Sample records for wall polysaccharides studied

  1. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  2. Structural analysis of cell wall polysaccharides using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Jennifer C.

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  3. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  4. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  5. Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus.

    PubMed

    Parra, E; Jiménez-Barbero, J; Bernabé, M; Leal, J A; Prieto, A; Gómez-Miranda, B

    1994-01-03

    The water-soluble cell-wall polysaccharides isolated from strains CBS 352.72 and 310.38 of Talaromyces flavus have been investigated by chemical analyses and NMR studies. Two different skeletons coexist, having the structures: [formula:see text]. The small differences between the polysaccharides isolated from both strains are probably due to slight diminution of branching in strain 352.72, as compared with strain 310.38.

  6. The Specific Nature of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  7. Biosynthesis of plant cell wall polysaccharides.

    PubMed

    Gibeaut, D M; Carpita, N C

    1994-09-01

    The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.

  8. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  9. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    PubMed

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  10. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  11. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose.

    PubMed

    Engel, Jakob; Schmalhorst, Philipp S; Routier, Françoise H

    2012-12-28

    Fungal cell walls frequently contain a polymer of mannose and galactose called galactomannan. In the pathogenic filamentous fungus Aspergillus fumigatus, this polysaccharide is made of a linear mannan backbone with side chains of galactofuran and is anchored to the plasma membrane via a glycosylphosphatidylinositol or is covalently linked to the cell wall. To date, the biosynthesis and significance of this polysaccharide are unknown. The present data demonstrate that deletion of the Golgi UDP-galactofuranose transporter GlfB or the GDP-mannose transporter GmtA leads to the absence of galactofuran or galactomannan, respectively. This indicates that the biosynthesis of galactomannan probably occurs in the lumen of the Golgi apparatus and thus contrasts with the biosynthesis of other fungal cell wall polysaccharides studied to date that takes place at the plasma membrane. Transglycosylation of galactomannan from the membrane to the cell wall is hypothesized because both the cell wall-bound and membrane-bound polysaccharide forms are affected in the generated mutants. Considering the severe growth defect of the A. fumigatus GmtA-deficient mutant, proving this paradigm might provide new targets for antifungal therapy.

  12. Changes in Cell Wall Polysaccharides Associated With Growth 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1968-01-01

    Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862

  13. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE.

    PubMed

    Pidatala, Venkataramana R; Mahboubi, Amir; Mortimer, Jenny C

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharide fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.

  14. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  15. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  16. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE PAGES

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  17. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    PubMed Central

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  18. Genetic engineering of grass cell wall polysaccharides for biorefining.

    PubMed

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Modification of cell wall polysaccharides during retting of cassava roots.

    PubMed

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Changes in polysaccharide and protein composition of cell walls in grape berry skin (Cv. Shiraz) during ripening and over-ripening.

    PubMed

    Vicens, Anysia; Fournand, David; Williams, Pascale; Sidhoum, Louise; Moutounet, Michel; Doco, Thierry

    2009-04-08

    Polysaccharide modification is the most fundamental factor that affects firmness of fruit during ripening. In grape, because of the lack of information on the modifications occurring in cell wall polysaccharides in skins, but also because this tissue contains large amounts of organoleptic compounds for winemaking, a study was performed on the evolution and extractability of polysaccharides from grape skins of Shiraz cultivar throughout ripening. A HEPES/phenol extraction technique was used to analyze Shiraz grape cell wall material isolated from skins of berries harvested from one to ten weeks after veraison. Total amounts in cell wall polysaccharides remained constant during ripening (4.2 mg/berry). A slight decrease in galactose content of insoluble polysaccharides was observed, as well as a significant de-esterification of methoxylated uronic acids, indicating that some modifications occur in cell wall polysaccharides. The water-soluble fraction represented a very small fraction of the whole polysaccharides, but its amounts increased more than 2-fold between the first and the last sample. Isolated cell walls were also analyzed for their protein composition. Last, hydroalcoholic extractions in model-wine solution were also performed on fresh skins. This extracted fraction was very similar to the water-soluble one, and increased during the entire period. By comparison with polysaccharide modifications described in flesh cell wall in previous works, it can be assumed that the moderate skin polysaccharide degradation highlights the protective role of that tissue.

  1. Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Grard, Thierry; Murphy, James; Mahony, Jennifer; Chapot-Chartier, Marie-Pierre; van Sinderen, Douwe

    2018-05-22

    Lactococcus lactis is the most widely utilised starter bacterial species in dairy fermentations. The L. lactis cell envelope contains polysaccharides, which, among other known functions, serve as bacteriophage receptors. Our previous studies have highlighted the structural diversity of these so-called cell wall polysaccharides (CWPSs) among L. lactis strains that could account for the narrow host range of most lactococcal bacteriophages. In the present work, we studied the CWPS of L. lactis strain UC509.9, an Irish dairy starter strain that is host to the temperate and well-characterized P335-type phage Tuc2009. The UC509.9 CWPS structure was analyzed by methylation, deacetylation/deamination, Smith degradation and 2D NMR spectroscopy. The CWPS consists of a linear backbone composed of a tetrasaccharide repeat unit, partially substituted with a branched phosphorylated oligosaccharide having a common trisaccharide and three non-stoichiometric substitutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.

    PubMed

    Chen, Da; Harris, Philip J; Sims, Ian M; Zujovic, Zoran; Melton, Laurence D

    2017-06-15

    Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na 2 CO 3 , 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na 2 CO 3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and

  3. Chemical Organization of the Cell Wall Polysaccharide Core of Malassezia restricta

    PubMed Central

    Stalhberger, Thomas; Simenel, Catherine; Clavaud, Cécile; Eijsink, Vincent G. H.; Jourdain, Roland; Delepierre, Muriel; Latgé, Jean-Paul; Breton, Lionel; Fontaine, Thierry

    2014-01-01

    Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date. PMID:24627479

  4. Chemical organization of the cell wall polysaccharide core of Malassezia restricta.

    PubMed

    Stalhberger, Thomas; Simenel, Catherine; Clavaud, Cécile; Eijsink, Vincent G H; Jourdain, Roland; Delepierre, Muriel; Latgé, Jean-Paul; Breton, Lionel; Fontaine, Thierry

    2014-05-02

    Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.

  5. Microrheological studies reveal semiflexible networks in gels of a ubiquitous cell wall polysaccharide

    NASA Astrophysics Data System (ADS)

    Vincent, R. R.; Pinder, D. N.; Hemar, Y.; Williams, M. A. K.

