles and oil smear photographs. The sensitivity of nozzle performance to tailpipe length, lobe number, mixer penetration, and mixer modifications like scalloping and cutbacks were established. Residual turbine swirl was found detrimental to exhaust system performance and the low pressure turbine system for Energy Efficient Engine was designed so that no swirl would enter the mixer. The impact of mixer/plug gap was also established, along with importance of scalloping, cutbacks, hoods, and plug angles on high penetration mixers.
Lobell, G.M.
1958-02-11
This patent is drawn to an injection molding apparatus for producing a tube closed at one end wherein the normally unsupported end of the core located in the cavity during the injection of the molten material to fill the space between the core and cavity wall, which supporting means is automatically removed from operation during the forming of the closed end of the tube. This support means is a plug extending through the end of the core into a recess in the bottom of the cavity where the closed end of the tube is to be formed. The plug is spring pressed into said recess and is forced out of the recess by a slidable bushing at the top of the cavity which is moved against the force of the spring by the molten material when it fills the uppormost open end portion of the cavity, thereby permitting the closed end of the tube to be formed.
Final case for a stainless steel diagnostic first wall on ITER
NASA Astrophysics Data System (ADS)
Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.
2015-08-01
In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.
Measurement and Control of Electroosmotic Flow in Plastic Microchannels
NASA Astrophysics Data System (ADS)
Ross, David; Barker, Susan; Waddell, Emanuel; Johnson, Tim; Locascio, Laurie
2000-11-01
We have measured electroosmotic flow profiles in microchannels fabricated in a variety of commercially available plastics by imprinting using a silicon template and by UV laser ablation. It is possible to achieve nearly ideal plug flow profiles in straight imprinted channels made entirely of one material. In contrast, electroosmotic flow in imprinted channels constructed from two different materials and in channels fabricated using laser ablation show deviations from ideal plug flow resulting from non-uniformity of the surface charge density on the walls of the channels. We have also explored strategies for controlling electroosmotic flow through modification of the surface charge density. The techniques used to alter surface charge include the deposition of polyelectrolyte multilayers on channel surfaces and the use of combinations of imprinting and laser ablation in the fabrication of the channels. We will discuss the effectiveness of these strategies for controlling flow, sample dispersion, and mixing.
Self-Structuring of Granular material under Capillary Bulldozing
NASA Astrophysics Data System (ADS)
Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik
2017-06-01
An experimental observation of the structuring of a granular suspension under the progress of a gas/liquid meniscus in a narrow tube is reported here. The granular material is moved and compactifies as a growing accumulation front. The frictional interaction with the confining walls increases until the pore capillary entry pressure is reached. The gas then penetrates the clogged granular packing and a further accumulation front is formed at the far side of the plug. This cyclic process continues until the gas/liquid interface reaches the tube's outlet, leaving a trail of plugs in the tube. Such 1D pattern formation belongs to a larger family of patterning dynamics observed in 2D Hele-Shaw geometry. The cylindrical geometry considered here provides an ideal case for a theoretical modelling for forced granular matter oscillating between a long frictional phase and a sudden viscous fluidization.
Pulse combustor with controllable oscillations
Richards, George A.; Welter, Michael J.; Morris, Gary J.
1992-01-01
A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.
1996-10-01
A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the minemore » is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.« less
Literature Review - Vegetation on Levees
2010-12-01
seasonal high water and, which is therefore subject to water loading for periods of only a few days or weeks a year. As such, the function of levees...superimposed load on the relatively unstable embankment, in excess of the ability of the levee material to resist when saturated. As noted by Shields et...embankments from decayed roots or toppled trees; expansion of cracks or joints in concrete walls, canal lining, or pipes; and plugging of
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Wall-ablative laser-driven in-tube accelerator
NASA Astrophysics Data System (ADS)
Sasoh, Akihiro; Suzuki, Shingo; Matsuda, Atsushi
2008-05-01
The laser-driven in-tube accelerator in which the propellant is supplied from laser-ablated gas from the tube wall was developed. Proof-of concept demonstrations of vertical launch were successfully done. The device had a 25mm X 25mm square cross-section; two opposing walls were made of polyacetal and acted as the propellant, the other two acrylic window with guide grooves to the projectile. The upper end of the launch tube was connected to a vacuum chamber of an inner volume of 0.8 m2, in which the initial pressure was set to lower than 20 Pa. With plugging the bottom end of the launch tube, a momentum coupling coefficient exceeding 2.5 mN/W was obtained. Even with the bottom end connected to the same vacuum chamber through a different duct, the projectile was vertical launched successfully, obtaining 0.14 mN/W.
Nicaise, C; Robert, C; Ancellin, J; Cazalaà, J B
1996-01-01
When plugging the O2, N2O and air hoses into the corresponding wall sockets, the air hose was wrongly inserted into the N2O wall outlet. This was made possible because of faulty retaining clasps of the male coupler of the air probe. French "fail-safe" connections consist of a two-clasp male coupler for air, three clasps for O2 and four clasps for N2O hoses. Additionally the clasps of the air probe are broader then those of the N2O probe. However, the latter difference was lost due to wear. The incident was recognized without delay as the N2O hose could not be inserted into the air outlet. However, it could have remained unnoticed had there been two N2O wall outlets and could have resulted in severe adverse effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit.more » Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.« less
Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael
2016-08-01
Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. © 2016 John Wiley & Sons Ltd.
Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferroni, Paolo; Tatli, Emre; Czerniak, Luke
The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na 2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO 2 (sCO 2) Brayton cycle power conversion system. In SFRs,more » Na 2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na 2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na 2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na 2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO 2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test section and provided with Na 2O deposition prediction capabilities, was developed. This state-of-the-art computational tool incorporates a first-principles Na 2O deposition model developed by ANL, and combines it with predictive capabilities for the spatial and temporal variation of temperature, velocity, dissolved oxygen concentration, and wall temperature under flowing sodium conditions. The CFD model was validated under no-deposition conditions using experimental data collected with the SPPL, demonstrating the model’s capability to predict the thermal-hydraulics of the SPPL test section within the measurement uncertainty characterizing the SPPL instrumentation. The model’s deposition prediction capability was not, however, validated as the SPPL could not be operated under plugging conditions during the project, resulting in the lack of deposition data with adequate pedigree for a CFD model validation. Two novel diagnostic techniques to detect and characterize Na 2O deposits, i.e. Ultrasonic Time Domain Reflectometry (UTDR) and Potential Drop (PD) techniques, were developed to ultimately assist in the validation effort under plugging conditions, which can be performed once the SPPL becomes operational. This development effort consisted first in demonstrating, analytically and/or computationally, the capability of these techniques to diagnose Na 2O deposits inside of small channels (particularly the deposit’s thickness), and subsequently in the fabrication and testing of prototypical UTDR and PD instrumentation. The testing, performed on mockups of the SPPL test section, demonstrated the capability of these techniques to detect and characterize material discontinuities like those induced by sodium oxide deposition on stainless steel channel walls. Because of the mentioned impossibility to run the SPPL in a plugging mode, the developed instrumentation could not be tested in-situ, i.e. at the SPPL while deposits are being formed inside of the SPPL test section. Recommended future work includes a possible enhancement in the CFD modeling technique and installation of the developed UTDR and PD instrumentation on the test section, followed by plugging tests to be conducted with the SPPL. The installation of the UTDR and PD diagnostic instrumentation on the SPPL test section will allow collection of Na 2O deposition data after the onset of deposition to nearly complete channel plugging, which can ultimately be used for the validation of the CFD model.« less
Clinical application of continent anal plug in bedridden patients with intractable diarrhea.
Kim, J; Shim, M C; Choi, B Y; Ahn, S H; Jang, S H; Shin, H J
2001-08-01
Some patients bedridden from various causes such as stroke or spinal cord injury experience poor control of bowel movement. This causes fecal leakage and diarrhea, increases the risk of perianal excoriation and bed sores, and is a burden on caregivers. To evaluate the efficacy of fecal evacuation and the prevention and treatment of skin complications in intractable diarrhea patients using a new device. A continent anal plug (US Patent No. 5 569 216) comprises an inner balloon surrounded by an outer balloon, both of which are mounted on a silicone tube containing a pair of air passages and an enema fluid inlet. The tube is secured in place in the rectum by the inflatable outer balloon and is designed to drain fecal matter through a thin collapsible hose situated in the anal canal. Thirty-two patients (21 male; median age 61 (range, 28-76) years) were evaluated after fully informed consent. Median duration was 12 (range, 3-37) days. The continent anal plug evacuated efficiently in those patients with loose or watery stools who only required irrigation once daily or not at all. Skin excoriations improved in three to seven days. Minimal leakage was seen around the anus. There was no anorectal mucosal injury noted over 37 days. The continent anal plug is an efficient method of treating patients with loss of bowel control and incontinence because it enables controlled fecal evacuation and helps reduce skin complications without causing anorectal mucosal injury.
Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu
2018-01-01
In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.
Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Jiang, Hao
To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the testmore » component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant compressive stresses were induced by clad bending deformation due to a clad bulging effect (or the barreling effect). The barreling effect caused very large localized shear stress in the clad and left testing material at a high risk of shear failure. The above combined effects will result in highly non-conservative predictions both in strength and ductility of the tested clad, and the associated mechanical properties as well. To overcome/mitigate the mentioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. Through detailed parameter investigation on specific geometry designs, careful filtering of material for the expansion plug, as well as adding newly designed parts to the testing system, a method to reconcile the potential non-conservatism embedded in the expansion plug test system has been discovered. A modified expansion plug testing protocol has been developed based on the method. In order to closely resemble thin-wall theory, a general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor called -factor is defined to correlate the ring load P into hoop stress . , = . The generated stress-strain curve agrees very well with tensile test data in both the elastic and plastic regions.« less
Sheikh, Shahid I; Long, Frederick R; McCoy, Karen S; Johnson, Terri; Ryan-Wenger, Nancy A; Hayes, Don
2015-01-01
Ivacaftor corrects the cystic fibrosis transmembrane conductance regulator (CFTR) gating defect associated with G551D mutation and is quickly becoming an important treatment in patients with cystic fibrosis (CF) due to this genetic mutation. A single-center study was performed in CF patients receiving ivacaftor to evaluate the usefulness of high resolution computed tomography (HRCT) of the chest as a way to gauge response to ivacaftor therapy. Ten patients with CF were enrolled for at least one year before and after starting ivacaftor. At time of enrollment, mean age was 20.9 ± 10.8 (range 10-44) years. There were significant improvements from baseline to 6 months in mean %FVC (93 ± 16 to 99 ± 16) and %FEV1 (79 ± 26 to 87 ± 28) but reverted to baseline at one year. Mean sweat chloride levels decreased significantly from baseline to one year. Mean weight and BMI improved at 6 months. Weight continued to improve with stabilization of BMI at one year. Chest HRCT showed significant improvement at one year in mean modified Brody scores for bronchiectasis, mucous plugging, airway wall thickness, and total Brody scores. Elevated bronchiectasis and airway wall thickness scores correlated significantly with lower %FEV1, while higher airway wall thickness and mucus plugging scores correlated with more pulmonary exacerbations requiring IV and oral antibiotics respectively. Based on our findings, HRCT imaging is a useful tool in monitoring response to ivacaftor therapy that corrects the gating defect associated with the G551D-CFTR mutation. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Displaced electrode process for welding
Heichel, L.J.
1975-08-26
A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)
Semi-transparent solar energy thermal storage device
McClelland, John F.
1986-04-08
A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.
Semi-transparent solar energy thermal storage device
McClelland, John F.
1985-06-18
A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.
Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube
NASA Astrophysics Data System (ADS)
Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.
2018-05-01
Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.
Kim, Jeong-Soon; Sagaram, Uma Shankar; Burns, Jacqueline K; Li, Jian-Liang; Wang, Nian
2009-01-01
Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium 'Candidatus Liberibacter spp.' In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 33,879 expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. The anatomical analyses indicated that HLB bacterium infection caused phloem disruption, sucrose accumulation, and plugged sieve pores. The up-regulation of three key starch biosynthetic genes including ADP-glucose pyrophosphorylase, starch synthase, granule-bound starch synthase and starch debranching enzyme likely contributed to accumulation of starch in HLB-affected leaves. The HLB-associated phloem blockage resulted from the plugged sieve pores rather than the HLB bacterial aggregates since 'Ca. Liberibacter asiaticus' does not form aggregate in citrus. The up-regulation of pp2 gene is related to callose deposition to plug the sieve pores in HLB-affected plants.
Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube.
Niegemann, P; Fikri, M; Wlokas, I; Röder, M; Schulz, C
2018-05-01
Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.
Enabling fast charging - Introduction and overview
NASA Astrophysics Data System (ADS)
Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Barney; Dias, Fernando; Dufek, Eric J.; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Meintz, Andrew; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The pursuit of U.S. energy security and independence has taken many different forms throughout the many production and consumption sectors. For consumer transportation, a greater reliance on power train electrification has gained traction due to the inherent efficiencies of these platforms, particularly through the use of electric motors and batteries. Vehicle electrification can be generalized into three primary categories-hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs); the latter two, PHEVs and BEVs, are often referred to as plug-in electric vehicles (PEVs).
Flight investigation of an air-cooled plug nozzle with afterburning turbojet
NASA Technical Reports Server (NTRS)
Samanich, N. E.
1972-01-01
A convectively cooled plug nozzle, using 4 percent of the engine air as the coolant, was tested in 1967 K (3540 R) temperature exhaust gas. No significant differences in cooling characteristics existed between flight and static results. At flight speeds above Mach 1.1, nozzle performance was improved by extending the outer shroud. Increasing engine power improved nozzle efficiency considerably more at Mach 1.2 than at 0.9. The effect of nozzle pressure ratio and secondary weight flow on nozzle performance are also presented.
NASA Astrophysics Data System (ADS)
Grotberg, James
2005-11-01
This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.
[Plug-in Based Centralized Control System in Operating Rooms].
Wang, Yunlong
2017-05-30
Centralized equipment controls in an operating room (OR) is crucial to an efficient workflow in the OR. To achieve centralized control, an integrative OR needs to focus on designing a control panel that can appropriately incorporate equipment from different manufactures with various connecting ports and controls. Here we propose to achieve equipment integration using plug-in modules. Each OR will be equipped with a dynamic plug-in control panel containing physically removable connecting ports. Matching outlets will be installed onto the control panels of each equipment used at any given time. This dynamic control panel will be backed with a database containing plug-in modules that can connect any two types of connecting ports common among medical equipment manufacturers. The correct connecting ports will be called using reflection dynamics. This database will be updated regularly to include new connecting ports on the market, making it easy to maintain, update, expand and remain relevant as new equipment are developed. Together, the physical panel and the database will achieve centralized equipment controls in the OR that can be easily adapted to any equipment in the OR.
System for Packaging Planetary Samples for Return to Earth
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.
2010-01-01
A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.
Strength and stability of microbial plugs in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, A.K.; Sharma, M.M.; Georgiou, G.
1995-12-31
Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reductionmore » was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer
A 20-kilowatt wireless charging system demonstrated at Department of Energy’s Oak Ridge National Laboratory has achieved 90 percent efficiency and at three times the rate of the plug-in systems commonly used for electric vehicles today.
Single-step CE for miniaturized and easy-to-use system.
Ono, Koichi; Kaneda, Shohei; Fujii, Teruo
2013-03-01
We developed a novel single-step capillary electrophoresis (SSCE) scheme for miniaturized and easy to use system by using a microchannel chip, which was made from the hydrophilic material polymethyl methacrylate (PMMA), equipped with a capillary stop valve. Taking the surface tension property of liquids into consideration, the capillary effect was used to introduce liquids and control capillary stop valves in a partial barrier structure in the wall of the microchannel. Through the combined action of stop valves and air vents, both sample plug formation for electrophoresis and sample injection into a separation channel were successfully performed in a single step. To optimize SSCE, different stop valve structures were evaluated using actual microchannel chips and the finite element method with the level set method. A partial barrier structure at the bottom of the channel functioned efficiently as a stop valve. The stability of stop valve was confirmed by a shock test, which was performed by dropping the microchannel chip to a floor. Sample plug deformation could be reduced by minimizing the size of the side partial barrier. By dissolving hydroxyl ethyl cellulose and using it as the sample solution, the EOF and adsorption of the sample into the PMMA microchannel were successfully reduced. Using this method, a 100-bp DNA ladder was concentrated; good separation was observed within 1 min. At a separation length of 5 mm, the signal was approximately 20-fold higher than a signal of original sample solution by field-amplified sample stacking effect. All operations, including liquid introduction and sample separation, can be completed within 2 min by using the SSCE scheme. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo
2010-04-01
High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.
NASA Technical Reports Server (NTRS)
1976-01-01
The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Liu, Q.; Li, Y.
2012-03-01
Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.
Vertical-cavity surface-emitting lasers come of age
NASA Astrophysics Data System (ADS)
Morgan, Robert A.; Lehman, John A.; Hibbs-Brenner, Mary K.
1996-04-01
This manuscript reviews our efforts in demonstrating state-of-the-art planar, batch-fabricable, high-performance vertical-cavity surface-emitting lasers (VCSELs). All performance requirements for short-haul data communication applications are clearly established. We concentrate on the flexibility of the established proton-implanted AlGaAs-based (emitting near 850 nm) technology platform, focusing on a standard device design. This structure is shown to meet or exceed performance and producibility requirements. These include > 99% device yield across 3-in-dia. metal-organic vapor phase epitaxy (MOVPE)-grown wafers and wavelength operation across a > 100-nm range. Recent progress in device performance [low threshold voltage (Vth equals 1.53 V); threshold current (Ith equals 0.68 mA); continuous wave (CW) power (Pcw equals 59 mW); maximum and minimum CW lasing temperature (T equals 200 degree(s)C, 10 K); and wall-plug efficiencies ((eta) wp equals 28%)] should enable great advances in VCSEL-based technologies. We also discuss the viability of VCSELs in cryogenic and avionic/military environments. Also reviewed is a novel technique, modifying this established platform, to engineer low-threshold, high-speed, single- mode VCSELs.
2013-01-01
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526
Photonic quasi-crystal terahertz lasers
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles
2014-01-01
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102
Quantum cascade lasers: from tool to product.
Razeghi, M; Lu, Q Y; Bandyopadhyay, N; Zhou, W; Heydari, D; Bai, Y; Slivken, S
2015-04-06
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.
Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan
2017-11-01
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.
Photonic quasi-crystal terahertz lasers
NASA Astrophysics Data System (ADS)
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles
2014-12-01
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.
Photonic quasi-crystal terahertz lasers.
Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles
2014-12-19
Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of 'defects', which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.