    2007-09-01

    Microrheological measurements have been carried out on ionotropic gels made from an important cell wall polysaccharide, using diffusing wave spectroscopy and multiple particle tracking. These gels were formed by the interaction of calcium ions with negatively charged groups on the polymer backbone, which is a copolymer of charged and uncharged sugars, galacturonic acid, and its methylesterified analog, respectively. The results suggest that semiflexible networks are formed in these systems, with a low frequency, frequency independent storage modulus (G'>G″) , and a high frequency scaling of both G' and G″ with ω3/4 . The differences observed between gels obtained using polysaccharide samples with different amounts and patterns of the charged ion-binding groups could comfortably be accommodated within this theoretical framework, assuming that the elementary semiflexible elements of the network are filaments consisting of two polymer chains bridged with calcium. In particular, a sample that was engineered to possess a blockwise intramolecular distribution of calcium chelating moieties clearly exhibited the high frequency scaling of both moduli with ω3/4 across some three orders of magnitude, and the concentration dependences of the elastic modulus, at both high and low frequency, were found to follow power laws with predicted exponents. Furthermore, quantitative agreement of the moduli with theory was found for realistic estimates of the molecular parameters, suggesting that the physics of semiflexible networks is not only exploited by protein components of the cytoskeleton but also by polysaccharides in plant cell walls.

  6. Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Courtin, Pascal; Kulakauskas, Saulius; Grard, Thierry; Mahony, Jennifer; van Sinderen, Douwe; Chapot-Chartier, Marie-Pierre

    2018-06-15

    In the lactic acid bacterium Lactococcus lactis, a cell wall polysaccharide (CWPS) is the bacterial receptor of the majority of infecting bacteriophages. The diversity of CWPS structures between strains explains, at least partially, the narrow host range of lactococcal phages. In the present work, we studied the polysaccharide components of the cell wall of the prototype L. lactis subsp. lactis strain IL1403. We identified a rhamnose-rich complex polysaccharide, carrying a glycerophosphate substitution, as the major component. Its structure was analyzed by 2D NMR spectroscopy, methylation analysis and MALDI-TOF MS and shown to be distinctly different from currently known lactococcal CWPS structures. It contains a linear backbone of repeated α-l-Rha disaccharide subunits, which is irregularly substituted with a trisaccharide occasionally bearing a glycerophosphate group. A poly (glycerol phosphate) teichoic acid, another important carbohydrate component of the IL1403 cell wall, was also isolated and structurally characterized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Cell-wall polysaccharides and glycoproteins of parenchymatous tissues of runner bean (Phaseolus coccineus).

    PubMed Central

    Ryden, P; Selvendran, R R

    1990-01-01

    1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues. PMID:2167068

  8. Turnover of galactans and other cell wall polysaccharides during development of flax plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshkova, T.A.; Chemikosova, S.B.; Lozovaya, V.V.

    1997-06-01

    We investigated the synthesis and turnover of cell wall polysaccharides of the flax (Linum usitatissimum L.) plant during development of the phloem fibers. One-month-old flax plants were exposed to a 40-min pulse with {sup 14}CO{sub 2} followed by 8-h, 24-h, and 1-month periods of chase with ambient CO{sub 2}, and radioactivity in cell wall sugars was determined in various plant parts. The relative radioactivity of glucose in noncellulosic polysaccharides was the highest compared with all other cell wall sugars immediately after the pulse and decreased substantially during the subsequent chase. The relative radioactivities of the other cell wall sugars changedmore » with differing rates, indicating turnover of specific polysaccharides. Notably, after 1 month of chase there was a marked decrease in the proportional mass and total radioactivity in cell wall galactose, indicating a long-term turnover of the galactans enriched in the fiber-containing tissues. The ratio of radiolabeled xylose to arabinose also increased during the chase, indicating a turnover of arabinose-containing polymers and interconversion to xylose. The pattern of label redistribution differed between organs, indicating that the cell wall turnover processes are tissue- and cell-specific.« less

  9. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  10. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

    PubMed Central

    Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  11. Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots.

    PubMed Central

    Freshour, G.; Clay, R. P.; Fuller, M. S.; Albersheim, P.; Darvill, A. G.; Hahn, M. G.

    1996-01-01

    The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner. PMID:12226270

  12. Properties of the polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei

    PubMed Central

    Hall, Elizabeth A.; Knox, K. W.

    1965-01-01

    1. The polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei have been separated by mild conditions of acid hydrolysis. 2. Removal of the polysaccharide renders the mucopeptide susceptible to lysozyme. 3. The mucopeptide and polysaccharide components have been analysed and the results compared with those obtained previously. 4. The polysaccharides responsible for group specificity have a terminal reducing N-acetylgalactosamine residue substituted on C(3) by the adjacent sugar; estimation of this component gave an indication of the molecular weight of the polysaccharides. 5. Evidence has been obtained for the presence of rhamnosyl-(1→3)-N-acetylgalactosamine among the products of acid hydrolysis of the group B polysaccharide. ImagesFig. 2. PMID:5837778

  13. Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis.

    PubMed

    Sadovskaya, Irina; Vinogradov, Evgeny; Courtin, Pascal; Armalyte, Julija; Meyrand, Mickael; Giaouris, Efstathios; Palussière, Simon; Furlan, Sylviane; Péchoux, Christine; Ainsworth, Stuart; Mahony, Jennifer; van Sinderen, Douwe; Kulakauskas, Saulius; Guérardel, Yann; Chapot-Chartier, Marie-Pierre

    2017-09-12

    Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis , a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA , encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan. IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including

  14. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao

    2016-02-01

    Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and

  16. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and

  17. Structure of complex cell wall polysaccharides isolated from Trichoderma and Hypocrea species.

    PubMed

    Prieto, A; Leal, J A; Poveda, A; Jiménez-Barbero, J; Gómez-Miranda, B; Domenech, J; Ahrazem, O; Bernabé, M

    1997-11-28

    The structure of fungal polysaccharides isolated from the cell wall of Trichoderma reesei, T. koningii, and Hypocrea psychrophila, have been investigated by means of chemical analyses and 1D and 2D NMR spectroscopy. The polysaccharides have an irregular structure, idealized as follows: [formula: see text] The proportions of the different side chains vary from a species to another, being n above some three times larger in H. psychrophila than in T. reesei or T. koningii.

  18. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development.