Optical power of VCSELs stabilized to 35 ppm/°C without a TEC
NASA Astrophysics Data System (ADS)
Downing, John
2015-03-01
This paper reports a method and system comprising a light source, an electronic method, and a calibration procedure for stabilizing the optical power of vertical-cavity surface-emitting lasers (VCSELs) and laser diodes (LDs) without the use thermoelectric coolers (TECs). The system eliminates the needs for custom interference coatings, polarization adjustments, and the exact alignment required by the optical method reported in 2013 [1]. It can precisely compensate for the effects of temperature and wavelength drift on photodiode responsivity as well as changes in VCSEL beam quality and polarization angle over a 50°C temperature range. Data obtained from light sources built with single-mode polarization-locked VCSELs demonstrate that 30 ppm/°C stability can be readily obtained. The system has advantages over TECstabilized laser modules that include: 1) 90% lower relative RMS optical power and temperature sensitivity, 2) a five-fold enhancement of wall-plug efficiency, 3) less component testing and sorting, 4) lower manufacturing costs, and 5) automated calibration in batches at time of manufacture is practical. The system is ideally suited for battery-powered environmental and in-home medical monitoring applications.
InGaN/GaN light-emitting diode having direct hole injection plugs and its high-current operation.
Kim, Sungjoon; Cho, Seongjae; Jeong, Jaedeok; Kim, Sungjun; Hwang, Sungmin; Kim, Garam; Yoon, Sukho; Park, Byung-Gook
2017-03-20
The light-emitting diode (LED) with an improved hole injection and straightforward process integration is proposed. p-type GaN direct hole injection plugs (DHIPs) are formed on locally etched multiple-quantum wells (MQWs) by epitaxial lateral overgrowth (ELO) method. We confirm that the optical output power is increased up to 23.2% at an operating current density of 100 A/cm2. Furthermore, in order to identify the origin of improvement in optical performance, the transient light decay time and light intensity distribution characteristics were analyzed on the DHIP LED devices. Through the calculation of the electroluminescence (EL) decay time, internal quantum efficiency (IQE) is extracted along with the recombination parameters, which reveals that the DHIPs have a significant effect on enhancement of radiative recombination and reduction of efficiency droop. Furthermore, the mapping PL reveals that the DHIP LED also has a potential to improve the light extraction efficiency by hexagonal pyramid shaped DHIPs.
High-Efficiency Plug-and-Play Source of Heralded Single Photons
NASA Astrophysics Data System (ADS)
Montaut, Nicola; Sansoni, Linda; Meyer-Scott, Evan; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine
2017-08-01
Reliable generation of single photons is of key importance for fundamental physical experiments and to demonstrate quantum protocols. Waveguide-based photon-pair sources have shown great promise in this regard due to their large spectral tunability, high generation rates, and long temporal coherence of the photon wave packet. However, integrating such sources with fiber-optic networks often results in a strong degradation of performance. We answer this challenge by presenting an alignment-free source of photon pairs in the telecommunications band that maintains heralding efficiency >50 % even after fiber pigtailing, photon separation, and pump suppression. The source combines this outstanding performance in heralding efficiency with a compact, stable, and easy-to-use "plug-and-play" package: one simply connects a laser to the input and detectors to the output, and the source is ready to use. This high performance can be achieved even outside the lab without the need for alignment which makes the source extremely useful for any experiment or demonstration needing heralded single photons.
Matafonova, Galina; Batoev, Valeriy
2018-04-01
Over the last decade, ultraviolet light-emitting diodes (UV LEDs) have attracted considerable attention as alternative mercury-free UV sources for water treatment purposes. This review is a comprehensive analysis of data reported in recent years (mostly, post 2014) on the application of UV LED-induced advanced oxidation processes (AOPs) to degrade organic pollutants, primarily dyes, phenols, pharmaceuticals, insecticides, estrogens and cyanotoxins, in aqueous media. Heterogeneous TiO 2 -based photocatalysis in lab grade water using UVA LEDs is the most frequently applied method for treating organic contaminants. The effects of controlled periodic illumination, different TiO 2 -based nanostructures and reactor types on degradation kinetics and mineralization are discussed. UVB and UVC LEDs have been used for photo-Fenton, photo-Fenton-like and UV/H 2 O 2 treatment of pollutants, primarily, in model aqueous solutions. Notably, UV LED-activated persulfate/peroxymonosulfate processes were capable of providing degradation in DOC-containing waters. Wall-plug efficiency, energy-efficiency of UV LEDs and the energy requirements in terms of Electrical Energy per Order (E EO ) are discussed and compared. Despite the overall high degradation efficiency of the UV LED-based AOPs, practical implementation is still limited and at lab scale. More research on real water matrices at more environmentally relevant concentrations, as well as an estimation of energy requirements providing fluence-based kinetic data are required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Practical internal combustion engine laser spark plug development
NASA Astrophysics Data System (ADS)
Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.
2007-09-01
Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.
Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits
Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.
2011-01-01
We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359
Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.
Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B
2011-10-04
We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.
Reconfigurable Software for Mission Operations
NASA Technical Reports Server (NTRS)
Trimble, Jay
2014-01-01
We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.
Ferroresonant Flux-Coupled Battery Charger
NASA Technical Reports Server (NTRS)
Mclyman, C. W.
1986-01-01
Portable battery charger operates at about 20 kHz to take advantage of relatively low weight and low acoustical noise of ferroresonant circuits operating in this frequency range. Charger split into stationary unit connected to powerline and mobile unit connected to battery or other load. Power transferred to mobile unit by magnetic coupling between mating transformer halves. Advantage where sparking at electrical connection might pose explosion hazard or where operator disabled and cannot manipulate plug into wall outlet. Likely applications for charger include wheelchairs and robots.
SAMI Automated Plug Plate Configuration
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.; Farrell, T.; Goodwin, M.
2013-10-01
The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.
Plug and Process Loads Capacity and Power Requirements Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, M.; Gentile-Polese, L.
2014-09-01
This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus ofmore » this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.« less
Technology Tools for the Tough Tasks: Plug in for Great Outcomes
ERIC Educational Resources Information Center
Simon, Fran
2012-01-01
There are a lot of easy-to-use online tools that can help teachers and administrators with the tough tasks involved in running efficient, responsive, and intentional programs. The efficiencies offered through these systems allow busy educators to spend less time managing information and more time doing the work that matters the most--working with…
Laboratory hydraulic calibration of the Helley-Smith bedload sediment sampler
Druffel, Leroy; Emmett, W.W.; Schneider, V.R.; Skinner, J.V.
1976-01-01
Filling the sample bag to 40 percent capacity with a sediment larger in diameter than the mesh size of the bag had no effect on the hydraulic efficiency. Particles close to the 0.2 mm mesh size of the sample bag plugged the openings and caused the efficiency to decrease in an undetermined manner.
Method of fabricating an article with cavities. [with thin bottom walls
NASA Technical Reports Server (NTRS)
Dale, W. J.; Jurscaga, G. M. (Inventor)
1974-01-01
An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.
Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro
2011-01-01
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616
Pacific Gas & Electric Plug-In Hybrid Electric Utility Truck Testing |
improving efficiency and decreasing emissions during various modes of operation NREL results will help issues and requirements associated with vehicle operation, and fine-tune the design of such vehicles
Plug cluster module demonstration
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1978-01-01
The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.
Sivakumar, Kothandam; Krishnan, Prasad; Pieris, Rajeeva; Francis, Edwin
2007-08-01
In total surgical correction of tetralogy of Fallot (TOF) with functioning Blalock Taussig shunts (BTS), shunt take down increased surgical time, bleeding, and might injure phrenic and recurrent laryngeal nerve and thoracic duct. A routine hybrid approach using transcatheter BTS closure immediately before total surgical correction of TOF in all patients might reduce these problems. We analyze the safety and feasibility of this approach. Transcatheter BTS closure was achieved using single or multiple stainless steel embolization coils, Amplatzer vascular plugs, or duct occluders. When coils were released without control by bioptome forceps, coil migration in larger shunts was prevented by proximal or distal balloon occlusion. This routine hybrid strategy was followed in 22 consecutive patients aged 1-13 years over 4-year-period and 21 procedures were successful. Among the 16 patients attempted with coils, 13 had successful closure, 2 needed Amplatzer duct occluder devices, and 1 sent for surgical shunt takedown due to acute angulation of the shunt. New Amplatzer vascular plugs were used in six patients. Bioptome was used in six patients and proximal or distal balloon occlusion of flow was used in three patients. Four patients had closure of associated aortopulmonary or chest wall collaterals. Hybrid approach using routine transcatheter closure of all BTS immediately before surgical correction of TOF shunts with coils/plugs/devices is safe, feasible, and reproducible. Copyright (c) 2007 Wiley-Liss, Inc.
Kubota, Hisashi; Sanada, Yasuhiro; Murakami, Saori; Miyauchi, Masaharu; Iwakura, Michihiro; Nagatsuka, Kazuhiro; Furukawa, Kentaro; Kato, Amami; Fujita, Mitsugu
2017-01-01
The demand of a burr hole surgery for chronic subdural hematoma (CSDH) is increasing in the global aging society. Burr hole-derived autologous bone dusts are not associated with extra costs compared with other commonly used synthetic materials. In addition, postoperative calvarium ossification requires periosteum-mediated blood supply, which is lacking after using avascular synthetic materials. Based on these findings, we hypothesized that the combination of the bone plugs and the preserved periosteum during burr hole surgeries for CSDH would induce efficient calvarium ossification. We evaluated the long-term effects of bone plugs on the degree of ossification and cosmetic appearance of the skin covering the burr hole sites. We included 8 patients (9 burr holes) who received the autologous bone dust derived from burr holes. As the control group, 9 burr holes that did not receive any burr hole plugs were retrospectively selected. These burr holes were evaluated by computed tomography (CT) scan for the calvarium defect ratios, CT value-based ossification, and the degree of skin sinking. Ossification was observed in all the bone plugs by the bone density CT scans; they maintained their volume at 12 months after the surgeries. The calvarium defect ratios (volume ratios of the unossified parts in the burr holes) gradually increased during the first 6 months and reached 0.44 at 12 months. The mean CT values also increased from 527 HU to 750 HU for the first 6 months and reached 905 HU at 12 months. The degrees of skin sinking at the burr hole sites with the bone plugs were 1.24 mm whereas those without the bone plugs were 2.69 mm ( P = 0.004). Application of burr hole-derived autologous bone dust is associated with better ossification and objective cosmetic result following burr hole surgery after CSDH.
NREL to Assist in Development and Evaluation of Class 6 Plug-in Hybrid
, and emissions, as well as the potential impacts on life-cycle costs, barriers to implementation, and application and maximizing potential energy efficiency, emissions, economic, and performance impacts."
2011-01-01
Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms. PMID:21722365
Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J
2017-01-01
In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan
2011-03-01
Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.
Hu, Jinyong; Wang, Hong
2014-01-01
Three-dimensional (3D) backside reflector, compared with flat reflectors, can improve the probability of finding the escape cone for reflecting lights and thus enhance the light-extraction efficiency (LEE) for GaN-based light-emitting diode (LED) chips. A triangle-lattice of microscale SiO2 cone array followed by a 16-pair Ti3O5/SiO2 distributed Bragg reflector (16-DBR) was proposed to be attached on the backside of sapphire substrate, and the light-output enhancement was demonstrated by numerical simulation and experiments. The LED chips with flat reflectors or 3D reflectors were simulated using Monte Carlo ray tracing method. It is shown that the LEE increases as the reflectivity of backside reflector increases, and the light-output can be significantly improved by 3D reflectors compared to flat counterparts. It can also be observed that the LEE decreases as the refractive index of the cone material increases. The 3D 16-DBR patterned by microscale SiO2 cone array benefits large enhancement of LEE. This microscale pattern was prepared by standard photolithography and wet-etching technique. Measurement results show that the 3D 16-DBR can provide 12.1% enhancement of wall-plug efficiency, which is consistent with the simulated value of 11.73% for the enhancement of LEE. PMID:25133262
NASA Astrophysics Data System (ADS)
Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy
2018-01-01
Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Continuous wave power scaling in high power broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.
2018-02-01
Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
NASA Astrophysics Data System (ADS)
Trowler, Derik Wesley
The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.
Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube
NASA Astrophysics Data System (ADS)
Halpern, David; Grotberg, James B.
2003-10-01
In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the trailing film thickness behind it, a requirement necessitating a large enough core capillary number which promotes a large core shear stress on the interface. The core capillary number is defined to be the ratio of core viscous forces to surface tension forces. When this process is tuned correctly, the two phases balance and there is no net growth of the liquid bulge over one cycle. We find that there is a critical frequency above which plug formation does not occur, and that this critical frequency increases as the tidal volume amplitude of the core flow decreases.
Elimination of resistive losses in large-area LEDs by new diffusion-driven devices
NASA Astrophysics Data System (ADS)
Kivisaari, Pyry; Kim, Iurii; Suihkonen, Sami; Oksanen, Jani
2017-02-01
High-power operation of conventional GaN-based light-emitting diodes (LEDs) is severely limited by current crowding, which increases the bias voltage of the LED, concentrates light emission close to the p-type contact edge, and aggravates the efficiency droop. Fabricating LEDs on thick n-GaN substrates alleviates current crowding but requires the use of expensive bulk GaN substrates and fairly large n-contacts, which take away a large part of the active region (AR). In this work, we demonstrate through comparative simulations how the recently introduced diffusion-driven charge transport (DDCT) concept can be used to realize lateral heterojunction (LHJ) structures, which eliminate most of the lateral current crowding. Specifically in this work, we analyze how using a single-side graded AR can both facilitate electron and hole diffusion in DDCT and increase the effective AR thickness. Our simulations show that the increased effective AR thickness allows a substantial reduction in the efficiency droop at large currents, and that unlike conventional 2D LEDs, the LHJ structure shows practically no added efficiency loss or differential resistance due to current crowding. Furthermore, as both electrons and holes enter the AR from the same side without any notable potential barriers in the LHJ structure, the LHJ structure shows an additional wall-plug efficiency gain over the conventional structures under comparison. This injection from the same side is expected to be even more interesting in multiple quantum well structures, where carriers typically need to surpass several potential barriers in conventional LEDs before recombining. In addition to simulations, we also demonstrate selective-area growth of a finger structure suitable for operation as an LHJ device with 2µm distance between n- and p-GaN regions.
Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture
NASA Astrophysics Data System (ADS)
Hassan, Ezeldin A.
Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.
Heat Exchanger With Internal Pin Elements
Gerstmann, Joseph; Hannon, Charles L.
2004-01-13
A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.
Rupture loop annex ion exchange RLAIX vault deactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, J.E.; Harris, D.L., Westinghouse Hanford
This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.
Low-cost/high-efficiency lasers for medical applications in the 14XX-nm regime
NASA Astrophysics Data System (ADS)
Callahan, J. J.; McIntyre, E.; Rafferty, C.; Yanushefski, L.; Bean, D. M.
2011-03-01
Laser therapy is becoming an increasingly popular method of treating numerous dermatological conditions. The widespread use of these devices is often limited by the cost and size. Low cost, portable lasers would expand the laser market further into homes, general practitioners, dermatologists, plastic surgeons, and 3rd world countries. There are numerous light devices currently on the market for hair removal and growth, acne reduction, and wrinkles. These devices are varied, from LEDs to intense pulsed light (IPL) to lasers. One particular disease is leishmaniasis, caused by a parasite carried by sand flies, most often occurring in third world countries. While there are drug therapies available, they sometimes require hospitalization for several days and are very expensive. An RF device has been FDA approved for treatment of leishmaniasis, but costs about $20,000 which is too expensive for widespread use. Since the method is heating the lesion, the same affect could be achieved using an infrared laser. Diode lasers have the capability to be produced in mass quantity for low costs, as shown by the ubiquity of diode lasers in the telecom industry and household appliances. Unfortunately, many diode lasers suffer from poor efficiency, particularly in wavelengths for dermatology. Advances are being made to improve wall plug efficiency of lasers to reduce waste heat and increase output power. In this paper, those efforts being made to develop manufacturing partners to lower the cost while increasing the production volume of long wavelength lasers will be discussed along with performance data and clinical results.
Impact of physics and technology innovations on compact tokamak fusion pilot plants
NASA Astrophysics Data System (ADS)
Menard, Jonathan
2016-10-01
For magnetic fusion to be economically attractive and have near-term impact on the world energy scene it is important to focus on key physics and technology innovations that could enable net electricity production at reduced size and cost. The tokamak is presently closest to achieving the fusion conditions necessary for net electricity at acceptable device size, although sustaining high-performance scenarios free of disruptions remains a significant challenge for the tokamak approach. Previous pilot plant studies have shown that electricity gain is proportional to the product of the fusion gain, blanket thermal conversion efficiency, and auxiliary heating wall-plug efficiency. In this work, the impact of several innovations is assessed with respect to maximizing fusion gain. At fixed bootstrap current fraction, fusion gain varies approximately as the square of the confinement multiplier, normalized beta, and major radius, and varies as the toroidal field and elongation both to the third power. For example, REBCO high-temperature superconductors (HTS) offer the potential to operate at much higher toroidal field than present fusion magnets, but HTS cables are also beginning to access winding pack current densities up to an order of magnitude higher than present technology, and smaller HTS TF magnet sizes make low-aspect-ratio HTS tokamaks potentially attractive by leveraging naturally higher normalized beta and elongation. Further, advances in kinetic stabilization and feedback control of resistive wall modes could also enable significant increases in normalized beta and fusion gain. Significant reductions in pilot plant size will also likely require increased plasma energy confinement, and control of turbulence and/or low edge recycling (for example using lithium walls) would have major impact on fusion gain. Reduced device size could also exacerbate divertor heat loads, and the impact of novel divertor solutions on pilot plant configurations is addressed. For missions including tritium breeding, high-thermal-efficiency liquid metal breeding blankets are attractive, and novel immersion blankets offer the potential for simplified fabrication and maintenance and reduced cost. Lastly, the optimal aspect ratio for a tokamak pilot plant is likely a function of the device mission and associated cost, with low aspect ratio favored for minimizing TF magnet mass and higher aspect ratio favored for minimizing blanket mass. The interplay between a range of physics and technology innovations for enabling compact pilot plants will be described. This work was supported by U.S. DOE Contract Number DE-AC02-09CH11466.
ERIC Educational Resources Information Center
Spurgeon, Mark S.; Williams, Homer L.; Dornbusch, Sarah
1998-01-01
Explains how technology will influence classroom design and furniture selection in today's college facilities. Discusses ergonomic and efficiency considerations and furnishings for specialized areas such as computer labs. Addresses dormitory rooms and the flexibility of room-furniture layout and the inclusion of telecommunications capabilities.…
Code of Federal Regulations, 2014 CFR
2014-07-01
... credits, air conditioning leakage credits, air conditioning efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers generating any credits under this section... value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric...