    PubMed

    Tucker, Matthew R; Lou, Haoyu; Aubert, Matthew K; Wilkinson, Laura G; Little, Alan; Houston, Kelly; Pinto, Sara C; Shirley, Neil J

    2018-05-31

    The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

  19. Xylose-rich polysaccharides from the primary walls of embryogenic cell line of Pinus caribaea.

    PubMed

    Mollard, A; Domon, J M; David, H; Joseleau, J P

    1997-08-01

    Embryogenic cell lines of Pinus caribaea were isolated from somatic embryogenesis from zygotic embryos. Previous studies showed that the proteins and glycoproteins were characteristic of the embryogenic state. In the present work we were seeking typical feature in the polysaccharide from the cell walls of embryogenic calli at nine days of culture. Sequential extraction with water, ammonium oxalate, dimethyl sulfoxide, sodium borohydride and 4.3 M potassium hydroxide revealed that the extracted polysaccharides contained high proportions of arabinose and significant amounts of xylose. Fractionation of the hydrosoluble polymers on DEAE cellulose afforded a xylose-rich fraction (80% xylose, 24% glucose and lower properties of fucose and mannose). Methylation analysis and 13C-NMR spectra showed that the glycan backbone consisted of beta 1 --> 4 linked xylosyl residues Similar study of the fractions extracted respectively with DMSO and 4.3 M KOH showed the presence of polydisperse glycoxylans but excluded the presence of xyloglucan in significant amount. This could be a characteristic feature of embryogenic cells walls of Pinus caribaea or could be typical of cells grown as calluses. In the various fractions obtained from DEAE cellulose chromatography of the alkaline extract the infrequent occurrence of fucoxylans beside an arabinogalactan showed again the unusual nature of the cell wall polymers of this embryogenic lines, which seems to differ greatly from those found in the primary wall of cells from suspension cultures.

  20. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  1. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell wallsmore » and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.« less

  2. Golgi-Mediated Synthesis and Secretion of Matrix Polysaccharides of the Primary Cell Wall of Higher Plants

    PubMed Central

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier

    2012-01-01

    The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin. PMID:22639665

  3. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants.

    PubMed

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier

    2012-01-01

    The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.

  4. Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking.

    PubMed

    Gao, Yu; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A; Moore, John P

    2016-11-05

    The effectiveness of enzyme-mediated-maceration in red winemaking relies on the use of an optimum combination of specific enzymes. A lack of information on the relevant enzyme activities and the corresponding polysaccharide-rich berry cell wall structure is a major limitation. This study used different combinations of purified recombinant pectinases with cell wall profiling tools to follow the deconstruction process during winemaking. Multivariate data analysis of the glycan microarray (CoMPP) and gas chromatography (GC) results revealed that pectin lyase performed almost as effectively in de-pectination as certain commercial enzyme mixtures. Surprisingly the combination of endo-polygalacturonase and pectin-methyl-esterase only unraveled the cell walls without de-pectination. Datasets from the various combinations used confirmed pectin-rich and xyloglucan-rich layers within the grape pomace. These data support a proposed grape cell wall model which can serve as a foundation to evaluate testable hypotheses in future studies aimed at developing tailor-made enzymes for winemaking scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Extraction of Cell-Wall Polysaccharide Antigen from Streptococci

    PubMed Central

    Slade, Hutton D.

    1965-01-01

    Slade, Hutton D. (Northwestern University Medical School, Chicago, Ill., and Max-Planck Institut für Immunbiologie, Freiburg, Germany). Extraction of cell-wall polysaccharide antigen from streptococci. J. Bacteriol. 90:667–672. 1965.—The carbohydrate grouping antigens in the cell walls of streptococci belonging to groups A, E, G, L, and T were extracted with 5% trichloroacetic acid at 90 C. The antigens were removed also from dry whole cells by extraction with trichloroacetic acid followed by treatment with phenol-water. Details of the methods are presented. The antigens obtained by use of either of these procedures were suitable for studies on immunological specificity and chemical structure. Quantitative enzymatic and chemical analyses of two group E antigens and one group T preparation showed the presence of l-rhamnose (22 to 44%), d-glucose (7 to 22%), d-galactose (T antigen only, 26%), glucosamine (2 to 16%), and galactosamine (T antigen only, 3%). In addition, analyses of A and G antigen preparations are presented. The protein and phosphate content of the A and E antigens were about 1% each. Quantitative precipitin curves of these antigens are presented. PMID:16562065

  6. Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock.

    PubMed

    Rebaque, Diego; Martínez-Rubio, Romina; Fornalé, Silvia; García-Angulo, Penélope; Alonso-Simón, Ana; Álvarez, Jesús M; Caparros-Ruiz, David; Acebes, José L; Encina, Antonio

    2017-11-01

    Second generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock. Our results showed that common cattail cellulose content was high for plants in the order Poales and was accompanied by a small amount of cross-linked polysaccharides. A high degree of arabinose-substitution in xylans, a high syringyl/guaiacyl ratio in lignin and a low level of cell wall crystallinity could yield a good performance for lignocellulose saccharification. These results identify common cattail as a promising plant for use as potential bioethanol feedstock. To the best of our knowledge, this is the first in-depth analysis to be conducted of lignocellulosic material from common cattail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cell wall assembly in fucus zygotes: I. Characterization of the polysaccharide components.

    PubMed

    Quatrano, R S; Stevens, P T

    1976-08-01

    Fertilization triggers the assembly of a cell wall around the egg cell of three brown algae, Fucus vesiculosus, F. distichus, and F. inflatus. New polysaccharide polymers are continually being added to the cell wall during the first 24 hours of synchronous embryo development. This wall assembly involves the extracellular deposition of fibrillar material by cytoplasmic vesicles fusing with the plasma membrane. One hour after fertilization a fragmented wall can be isolated free of cytoplasm and contains equal amounts of cellulose and alginic acid with no fucose-containing polymers (fucans) present. Birefringence of the wall caused by oriented cellulose microfibrils is not detected in all zygotes until 4 hours, at which time intact cell walls can be isolated that retain the shape of the zygote. These walls have a relatively low ratio of fucose to xylose and little sulfate when compared to walls from older embryos. When extracts of walls from 4-hour zygotes are subjected to cellulose acetate electrophoresis at pH 7, a single fucan (F(1)) can be detected. By 12 hours, purified cell walls are composed of fucans containing a relatively high ratio of fucose to xylose and high levels of sulfate, and contain a second fucan (F(2)) which is electrophoretically distinct from F(1). F(2) appears to be deposited in only a localized region of the wall, that which elongates to form the rhizoid cell. Throughout wall assembly, the polyuronide block co-polymer alginic acid did not significantly vary its mannuronic (M) to guluronic (G) acid ratio (0.33-0.55) or its block distribution (MG, 54%; GG, 30%; MM, 16%). From 6 to 24 hours of embryo development, the proportion of the major polysaccharide components found in purified walls is stable. Alginic acid is the major polymer and comprises about 60% of the total wall, while cellulose and the fucans each make-up about 20% of the remainder. During the extracellular assembly of this wall, the intracellular levels of the storage glucan

  8. Micro-rheological behaviour and nonlinear rheology of networks assembled from polysaccharides from the plant cell wall

    NASA Astrophysics Data System (ADS)

    Vincent, R. R. R.; Mansel, B. W.; Kramer, A.; Kroy, K.; Williams, M. A. K.