A Plug and Play GNC Architecture Using FPGA Components
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.; Kaneshige, J.; Waterman, R.; Pires, C.; Ippoloito, C.
2005-01-01
The goal of Plug and Play, or PnP, is to allow hardware and software components to work together automatically, without requiring manual setup procedures. As a result, new or replacement hardware can be plugged into a system and automatically configured with the appropriate resource assignments. However, in many cases it may not be practical or even feasible to physically replace hardware components. One method for handling these types of situations is through the incorporation of reconfigurable hardware such as Field Programmable Gate Arrays, or FPGAs. This paper describes a phased approach to developing a Guidance, Navigation, and Control (GNC) architecture that expands on the traditional concepts of PnP, in order to accommodate hardware reconfiguration without requiring detailed knowledge of the hardware. This is achieved by establishing a functional based interface that defines how the hardware will operate, and allow the hardware to reconfigure itself. The resulting system combines the flexibility of manipulating software components with the speed and efficiency of hardware.
Hydrogen-fueled diesel engine without timed ignition
NASA Technical Reports Server (NTRS)
Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.
1979-01-01
Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.
Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...
2012-01-01
Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less
NASA Astrophysics Data System (ADS)
Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott
2015-03-01
A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.
Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.
Hudak, Paul F
2004-01-01
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.
77 FR 39690 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Proposed Agency Information... Energy has submitted to the OMB for clearance, a proposal for collection of information pursuant to the... plug-in electric vehicles. Information collected would allow DOE to provide respondents with an...
NASA Astrophysics Data System (ADS)
Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian
2017-02-01
In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.
Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, A.; Zhai, Y.; Wang, W.
As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less
On the probability of exceeding allowable leak rates through degraded steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cizelj, L.; Sorsek, I.; Riesch-Oppermann, H.
1997-02-01
This paper discusses some possible ways of predicting the behavior of the total leak rate through the damaged steam generator tubes. This failure mode is of special concern in cases where most through-wall defects may remain In operation. A particular example is the application of alternate (bobbin coil voltage) plugging criterion to Outside Diameter Stress Corrosion Cracking at the tube support plate intersections. It is the authors aim to discuss some possible modeling options that could be applied to solve the problem formulated as: Estimate the probability that the sum of all individual leak rates through degraded tubes exceeds themore » predefined acceptable value. The probabilistic approach is of course aiming at reliable and computationaly bearable estimate of the failure probability. A closed form solution is given for a special case of exponentially distributed individual leak rates. Also, some possibilities for the use of computationaly efficient First and Second Order Reliability Methods (FORM and SORM) are discussed. The first numerical example compares the results of approximate methods with closed form results. SORM in particular shows acceptable agreement. The second numerical example considers a realistic case of NPP in Krsko, Slovenia.« less
Wide-area SWIR arrays and active illuminators
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula
2012-01-01
We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2011-06-01
We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.
Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P
2018-01-22
The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.
Detonation duct gas generator demonstration program
NASA Technical Reports Server (NTRS)
Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.
1991-01-01
The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.
Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module
Khodak, A.; Zhai, Y.; Wang, W.; ...
2017-06-19
As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less
Zhabuawala, Murtuza Saifuddin; Nadig, Roopa R; Pai, Veena S; Gowda, Yashwanth
2016-01-01
To evaluate the fracture resistance in simulated immature teeth that had been backfilled using composite resin and Biodentine after using Biodentine as an apical plug material immediately and after 3 months of aging. Sixty extracted human maxillary central incisors were simulated in an immature open apex. The roots of all the specimens were then standardized to a length of 10 mm and canals were instrumented to obtain the radicular dentin thickness around 1.5 mm. All the specimens were then randomly divided into three groups of twenty teeth each. Group I (control) - 4 mm apical plug of Biodentine backfilled with thermoplasticized gutta-percha. Group II - 4 mm apical plug of Biodentine and then backfilled with ParaCore. Group III - completely filled with Biodentine. Ten samples from each group were randomly divided into two subgroups. In subgroup A: Specimens were stored for 1 week. In subgroup B: Specimens were stored in phosphate-buffered saline solution for 3 months and were subjected to universal testing machine. Statistical analysis was done using one-way analysis. No significant difference in fracture resistance between the groups was observed when tested immediately. After 3 months of aging, only Biodentine group showed a significant reduction in fracture resistance without significant reduction with other two groups. Biodentine group has shown a drastic reduction in fracture resistance after 3 months of aging, and hence cannot be recommended as a reinforcement material in immature teeth with thin dentin walls.
NASA Astrophysics Data System (ADS)
Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.
2013-09-01
Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region.
Sustainability Actions in Higher Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.
Palkowski, Heinz; Brück, Sebastian; Pirling, Thilo; Carradò, Adele
2013-01-01
Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE)-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France) on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM)-calculation and the neutron stress determination. PMID:28788380
Deflagration-to-detonation transition in granular HMX
NASA Technical Reports Server (NTRS)
Campbell, A. W.
1980-01-01
Granular HMX of three degrees of fineness was packed into heavy-walled steel tubes closed at both ends. Ignition was obtained at one end using an intimate mixture of finely divided titanium and boron as an igniter that produced heat with little gas. The distance to detonation was determined by examination of the resulting tube fragments. By inserting tightly-fitted neoprene diaphragms periodically into the HMX column, it was shown that the role of convective combustion was limited to the initial stage of the deflagration to detonation (DDT) process. Experiments in which various combinations of two of the three types of HMX were loaded into the same tube showed that heating by adiabatic shear of explosive grains was an essential factor in the final buildup to detonation. A description of the DDT process is developed in which conductive burning is followed in turn by convective burning, bed collapse with plug formation, onset of accelerated burning at the front of the plug through heating by intercrystalline friction and adiabatic shear, and intense shock formation resulting in high-order detonation.
NASA Technical Reports Server (NTRS)
Andrea-Liner, Kathleen E.; Au, Brion J.; Fisher, Blake R.; Rodbumrung, Watchara; Hamic, Jeffrey C.; Smith, Kary; Beadle, David S.
2012-01-01
The role of PLUTO (Plug-in Port UTilization Officer) and the growth of the International Space Station (ISS) have exceeded the capabilities of the current tool PiP (Plug-in Plan). Its users (crew and flight controllers) have expressed an interest in a new, easy-to-use tool with a higher level of interactivity and functionality that is not bound by the limitations of Excel. The PiP Tool assists crewmembers and ground controllers in making real-time decisions concerning the safety and compatibility of hardware plugged into the UOPs (Utility Outlet Panels) onboard the ISS. The PiP Tool also provides a reference to the current configuration of the hardware plugged in to the UOPs, and enables the PLUTO and crew to test Plug-in locations for constraint violations (such as cable connector mismatches or amp limit violations), to see the amps and volts for an end item, to see whether or not the end item uses 1553 data, and the cable length between the outlet and the end item. As new equipment is flown or returned, the database can be updated appropriately as needed. The current tool is a macroheavy Excel spreadsheet with its own database and reporting functionality. The new tool captures the capabilities of the original tool, ports them to new software, defines a new dataset, and compensates for ever-growing unique constraints associated with the Plug-in Plan. New constraints were designed into the tool, and updates to existing constraints were added to provide more flexibility and customizability. In addition, there is an option to associate a "Flag" with each device that will let the user know there is a unique constraint associated with it when they use it. This helps improve the safety and efficiency of real-time calls by limiting the amount of "corporate knowledge" overhead that has to be trained and learned through use. The tool helps save time by automating previous manual processes, such as calculating connector types and deciding which cables are required and in what order.
Nuclear reactor neutron shielding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaker, Daniel P; Neeley, Gary W; Inman, James B
A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less
Portable appliance security apparatus
NASA Technical Reports Server (NTRS)
Kerley, J. J. (Inventor)
1981-01-01
An apparatus for securing a small computer, or other portable appliance, against theft is described. It is comprised of a case having an open back through which the computer is installed or removed. Guide members in the form of slots are formed in a rear portion of opposite walls of the case for receiving a back plate to cover the opening and thereby secure the computer within the case. An opening formed in the top wall of the case exposes the keyboard and display of the computer. The back plate is locked in the closed position by a key-operated plug type lock. The lock is attached to one end of a hold down cable, the opposite end thereof being secured to a desk top or other stationary object. Thus, the lock simultaneously secures the back plate to the case and retains the case to the stationary object.
Characterisation of the wall-slip during extrusion of heavy-clay products
NASA Astrophysics Data System (ADS)
Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.
2017-01-01
During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.
Process and apparatus for obtaining silicon from fluosilicic acid
Sancier, Kenneth M.
1985-07-16
Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (liquid Na preferred) is carried out essentialy continuously by injecting of reactants in substantially stoichiometric proportions into a reaction chamber having a controlled temperature thereby to form a mist or dispersion of reactants. The reactants being supplied at such a rate and temperature that the reaction takes place far enough away from the entry region to avoid plugging of reactants at the entry region, the reaction is completed and whereby essentially all reaction product solidifies and forms a free flowing powder before reaction product hits a reaction chamber wall. Thus, the reaction product does not adhere to the reaction chamber wall or pick up impurities therefrom. Separation of reaction products is easily carried out by either a leach or melt separation process.
Development of buried wire gages for measurement of wall shear stress in Blastane experiments
NASA Technical Reports Server (NTRS)
Murthy, S. V.; Steinle, F. W.
1986-01-01
Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.
ORNL Surges Forward With 20-kilowatt Wireless Charging for Electric Vehicles
Onar, Omer
2018-01-16
A 20-kilowatt wireless charging system demonstrated at Department of Energyâs Oak Ridge National Laboratory has achieved 90 percent efficiency and at three times the rate of the plug-in systems commonly used for electric vehicles today.
Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services
Sioshansi, Ramteen; Denholm, Paul
2009-01-22
Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. Here, we find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. Bymore » changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO x emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO 2, SO 2, and NO x emissions can be reduced even further.« less
Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi
2016-06-01
A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.
Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
Sioshansi, Ramteen; Denholm, Paul
2009-02-15
Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.
Integrated thermal and energy management of plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard
2012-10-01
In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.
Kock, Niels B; Van Susante, Job L C; Buma, Pieter; Van Kampen, Albert; Verdonschot, Nico
2006-06-01
Osteochondral autologous transplantation is used for the treatment of full-thickness articular cartilage lesions of a joint. Press-fit stability is an important factor for good survival of the transplanted plugs. 36 plugs of three different lengths were transplanted in fresh-frozen human knees. On one condyle, 3 plugs were exactly matched to the depth of the recipient site ("bottomed" plugs) and on the opposite condyle 3 plugs were 5 mm shorter than the depth of the recipient site ("unbottomed" plugs). Plugs were left protruding and then pushed in until flush, and then to 2 mm below flush level, using a loading apparatus. Longer plugs needed higher forces to begin displacement. At flush level, bottomed plugs needed significantly higher forces than unbottomed plugs to become displaced below flush level (mean forces of 404 N and 131 N, respectively). Shorter bottomed plugs required higher forces than longer bottomed ones. Bottomed plugs generally provide much more stability than unbottomed ones. Short bottomed plugs are more stable than long bottomed plugs. Thus, in clinical practice it is advisable to use short bottomed plugs. If, however, unbottomed plugs are still chosen, the longer the plug the higher the resulting stability will be because of higher frictional forces.
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
Serafino, Cinzia; Gallina, Giuseppe; Cumbo, Enzo; Ferrari, Marco
2004-03-01
To evaluate surface cleanliness of root canal walls along post space after endodontic treatment using 2 different irrigant regimens, obturation techniques, and post space preparation for adhesive bonding. Forty teeth, divided into 4 groups, were instrumented, using Ni-Ti rotary files, irrigated with NaOCl or NaOCl+EDTA and obturated with cold lateral condensation (CLC) or warm vertical condensation (WVC) of gutta-percha. After post space preparation, etching, and washing procedure, canal walls were observed using a scanning electron microscope (SEM). Amount of debris, smear layer, sealer/gutta-percha remnants, and visibility of open tubules were rated. Higher amounts of rough debris, large sealer/gutta-percha remnants, thick smear layer, and no visibility of tubule orifices were recorded in all the groups at apical level of post space. At middle and coronal levels areas of clean dentin, alternating with areas covered by thin smear layer, smaller debris, gutta-percha remnants, and orifices of tubules partially or totally occluded by plugs were frequently observed. After endodontic treatment, obturation, and post space preparation SEM analysis of canal walls along post space shows large areas (covered by smear layer, debris, and sealer/gutta-percha remnants) not available for adhesive bonding and resin cementation of fiber posts.
Red Blood Cell Hematocrit Influences Platelet Adhesion Rate in a Microchannel
NASA Astrophysics Data System (ADS)
Spann, Andrew; Campbell, James; Fitzgibbon, Sean; Rodriguez, Armando; Shaqfeh, Eric
2014-11-01
The creation of a blood clot to stop bleeding involves platelets forming a plug at the site of injury. Red blood cells indirectly play a role in ensuring that the distribution of platelets across the height of the channel is not uniform - the contrast in deformability and size between platelets and red blood cells allows the platelets to preferentially marginate close to the walls. We perform 3D boundary integral simulations of a suspension of platelets and red blood cells in a periodic channel with a model that allows for platelet binding at the walls. The relative rate of platelet activity with varying hematocrit (volume fraction of red blood cells) is compared to experiments in which red blood cells and platelets flow through a channel coated with von Willebrand factor. In the simulations as well as the experiments, a decrease in hematocrit of red blood cells is found to reduce the rate at which platelets adhere to the channel wall in a manner that is both qualitatively and quantitatively similar. We conclude with a discussion of the tumbling and wobbling motions of platelets in 3D leading up to the time at which the platelets bind to the wall. Funded by Stanford Army High Performance Computing Research Center, experiments by US Army Institute of Surgical Research.
Distributed Learning Metadata Standards
ERIC Educational Resources Information Center
McClelland, Marilyn
2004-01-01
Significant economies can be achieved in distributed learning systems architected with a focus on interoperability and reuse. The key building blocks of an efficient distributed learning architecture are the use of standards and XML technologies. The goal of plug and play capability among various components of a distributed learning system…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.
NASA Astrophysics Data System (ADS)
Aleiferis, P. G.; Hardalupas, Y.; Taylor, A. M. K. P.; Ishii, K.; Urata, Y.
2005-11-01
Lean-burn spark-ignition engines exhibit higher efficiency and lower specific emissions in comparison with stoichiometrically charged engines. However, as the air-to-fuel (A/F) ratio of the mixture is made leaner than stoichiometric, cycle-by-cycle variations in the early stages of in-cylinder combustion, and subsequent indicated mean effective pressure (IMEP), become more pronounced and limit the range of lean-burn operation. Viable lean-burn engines promote charge stratification, the mixture near the spark plug being richer than the cylinder volume averaged value. Recent work has shown that cycle-by-cycle variations in the early stages of combustion in a stratified-charge engine can be associated with variations in both the local value of A/F ratio near the spark plug around ignition timing, as well as in the volume averaged value of the A/F ratio. The objective of the current work was to identify possible sources of such variability in A/F ratio by studying the in-cylinder field of fuel-droplet distribution during the early intake stroke. This field was visualised in an optical single-cylinder 4-valve pentroof-type spark-ignition engine by means of laser-sheet illumination in planes parallel to the cylinder head gasket 6 and 10 mm below the spark plug. The engine was run with port-injected isooctane at 1500 rpm with 30% volumetric efficiency and air-to-fuel ratio corresponding to both stoichiometric firing (A/F=15, Φ =1.0) and mixture strength close to the lean limit of stable operation (A/F=22, Φ =0.68). Images of Mie intensity scattered by the cloud of fuel droplets were acquired on a cycle-by-cycle basis. These were studied in order to establish possible correlations between the cyclic variations in size, location and scattered-light intensity of the cloud of droplets with the respective variations in IMEP. Because of the low level of Mie intensity scattered by the droplets and because of problems related to elastic scattering on the walls of the combustion chamber, as well as problems related to engine “rocking” at the operating conditions close to the misfire limit, the acquired images were processed for background subtraction by using a PIV-based data correction algorithm. After this processing, the arrival and leaving timings of fuel droplets into the illuminated plane were found not to vary significantly on a cycle-by-cycle basis but the recorded cycle-by-cycle variations in Mie intensity suggested that the amount of fuel in the cylinder could have been 6 26% greater for the “strong” cycles with IMEP 115% higher than the average IMEP, than the ones imaged for “weak” cycles at less than 85% the average IMEP. This would correspond to a maximum cyclic variability in the in-cylinder equivalence ratio Φ of the order of 0.17.
Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Marla; Webber, Carrie; Brown, Richard
2007-02-28
Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and typesmore » of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.« less
Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng
2017-05-01
Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Laser ignition - Spark plug development and application in reciprocating engines
NASA Astrophysics Data System (ADS)
Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria
2018-03-01
Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.
Demonstration of catalytic combustion with residual fuel
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1981-01-01
An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.
Molecular basis of usher pore gating in Escherichia coli pilus biogenesis.
Volkan, Ender; Kalas, Vasilios; Pinkner, Jerome S; Dodson, Karen W; Henderson, Nadine S; Pham, Thieng; Waksman, Gabriel; Delcour, Anne H; Thanassi, David G; Hultgren, Scott J
2013-12-17
Extracellular fibers called chaperone-usher pathway pili are critical virulence factors in a wide range of Gram-negative pathogenic bacteria that facilitate binding and invasion into host tissues and mediate biofilm formation. Chaperone-usher pathway ushers, which catalyze pilus assembly, contain five functional domains: a 24-stranded transmembrane β-barrel translocation domain (TD), a β-sandwich plug domain (PLUG), an N-terminal periplasmic domain, and two C-terminal periplasmic domains (CTD1 and 2). Pore gating occurs by a mechanism whereby the PLUG resides stably within the TD pore when the usher is inactive and then upon activation is translocated into the periplasmic space, where it functions in pilus assembly. Using antibiotic sensitivity and electrophysiology experiments, a single salt bridge was shown to function in maintaining the PLUG in the TD channel of the P pilus usher PapC, and a loop between the 12th and 13th beta strands of the TD (β12-13 loop) was found to facilitate pore opening. Mutation of the β12-13 loop resulted in a closed PapC pore, which was unable to efficiently mediate pilus assembly. Deletion of the PapH terminator/anchor resulted in increased OM permeability, suggesting a role for the proper anchoring of pili in retaining OM integrity. Further, we introduced cysteine residues in the PLUG and N-terminal periplasmic domains that resulted in a FimD usher with a greater propensity to exist in an open conformation, resulting in increased OM permeability but no loss in type 1 pilus assembly. These studies provide insights into the molecular basis of usher pore gating and its roles in pilus biogenesis and OM permeability.