    2013-03-01

    The same fundamental questions that have driven enquiry into cytoskeletal mechanics can be asked of the considerably less-studied, yet arguably just as important, biopolymer matrix in the plant cell wall. In this case, it is well-known that polysaccharides, rather than filamentous and tubular protein assemblies, play a major role in satisfying the mechanical requirements of a successful cell wall, but developing a clear structure-function understanding has been exacerbated by the familiar issue of biological complexity. Herein, in the spirit of the mesoscopic approaches that have proved so illuminating in the study of cytoskeletal networks, the linear microrheological and strain-stiffening responses of biopolymeric networks reconstituted from pectin, a crucial cell wall polysaccharide, are examined. These are found to be well-captured by the glassy worm-like chain (GWLC) model of self-assembled semi-flexible filaments. Strikingly, the nonlinear mechanical response of these pectin networks is found to be much more sensitive to temperature changes than their linear response, a property that is also observed in F-actin networks, and is well reproduced by the GWLC model. Additionally, microrheological measurements suggest that over long timescales (>10 s) internal stresses continue to redistribute facilitating low frequency motions of tracer particles.

  9. Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine: Relationships with Lignification and Microfibril Orientation1

    PubMed Central

    Donaldson, Lloyd A.; Knox, J. Paul

    2012-01-01

    The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides. PMID:22147521

  10. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.

    PubMed

    Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J

    2017-12-01

    At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Environmental and Biofilm-dependent Changes in a Bacillus cereus Secondary Cell Wall Polysaccharide*

    PubMed Central

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-01-01

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1–3)]GlcNAc(β1–6)[Glc(β1-3)][ManNAc(α1–4)]GalNAc(α1–4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm. PMID:21784857

  12. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.

    PubMed

    Wang, Tuo; Hong, Mei

    2016-01-01

    Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to determine the spatial arrangements of macromolecules in near-native plant cell walls. Here we review key evidence from 2D and 3D correlation NMR spectra that show relatively few cellulose-hemicellulose cross peaks but many cellulose-pectin cross peaks, indicating that cellulose microfibrils are not extensively coated by hemicellulose and all three major polysaccharides exist in a single network rather than two separate networks as previously proposed. The number of glucan chains in the primary-wall cellulose microfibrils has been under active debate recently. We show detailed analysis of quantitative (13)C SSNMR spectra of cellulose in various wild-type (WT) and mutant Arabidopsis and Brachypodium primary cell walls, which consistently indicate that primary-wall cellulose microfibrils contain at least 24 glucan chains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Sánchez, Miguel E.; Loqué, Dominique; Lao, Jeemeng

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing themore » rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.« less

  14. Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca).

    PubMed

    Liu, Hui; Chen, Fusheng; Lai, Shaojuan; Tao, Junrui; Yang, Hongshun; Jiao, Zhonggao

    2017-06-15

    Cell wall polysaccharides play an important role in postharvest fruit texture softening. Effects of calcium treatment combined with cold storage on the physical properties, polysaccharide content and nanostructure of apricots were investigated. Apricots were immersed in distilled water, 1% or 3% w/v calcium chloride, then stored at 5°C or 10°C. Storage at 5°C significantly improved apricot quality and shelf life. Significant changes in the concentration and nanostructure of cell wall pectins and hemicelluloses revealed their disassembly and degradation during apricot storage. These modifications could be retarded by 1% w/v calcium chloride treatment. Meanwhile, the basic width units of apricot cell wall polysaccharide chains were 11.7, 31.2 and 39.1nm for water-soluble pectin, 11.7, 17.6 and 19.5nm for chelate-soluble pectin, and 15.6 and 23.4nm for hemicellulose. The results suggest that texture of apricots can be effectively maintained by 1% calcium chloride treatment and storage at 5°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.

    PubMed

    Cheng, Y-S; Labavitch, J M; VanderGheynst, J S

    2015-01-01

    The effect of CO2 concentration on the relative content of starch, lipid and cell wall carbohydrates in microalgal biomass was investigated for the four following Chlorella strains: C. vulgaris (UTEX 259), C. sorokiniana (UTEX 2805), C. minutissima (UTEX 2341) and C. variabilis (NC64A). Each strain had a different response to CO2 concentration. The starch content was higher in UTEX259 and NC64A cultured with 2% CO2 in the air supply than in cells cultured with ca. 0·04% CO2 (ambient air), while starch content was not affected for UTEX 2805 and UTEX 2341. The lipid content was higher in Chlorella minutissima UTEX 2341 cultured in 2% CO2 than in cells cultured in ambient air, but was unchanged for the other three strains. All four Chlorella strains tended to have a higher percentage of uronic acids and lower percentage of neutral sugars in their cell wall polysaccharide complement when grown with 2% CO2 supply. Although the percentage of neutral sugars in the cell walls varied with CO2 concentration, the relative proportions of different neutral sugar constituents remained constant for both CO2 conditions. The results demonstrate the importance of considering the effects of CO2 on the cell wall carbohydrate composition of microalgae. Microalgae have the potential to produce products that will reduce society's reliance on fossil fuels and address challenges related to food and feed production. An overlooked yet industrially relevant component of microalgae are their cell walls. Cell wall composition affects cell flocculation and the recovery of intracellular products. In this study, we show that increasing CO2 level results in greater cell wall polysaccharide and uronic acid content in the cell walls of three strains of microalgae. The results have implications on the management of systems for the capture of CO2 and production of fuels, chemicals and food from microalgae. © 2014 The Society for Applied Microbiology.

  16. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall.

    PubMed

    Chylińska, Monika; Szymańska-Chargot, Monika; Zdunek, Artur

    2016-12-10

    The purpose of this work was to reveal the structural changes of cell wall polysaccharides' fractions during tomato fruit development by analysis of spectral data. Mature green and red ripe tomato fruit were taken into consideration. The FT-IR spectra of water soluble pectin (WSP), imidazole soluble pectin (ISP) and diluted alkali soluble pectin (DASP) contained bands typical for pectins. Whereas for KOH fraction spectra bands typical for hemicelluloses were present. The FT-IR spectra showed the drop down of esterification degree of WSP and ISP polysaccharides during maturation. The changes in polysaccharides structure revealed by spectra were the most visible in the case of pectic polysaccharides. The WSP and DASP fraction pectins molecules length were shortened during tomato maturation and ripening. Whereas the ISP fraction spectra analysis showed that this fraction contained rhamnogalacturonan I, but also for red ripe was rich in pectic galactan comparing with ISP fraction from mature green. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls.

    PubMed

    Vega-Sánchez, Miguel E; Loqué, Dominique; Lao, Jeemeng; Catena, Michela; Verhertbruggen, Yves; Herter, Thomas; Yang, Fan; Harholt, Jesper; Ebert, Berit; Baidoo, Edward E K; Keasling, Jay D; Scheller, Henrik V; Heazlewood, Joshua L; Ronald, Pamela C

    2015-09-01

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Structural diversity of alkali-soluble polysaccharides from the fruit cell walls of tucumã (Astrocaryum aculeatum), a commelinid monocotyledon from the family Arecaceae.

    PubMed

    Cantu-Jungles, Thaisa Moro; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2017-09-01

    The polysaccharide compositions of primary and secondary cell walls of members of the family Arecaceae in the commelinid clade of monocotyledonous plants have previously been found to be distinguishable from other commelinid families, and to be more similar to those of non-commelinids. However, few studies have been conducted. We aimed to extract and characterize the main cell-wall polysaccharides in the fruit pulp of tucumã (Astrocaryum aculeatum), a member of Arecaceae family. Hemicellulosic polysaccharides extracted by alkali from the fruit pulp were present in greater proportions (6.4% yield) than water-extracted ones (3.0% yield). Thus, the former was analyzed using monosaccharide composition, methylation, molecular weight determination and 13 C-NMR data. The tucumã alkaline extract presented a highly ramified acidic galactoarabinoxylan (53.7%), a linear (1 → 5)-linked α-L-arabinan (27.8%), a low branched glucuronoxylan (14.1%) and small portions of a xyloglucan (4.4%). The major polysaccharide found in A. aculeatum (acidic galactoarabinoxylan) is similar to those found in other commelinid plants such as grasses and cereals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    PubMed

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  20. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants

    PubMed Central

    Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.

    2016-01-01

    Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination

  1. Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms

    USDA-ARS?s Scientific Manuscript database

    Evaluation of biomass crops for breeding or pricing purposes requires an assay that predicts performance of biomass in the bioenergy conversion process. Cell wall polysaccharide hydrolysis by dilute sulfuric acid pretreatment at 121 degrees C followed by cellulase hydrolysis for 72 h (CONV) and in v...

  2. Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds.

    PubMed

    Dourado, Fernando; Madureira, Pedro; Carvalho, Vera; Coelho, Ricardo; Coimbra, Manuel A; Vilanova, Manuel; Mota, Manuel; Gama, Francisco M

    2004-10-20

    The structure and bioactivity of a polysaccharide extracted and purified from a 4M KOH + H3BO3 solution from Prunus dulcis seed cell wall material was studied. Anion-exchange chromatography of the crude extract yielded two sugar-rich fractions: one neutral (A), the other acidic (E). These fractions contain a very similar monosaccharide composition: 5:2:1 for arabinose, uronic acids and xylose, respectively, rhamnose and galactose being present in smaller amounts. As estimated by size-exclusion chromatography, the acidic fraction had an apparent molecular mass of 762 kDa. Methylation analysis (from the crude and fractions A and E), suggests that the polysaccharide is an arabinan-rich pectin. In all cases, the polysaccharides bear the same type of structural Ara moieties with highly branched arabinan-rich pectic polysaccharides. The average relative proportions of the arabinosyl linkages is 3:2:1:1 for T-Araf:(1-->5)-Araf:(1-->3,5)-Araf:(1-->2,3,5)-Araf. The crude polysaccharide extract and fractions A and E induced a murine lymphocyte stimulatory effect, as evaluated by the in vitro and in vivo expression of lymphocyte activation markers and spleen mononuclear cells culture proliferation. The lymphocyte stimulatory effect was stronger on B- than on T-cells. No evidence of cytotoxic effects induced by the polysaccharide fractions was found.

  3. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides.

    PubMed

    Cholet, Céline; Delsart, Cristèle; Petrel, Mélina; Gontier, Etienne; Grimi, Nabil; L'hyvernay, Annie; Ghidossi, Remy; Vorobiev, Eugène; Mietton-Peuchot, Martine; Gény, Laurence

    2014-04-02

    Pulsed electric field (PEF) treatment is an emerging technology that is arousing increasing interest in vinification processes for its ability to enhance polyphenol extraction performance. The aim of this study was to investigate the effects of PEF treatment on grape skin histocytological structures and on the organization of skin cell wall polysaccharides and tannins, which, until now, have been little investigated. This study relates to the effects of two PEF treatments on harvested Cabernet Sauvignon berries: PEF1 (medium strength (4 kV/cm); short duration (1 ms)) and PEF2 (low intensity (0.7 kV/cm); longer duration (200 ms)). Histocytological observations and the study of levels of polysaccharidic fractions and total amounts of tannins allowed differentiation between the two treatments. Whereas PEF1 had little effect on the polyphenol structure and pectic fraction, PEF2 profoundly modified the organization of skin cell walls. Depending on the PEF parameters, cell wall structure was differently affected, providing variable performance in terms of polyphenol extraction and wine quality.

  5. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    PubMed

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  6. Immune Recognition of Fungal Polysaccharides.

    PubMed

    Snarr, Brendan D; Qureshi, Salman T; Sheppard, Donald C

    2017-08-28

    The incidence of fungal infections has dramatically increased in recent years, in large part due to increased use of immunosuppressive medications, as well as aggressive medical and surgical interventions that compromise natural skin and mucosal barriers. There are relatively few currently licensed antifungal drugs, and rising resistance to these agents has led to interest in the development of novel preventative and therapeutic strategies targeting these devastating infections. One approach to combat fungal infections is to augment the host immune response towards these organisms. The polysaccharide-rich cell wall is the initial point of contact between fungi and the host immune system, and therefore, represents an important target for immunotherapeutic approaches. This review highlights the advances made in our understanding of the mechanisms by which the immune system recognizes and interacts with exopolysaccharides produced by four of the most common fungal pathogens: Aspergillus fumigatus , Candida albicans , Cryptococcus neoformans , and Histoplasma capsulatum . Work to date suggests that inner cell wall polysaccharides that play an important structural role are the most conserved across diverse members of the fungal kingdom, and elicit the strongest innate immune responses. The immune system senses these carbohydrates through receptors, such as lectins and complement proteins. In contrast, a greater diversity of polysaccharides is found within the outer cell walls of pathogenic fungi. These glycans play an important role in immune evasion, and can even induce anti-inflammatory host responses. Further study of the complex interactions between the host immune system and the fungal polysaccharides will be necessary to develop more effective therapeutic strategies, as well as to explore the use of immunosuppressive polysaccharides as therapeutic agents to modulate inflammation.