Series production of next-generation guide-star lasers at TOPTICA and MPBC
NASA Astrophysics Data System (ADS)
Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Rehme, Paul; Wei, Daoping; Karpov, Vladimir; Ernstberger, Bernhard; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.
2014-07-01
Large telescopes equipped with adaptive optics require high power 589-nm continuous-wave sources with emission linewidths of ~5 MHz. These guide-star lasers should be highly reliable and simple to operate and maintain for many years at the top of a mountain facility. After delivery of the first 20-W systems to our lead customer ESO, TOPTICA and MPBC have begun series production of next-generation sodium guide-star lasers. The chosen approach is based on ESO's patented narrow-band Raman fiber amplifier (RFA) technology [1]. A master oscillator signal from a TOPTICA 50-mW, 1178-nm diode laser, with stabilized emission frequency and linewidth of ~ 1 MHz, is amplified in an MPBC polarization-maintaining (PM) RFA pumped by a high-power 1120-nm PM fiber laser. With efficient stimulated Brillouin scattering suppression, an unprecedented 40 W of narrow-band RFA output has been obtained. This is spatially mode-matched into a patented resonant-cavity frequency doubler providing also the repumper light [2]. With a diffraction-limited output beam and doubling efficiencies < 80%, all ESO design goals have been easily fulfilled. Together with a wall-plug efficiency of < 3%, including all system controls, and a cooling liquid flow of only 5 l/min, the modular, turn-key, maintenance-free and compact system design allows a direct integration with a launch telescope. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for ground-based optical telescopes. Here we present a comparison of test results of the first batch of laser systems, demonstrating the reproducibility of excellent optical characteristics.
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers...) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types... extent that such vehicles are not being used to generate early advanced technology vehicle credits under...
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under paragraph (a)(1) of...
40 CFR 86.1871-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... manufacturer may use such an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under...
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers...) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types... extent that such vehicles are not being used to generate early advanced technology vehicle credits under...
Gas bubble formation and its pressure signature in T-junction of a microreactor
NASA Astrophysics Data System (ADS)
Pouya, Shahram; Koochesfahani, Manoochehr
2013-11-01
The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert partmore » or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1976-01-01
The aerodynamic performance of a low aspect ratio turbine vane designed with coolant flow ejection holes on the vane surfaces was experimentally determined in a full-annular cascade with the coolant ejection holes plugged. The purpose was to establish a baseline for comparison with tests where flow is ejected from the vane surfaces. The vanes were tested over a mean-section ideal critical velocity ratio range of 0.64 to 0.98. This ideal critical velocity ratio corresponds to the vane inlet total to vane aftermixed static pressure ratio at the mean section. The variations in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained.
An evaluation of smear layer with various desensitizing agents after tooth preparation.
Zaimoglu, A; Aydin, A K
1992-09-01
According to hydrodynamics, any agent blocking the dentinal tubules reduces the flow of fluids and diminishes hypersensitivity. The properties of the desensitizing agents that sponsor tubular occlusion and the barrier efficiency resulting from the interaction of the smear layer with test materials were examined with the scanning electron microscope and energy-dispersive x-ray microanalysis. Selected dentinal desensitizing was accomplished with burnishing procedures, cavity varnish, calcium hydroxide, and topical fluoride. Subjective evaluations were also recorded clinically after tooth preparation. This investigation indicated that the smear layer did not protect against zinc phosphate cement, and that cavity varnish prevented the formation of the smear plugs. The smear layer and plugs were basically composed of calcium and phosphorus, the major ingredients of dentin.
Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich Chartrand
A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer.more » Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.« less
How cell wall complexity influences saccharification efficiency in Miscanthus sinensis
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.
The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less
How cell wall complexity influences saccharification efficiency in Miscanthus sinensis
De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...
2015-04-23
The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earle, L.; Sparn, B.; Rutter, A.
2014-03-01
In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.
Mellaerts, Randy; Jammaer, Jasper A G; Van Speybroeck, Michiel; Chen, Hong; Van Humbeeck, Jan; Augustijns, Patrick; Van den Mooter, Guy; Martens, Johan A
2008-08-19
The ordered mesoporous silica material SBA-15 was loaded with the model drugs itraconazole and ibuprofen using three different procedures: (i) adsorption from solution, (ii) incipient wetness impregnation, and (iii) heating of a mixture of drug and SBA-15 powder. The location of the drug molecules in the SBA-15 particles and molecular interactions were investigated using nitrogen adsorption, TGA, DSC, DRS UV-vis, and XPS. The in vitro release of hydrophobic model drugs was evaluated in an aqueous environment simulating gastric fluid. The effectiveness of the loading method was found to be strongly compound dependent. Incipient wetness impregnation using a concentrated itraconazole solution in dichloromethane followed by solvent evaporation was most efficient for dispersing itraconazole in SBA-15. The itraconazole molecules were located on the mesopore walls and inside micropores of the mesopore walls. When SBA-15 was loaded by slurrying it in a diluted itraconazole solution from which the solvent was evaporated, the itraconazole molecules ended up in the mesopores that they plugged locally. At a loading of 30 wt %, itraconazole exhibited intermolecular interactions inside the mesopores revealed by UV spectroscopy and endothermic events traced with DSC. The physical mixing of itraconazole and SBA-15 powder followed by heating above the itraconazole melting temperature resulted in formulations in which glassy itraconazole particles were deposited externally on the SBA-15 particles. Loading with ibuprofen was successful with each of the three loading procedures. Ibuprofen preferably is positioned inside the micropores. In vitro release experiments showed fast release kinetics provided the drug molecules were evenly deposited over the mesoporous surface.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2005-01-01
The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.
Friction pull plug welding: dual chamfered plate hole
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.
Impact of wall hydrophobicity on condensation flow and heat transfer in silicon microchannels
NASA Astrophysics Data System (ADS)
Fang, Chen; Steinbrenner, Julie E.; Wang, Fu-Min; Goodson, Kenneth E.
2010-04-01
While microchannel condensation has been the subject of several recent studies, the critical impact of wall hydrophobicity on the microchannel condensation flow has received very little attention. The paper experimentally studies steam condensation in a silicon microchannel 286 µm in hydraulic diameter with three different wall hydrophobicities. It is found that the channel surface wettability has a significant impact on the flow pattern, pressure drop and heat transfer characteristic. Spatial flow pattern transition is observed in both hydrophobic and hydrophilic channels. In the hydrophobic channel, the transition from dropwise/slugwise flow to plug flow is induced by the slug instability. In the hydrophilic channel, the flow transition is characterized by the periodic bubble detachment, a process in which pressure evolution is found important. Local temperature measurement is conducted and heat flux distribution in the microchannel is reconstructed. For the same inlet vapor flux and temperature, the hydrophobic microchannel yields higher heat transfer rate and pressure drop compared to the hydrophilic channel. The difference is attributed to the distinction in flow pattern and heat transfer mechanism dictated by the channel hydrophobicity. This study highlights the importance of the channel hydrophobicity control for the optimization of the microchannel condenser.
Simulation on Soot Oxidation with NO2 and O2 in a Diesel Particulate Filter
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuhiro; Satake, Shingo; Yamashita, Hiroshi; Obuchi, Akira; Uchisawa, Junko
Although diesel engines have an advantage of low fuel consumption in comparison with gasoline engines, exhaust gas has more particulate matters (PM) including soot. As one of the key technologies, a diesel particulate filter (DPF) has been developed to reduce PM. When the exhaust gas passes its porous filter wall, the soot particles are trapped. However, the filter would readily be plugged with particles, and the accumulated particles must be removed to prevent filter clogging and a rise in backpressure, which is called filter regeneration process. In this study, we have simulated the flow in the wall-flow DPF using the lattice Boltzmann method. Filters of different length, porosity, and pore size are used. The soot oxidation for filter regeneration process is considered. Especially, the effect of NO2 on the soot oxidation is examined. The reaction rate has been determined by previous experimental data. Results show that, the flow along the filter monolith is roughly uniform, and the large pressure drop across the filter wall is observed. The soot oxidation rate becomes ten times larger when NO2 is added. These are useful information to construct the future regeneration system.
Effect of flow and active mixing on bacterial growth in a colon-like geometry
NASA Astrophysics Data System (ADS)
Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence
The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.
NASA Astrophysics Data System (ADS)
Bian, Shiyao; Zheng, Ying; Grotberg, James B.
2008-11-01
Mucus plugging may occur in pulmonary airways in asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. How to clear the mucus plug is essential and of fundamental importance. Mucus is known to have a yield stress and a mucus plug behaves like a solid plug when the applied stresses are below its yield stress τy. When the local stresses reaches τy, the plug starts to move and can be cleared out of the lung. It is then of great importance to examine how the mucus plug deforms and what is the minimum pressure required to initiate its movement. The present study used the finite element method (FEM) to study the stress distribution and deformation of a solid mucus plug under different pressure loads using ANSYS software. The maximum shear stress is found to occur near the rear transition region of the plug, which can lead to local yielding and flow. The critical pressure increases linearly with the plug length and asymptotes when the plug length is larger than the half channel width. Experimentally a mucus simulant is used to study the process of plug deformation and critical pressure difference required for the plug to propagate. Consistently, the fracture is observed to start at the rear transition region where the plug core connects the films. However, the critical pressure is observed to be dependent on not only the plug length but also the interfacial shape.
the desired vehicle technology. PHEV-x means a plug-in hybrid electric vehicle with x miles of all hybrids, or more efficient conventional vehicles. To explore the effect of adding vehicles to your fleet , change the current number of vehicles to zero and enter a number of new vehicles. Petroleum and
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).
Novel cryogenic sources for liquid droplet and solid filament beams
NASA Astrophysics Data System (ADS)
Grams, Michael P.
Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
Generation 1.5 High Speed Civil Transport (HSCT) Exhaust Nozzle Program
NASA Technical Reports Server (NTRS)
Thayer, E. B.; Gamble, E. J.; Guthrie, A. R.; Kehret, D. F.; Barber, T. J.; Hendricks, G. J.; Nagaraja, K. S.; Minardi, J. E.
2004-01-01
The objective of this program was to conduct an experimental and analytical evaluation of low noise exhaust nozzles suitable for future High-Speed Civil Transport (HSCT) aircraft. The experimental portion of the program involved parametric subscale performance model tests of mixer/ejector nozzles in the takeoff mode, and high-speed tests of mixer/ejectors converted to two-dimensional convergent-divergent (2-D/C-D), plug, and single expansion ramp nozzles (SERN) in the cruise mode. Mixer/ejector results show measured static thrust coefficients at secondary flow entrainment levels of 70 percent of primary flow. Results of the high-speed performance tests showed that relatively long, straight-wall, C-D nozzles could meet supersonic cruise thrust coefficient goal of 0.982; but the plug, ramp, and shorter C-D nozzles required isentropic contours to reach the same level of performance. The computational fluid dynamic (CFD) study accurately predicted mixer/ejector pressure distributions and shock locations. Heat transfer studies showed that a combination of insulation and convective cooling was more effective than film cooling for nonafterburning, low-noise nozzles. The thrust augmentation study indicated potential benefits for use of ejector nozzles in the subsonic cruise mode if the ejector inlet contains a sonic throat plane.
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui
2017-09-01
Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.
[Evidence of lacrimal plugs via high resolution ultrasound].
Tost, Frank H W; Darman, Jacques
2003-07-01
The practical value of high-frequency ultrasound (transducer frequency of 20 MHz) for studying lacrimal plugs positioned into canaliculi was proved. Twelve patients with twenty intracanalicular plugs and two punctum plugs were examined via high-frequency B-scan ultrasonography using 20 MHz transducer (model I3 Sacramento, USA). Detection and localisation of the intracanalicular plugs was made by a 20 MHz sector scanner. The ultrasound examinations were performed 1 - 24 month after the placement of lacrimal plugs. After patient's head positioning, the high-frequency ultrasound investigation was done via immersion fluid (2 % methylcellulose). All patients with dry eye treated by lacrimal plug implant showed echographic structure in the lacrimal canaliculus. In transversal echograms it was possible to image both canaliculi together when the lids were half-closed. Contrary to the normal state, it was not necessary to inject viscous fluid into the canaliculus. High-resolution ultrasound was able to differentiate the normal canaliculus from the findings after plug placement. The echograms can vary from one plug type to another. Highly reflective structures were found after the placement of silicone intracanalicular plugs, e. g. HERRICK-Plug. In contrast, the ultrasonic image taken through acrylic polymer intracanalicular plugs showed homogeneous small reflective inner structure, e. g. SMART-Plug. However, smooth and flat acoustic interface between acrylic polymer plug and the lacrimal canaliculus produced strong echoes. 20 MHz ultrasound seems to be well suited for the detection and localisation of intracanalicular plugs. By use of 20 MHz ultrasound scans it is possible to get high-quality images of the intracanalicular plug and around lacrimal canaliculus. Compared with UBM, the depth of penetration is much higher with negligible resolution. On the whole, we believe that 20 MHz ultrasound can become a useful tool for evaluating the placement of intracanalicular plugs after insertion.
Recirculating, passive micromixer with a novel sawtooth structure.
Nichols, Kevin P; Ferullo, Julia R; Baeumner, Antje J
2006-02-01
A microfluidic device capable of recirculating nano to microlitre volumes in order to efficiently mix solutions is described. The device consists of molded polydimethyl siloxane (PDMS) channels with pressure inlet and outlet holes sealed by a glass lid. Recirculation is accomplished by a repeatedly reciprocated flow over an iterated sawtooth structure. The sawtooth structure serves to change the fluid velocity of individual streamlines differently depending on whether the fluid is flowing backwards or forward over the structure. Thus, individual streamlines can be accelerated or decelerated relative to the other streamlines to allow sections of the fluid to interact that would normally be linearly separated. Low Reynolds numbers imply that the process is reversible, neglecting diffusion. Computer simulations were carried out using FLUENT. Subsequently, fluorescent indicators were employed to experimentally verify these numerical simulations of the recirculation principal. Finally, mixing of a carboxyfluorescein labeled DMSO plug with an unlabeled DMSO plug across an immiscible hydrocarbon plug was investigated. At cycling rates of 1 Hz across five sawtooth units, the time was recorded to reach steady state in the channels, i.e. until both DMSO plugs had the same fluorescence intensity. In the case of the sawtooth structures, steady state was reached five times faster than in channels without sawtooth structures, which verified what would be expected based on numerical simulations. The microfluidic mixer is unique due to its versatility with respect to scaling, its potential to also mix solutions containing small particles such as beads and cells, and its ease of fabrication and use.
Dynamic PROOF clusters with PoD: architecture and user experience
NASA Astrophysics Data System (ADS)
Manafov, Anar
2011-12-01
PROOF on Demand (PoD) is a tool-set, which sets up a PROOF cluster on any resource management system. PoD is a user oriented product with an easy to use GUI and a command-line interface. It is fully automated. No administrative privileges or special knowledge is required to use it. PoD utilizes a plug-in system, to use different job submission front-ends. The current PoD distribution is shipped with LSF, Torque (PBS), Grid Engine, Condor, gLite, and SSH plug-ins. The product is to be extended. We therefore plan to implement a plug-in for AliEn Grid as well. Recently developed algorithms made it possible to efficiently maintain two types of connections: packet-forwarding and native PROOF connections. This helps to properly handle most kinds of workers, with and without firewalls. PoD maintains the PROOF environment automatically and, for example, prevents resource misusage in case when workers idle for too long. As PoD matures as a product and provides more plug-ins, it's used as a standard for setting up dynamic PROOF clusters in many different institutions. The GSI Analysis Facility (GSIAF) is in production since 2007. The static PROOF cluster has been phased out end of 2009. GSIAF is now completely based on PoD. Users create private dynamic PROOF clusters on the general purpose batch farm. This provides an easier resource sharing between interactive local batch and Grid usage. The main user communities are FAIR and ALICE.
Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Bryant; Larry Britton
2008-09-30
Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtainmore » new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.« less
U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22
NASA Astrophysics Data System (ADS)
Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.
2017-01-01
U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.
Ion source development for a photoneutralization based NBI system for fusion reactors
NASA Astrophysics Data System (ADS)
Simonin, A.; de Esch, H. P. L.; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.
2015-04-01
The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D- beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R&D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.
Highly reliable 637-639 nm red high-power LDs for displays
NASA Astrophysics Data System (ADS)
Nishida, Takehiro; Shimada, Naoyuki; Ono, Kenichi; Yagi, Tetsuya; Shima, Akihiro
2010-02-01
Higher power laser diodes (LDs) with a wavelength of 637-639nm are strongly demanded as a light source of display applications because luminosity factor of laser light is relatively high. In order to realize reliable high power operation, we have optimized LD structure, focusing on improvement of power saturation and sudden degradation. As a result, 40μm-wide broad-area (BA) LDs with window-mirror structure have been designed. We fabricated two kinds of single emitter LDs of 1.0mm cavity and 1.5mm cavity. The single LD is installed in conventional φ5.6 mm TO-CAN package. The 1.0mm LD showed very high wall plug efficiency (WPE) of 33% at 25 ºC (23% at 45 ºC) in the power range of around 300mW (30 lm). High output power of 600mW (60 lm) is realized by the 1.5mm LD. Both LDs have operated for over 1,000 hours without any degradation. Estimated mean time to failure (MTTF) is 10,000 hours. In addition, we fabricated an array LD consisting of 20 emitters (BA-LD structure), which shows reliable CW operation of 8W (at junction temperature of 50 ºC) for 10,000 hours.
Abernathy, Bethel R.; Walters, Ronald R.
1986-01-01
The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.
Abernathy, B.R.; Walters, R.R.
1985-08-05
The humidity of a gas within a closed system is maintained at constant level by providing a saturated salt solution within a lower chamber in communication with an upper chamber conjointly defined by upper and lower container sections in sealing contact with each other to establish a closed container. A partition wall separates the salt solution from the test region in the upper chamber. A tube extending through the partition plate allows humidified gas to pass from the lower to the upper chamber. A glass wool plug or membranous material within the tube prevents migration of salt into the test region.