  7. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    PubMed

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  8. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization

    PubMed Central

    Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D.

    2016-01-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  9. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  10. Isolation of the Cell Wall.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  11. Functional duality of the cell wall.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Gravity resistance, another graviresponse in plants--function of anti-gravitational polysaccharides].

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki; Soga, Kouichi

    2003-08-01

    The involvement of anti-gravitational polysaccharides in gravity resistance, one of two major gravity responses in plants, was discussed. In dicotyledons, xyloglucans are the only cell wall polysaccharides, whose level, molecular size, and metabolic turnover were modified under both hypergravity and microgravity conditions, suggesting that xyloglucans act as anti-gravitational polysaccharides. In monocotyledonous Poaceae, (1-->3),(1-->4)-beta glucans, instead of xyloglucans, were shown to play a role as anti-gravitational polysaccharides. These polysaccharides are also involved in plant responses to other environmental factors, such as light and temperature, and to some phytohormones, such as auxin and ethylene. Thus, the type of anti-gravitational polysaccharides is different between dicotyledons and Poaceae, but such polysaccharides are universally involved in plant responses to environmental and hormonal signals. In gravity resistance, the gravity signal may be received by the plasma membrane mechanoreceptors, transformed and transduced within each cell, and then may modify the processes of synthesis and secretion of the anti-gravitational polysaccharides and the cell wall enzymes responsible for their degradation, as well as the apoplastic pH, leading to the cell wall reinforcement. A series of events inducing gravity resistance are quite independent of those leading to gravitropism.

  13. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals.

    PubMed

    Mazurek, Sylwester; Mucciolo, Antonio; Humbel, Bruno M; Nawrath, Christiane

    2013-06-01

    A procedure for the simultaneous analysis of cell-wall polysaccharides, amides and aliphatic polyesters by transmission Fourier transform infrared microspectroscopy (FTIR) has been established for Arabidopsis petals. The combination of FTIR imaging with spectra derivatization revealed that petals, in contrast to other organs, have a characteristic chemical zoning with high amount of aliphatic compounds and esters in the lamina and of polysaccharides in the stalk of the petal. The hinge region of petals was particular rich in amides as well as in vibrations potentially associated with hemicellulose. In addition, a number of other distribution patterns have been identified. Analyses of mutants in cutin deposition confirmed that vibrations of aliphatic compounds and esters present in the lamina were largely associated with the cuticular polyester. Calculation of spectrotypes, including the standard deviation of intensities, allowed detailed comparison of the spectral features of various mutants. The spectrotypes not only revealed differences in the amount of polyesters in cutin mutants, but also changes in other compound classes. For example, in addition to the expected strong deficiencies in polyester content, the long-chain acyl CoA synthase 2 mutant showed increased intensities of vibrations in a wavelength range that is typical for polysaccharides. Identical spectral features were observed in quasimodo2, a cell-wall mutant of Arabidopsis with a defect in pectin formation that exhibits increased cellulose synthase activity. FTIR thus proved to be a convenient method for the identification and characterization of mutants affected in the deposition of cutin in petals. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. CHARACTERIZATION OF CELL WALL POLYSACCHARIDES OF THE COENCOCYTIC GREEN SEAWEED BRYOPSIS PLUMOSA (BRYOPSIDACEAE, CHLOROPHYTA) FROM THE ARGENTINE COAST(1).

    PubMed

    Ciancia, Marina; Alberghina, Josefina; Arata, Paula Ximena; Benavides, Hugo; Leliaert, Frederik; Verbruggen, Heroen; Estevez, Jose Manuel

    2012-04-01

    Bryopsis sp. from a restricted area of the rocky shore of Mar del Plata (Argentina) on the Atlantic coast was identified as Bryopsis plumosa (Hudson) C. Agardh (Bryopsidales, Chlorophyta) based on morphological characters and rbcL and tufA DNA barcodes. To analyze the cell wall polysaccharides of this seaweed, the major room temperature (B1) and 90°C (X1) water extracts were studied. By linkage analysis and NMR spectroscopy, the structure of a sulfated galactan was determined, and putative sulfated rhamnan structures and furanosidic nonsulfated arabinan structures were also found. By anion exchange chromatography of X1, a fraction (F4), comprising a sulfated galactan as major structure was isolated. Structural analysis showed a linear backbone constituted of 3-linked β-d-galactose units, partially sulfated on C-6 and partially substituted with pyruvic acid forming an acetal linked to O-4 and O-6. This galactan has common structural features with those of green seaweeds of the genus Codium (Bryopsidales, Chlorophyta), but some important differences were also found. This is the first report about the structure of the water-soluble polysaccharides biosynthesized by seaweeds of the genus Bryopsis. These sulfated galactans and rhamnans were in situ localized mostly in two layers, one close to the plasma membrane and the other close to the apoplast, leaving a middle amorphous, unstained cell wall zone. In addition, fibrillar polysaccharides, comprising (1→3)-β-d-xylans and cellulose, were obtained by treatment of the residue from the water extractions with an LiCl/DMSO solution at high temperature. These polymers were also localized in a bilayer arrangement. © 2012 Phycological Society of America.

  15. Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells.

    PubMed

    Iwai, H; Ishii, T; Satoh, S

    2001-10-01

    When leaf disks from haploid plants of Nicotiana plumbaginifolia Viv. were transformed with T-DNA and cultured on shoot-inducing medium, nonorganogenic callus. designated nolac (for non-organogenic callus with loosely attached cells), appeared on approximately 7% of leaf disks. In contrast, normal callus was generated on T-DNA-transformed leaf disks from diploid plants and on non-transformed leaf disks from haploid and diploid plants. Transmission electron microscopy revealed that the middle lamellae and the cell walls of one line of mutant callus (nolac-H14) were barely stained by ruthenium red. even after demethylesterification with NaOH, whereas the entire cell wall and the middle lamella were strongly stained in normal callus. In cultures of nolac-H14 callus, the level of sugar components of pectic polysaccharides in the hemicellulose fraction was reduced and that in the culture medium was elevated, as compared with cultures of normal callus. These results indicate that pectic polysaccharides are not retained in the cell walls and middle lamellae of nolac-H14 callus. In nolac-H14, the ratio of arabinose to galactose was low in the pectic polysaccharides purified from all cell wall fractions and from the medium, in particular, in the hemicellulose fractions. The low levels of arabinofuranosyl (T-Araf, 5-Araf, 2,5-Araf, and 3,5-Araf) residues in the pectic polysaccharides of the hemicellulosic fraction of nolac-H,14 indicated that no neutral-sugar side chains, composed mainly of linear arabinan. were present in nolac-H14. Arabinose-rich pectins. which are strongly associated with cellulose-hemicellulose complexes, might play an important role in intercellular attachment in the architecture of the cell wall.