Shao, Deyong; Ellis, Geoffrey S.; Li, Yanfang; Zhang, Tongwei
2018-01-01
Gold-tube pyrolysis experiments were conducted on miniature core plugs and powdered rock from a bitumen-rich sample of Eagle Ford Shale to investigate the role of rock fabric in gas generation and expulsion during thermal maturation. The samples were isothermally heated at 130, 300, 310, 333, 367, 400, and 425 °C for 72 h under a confining pressure of 68.0 MPa, corresponding to six levels of induced thermal maturity: pre-oil generation (130 °C/72 h), incipient oil/bitumen generation (300 and 310 °C/72 h), early oil generation (333 °C/72 h), peak oil generation (367 °C/72 h), early oil cracking (400 °C/72 h), and late oil cracking (425 °C/72 h). Experimental results show that gas retention coupled with compositional fractionation occurs in the core plug experiments and varies as a function of thermal maturity. During the incipient oil/bitumen generation stage, yields of methane through pentane (C1–C5) from core plugs are significantly lower than those from rock powder, and gases from core plugs are enriched in methane. However, the differences in C1–C5 gas yield and composition decrease throughout the oil generation stage, and by the oil cracking stage no obvious compositional difference in C1–C5 gases exists. The decrease in the effect of rock fabric on gas yield and composition with increasing maturity is the result of an increase in gas expulsion efficiency. Pyrolysis of rock powder yields 4–16 times more CO2 compared to miniature core plugs, with δ13CCO2 values ranging from −2.9‰ to −0.6‰, likely due to carbonate decomposition accelerated by reactions with organic acids. Furthermore, lower yields of gaseous alkenes and H2 from core plug experiments sugge
Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis
NASA Technical Reports Server (NTRS)
Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.
2011-01-01
The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.
Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang
2018-04-01
Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.
Microhard MHX2420 Orbital Performance Evaluation Using RT Logic T400CS
NASA Technical Reports Server (NTRS)
TintoreGazulla, Oriol; Lombardi, Mark
2012-01-01
RT Logic allows simulation of Ground Station - satellite communications: Static tests have been successful. Dynamic tests have been performed for simple passes. Future dynamic tests are needed to simulate real orbit communications. Satellite attitude changes antenna gain. Atmospheric and rain losses need to be added. STK Plug-in will be the next step to improve the dynamic tests. There is a possibility of running longer simulations. Simulation of different losses available in the STK Plug-in. Microhard optimization: Effect of Microhard settings on the data throughput have been understood. Optimized settings improve data throughput for LEO communications. Longer hop intervals make transfer of larger packets more efficient (more time between hops in frequency). Use of FEC (Reed-Solomon) reduces the number of retransmissions for long-range or noisy communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-05-01
Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ)more » could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less
Liquid metal heat exchanger for efficient heating of soils and geologic formations
DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN
2010-02-23
Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.
Recovery Act. Advanced Load Identification and Management for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Casey, Patrick; Du, Liang
2014-02-12
In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.« less
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kühn, Michael
2015-04-01
The 3D imaging of porous media through micro tomography allows the characterization of porous space and mineral abundances with unprecedented resolution. Such images can be used to perform computational determination of permeability and to obtain a realistic measure of the mineral surfaces exposed to fluid flow and thus to chemical interactions. However, the volume of the plugs that can be analysed with such detail is in the order of 1 cm3, so that their representativity at a larger scale, i.e. as needed for reactive transport modelling at Darcy scale, is questionable at best. In fact, the fine scale heterogeneity (from plug to plug at few cm distance within the same core) would originate substantially different readings of the investigated properties. Therefore, a comprehensive approach including the spatial variability and heterogeneity at the micro- and plug scale needs to be adopted to gain full advantage from the high resolution images in view of the upscaling to Darcy scale. In the framework of the collaborative project H2STORE, micro-CT imaging of different core samples from potential H2-storage sites has been performed by partners at TU Clausthal and Jena University before and after treatment with H2/CO2 mixtures in pressurized autoclaves. We present here the workflow which has been implemented to extract the relevant features from the available data concerning the heterogeneity of the medium at the microscopic and plug scale and to correlate the observed chemical reactions and changes in the porous structure with the geometrical features of the medium. First, a multivariate indicator-based geostatistical model for the microscopic structure of the plugs has been built and fitted to the available images. This involved the implementation of exploratory analysis algorithms such as experimental indicator variograms and cross-variograms. The implemented methods are able to efficiently deal with images in the order of 10003 voxels making use of parallelization. Sequential Indicator Simulations are then employed to generate equi-probable realizations of microscopic structures with varying mineral proportions and porosity but constrained to the spatial variability observed in the plugs. The statistics computed on the ensemble of realizations (essentially the distribution of mineral reactive surfaces exposed to porous space) is integrated at a larger, Darcy scale. In a further step, the analysis of the microscopic changes in the plugs after exposure to reactive solution establishes the correlations betweens amount of chemical reactions and changes in the spatial models, thus deriving some effective correlations which can be injected into the reactive transport modelling. In this contribution, we demonstrate the implemented workflow on a series of images obtained from plugs from a german depleted gas field exposed to H2 and CO2-charged brines. The geostatistical evaluation of microscale variability of the porous media contributes to the upscaling of relevant variables and helps estimating - if not reducing - the uncertainty due to the heterogeneity across scales of the natural systems.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.
Outcomes of Minimally Invasive Inguinal Hernia Repair at the Time of Robotic Radical Prostatectomy.
Soto-Palou, Francois G; Sánchez-Ortiz, Ricardo F
2017-06-01
Abdominal straining associated with voiding dysfunction or constipation has traditionally been associated with the development of abdominal wall hernias. Thus, classic general surgery dictum recommends that any coexistent bladder outlet obstruction should be addressed by the urologist before patients undergo surgical repair of a hernia. While organ-confined prostate cancer is usually not associated with the development of lower urinary tract symptoms, a modest proportion of patients treated with radical prostatectomy may have coexisting benign prostatic hyperplasia with elevated symptom scores and hernias may be incidentally detected at the time of surgery. Furthermore, dissection of the space of Retzius during retropubic or minimally invasive prostatectomy may result exposure of abdominal wall defects which may have been present, but asymptomatic if plugged with preperitoneal fat. Herein we examine the literature regarding the incidence of postoperative inguinal hernias after prostatectomy, review potential risk factors which could aid in preoperative patient identification, and discuss the published experience regarding concurrent hernia repair at the time of open or minimally invasive radical prostatectomy.
Päiväniemi, Outi E.; Maasilta, Paula K.; Vainikka, Tiina L. S.; Alho, Hanni S.; Karhunen, Pekka J.; Salminen, Ulla-Stina
2009-01-01
The local immunoreactivity of C-reactive protein (CRP) was studied in a heterotopic porcine model of posttranplant obliterative bronchiolitis (OB). Bronchial allografts and control autografts were examined serially 2–28 days after subcutaneous transplantation. The autografts stayed patent. In the allografts, proliferation of inflammatory cells (P < .0001) and fibroblasts (P = .02) resulted in occlusion of the bronchial lumens (P < .01). Influx of CD4+ (P < .001) and CD8+ (P < .0001) cells demonstrated allograft immune response. CRP positivity simultaneously increased in the bronchial walls (P < .01), in macrophages, myofibroblasts, and endothelial cells. Local CRP was predictive of features characteristic of OB (R = 0.456–0.879, P < .05−P < .0001). Early obliterative lesions also showed CRP positivity, but not mature, collagen-rich obliterative plugs (P < .05). During OB development, CRP is localized in inflammatory cells, myofibroblasts and endothelial cells probably as a part of the local inflammatory response. PMID:19503785
Retractable Visual Indicator Assembly
NASA Technical Reports Server (NTRS)
Hackler, George R. (Inventor); Gamboa, Ronald J. (Inventor); Dominquez, Victor (Inventor)
1998-01-01
A retractable indicator assembly may be mounted on a container which transmits air through the container and removes deleterious gases with an activated charcoal medium in the container. The assembly includes: an elongate indicator housing has a chamber therein; a male adaptor with an external threads is used for sealing engagement with the container; a plug located at the upper end of the housing; a housing that includes a transparent wall portion for viewing at least a portion of the chamber; a litmus indicator, moveable by a retractable rod from a retracted position within the container to an extended position within the chamber of the housing; and an outer housing that is secured to the upper end of the rod, and protects the indicator housing while the litmus indicator is in its normally retracted position. The assembly may be manually manipulated between its extended position wherein the litmus indicator may be viewed through the transparent wall of the indicator housing, and a retracted position wherein the outer housing encloses the indicator housing and engages the exterior of the container.
Novel optical interconnect devices applying mask-transfer self-written method
NASA Astrophysics Data System (ADS)
Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu
2012-01-01
The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.
Multi-spark discharge system for preparation of nutritious water
NASA Astrophysics Data System (ADS)
Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi
2018-01-01
The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.
Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.
Xiao, Dan; Balcom, Bruce J
2012-07-01
Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Eads, David E.; Biggins, Dean E.
2012-01-01
Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).
Energy efficient engine high-pressure turbine supersonic cascade technology report
NASA Technical Reports Server (NTRS)
Kopper, F. C.; Milano, R.; Davis, R. L.; Dring, R. P.; Stoeffler, R. C.
1981-01-01
The performance of two vane endwall geometries and three blade sections for the high-pressure turbine was evaluated in terms of the efficiency requirements of the Energy Efficient Engine high-pressure turbine component. The van endwall designs featured a straight wall and S-wall configuration. The blade designs included a base blade, straightback blade, and overcambered blade. Test results indicated that the S-wall vane configuration and the base blade configuration offered the most promising performance characteristics for the Energy Efficient Engine high-pressure turbine component.
Aeroacoustics of supersonic jet flows from contoured and solid/porous conical plug-nozzles
NASA Technical Reports Server (NTRS)
Dosanjh, Darshan S.; Das, Indu S.
1987-01-01
The results of an experimental study of the acoustic far-field, the shock associated noise, and the nature of the repetitive shock structure of supersonic jet flows issuing from plug-nozzles having externally-expanded plugs with pointed termination operated at a range of supercritical pressure ratios Xi approaching 2 to 4.5 are reported. The plug of one of these plug-nozzles was contoured. The other plug-nozzles had short conical plugs with either a solid surface or a combination of solid/porous surface of different porosities. The contoured and the uncontoured plug-nozzles had the same throat area and the same annulus-radius ratio K = R sub p/R sub N = 0.43. As the result of modifications of the shock structure, the acoustic performance of improperly expanded jet flows of an externally-expanded short uncontoured plug of an appropriate geometry with suitably perforated plug and a pointed termination, is shown to approach the acoustic performance of a shock-free supersonic jet issuing from an equivalent externally-expanded contoured plug-nozzle.
Development and performance of an alternative biofilter system.
Lee, D H; Lau, A K; Pinder, K L
2001-01-01
Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. "Non-ideal flow" indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor. The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.
Guidelines for glycol dehydrator design; Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, W.P.; Wood, H.S.
1993-01-01
Better designs and instrumentation improve glycol dehydrator performance. This paper reports on these guidelines which emphasize efficient water removal from natural gas. Water, a common contaminant in natural gas, causes operational problems when it forms hydrates and deposits on solid surfaces. Result: plugged valves, meters, instruments and even pipelines. Simple rules resolve these problems and reduce downtime and maintenance costs.
Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric
most portable consumer electronics such as cell phones and laptops because of their high energy per unit mass relative to other electrical energy storage systems. They also have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, and low self-discharge. Most
Quick-Response Thermal Actuator for Use as a Heat Switch
NASA Technical Reports Server (NTRS)
Cepeda-Rizo, Juan
2010-01-01
This work improves the performance of a heat switch, or a thermal actuator, by delivering heat to the actuator in a more efficient manner. The method uses a heat pipe as the plunger or plug instead of just using a solid piece of metal. The heat pipe could be one tailored for fast transient thermal response.
Alternative Fuels Data Center: Natural Gas Fuels School Buses and Refuse
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas
Leads in Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In
Alternative Fuels Data Center: South Florida Fleet Fuels with Propane
Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
At A Glance: Electric-Drive Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-07-01
Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
Aspergillus fumigatus colonization of punctal plugs.
Tabbara, Khalid F
2007-01-01
Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
National Plug-In Electric Vehicle Infrastructure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W.; Rames, Clement L.; Muratori, Matteo
This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEVmore » fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.« less
National Plug-In Electric Vehicle Infrastructure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Rames, Clement L; Srinivasa Raghavan, Sesha
This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEVmore » fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.« less
Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C
2016-10-28
The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential between the wall atoms, but increases when the attractive part of the potential between wall atoms and confined molecules is made larger.
Adamowicz, S.C.; Roman, C.T.
2002-01-01
This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (<2% of the control marsh was open water habitat vs. 11% of the plugged marsh). The response of birds, categorized as waterfowl & waterbirds, shorebirds & wading birds, gulls & terns, and miscellaneous (raptors, passerines, other), was variable. Following ditch plugging, bird species richness increased at the Granite Point site (1999 pre-plug = 15.4, 2000 post-plug = 26.2, 2001 post-plug = 38.7). Because of a low sample size at Moody Marsh, reliable statements on species richness cannot be made. Density of birds (no. of birds per ha) remained unchanged with ditch plugging at Granite Point Marsh, although there was a strong, but not statistically significant, trend toward increased density. This study only reports on initial responses of marsh functions to ditch plugging. Monitoring should continue at these sites, and perhaps at additional sites, for the next decade or so. A monitoring plan is recommended. Long-term monitoring will include evaluation of salt marsh development processes using SET (surface elevation table) methodology. There is concern, although not confirmed, that as ditch-plugged marshes become wetter and marsh grass production declines their ability to keep pace with sea level rise could be jeopardized. It is suggested that ditch plugging should be considered an experimental marsh management technique. Additional monitoring on the physical and habitat responses of ditch-plugged marshes is required, along with assessments of other techniques aimed at restoring open water habitat to the marsh surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peffer, Therese; Blumstein, Carl; Culler, David
The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. Themore » user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.« less
GTKDynamo: a PyMOL plug-in for QC/MM hybrid potential simulations
Bachega, José Fernando R.; Timmers, Luís Fernando S.M.; Assirati, Lucas; Bachega, Leonardo R.; Field, Martin J.; Wymore, Troy
2014-01-01
Hybrid quantum chemical (QC)/molecular mechanical (MM) potentials are very powerful tools for molecular simulation. They are especially useful for studying processes in condensed phase systems, such as chemical reactions, that involve a relatively localized change in electronic structure and where the surrounding environment contributes to these changes but can be represented with more computationally efficient functional forms. Despite their utility, however, these potentials are not always straightforward to apply since the extent of significant electronic structure changes occurring in the condensed phase process may not be intuitively obvious. To facilitate their use we have developed an open-source graphical plug-in, GTKDynamo, that links the PyMOL visualization program and the pDynamo QC/MM simulation library. This article describes the implementation of GTKDynamo and its capabilities and illustrates its application to QC/MM simulations. PMID:24137667
Said, Azza Mohamed Ahmed; Farag, Mona Elsayed; Abdulla, Tarek Mohamed; Ziko, Othman Ali Othman; Osman, Wesam Mohamed
2016-01-01
AIM To evaluate the effect of punctal occlusion using thermosensitive (smart plug) versus silicone plug for management of aqueous deficient dry eye on corneal sensitivity, ocular surface health and tear film stability. METHODS A comparative prospective interventional case study included 45 patients with bilateral severe form of aqueous deficient dry eye. In each patient, the smart plug was inserted in the lower punctum of the right eye which was considered as study group 1 and silicone plug was inserted in the lower punctum of the left eye of the same patient which was considered as study group 2. All patients were subjected to careful history taking and questionnaire for subjective assessment of severity of symptoms. Corneal sensitivity, corneal fluorescein, rose bengal staining, Schirmer's I test, tear film break up time and conjunctival impression cytology were performed pre and 1, 3 and 6mo post plug insertion. RESULTS A statistically significant improvement in subjective and objective manifestations occurred following treatment with both types of plugs (P<0.01). The thermosensitive plug caused significant overall improvement, decrease in frequency of application of tear substitutes and improvement of conjunctival impression cytology parameters in the inserted side (P<0.01). Canaliculitis was reported in two eyes (4.4%) following punctal occlusion using thermosensitive plug (study group 1). Spontaneous plug loss occurred in 21 eyes (46.6%) in the silicone plug group (study group 2). CONCLUSION Improvement of subjective and objective manifestations of aqueous deficient dry eye occurs following punctal plug occlusion. Thermosensitive plug has good patient's compliance with fewer complications and lower rates of loss compared to the silicone plug. PMID:27990362
Effects of Aeration of Sawdust Cultivation Bags on Hyphal Growth of Lentinula edodes.
Lee, Hwa-Yong; Ham, Eun-Ju; Yoo, Young-Jin; Kim, Eui-Sung; Shim, Kyu-Kwang; Kim, Myung-Kon; Koo, Chang-Duck
2012-09-01
The effects of aeration through lid filters on the hyphal growth of Lentinula edodes (oak mushroom) in sawdust cultivation bags were investigated. The aeration treatment levels were traditional 27 mm hole cotton plugs, cotton balls and combinations of seven hole sizes × two hole positions (up and under) in the lids covering plastic bags containing 1.4 kg sawdust medium at 63% moisture that had been autoclaved for one hour and inoculated with sawdust spawn of L. edodes strain 921. Aeration treatment effects were measured based on the CO(2) concentration at the 15th wk, as well as the hyphal growth rate and degree of weight loss of bags every 14 days for 15 wk. In bags with traditional cotton plugs, the CO(2) concentration was 3.8 ± 1.3%, daily mean hyphal growth was 2.3 ± 0.6 mm and daily mean weight loss was 0.84 ± 0.26 g. In the bags with 15 mm diameter holes, the CO(2) concentration was 6.0 ± 1.6%, daily hyphal growth was 2.8 ± 0.2 mm and daily weight loss was 0.86 ± 0.4 g. The bags with 15 mm holes had a higher CO(2) concentration and lower water loss than bags with other hole sizes, but the hyphal growth was not significantly different from that of other bags. The weight loss of bags increased proportionally relative to the lid hole sizes. Taken together, these results indicate that traditional cotton plugs are economically efficient, but 15 mm hole lids are the most efficient at maintaining hyphal growth and controlling water loss while allowing CO(2) emissions.
Effects of Aeration of Sawdust Cultivation Bags on Hyphal Growth of Lentinula edodes
Lee, Hwa-Yong; Ham, Eun-Ju; Yoo, Young-Jin; Kim, Eui-Sung; Shim, Kyu-Kwang; Kim, Myung-Kon
2012-01-01
The effects of aeration through lid filters on the hyphal growth of Lentinula edodes (oak mushroom) in sawdust cultivation bags were investigated. The aeration treatment levels were traditional 27 mm hole cotton plugs, cotton balls and combinations of seven hole sizes × two hole positions (up and under) in the lids covering plastic bags containing 1.4 kg sawdust medium at 63% moisture that had been autoclaved for one hour and inoculated with sawdust spawn of L. edodes strain 921. Aeration treatment effects were measured based on the CO2 concentration at the 15th wk, as well as the hyphal growth rate and degree of weight loss of bags every 14 days for 15 wk. In bags with traditional cotton plugs, the CO2 concentration was 3.8 ± 1.3%, daily mean hyphal growth was 2.3 ± 0.6 mm and daily mean weight loss was 0.84 ± 0.26 g. In the bags with 15 mm diameter holes, the CO2 concentration was 6.0 ± 1.6%, daily hyphal growth was 2.8 ± 0.2 mm and daily weight loss was 0.86 ± 0.4 g. The bags with 15 mm holes had a higher CO2 concentration and lower water loss than bags with other hole sizes, but the hyphal growth was not significantly different from that of other bags. The weight loss of bags increased proportionally relative to the lid hole sizes. Taken together, these results indicate that traditional cotton plugs are economically efficient, but 15 mm hole lids are the most efficient at maintaining hyphal growth and controlling water loss while allowing CO2 emissions. PMID:23115508
Experimental study of moving throat plug in a shock tunnel
NASA Astrophysics Data System (ADS)
Lee, J. K.; Park, C.; Kwon, O. J.
2015-07-01
An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.
Vascular plugs - A key companion to Interventionists - 'Just Plug it'.
Ramakrishnan, Sivasubramanian
2015-01-01
Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.
Biggins, Dean E.; Ramakrishnan, Shantini; Goldberg, Amanda R.; Eads, David A.
2012-01-01
Black-tailed prairie dogs (Cynomys ludovicianus) plug burrows occupied by black-footed ferrets (Mustela nigripes), and they also plug burrows to entomb dead prairie dogs. We further evaluated these phenomena by sampling connectivity and plugging of burrow openings on prairie dog colonies occupied by ferrets, colonies where recreational shooting was allowed, and colonies with neither shooting nor ferrets. We counted burrow openings on line surveys and within plots, classified surface plugging, and used an air blower to examine subsurface connectivity. Colonies with ferrets had lower densities of openings, fewer connected openings (suggesting increased subsurface plugging), and more surface plugs compared to colonies with no known ferrets. Colonies with recreational shooting had the lowest densities of burrow openings, and line-survey data suggested colonies with shooting had intermediate rates of surface plugging. The extent of surface and subsurface plugging could have consequences for the prairie dog community by changing air circulation and escape routes of burrow systems and by altering energetic relationships. Burrow plugging might reduce prairie dogs' risk of predation by ferrets while increasing risk of predation by American badgers (Taxidea taxus); however, the complexity of the trade-off is increased if plugging increases the risk of predation on ferrets by badgers. Prairie dogs expend more energy plugging and digging when ferrets or shooting are present, and ferrets increase their energy expenditures when they dig to remove those plugs. Microclimatic differences in plugged burrow systems may play a role in flea ecology and persistence of the flea-borne bacterium that causes plague (Yersinia pestis).
Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld
NASA Technical Reports Server (NTRS)
Littell, Justin Anderson (Inventor)
2016-01-01
A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.
Odyne Plug-In Hybrid Electric Utility Truck Testing | Transportation
Research | NREL Odyne Plug-In Hybrid Electric Utility Truck Evaluation Odyne Plug-In Hybrid data on plug-in hybrid electric utility trucks operated by a variety of companies. Photo courtesy of Odyne, NREL NREL is evaluating the in-service performance of about 120 plug-in hybrid electric utility
Alternative Fuels Data Center: Propane Powers School Buses in Tuscaloosa,
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus and Plug-In Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Electric Trolley Boosts Business in
Alternative Fuels Data Center: New Hampshire Cleans up with Biodiesel Buses
Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus
Branchburg Solar Farm and Carport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, John
2013-10-23
To meet the goal of becoming a model of green, clean, and efficient consumer of energy, the Township of Branchburg will install of a 250kw solar farm to provide energy for the Township of Branchburg Municipal Building, a 50kw Solar carport to provide power to the Municipal Annex, purchase 3 plug in hybrid-electric vehicles, and install 3 dual-head charging stations.
Bone, W.H.; Schmidt, W.W.
1958-11-01
A method is presented for forming refractory liners in cylindrical reaction vessels used for the reductlon of uranium tetrafluoride to metallic uranium. A preliminary form, having positioning lugs attached thereto, is inserted into the reaction vessel and the refractory powder, usually CaO, is put in the annular space between the form and the inner wall of the reaction vessel. A jolting table is used to compact this charge of liner material ln place, and after thls has been done, the preliminary form is removed and the flnal form or plug is lnserted without disturbing the partially completed lining. The remainder of the lining charge is then introduced and compacted by jolting, after which the form is removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less
Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir
2017-01-01
Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.
Stagnation, circulation, and erosion of granular materials through belt conveyor sluice gate
NASA Astrophysics Data System (ADS)
Pohlman, Nicholas; Moralda, Michael; Dunne, Ryan
2013-11-01
Control of flow rates in conversion reactors for discrete materials like biomass can be achieved in belt conveyors through a combination of belt speed, hopper size, and aperture opening. As material is extracted from the bottom of the storage hopper, other material cannot achieve plug flow and therefore is restricted from exiting through a sluice-gate type opening. The excess material moves vertically from the opening causing a pile up and recirculation back along the free surface of the hopper. Experimental results obtained through high speed imaging show the position of the stagnation point as well as the rate of circulation is dependent on the mass flow rate achieved and instantaneous fill level. The movement of material into the plug flow along the belt allows verification of deposition models on erodible beds rather than rigid surfaces with artificial roughness of glued particles. Similarly, the pile-up at the exit influences the efficiency of the transport affecting the narrow energy return on investment of biomass resources. The laboratory-scale behavior can therefore be translated into industrial performance metrics for increased operational efficiency. This work is supported by the NSF REU Site Operation E-Tank under award number 1156789.
Numerical Simulation of Sediment Plug Formation in Alluvial Channels
NASA Astrophysics Data System (ADS)
Posner, A. J.; Duan, J. G.
2011-12-01
A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in their response. These results suggest that there are thresholds to predict plug formation and that the contribution of specific variables to plug formation is not uniform. Sediment plug formation is a costly and dangerous phenomenon, especially in large alluvial rivers. This investigation yielded specific insights into the hydrodynamic and morphologic processes occurring during sediment plug formation. These insights can be used to reduce the risk of plug formation and predict the locations and times of other sediment plugs.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.; Hoffman, Joe D.
1993-01-01
An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.
Wendell, David C.; Samyn, Margaret M.; Cava, Joseph R.; Ellwein, Laura M.; Krolikowski, Mary M.; Gandy, Kimberly L.; Pelech, Andrew N.; Shadden, Shawn C.; LaDisa, John F.
2012-01-01
Computational fluid dynamics (CFD) simulations quantifying thoracic aortic flow patterns have not included disturbances from the aortic valve (AoV). 80% of patients with aortic coarctation (CoA) have a bicuspid aortic valve (BAV) which may cause adverse flow patterns contributing to morbidity. Our objectives were to develop a method to account for the AoV in CFD simulations, and quantify its impact on local hemodynamics. The method developed facilitates segmentation of the AoV, spatiotemporal interpolation of segments, and anatomic positioning of segments at the CFD model inlet. The AoV was included in CFD model examples of a normal (tricuspid AoV) and a post-surgical CoA patient (BAV). Velocity, turbulent kinetic energy (TKE), time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) results were compared to equivalent simulations using a plug inlet profile. The plug inlet greatly underestimated TKE for both examples. TAWSS differences extended throughout the thoracic aorta for the CoA BAV, but were limited to the arch for the normal example. OSI differences existed mainly in the ascending aorta for both cases. The impact of AoV can now be included with CFD simulations to identify regions of deleterious hemodynamics thereby advancing simulations of the thoracic aorta one step closer to reality. PMID:22917990
Protection Against Hearing Loss in General Aviation Operations, Phase II
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.
1972-01-01
An inflight evaluation of four aural protectors is presented. The hearing protection devices studied were ear muffs, plastic ear plugs, rubber ear plugs, and wax ear plugs. It is concluded that ear plugs are satisfactory for providing adequate sound attenuation in general aviation aircraft. However, two problems were found in the use of ear plugs; comfort and interference with cabin communications.
Whealton, John H.; Tsai, Chin-Chi
2003-05-27
A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.
Hydrological responses to channelization and the formation of valley plugs and shoals
Pierce, Aaron R.; King, Sammy L.
2017-01-01
Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.
Initial Study of Friction Pull Plug Welding
NASA Technical Reports Server (NTRS)
Rich, Brian S.
1999-01-01
Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
PROTOCOL TO EVALUATE THE MOISTURE DURABILITY OF ENERGY-EFFICIENT WALLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R; Pallin, Simon B; Hun, Diana E
Walls account for about 8% of the energy used in residential buildings. This energy penalty can be reduced with higher insulation levels and increased airtightness. However, these measures can compromise the moisture durability and long-term performance of wall assemblies because they can lead to lower moisture tolerance due to reduced drying potential. To avert these problems, a moisture durability protocol was developed to evaluate the probability that an energy-efficient wall design will experience mold growth. This protocol examines the effects of moisture sources in walls through a combination of simulations and lab experiments, uses the mold growth index as themore » moisture durability indicator, and is based on a probabilistic approach that utilizes stochastically varying input parameters. The simulation tools used include a new validated method for taking into account the effects of air leakage in wall assemblies This paper provides an overview of the developed protocol, discussion of the probabilistic simulation approach and describes results from the evaluation of two wall assemblies in Climate Zones 2, 4, and 6. The protocol will be used to supply builders with wall designs that are energy efficient, moisture durable and cost-effective.« less
Li, Zhi-yong; Bao, Hong-juan; Zhang, Shuo-feng; Ye, Tian-yuan; Yang, Ce; Li, Yan-wen
2015-02-01
To explore the intersection and regulation mechanism of "efficacy-toxicity network" of Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma and Aconiti Lateralis Radix Praeparata's action gene in the combination environment of Sini decoction with the network pharmacological method. The gene interaction network of Aconiti Lateralis Radix Praeparata, Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma were mined and established with Cytoscape software and Agilent literature search plug-in. The "efficiency-toxicity network" intersection of Aconiti Lateralis Radix Praeparata was formed according to its effects in anti-heart failure, neurotoxicity and cardiotoxicity. The target genes were clustered with Clusterviz plug-in. And the possible pathways of the "efficacy-tox- icity network" intersection of Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma and Aconiti Lateralis Radix Praeparata were forecasted in DAVID database. There were five genes related to neurotoxicity, cardiotoxicity and anti-heart failure function of Aconiti Lateralis Radix Praeparata, namely AKT1, BAX, HCC, IL6 and IL8, which formed 47 nodes genes in the "efficiency-toxicity network" intersection of Aconiti Lateralis Radix Praeparata. There were 29 and 27 coincident genes in the "efficiency-toxicity network" of Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma and Aconiti Lateralis Radix Praeparata. There were 23 and 17 possible regulatory pathways. In the combination environment of Sini decoction, Glycyrrhizae Radix et Rhizoma and Zingiberis Rhizoma may regulate the efficiency-toxicity network of Aconiti Lateralis Radix Praeparata by influencing immune-inflammatory signaling pathway, apoptosis-autophagy signaling pathway, nerve cell and myocardial ischemia and hypoxia protection signaling pathways.
Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.
Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A
2015-06-01
A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.
Lin, Tung-Liang; Sheen, Huey-Min; Chung, Chin-Teng; Yang, Sai-Wei; Lin, Shih-Yi; Luo, Hong-Ji; Chen, Chung-Yu; Chan, I-Cheng; Shih, Hsu-Sheng; Sheu, Wayne Huey-Herng
2013-07-29
Removable plug insoles appear to be beneficial for patients with diabetic neuropathic feet to offload local plantar pressure. However, quantitative evidence of pressure reduction by means of plug removal is limited. The value of additional insole accessories, such as arch additions, has not been tested. The purpose of this study was to evaluate the effect of removing plugs from foam based insoles, and subsequently adding extra arch support, on plantar pressures. In-shoe plantar pressure measurements were performed on 26 patients with diabetic neuropathic feet at a baseline condition, in order to identify the forefoot region with the highest mean peak pressure (MPP). This was defined as the region of interest (ROI) for plug removal.The primary outcome was measurement of MPP using the pedar® system in the baseline and another three insole conditions (pre-plug removal, post-plug removal, and post-plug removal plus arch support). Among the 26 ROIs, a significant reduction in MPP (32.3%, P<0.001) was found after removing the insole plugs. With an arch support added, the pressure was further reduced (9.5%, P<0.001). There were no significant differences in MPP at non-ROIs between pre- and post-plug removal conditions. These findings suggest that forefoot plantar pressure can be reduced by removing plugs and adding arch support to foam-based insoles. This style of insole may therefore be clinically useful in managing patients with diabetic peripheral neuropathy.
Room-Temperature Quantum Cascade Laser: ZnO/Zn1- x Mg x O Versus GaN/Al x Ga1- x N
NASA Astrophysics Data System (ADS)
Chou, Hung Chi; Mazady, Anas; Zeller, John; Manzur, Tariq; Anwar, Mehdi
2013-05-01
A ZnO/Zn1- x Mg x O-based quantum cascade laser (QCL) is proposed as a candidate for generation of THz radiation at room temperature. The structural and material properties, field dependence of the THz lasing frequency, and generated power are reported for a resonant phonon ZnO/Zn0.95Mg0.05O QCL emitting at 5.27 THz. The theoretical results are compared with those from GaN/Al x Ga1- x N QCLs of similar geometry. Higher calculated optical output powers [ {P}_{{ZnMgO}} = 2.89 mW (nonpolar) at 5.27 THz and 2.75 mW (polar) at 4.93 THz] are obtained with the ZnO/Zn0.95Mg0.05O structure as compared with GaN/Al0.05Ga0.95N QCLs [ {P}_{{AlGaN}} = 2.37 mW (nonpolar) at 4.67 THz and 2.29 mW (polar) at 4.52 THz]. Furthermore, a higher wall-plug efficiency (WPE) is obtained for ZnO/ZnMgO QCLs [24.61% (nonpolar) and 23.12% (polar)] when compared with GaN/AlGaN structures [14.11% (nonpolar) and 13.87% (polar)]. These results show that ZnO/ZnMgO material is optimally suited for THz QCLs.
High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range
NASA Astrophysics Data System (ADS)
Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram
2011-06-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
NASA Astrophysics Data System (ADS)
Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan
2011-03-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael
2018-04-02
We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.
Van Hoeck, Els; Canale, Francesca; Cordero, Chiara; Compernolle, Sien; Bicchi, Carlo; Sandra, Pat
2009-02-01
A multiresidue method for screening endocrine-disrupting chemicals (EDCs) and pharmaceuticals in aqueous samples is presented. Four 10-mL aliquots of water were taken for stir bar sorptive extraction (SBSE) and they were treated in the following way. In sample one, in situ derivatization was performed with acetic acid anhydride to improve the extraction efficiencies and chromatographic analysis of phenolic compounds. For the same reasons, aliquot two was treated with ethyl chloroformate to improve amine and acid extraction and analysis, and aliquot three with tetraethylborate to enhance organotin compound extraction and analysis. Methanol was added to sample four to stop adsorption of apolar solutes on the wall. After SBSE, the four stir bars, together with a plug of glass wool impregnated with bis(trimethylylsilyl)trifluoroacetamide (BSTFA) to derivatize hydroxyl functionalities, were introduced into the same thermal desorption tube, heat-desorbed, and analyzed simultaneously by capillary GC/MS. The figures of merit of the method were evaluated with an EDC model mixture. In scan-mode MS, the limits of detection (LODs) were in the range 1-500 ng/L, while the LODs dropped by a factor of 50-100 when ion monitoring MS was applied to the targets. The performance of the method was illustrated by analysing some real-world water samples.
Ion source development for a photoneutralization based NBI system for fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonin, A.; Esch, H. P. L. de; Garibaldi, P.
2015-04-08
The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity)more » implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, N.; Bai, Y.; Slivken, S.
2014-08-18
A technique based on composite quantum wells for design and growth of strain balanced Al{sub 0.63}In{sub 0.37}As/Ga{sub 0.35}In{sub 0.65}As/Ga{sub 0.47}In{sub 0.53}As quantum cascade lasers (QCLs) by molecular beam epitaxy (MBE), emitting in 5.2–11 μm wavelength range, is reported. The strained Al{sub 0.63}In{sub 0.37}As provides good electron confinement at all wavelengths, and strain balancing can be achieved through composite wells of Ga{sub 0.35}In{sub 0.65}As/Ga{sub 0.47}In{sub 0.53}As for different wavelength. The use of these fixed composition materials can avoid the need for frequent calibration of a MBE reactor to grow active regions with different strain levels for different wavelengths. Experimental results for QCLsmore » emitting at 5.2, 6.7, 8.2, 9.1, and 11 μm exhibit good wall plug efficiencies and power across the whole wavelength range. It is shown that the emission wavelength can be predictably changed using the same design template. These lasers are also compatible with a heterogeneous broadband active region, consisting of multiple QCL cores, which can be produced in a single growth run.« less
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Karachinsky, L. Ya.; Novikov, I. I.; Gladyshev, A. G.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Agustin, M.; Ledentsov, N. N.; Voropaev, K. O.; Ionov, A. S.; Egorov, A. Yu.
2017-02-01
We report for the first time on wafer-fused InGaAs-InP/AlGaAs-GaAs 1550 nm vertical-cavity surface-emitting lasers (VCSELs) incorporating a InAlGaAs/InP MQW active region with re-grown tunnel junction sandwiched between top and bottom undoped AlGaAs/GaAs distributed Bragg reflectors (DBRs) all grown by molecular beam epitaxy. InP-based active region includes seven compressively strained quantum wells (2.8 nm) optimized to provide high differential gain. Devices with this active region demonstrate lasing threshold current < 2.5 mA and output optical power > 2 mW in the temperature range of 10-70°C. The wall-plug efficiency (WPE) value-reaches 20 %. Lasing spectra show single mode CW operation with a longitudinal side mode suppression ratio (SMSR) up to 45 dB at > 2 mW output power. Small signal modulation response measurements show a 3-dB modulation bandwidth of 9 GHz at pump current of 10 mA and a D-factor value of 3 GHz/(mA)1/2. Open-eye diagram at 30 Gb/s of standard NRZ is demonstrated. Achieved CW and modulation performance is quite sufficient for fiber to the home (FTTH) applications where very large volumes of low-cost lasers are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, Edward B; Daley, Ryan; Helm, Matthew
The University of Connecticut (UCONN) is exploring the possibility of adding electric vehicles (EVs) - including battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), or both - to its vehicle fleet. This report presents results of the UCONN fleet EV Suitability pilot program and offers recommendations for transitioning fleet vehicles to EVs as well as implementing adequate charging infrastructure.
NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010
Dan; Arvizu; Barbara; Goodman; Robert; McCormick; Tony; Markel; Matt; Keyser; Sreekant; Narumanchi; Rob; Farrington
2017-12-09
We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles.