  16. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.

    PubMed

    Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A

    2015-06-25

    The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enzymatic changes in pectic polysaccharides related to the beneficial effect of soaking on bean cooking time.

    PubMed

    Martínez-Manrique, Enrique; Jacinto-Hernández, Carmen; Garza-García, Ramón; Campos, Albino; Moreno, Ernesto; Bernal-Lugo, Irma

    2011-10-01

    Cooking time decreases when beans are soaked first. However, the molecular basis of this decrease remains unclear. To determine the mechanisms involved, changes in both pectic polysaccharides and cell wall enzymes were monitored during soaking. Two cultivars and one breeding line were studied. Soaking increased the activity of the cell wall enzymes rhamnogalacturonase, galactanase and polygalacturonase. Their activity in the cell wall was detected as changes in chemical composition of pectic polysaccharides. Rhamnose content decreased but galactose and uronic acid contents increased in the polysaccharides of soaked beans. A decrease in the average molecular weight of the pectin fraction was induced during soaking. The decrease in rhamnose and the polygalacturonase activity were associated (r = 0.933, P = 0.01, and r = 0.725, P = 0.01, respectively) with shorter cooking time after soaking. Pectic cell wall enzymes are responsible for the changes in rhamnogalacturonan I and polygalacturonan induced during soaking and constitute the biochemical factors that give bean cell walls new polysaccharide arrangements. Rhamnogalacturonan I is dispersed throughout the entire cell wall and interacts with cellulose and hemicellulose fibres, resulting in a higher rate of pectic polysaccharide thermosolubility and, therefore, a shorter cooking time. Copyright © 2011 Society of Chemical Industry.

  18. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation

    PubMed Central

    Arata, Paula X.; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I.; Estevez, José M.; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution. PMID:29181012

  19. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation.

    PubMed

    Arata, Paula X; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I; Estevez, José M; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.

  20. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization.

    PubMed

    Domizio, P; Liu, Y; Bisson, L F; Barile, D

    2017-02-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  1. Modification of the cell wall structure of Saccharomyces cerevisiae strains during cultivation on waste potato juice water and glycerol towards biosynthesis of functional polysaccharides.

    PubMed

    Bzducha-Wróbel, Anna; Błażejak, Stanisław; Kieliszek, Marek; Pobiega, Katarzyna; Falana, Katarzyna; Janowicz, Monika

    2018-06-06

    Changes in cell wall structure of four strains of Sacccharomyces cerevisiae species (brewer's, baker's and probiotic yeast) after culturing on deproteinated potato juice water (DPJW) with diverse addition of glycerol and different pH were investigated. It allowed to select conditions intensifying biosynthesis of β(1,3)/(1,6)-glucan and mannoproteins of cell walls of tested strains. Yeast cell wall structural polysaccharides show biological activity and technological usability in food industry but also decide about therapeutic properties of yeast biomass. The highest increase in the thickness of walls (by about 100%) and β-glucan layer (by about 120%) was stated after cultivation of S. cerevisiae R9 brewer's yeast in DPJW supplemented with 5 and 10% (w/v) of glycerol and pH 7.0 while S. cerevisiae var. boulardi PAN yeast synthesized by ab. 70% thicker β-glucan layer when the pH of growth medium was equal to 5.0. The cells of brewer's yeast (S. cerevisiae R9), probiotic (S. cerevisiae CNCM 1-745) and baker's (S. cerevisiae 102) intensified the ratio of mannoproteins in the structure of cell walls cultivated in mediums supplemented with above 15% of glycerol what point out the protective action of glycoprotein's under osmotic stress conditions. The study confirms at the first time the possibility of using agro-industrial waste in biosynthesis of functional polysaccharides of S. cerevisiae cell wall. It could be an new advantage in production of yeast biomass with therapeutic properties or β-glucan preparation as a novel food ingredient. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of Agave tequilana juice on cell wall polysaccharides of three Saccharomyces cerevisiae strains from different origins.

    PubMed

    Aguilar-Uscanga, Blanca; Arrizon, Javier; Ramirez, Jesús; Solis-Pacheco, Josué

    2007-02-01

    In this study, a characterization of cell wall polysaccharide composition of three yeasts involved in the production of agave distilled beverages was performed. The three yeast strains were isolated from different media (tequila, mezcal and bakery) and were evaluated for the beta(1,3)-glucanase lytic activity and the beta-glucan/ mannan ratio during the fermentation of Agave tequilana juice and in YPD media (control). Fermentations were performed in shake flasks with 30 g l(-1) sugar concentration of A. tequilana juice and with the control YPD using 30 g l(-1) of glucose. The three yeasts strains showed different levels of beta-glucan and mannan when they were grown in A. tequilana juice in comparison to the YPD media. The maximum rate of cell wall lyses was 50% lower in fermentations with A. tequilana juice for yeasts isolated from tequila and mezcal than compared to the bakery yeast.

  3. Aureobasidium pullulans morphology: two adapted polysaccharide stains.

    PubMed

    Oller, Anna R

    2005-12-01

    Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.

  4. Anatomy and cell wall polysaccharides of almond (Prunus dulcis D. A. Webb) seeds.

    PubMed

    Dourado, Fernando; Barros, António; Mota, Manuel; Coimbra, Manuel A; Gama, Francisco M

    2004-03-10

    The anatomy of Prunus dulcis was analyzed by applying several differential staining techniques and light microscopy. Prunus dulcis seed has a thin and structurally complex seed coat, with lignified cellulosic tissue. The embryo has two voluminous cotyledons. Cotyledon cells have a high number of protein and lipid bodies, some of which have phytin. The provascular tissue, located in the cotyledons, is oriented in small bundles perpendicular to the transverse embryonic axis. Prunus dulcis cell wall material is very rich in arabinose (45 mol %). Glucose (23%), uronic acids (12%), and xylose (12%) are also major sugar components. The polymers obtained from the imidazole and Na(2)CO(3) extracts contain mainly pectic substances rich in arabinose, but the sugar content of these extracts was very low. The majority of the pectic substances (also rich in arabinose) was recovered with the KOH extracts. These extracts, with high sugar content, yielded also xyloglucans and acidic xylans. The 4 M KOH + H(3)BO(3) extracts yielded polysaccharides rich in uronic acids and xylose and very rich in arabinose, accounting for 27% of the cell wall material.