Fast and Efficient Feature Engineering for Multi-Cohort Analysis of EHR Data.
Ozery-Flato, Michal; Yanover, Chen; Gottlieb, Assaf; Weissbrod, Omer; Parush Shear-Yashuv, Naama; Goldschmidt, Yaara
2017-01-01
We present a framework for feature engineering, tailored for longitudinal structured data, such as electronic health records (EHRs). To fast-track feature engineering and extraction, the framework combines general-use plug-in extractors, a multi-cohort management mechanism, and modular memoization. Using this framework, we rapidly extracted thousands of features from diverse and large healthcare data sources in multiple projects.
High-power broad-area diode lasers optimized for fiber laser pumping
NASA Astrophysics Data System (ADS)
Gilly, J.; Friedmann, P.; Kissel, H.; Biesenbach, J.; Kelemen, M. T.
2012-03-01
In diode laser applications for fibre laser pumping and materials processing high brightness becomes more and more important. At the moment fibre coupled modules benefit from continuous improvement of Broad-Area (BA) lasers on the chip level regarding output power, efficiency and far-field characteristics. To achieve high brightness not only the output power must be increased, but also the far field angles have to be maintained or even decreased because brightness is proportional to output power divided by beam quality. Typically fast axis far fields show mostly a current independent behaviour, for broad-area lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness. These limitations can be overcomed by carefully optimizing epitaxy-design and processing and also thermal management of the mounted device. The easiest way to achieve a good thermal management of BA-Lasers is to increase the resonator length while simultaneously decreasing internal losses of the epitaxy structure. To fulfill these issues, we have realized MBE grown InGaAs/AlGaAs broad-area with resonator lengths between 4mm and 6mm emitting at 976nm. To evaluate the brightness of these broad-area lasers single emitters have been mounted p-side down. Near- and far-fields have been carefully investigated. For a 4mm long broad-area laser with around 100μm emission width a beam parameter product of less than 3.5 mm x mrad has been achieved at 10W with a slope efficiency of more than 1.1W/A and a maximum wall-plug efficiency of more than 67%. For a device with 6mm resonator length we have reached a BPP of less than 3.5mm x mrad at 14W in slow axis direction which results in a brightness around 130MW/cm2 sr, which is to our knowledge the highest brightness reported so far for BA-lasers.
Laser Based Phosphor Converted Solid State White Light Emitters
NASA Astrophysics Data System (ADS)
Cantore, Michael
Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of white light with a luminous efficacy of 86.7 lm/W at a current of 1.4A. A total luminous flux of 1100 lm with luminous efficacy of 76 lm/W at 3.0 A current was achieved. Simulations have been conducted which show that as the InGaN LD technology matures towards the efficiencies of about 75%, which has been observed in the GaAs material system, luminous efficacy of similar blue LD with single crystal YAG:Ce systems will exceed 200 lm/W.
Biomass plug development and propagation in porous media.
Stewart, T L; Fogler, H S
2001-02-05
Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright 2001 John Wiley & Sons, Inc.
Reliability of steam generator tubing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadokami, E.
1997-02-01
The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a numbermore » of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; Loesser, G.; Smith, M.
ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses weremore » performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... phasing inspections and magnetic plug inspections for metal particles on the drain plug using detailed... inspections and magnetic plug inspections for metal particles on the drain plug using detailed inspection..., but the magnetic plug inspection reveals metal particles with dimensions greater than 1.5 mm (0.059 in...
40 CFR 144.63 - Financial assurance for plugging and abandonment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... days after receiving bills for plugging and abandonment activities, the Regional Administrator will... abandonment activities, the Regional Administrator will determine whether the plugging and abandonment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan
USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons frommore » escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.« less
Marcet, Marcus M; Shtein, Roni M; Bradley, Elizabeth A; Deng, Sophie X; Meyer, Dale R; Bilyk, Jurij R; Yen, Michael T; Lee, W Barry; Mawn, Louise A
2015-08-01
To review the published literature assessing the efficacy and safety of lacrimal drainage system plug insertion for dry eye in adults. Literature searches of the PubMed and Cochrane Library databases were last conducted on March 9, 2015, without date restrictions and were limited to English language abstracts. The searches retrieved 309 unique citations. The primary authors reviewed the titles and abstracts. Inclusion criteria specified reports that provided original data on plugs for the treatment of dry eyes in at least 25 patients. Fifty-three studies of potential relevance were assigned to full-text review. The 27 studies that met the inclusion criteria underwent data abstraction by the panels. Abstracted data included study characteristics, patient characteristics, plug type, insertion technique, treatment response, and safety information. All studies were observational and rated by a methodologist as level II or III evidence. The plugs included punctal, intracanalicular, and dissolving types. Fifteen studies reported metrics of improvement in dry eye symptoms, ocular-surface status, artificial tear use, contact lens comfort, and tear break-up time. Twenty-five studies included safety data. Plug placement resulted in ≥50% improvement of symptoms, improvement in ocular-surface health, reduction in artificial tear use, and improved contact lens comfort in patients with dry eye. Serious complications from plugs were infrequent. Plug loss was the most commonly reported problem with punctal plugs, occurring on average in 40% of patients. Overall, among all plug types, approximately 9% of patients experienced epiphora and 10% required removal because of irritation from the plugs. Canaliculitis was the most commonly reported problem for intracanalicular plugs and occurred in approximately 8% of patients. Other complications were reported in less than 4% of patients on average and included tearing, discomfort, pyogenic granuloma, and dacryocystitis. On the basis of level II and III evidence in these studies, plugs improve the signs and symptoms of moderate dry eye that are not improved with topical lubrication, and they are well tolerated. There are no level I studies that describe the efficacy or safety of lacrimal drainage system plugs. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
2009-07-16
Frequency (MHz) Figure 3.4: CABLE SMA/SMA 24" RG-316DS. CABLE SMA PLUG-PLUG HF -.086 8" 3.1. TRANSMITTER IMPLEMENTATION 13 Length: 8.0" (203.2mm) Color...Gray RG Type: Hand Formable .086 Connector: Type SMA Male to SMA Male Features: Shielded "• JI Figure 3.5: CABLE SMA PLUG-PLUG HF -.086 8...34 . • CABLE SMA PLUG-PLUG HF -.141 8" Length: 8.0" (203.2mm) Color: Gray RG Type: Hand Formable .141 14 CHAPTER 3. 2 BY I MISO SYSTEM DEVELOPMENT
Effects of Proud Large Osteochondral Plugs on Contact Forces and Knee Kinematics: A Robotic Study.
Du, Peter Z; Markolf, Keith L; Boguszewski, Daniel V; Yamaguchi, Kent T; Lama, Christopher J; McAllister, David R; Jones, Kristofer J
2018-05-01
Osteochondral allograft (OCA) transplantation is used to treat large focal femoral condylar articular cartilage defects. A proud plug could affect graft survival by altering contact forces (CFs) and knee kinematics. A proud OCA plug will significantly increase CF and significantly alter knee kinematics throughout controlled knee flexion. Controlled laboratory study. Human cadaver knees had miniature load cells, each with a 20-mm-diameter cylinder of native bone/cartilage attached at its exact anatomic position, installed in both femoral condyles at standardized locations representative of clinical defects. Spacers were inserted to create proud plug conditions of +0.5, +1.0, and +1.5 mm. CFs and knee kinematics were recorded as a robot flexed the knee continuously from 0° to 50° under 1000 N of tibiofemoral compression. CFs were increased significantly (vs flush) for all proudness conditions between 0° and 45° of flexion (medial) and 0° to 50° of flexion (lateral). At 20°, the average increases in medial CF for +0.5-mm, +1-mm, and +1.5-mm proudness were +80 N (+36%), +155 N (+70%), and +193 N (+87%), respectively. Corresponding increases with proud lateral plugs were +44 N (+14%), +90 N (+29%), and +118 N (+38%). CF increases for medial plugs at 20° of flexion were significantly greater than those for lateral plugs at all proudness conditions. At 50°, a 1-mm proud lateral plug significantly decreased internal tibial rotation by 15.4° and decreased valgus rotation by 2.5°. A proud medial or lateral plug significantly increased CF between 0° and 45° of flexion. Our results suggest that a medial plug at 20° may be more sensitive to graft incongruity than a lateral plug. The changes in rotational kinematics with proud lateral plugs were attributed to earlier contact between the proud plug's surface and the lateral meniscus, leading to rim impingement with decreased tibial rotation. Increased CF and altered knee kinematics from a proud femoral plug could affect graft viability. Plug proudness of only 0.5 mm produced significant changes in CF and knee kinematics, and the clinically accepted 1-mm tolerance may need to be reexamined in view of our findings.
Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows
NASA Technical Reports Server (NTRS)
Dosanjh, D. S.; Das, I. S.
1985-01-01
The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.
An objective comparison of leakage between commonly used earplugs.
Alt, Jeremiah A; Collins, William O
2012-01-01
We sought to determine the efficacy of commonly used earplugs using an anatomically correct ear model. The total volume and rate of water that leaked past the earplug and subsequent defect in the tympanic membrane over separately measured 30, 60, 120, and 180-second intervals were recorded. Scenarios tested included a control with no earplug, custom molded earplug (Precision Laboratories, Orlando, FL), Mack's plug (Warren, MI), Doc's plug (Santa Cruz, CA), and cotton balls coated with petroleum jelly. All plugs tested resulted in less leakage at all time points when compared with no plug (P < .05). At 30 seconds, the custom molded, Mack's and Doc's plugs all showed significantly less leakage when compared with the cotton ball coated with petroleum jelly (P < .05). At 60, 120, and 180 seconds, Mack's, Doc's, and the cotton plugs all showed significantly less leakage compared with the customized plug (P < .05). At 120 and 180 seconds, Mack's plugs had significant less leakage than the cotton plug (P < .05). Among the types of plugs, the molded variety (Mack's) showed the least volume and lowest leakage rate (f(4,45) = 94 [P < .001]). In addition, Doc's and cotton balls coated with petroleum jelly were more effective than the customized earplugs. If the clinician feels that middle ear and external canal water exposure should be minimized, then use of earplugs, particularly the moldable variety, merits further consideration. Copyright © 2012 Elsevier Inc. All rights reserved.
Electrostatic networks control plug stabilization in the PapC usher.
Pham, Thieng; Henderson, Nadine S; Werneburg, Glenn T; Thanassi, David G; Delcour, Anne H
2015-01-01
The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear. Two structural features within the β-barrel, an α-helix and β5-6 hairpin loop, may play roles in controlling plug stabilization. Here we have tested clusters of residues at the interface of the plug, barrel, α-helix and hairpin, which participate in electrostatic networks. To assess the roles of these residues in plug stabilization, we used patch-clamp electrophysiology to compare the activity of wild-type and mutant PapC channels containing alanine substitutions at these sites. Mutations interrupting each of two salt bridge networks were relatively ineffective in disrupting plug stabilization. However, mutation of two pairs of arginines located at the inner and the outer surfaces of the PD resulted in an enhanced propensity for plug displacement. One arginine pair involved in a repulsive interaction between the linkers that tether the plug to the β-barrel was particularly sensitive to mutation. These results suggest that plug displacement, which is necessary for pilus assembly and translocation, may require a weakening of key electrostatic interactions between the plug linkers, and the plug and the α-helix.
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In
Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E -mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In
40 CFR 146.92 - Injection well plugging.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner or operator must flush each Class VI injection well with a buffer fluid, determine bottomhole reservoir...
40 CFR 144.62 - Cost estimate for plugging and abandonment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must revise the plugging and abandonment cost estimate whenever a change in the plugging and... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Cost estimate for plugging and abandonment. 144.62 Section 144.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...
Compact Fluorescent Plug-In Ballast-in-a-Socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebecca Voelker
2001-12-21
The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are usedmore » today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.« less
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.; Garcia, R.; Dejong, F. J.; Sabnis, J. S.; Pribik, D. A.
1989-01-01
An analysis of Space Shuttle Main Engine high-pressure oxygen turbopump nozzle plug trajectories has been performed, using a Lagrangian method to track nozzle plug particles expelled from a turbine through a high Reynolds number flow in a turnaround duct with turning vanes. Axisymmetric and parametric analyses reveal that if nozzle plugs exited the turbine they would probably impact the LOX heat exchanger with impact velocities which are significantly less than the penetration velocity. The finding that only slight to moderate damage will result from nozzle plug failure in flight is supported by the results of a hot-fire engine test with induced nozzle plug failures.
Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1983-01-01
The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.
ERIC Educational Resources Information Center
Thompson, Douglas E.
2013-01-01
In today's complex music software packages, many features can remain unexplored and unused. Software plug-ins--available in most every music software package, yet easily overlooked in the software's basic operations--are one such feature. In this article, I introduce readers to plug-ins and offer tips for purchasing plug-ins I have…
40 CFR 144.62 - Cost estimate for plugging and abandonment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Cost estimate for plugging and... Waste Injection Wells § 144.62 Cost estimate for plugging and abandonment. (a) The owner or operator must prepare a written estimate, in current dollars, of the cost of plugging the injection well in...
Low-Carbon Metallurgical Concepts for Seamless Octg Pipe
NASA Astrophysics Data System (ADS)
Mohrbacher, Hardy
Seamless pipes are available with wall gages of up to 100 mm and outer diameters up to around 700 mm. Such pipes are typically used for oil country tubular goods as well as for structural applications. Due to market requirements the demand for high strength grade seamless pipes is increasing. Many applications need high toughness in addition to high strength. The different rolling processes applied in production depend on wall gage and pipe diameter. The continuous mandrel mill process is used to produce smaller gages and diameters; plug mill processing covers medium gages and diameters; Pilger mill processing allows producing larger diameters and heavy wall gage. In all these processes only a limited degree of thermo-mechanical rolling can be achieved. Therefore strengthening and toughening by severe grain refinement employing a conventional niobium-based microalloying concept is not easily achievable. Accordingly, high strength and toughness seamless pipe is typically produced via a quench and tempering process route. This route however is costly and above that often constitutes a capacity bottleneck in the mill. Innovative low-carbon alloy concepts however do allow producing strength up to grade X70 at very high toughness directly off the rolling plant, i.e., without quench and tempering treatment. Due to the low carbon content also welding is much facilitated. The paper reveals the metallurgical principles, which are based on appropriate niobium and molybdenum alloying. Additionally the paper demonstrates how heavy gaged seamless pipes up to 70 mm wall thickness can be produced based on a low-carbon Nb-Mo approach using quench and temper treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Robert L.; Francis, Julieta; Bogacz, Richard J.
Grid investments that support electric vehicle deployments as a part of planned modernization efforts can enable a more efficient and cost-effective transition to electric transportation and allow investor-owned electric companies and public power companies to realize new revenue resources in times of flat or declining loads. This paper discusses the challenges and opportunities associated with an increase in plug-in electric vehicle (PEV) adoption and how working together both sectors stand to benefit from closer integration.
Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.; ...
2017-04-09
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less
Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston
NASA Astrophysics Data System (ADS)
Upadhyaya, Pramey; Tserkovnyak, Yaroslav
2016-07-01
We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.
Feasibility of ultraviolet-light-emitting diodes as an alternative light source for photocatalysis.
Levine, Lanfang H; Richards, Jeffrey T; Coutts, Janelle L; Soler, Robert; Maxik, Fred; Wheeler, Raymond M
2011-09-01
The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (lambda max = 365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I(F)) of 100 mA delivered an average irradiance of 4.0 mW cm(-2) at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppm(v)) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L(-1) s(-1)), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off" feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.
Study of the reaction of atomic oxygen with aerosols
NASA Technical Reports Server (NTRS)
Akers, F. I.; Wightman, J. P.
1975-01-01
The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.
Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars
NASA Astrophysics Data System (ADS)
van Vliet, Oscar P. R.; Kruithof, Thomas; Turkenburg, Wim C.; Faaij, André P. C.
We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be seen both as an alternative to petrol, diesel and parallel hybrid cars, as well as an intermediate stage towards fully electric or fuel cell cars. We calculate the fuel consumption and costs of four diesel-fuelled series hybrid, four plug-in hybrid and four fuel cell car configurations, and compared these to three reference cars. We find that series hybrid cars may reduce fuel consumption by 34-47%, but cost €5000-12,000 more. Well-to-wheel greenhouse gas emissions may be reduced to 89-103 g CO 2 km -1 compared to reference petrol (163 g km -1) and diesel cars (156 g km -1). Series hybrid cars with wheel motors have lower weight and 7-21% lower fuel consumption than those with central electric motors. The fuel cell car remains uncompetitive even if production costs of fuel cells come down by 90%. Plug-in hybrid cars are competitive when driving large distances on electricity, and/or if cost of batteries come down substantially. Well-to-wheel greenhouse gas emissions may be reduced to 60-69 g CO 2 km -1.
Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B.; Schriemer, David C.
2016-01-01
The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae. Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. PMID:27412762
Sarpe, Vladimir; Rafiei, Atefeh; Hepburn, Morgan; Ostan, Nicholas; Schryvers, Anthony B; Schriemer, David C
2016-09-01
The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public
in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in
Plug-In Hybrid Electric Vehicle Basics | NREL
Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to fuel from its onboard tank, and this provides a driving range (the distance a vehicle can travel
Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In
Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
A Report on Superfluid Helium Flow Through Porous Plugs for Space Science Applications
NASA Technical Reports Server (NTRS)
Mason, F. C.
1983-01-01
As a background for the study of the nature of superfluid helium flow through porous plugs for other space science uses, preliminary tests on various plugs of a given material, diameter, height, and filtration grade have been performed. Two characteristics of the plugs, pore size and number of channels, have been determined by the bubble test and warm flow test of helium gas through the plugs, respectively. Tests on the flow of He II through the plugs have also been performed. An obvious feature of the results of these tests is that for isothermal measurements of pressure versus mass flow rate below approximately 2.10 K, the flow is separated into two different regimes, indicative of the occurrence of a critical phenomenon.
NASA Astrophysics Data System (ADS)
Clarke, A. B.; Stephens, S.; Teasdale, R.; Sparks, R. S. J.; Diller, K.
2007-04-01
A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm 2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ˜ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ˜ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250-700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.
Means of increasing efficiency of CPC solar energy collector
Chao, B.T.; Rabl, A.
1975-06-27
A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.
Means of increasing efficiency of CPC solar energy collector
Chao, Bei Tse; Rabl, Ari
1977-02-15
A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.
NASA Astrophysics Data System (ADS)
Williams, Brett David
Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" (Me-) is characterized. Me- redefines H2 FCVs as innovative products able to provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. It uses a new model to estimate zero-emission-power vs. zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me- enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today's internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuel-cell zero-sum game and towards the development of integrated plug-in/plug-out hybrid platforms. H2FCVs are described as one possible extension of this Me- product platform for the supply of clean, high-power, and profitable Me- services as the technologies and markets mature. Finally, the major findings of this study are summarized and directions for future work discussed. Together, the parts of this Me- innovation assessment reveal an initially expensive and limited but compelling (and possibly necessary) set of opportunities to help drive H2FCV and other electric-drive-vehicle commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbri, L.M.; Danieli, D.; Crescioli, S.
We report the case of a 43-yr-old car painter who died within 1 h of exposure to a polyurethane paint in the workplace. A diagnosis of asthma induced by toluene diisocyanate (TDI) had been established 6 yr before, when he underwent inhalation challenges with carbachol and with TDI. The subject had airway hyperresponsiveness to carbachol (PD20FEV1 carbachol = 0.32 mg; normal value greater than 1.0 mg) and developed an early and long-lasting asthmatic reaction after exposure to TDI in the laboratory. Although it was recommended that he change his job or stop using paints containing isocyanates, he continued to workmore » as a car painter, taking antiasthmatic drugs both at work and at home to control asthma symptoms. On Monday, October 6, 1986, at 11:30 A. M., he developed a severe attack of asthma while he was mixing the 2 components of a polyurethane paint. Taken to hospital, he was dead on arrival. Autopsy showed no evidence of cardiac or brain disease; lungs were overinflated, the cut surface showed grey glistening mucous plugs in in the airways. Histologic examination showed denudation of airway epithelium and thickening of the basement membrane with infiltration of the lamina propria by polymorphonuclear leukocytes, mainly eosinophils, and diffuse mucous plugging of bronchioles. Bronchial smooth muscle appeared hyperplastic and disarrayed, and lung parenchyma showed focal areas of alveolar destruction adjacent to areas of perfectly intact alveolar walls.« less
Waddell, B.; May, T.
1995-01-01
A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.
Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In
Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Zones in open hole, Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe; (ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and...
30 CFR 250.1715 - How must I permanently plug a well?
Code of Federal Regulations, 2011 CFR
2011-07-01
... in open hole Cement plug(s) set from at least 100 feet below the bottom to 100 feet above the top of... cement plug, set by the displacement method, at least 100 feet above and below deepest casing shoe;(ii) A cement retainer with effective back-pressure control set 50 to 100 feet above the casing shoe, and a...
Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation
Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.
1984-01-01
Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.
Integrated geophysical surveys for mapping lati-andesite intrusive bodies, Chino Valley, Arizona
El-Kaliouby, Hesham; Sternberg, Ben K.; Hoffmann, John P.; Langenheim, V.E.
2012-01-01
Three different geophysical methods (magnetic, transient electromagnetic (TEM) and gravity) were used near Chino Valley, Arizona, USA in order to map a suspected lati-andesite intrusive body (plug) previously located by interpretation of aeromagnetic data. The magnetic and TEM surveys provided the best indication of the location and depth of the plug. The north-south spatial extent of this plug was estimated to be approximately 600 meters. The depth to the top of the plug was found from the TEM survey to be approximately 350 meters near the center of the survey. The location of the plug defined by the ground magnetic data is consistent with that from the TEM data. Gravity data mostly image the basin-basement interface with a small contribution from the plug of about 0.5 mGal. Results from this investigation can be used to help define the irregular subsurface topography caused by several intrusive lati-andesite plugs that could influence groundwater flow in the area.
Opportunity to Plug Your Car Into the Electric Grid is Arriving
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griego, G.
2010-06-01
Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save ownersmore » up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.« less
NASA Technical Reports Server (NTRS)
Indoe, William
2012-01-01
A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.
High temperature penetrator assembly with bayonet plug and ramp-activated lock
NASA Technical Reports Server (NTRS)
Wood, K. E. (Inventor)
1982-01-01
A penetration apparatus, for very high temperature applications in which a base plug is inserted into an opening through a bulkhead is described. The base plug has a head shape and is seated against the highest temperature surface of the bulkhead, which may be the skin of the nose cone or other part of a space vehicle intended for nondestructive atmospheric reentry. From the second side of the bulkhead at which the less severe environment is extant, a bayonet plug is inserted into the base plug and engages an internal shoulder at about 90 deg rotation. The bayonet plug has an integral flanged portion and a pair of ramping washers which are located between the flange and the second bulkhead surface with a spacing washer as necessary.
Economics of abdominal wall reconstruction.
Bower, Curtis; Roth, J Scott
2013-10-01
The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. Copyright © 2013 Elsevier Inc. All rights reserved.
Miniature electrical connector
Casper, Robert F.
1976-01-01
A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.
Partial wetting gas-liquid segmented flow microreactor.
Kazemi Oskooei, S Ali; Sinton, David
2010-07-07
A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.
Low-cost electrodes for stable perovskite solar cells
NASA Astrophysics Data System (ADS)
Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.
2017-06-01
Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.
Punctal occlusion for dry eye syndrome.
Ervin, Ann-Margret; Law, Andrew; Pucker, Andrew D
2017-06-26
Dry eye syndrome is a disorder of the tear film that is associated with symptoms of ocular discomfort. Punctal occlusion is a mechanical treatment that blocks the tear drainage system in order to aid in the preservation of natural tears on the ocular surface. To assess the effects of punctal plugs versus no punctal plugs, different types of punctal plugs, and other interventions for managing dry eye. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 11), MEDLINE Ovid (1946 to 8 December 2016), Embase.com (1947 to 8 December 2016), PubMed (1948 to 8 December 2016), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 8 December 2016), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com; last searched 18 November 2012 - this resource is now archived), ClinicalTrials.gov (www.clinicaltrials.gov; searched 8 December 2016), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en; searched 8 December 2016). We did not use any date or language restrictions in the electronic searches for trials. We also searched the Science Citation Index-Expanded database and reference lists of included studies. The evidence was last updated on 8 December 2016 SELECTION CRITERIA: We included randomized and quasi-randomized controlled trials of collagen or silicone punctal plugs in symptomatic participants diagnosed with aqueous tear deficiency or dry eye syndrome. Two review authors independently assessed trial quality and extracted data. We contacted study investigators for additional information when needed. We included 18 trials (711 participants, 1249 eyes) from Austria, Canada, China, Greece, Japan, Mexico, Netherlands, Turkey, the UK, and the USA in this review. We also identified one ongoing trial. Overall we judged these trials to be at unclear risk of bias because they were poorly reported. We assessed the evidence for eight comparisons.Five trials compared punctal plugs with no punctal plugs (control). Three of these trials employed a sham treatment and two trials observed the control group. Two trials did not report outcome data relevant to this review. There was very low-certainty evidence on symptomatic improvement. The three trials that reported this outcome used different scales to measure symptoms. In all three trials, there was little or no improvement in symptom scores with punctal plugs compared with no punctal plugs. Low-certainty evidence from one trial suggested less ocular surface staining in the punctal plug group compared with the no punctal plug group however this difference was small and possibly clinically unimportant (mean difference (MD) in fluorescein staining score -1.50 points, 95% CI -1.88 to -1.12; eyes = 61). Similarly there was a small difference in tear film stability with people in the punctal plug group having more stability (MD 1.93 seconds more, 95% CI 0.67 to 3.20; eyes = 28, low-certainty evidence). The number of artificial tear applications was lower in the punctal plug group compared with the no punctal plugs group in one trial (MD -2.70 applications, 95% CI -3.11 to -2.29; eyes = 61, low-certainty evidence). One trial with low-certainty evidence reported little or no difference between the groups in Schirmer scores, but did not report any quantitative data on aqueous tear production. Very low-certainty evidence on adverse events suggested that events occurred reasonably frequently in the punctal plug group and included epiphora, itching, tenderness and swelling of lids with mucous discharge, and plug displacement.One trial compared punctal plugs with cyclosporine (20 eyes) and one trial compared punctal plugs with oral pilocarpine (55 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision.Five trials compared punctal plugs with artificial tears. In one of the trials punctal plugs was combined with artificial tears and compared with artificial tears alone. There was very low-certainty evidence on symptomatic improvement. Low-certainty evidence of little or no improvement in ocular surface staining comparing punctal plugs with artificial tears (MD right eye 0.10 points higher, 0.56 lower to 0.76 higher, MD left eye 0.60 points higher, 0.10 to 1.10 higher) and low-certainty evidence of little or no difference in aqueous tear production (MD 0.00 mm/5 min, 0.33 lower to 0.33 higher)Three trials compared punctal plugs in the upper versus the lower puncta, and none of them reported the review outcomes at long-term follow-up. One trial with very low-certainty evidence reported no observed complications, but it was unclear which complications were collected.One trial compared acrylic punctal plugs with silicone punctal plugs and the trial reported outcomes at approximately 11 weeks of follow-up (36 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision.One trial compared intracanalicular punctal plugs with silicone punctal plugs at three months follow-up (57 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision.Finally, two trials with very low-certainty evidence compared collagen punctal plugs versus silicone punctal plugs (98 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Although the investigators of the individual trials concluded that punctal plugs are an effective means for treating dry eye signs and symptoms, the evidence in this systematic review suggests that improvements in symptoms and commonly tested dry eye signs are inconclusive. Despite the inclusion of 11 additional trials, the findings of this updated review are consistent with the previous review published in 2010. The type of punctal plug investigated, the type and severity of dry eye being treated, and heterogeneity in trial methodology confounds our ability to make decisive statements regarding the effectiveness of punctal plug use. Although punctal plugs are believed to be relatively safe, their use is commonly associated with epiphora and, less commonly, with inflammatory conditions such as dacryocystitis.
Punctal occlusion for dry eye syndrome
Ervin, Ann-Margret; Law, Andrew; Pucker, Andrew D
2017-01-01
Background Dry eye syndrome is a disorder of the tear film that is associated with symptoms of ocular discomfort. Punctal occlusion is a mechanical treatment that blocks the tear drainage system in order to aid in the preservation of natural tears on the ocular surface. Objectives To assess the effects of punctal plugs versus no punctal plugs, different types of punctal plugs, and other interventions for managing dry eye. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 11), MEDLINE Ovid (1946 to 8 December 2016), Embase.com (1947 to 8 December 2016), PubMed (1948 to 8 December 2016), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 8 December 2016), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com; last searched 18 November 2012 - this resource is now archived), ClinicalTrials.gov (www.clinicaltrials.gov; searched 8 December 2016), and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en; searched 8 December 2016). We did not use any date or language restrictions in the electronic searches for trials. We also searched the Science Citation Index-Expanded database and reference lists of included studies. The evidence was last updated on 8 December 2016 Selection criteria We included randomized and quasi-randomized controlled trials of collagen or silicone punctal plugs in symptomatic participants diagnosed with aqueous tear deficiency or dry eye syndrome. Data collection and analysis Two review authors independently assessed trial quality and extracted data. We contacted study investigators for additional information when needed. Main results We included 18 trials (711 participants, 1249 eyes) from Austria, Canada, China, Greece, Japan, Mexico, Netherlands, Turkey, the UK, and the USA in this review. We also identified one ongoing trial. Overall we judged these trials to be at unclear risk of bias because they were poorly reported. We assessed the evidence for eight comparisons. Five trials compared punctal plugs with no punctal plugs (control). Three of these trials employed a sham treatment and two trials observed the control group. Two trials did not report outcome data relevant to this review. There was very low-certainty evidence on symptomatic improvement. The three trials that reported this outcome used different scales to measure symptoms. In all three trials, there was little or no improvement in symptom scores with punctal plugs compared with no punctal plugs. Low-certainty evidence from one trial suggested less ocular surface staining in the punctal plug group compared with the no punctal plug group however this difference was small and possibly clinically unimportant (mean difference (MD) in fluorescein staining score -1.50 points, 95% CI -1.88 to -1.12; eyes = 61). Similarly there was a small difference in tear film stability with people in the punctal plug group having more stability (MD 1.93 seconds more, 95% CI 0.67 to 3.20; eyes = 28, low-certainty evidence). The number of artificial tear applications was lower in the punctal plug group compared with the no punctal plugs group in one trial (MD -2.70 applications, 95% CI -3.11 to -2.29; eyes = 61, low-certainty evidence). One trial with low-certainty evidence reported little or no difference between the groups in Schirmer scores, but did not report any quantitative data on aqueous tear production. Very low-certainty evidence on adverse events suggested that events occurred reasonably frequently in the punctal plug group and included epiphora, itching, tenderness and swelling of lids with mucous discharge, and plug displacement. One trial compared punctal plugs with cyclosporine (20 eyes) and one trial compared punctal plugs with oral pilocarpine (55 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Five trials compared punctal plugs with artificial tears. In one of the trials punctal plugs was combined with artificial tears and compared with artificial tears alone. There was very low-certainty evidence on symptomatic improvement. Low-certainty evidence of little or no improvement in ocular surface staining comparing punctal plugs with artificial tears (MD right eye 0.10 points higher, 0.56 lower to 0.76 higher, MD left eye 0.60 points higher, 0.10 to 1.10 higher) and low-certainty evidence of little or no difference in aqueous tear production (MD 0.00 mm/5 min, 0.33 lower to 0.33 higher) Three trials compared punctal plugs in the upper versus the lower puncta, and none of them reported the review outcomes at long-term follow-up. One trial with very low-certainty evidence reported no observed complications, but it was unclear which complications were collected. One trial compared acrylic punctal plugs with silicone punctal plugs and the trial reported outcomes at approximately 11 weeks of follow-up (36 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. One trial compared intracanalicular punctal plugs with silicone punctal plugs at three months follow-up (57 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Finally, two trials with very low-certainty evidence compared collagen punctal plugs versus silicone punctal plugs (98 eyes). The evidence was judged to be very low-certainty due to a combination of risk of bias and imprecision. Authors' conclusions Although the investigators of the individual trials concluded that punctal plugs are an effective means for treating dry eye signs and symptoms, the evidence in this systematic review suggests that improvements in symptoms and commonly tested dry eye signs are inconclusive. Despite the inclusion of 11 additional trials, the findings of this updated review are consistent with the previous review published in 2010. The type of punctal plug investigated, the type and severity of dry eye being treated, and heterogeneity in trial methodology confounds our ability to make decisive statements regarding the effectiveness of punctal plug use. Although punctal plugs are believed to be relatively safe, their use is commonly associated with epiphora and, less commonly, with inflammatory conditions such as dacryocystitis. PMID:28649802
Double-pointed 30-gauge needle for keratocentesis.
Angi, M R; Endara, N I
1985-12-01
A new, efficient instrument for performing keratocentesis for aqueous humour aspiration and anterior chamber microinfusion is described. It consists of a double-pointed 30-gauge needle, a liquid container (a nonflexible vinyl tube plugged at one end with a rubber stopper) and a aspiration-infusion syringe connected to the container and needle by a flexible vinyl tube. The instrument's advantages are a safer technique, complete collection of the aqueous humour and better handling of the sample.
Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation
2010-09-01
adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
Plug Load Behavioral Change Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Kandt, A.; VanGeet, O.
2011-08-01
This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.
40 CFR 147.3108 - Plugging Class I, II, and III wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... with a cement plug from there to at least one hundred (100) feet above the top of the disposal or injection zone. (2) A cement plug shall also be set from a point at least fifty (50) feet below the shoe of... cement plug shall extend from a point at least thirty feet below the ground surface to a point five (5...
Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E
2009-11-01
Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/( degrees/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/( degrees/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90 degrees phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice.
Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.
2009-01-01
Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/(°/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/(°/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90° phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice. PMID:19726724
A Polymer Plugging Gel for the Fractured Strata and Its Application
Fan, Xiangyu; Zhao, Pengfei; Zhang, Qiangui; Zhang, Ting; Zhu, Kui; Zhou, Chenghua
2018-01-01
Well leakage of fractured strata is a tricky problem while drilling. This unwieldy problem is usually caused by the poor formation of the cementing degree, the staggered-mesh of the fracture, and the low bearing capacity of the formation, which can also lead to a narrow and even unsafe window of drilling fluid density. For fractured strata, the normal plugging material has the disadvantages of unsuitable size and low strength, resulting in unsuccessful first time plugging and an increase in cost. Therefore, we developed a polymer plugging gel for the fractured strata, named XNGJ-3. XNGJ-3 is mainly made of an acrylamide monomer and is accompanied by the reactive monomers of carboxyl and hydroxyl as ingredients. XNGJ-3 has a low viscosity before gelling. At 80 °C it becomes gelled, and the gelling time was controlled within the required time of the practical application. These conditions are beneficial for making the plugging material enter the crossing fracture smoothly and occlude the fracture. XNGJ-3 also has a good deformability and can avoid being damaged during the process of fracture closure. The well leakage simulated experiment revealed that the bearing capacity of this material can reach 21 MPa and the inverse bearing capacity can reach 20 MPa. These strengths are more than twice that of common polymer plugging gels. Finally, three leaked wells in the fractured strata of the Sichuan Basin were used to verify the plugging effect of XNGJ-3. Compared with other common plugging materials, XNGJ-3 has the advantages of having a higher success rate of first time plugging, a lower economic cost, a shorter work time, and so forth, which indicate that this plugging material has a good engineering application value in dealing with well leakage of fractured strata. PMID:29883407
Xiong, Hui; Sultan, Laith R; Cary, Theodore W; Schultz, Susan M; Bouzghar, Ghizlane; Sehgal, Chandra M
2017-05-01
To assess the diagnostic performance of a leak-plugging segmentation method that we have developed for delineating breast masses on ultrasound images. Fifty-two biopsy-proven breast lesion images were analyzed by three observers using the leak-plugging and manual segmentation methods. From each segmentation method, grayscale and morphological features were extracted and classified as malignant or benign by logistic regression analysis. The performance of leak-plugging and manual segmentations was compared by: size of the lesion, overlap area ( O a ) between the margins, and area under the ROC curves ( A z ). The lesion size from leak-plugging segmentation correlated closely with that from manual tracing ( R 2 of 0.91). O a was higher for leak plugging, 0.92 ± 0.01 and 0.86 ± 0.06 for benign and malignant masses, respectively, compared to 0.80 ± 0.04 and 0.73 ± 0.02 for manual tracings. Overall O a between leak-plugging and manual segmentations was 0.79 ± 0.14 for benign and 0.73 ± 0.14 for malignant lesions. A z for leak plugging was consistently higher (0.910 ± 0.003) compared to 0.888 ± 0.012 for manual tracings. The coefficient of variation of A z between three observers was 0.29% for leak plugging compared to 1.3% for manual tracings. The diagnostic performance, size measurements, and observer variability for automated leak-plugging segmentations were either comparable to or better than those of manual tracings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, M.; Metzger, I.; Cutler, D.
2014-01-01
As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of themore » technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.« less
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-12-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Resent Status of ITER Equatorial Launcher Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Kajiwara, K.; Kasugai, A.
2009-11-26
The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less