  5. Characterization of serological cross-reactivity between polysaccharide antigens of Streptococcus mutans serotypes c and d.

    PubMed

    Grossi, S; Prakobphol, A; Linzer, R; Campbell, L K; Knox, K W

    1983-03-01

    Immunological assays with antisera prepared against purified Streptococcus mutans serotype c polysaccharide demonstrated that a cross-reacting determinant on c polysaccharide reacted with the wall-associated rhamnose-glucose polysaccharide from S. mutans serotype d. Studies with 60 antisera prepared against chemostat cultures of S. mutans Ingbritt (c) demonstrated that the rhamnose-glucose polysaccharide cross-reactive determinant was consistently expressed on c antigen under a variety of growth conditions.

  6. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models.

    PubMed

    Lim, Sun Ha; Kim, Yaesil; Yun, Ki Na; Kim, Jin Young; Jang, Jung-Hee; Han, Mee-Jung; Lee, Jongwon

    2016-12-08

    Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.

  7. OLIgo Mass Profiling (OLIMP) of Extracellular Polysaccharides

    PubMed Central

    Günl, Markus; Gille, Sascha; Pauly, Markus

    2010-01-01

    The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights

  8. Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684.

    PubMed

    Forsberg, L Scott; Abshire, Teresa G; Friedlander, Arthur; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2012-08-01

    Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1 → 4)-[3-O-acetyl]-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNH(2)-(1→.

  9. Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening.

    PubMed

    Cheng, Guiping; Duan, Xuewu; Shi, John; Lu, Wangjin; Luo, Yunbo; Jiang, Weibo; Jiang, Yueming

    2008-07-15

    Fruit softening is generally attributed to cell wall disassembly. Experiments were conducted to investigate effects of various reactive oxygen species (ROS) on in vitro cellular wall disassembly of harvested banana fruit. The alcohol-extracted insoluble residue (AEIR) was obtained from the pulp tissues of banana fruit at various ripening stages and then used to examine the disassembly of cellular wall polysaccharides in the presence of superoxide anion (O2(-)), hydrogen peroxide (H2O2) or hydroxyl radical (OH) and their scavengers. The presence of OH accelerated significantly disassembly of cellular wall polysaccharides in terms of the increase in contents of total sugars released and uronic acid, and the decrease in molecular mass of soluble polysaccharides, using gel permeation chromatography. However, the treatment with H2O2 or O2(-) showed no significant effect on the disassembly of cellular wall polysaccharides. Furthermore, the degradation of the de-esterified AEIR was more susceptible to OH attack than the esterified AEIR. In addition, the effect of OH could be inhibited in the presence of OH scavenger. This study suggests that disassembly of cellular wall polysaccharides could be initiated by OH as the solublisation of the polysaccharides increased, which, in turn, accelerated fruit softening. Copyright © 2008 Elsevier Ltd. All rights reserved.

  10. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    NASA Astrophysics Data System (ADS)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  11. Immune cell activation and cytokine release after stimulation of whole blood with pneumococcal C-polysaccharide and capsular polysaccharides.

    PubMed

    Sundberg-Kövamees, Marianne; Grunewald, Johan; Wahlström, Jan

    2016-11-01

    Streptococcus pneumonia is a major cause of morbidity and mortality in children and adults worldwide. Lack of fully effective pneumococcal vaccines is a problem. Streptococcus pneumoniae exposes on its surface C-polysaccharide (cell wall polysaccharide, CWPS) and serospecific capsular polysaccharides, used in pneumococcal vaccines. We investigated the effect of CWPS and individual capsular polysaccharides, with regard to activation of subsets of immune cells of healthy controls. Three different capsular polysaccharides, CWPS and LPS were used for in vitro stimulation of whole blood. Cell activation (CD69 expression) was assessed in CD4+ and CD4- T cells, NK-like T cells, NK cells and monocytes by flow cytometry. Cytokine levels in supernatants were quantified by Cytometric Bead Array (CBA). CWPS and the capsules activated immune cell subsets, but to different degrees. NK cells and NK-like T cells showed the strongest activation, followed by monocytes. Among the three capsules, capsule type 23 induced the strongest activation and cytokine release, followed by type 9 and type 3. This study increases the understanding of how the human immune system reacts to pneumococcal vaccine components. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Study on extraction process and activity of plant polysaccharides

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogen; Wang, Xiaojing; Fan, Shuangli; Chen, Jiezhong

    2017-10-01

    Recent studies have shown that plant polysaccharides have many pharmacological activities, such as hypoglycemic, anti-inflammatory and tumor inhibition. The pharmacological activities of plant polysaccharides were summarized. The extraction methods of plant polysaccharides were discussed. Finally, the extraction process of Herba Taraxaci polysaccharides was optimized by ultrasonic assisted extraction. Through single factor experiments and orthogonal experiment to optimize the optimum extraction process from dandelion polysaccharide, optimum conditions of dandelion root polysaccharide by ultrasonic assisted extraction method for ultrasonic power 320W, temperature 80°C, extraction time 40min, can get higher dandelion polysaccharide extract.

  13. Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability.

    PubMed

    Okeyoshi, Kosuke; Okajima, Maiko K; Kaneko, Tatsuo

    2017-07-21

    Living organisms in drying environments build anisotropic structures and exhibit directionality through self-organization of biopolymers. However, the process of macro-scale assembly is still unknown. Here, we introduce a dissipative structure through a non-equilibrium process between hydration and deposition in the drying of a polysaccharide liquid crystalline solution. By controlling the geometries of the evaporation front in a limited space, multiple nuclei emerge to grow vertical membrane walls with macroscopic orientation. Notably, the membranes are formed through rational orientation of rod-like microassemblies along the dynamic three-phase contact line. Additionally, in the non-equilibrium state, a dissipative structure is ultimately immobilized as a macroscopically partitioned space by multiple vertical membranes. We foresee that such oriented membranes will be applicable to soft biomaterials with direction controllability, and the macroscopic space partitionings will aid in the understanding of the space recognition ability of natural products under drying environments.

  14. Cell wall proteome analysis of Arabidopsis thaliana mature stems.

    PubMed

    Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2017-04-01

    Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of polysaccharide admixtures on expression of multiple polysaccharide-degrading enzymes in Microbulbifer strain CMC-5.

    PubMed

    Jonnadula, RaviChand; Imran, Md; Poduval, Preethi B; Ghadi, Sanjeev C

    2018-03-01

    Microbulbifer strain CMC-5 produces agarase, alginate lyase, xylanase, carboxymethyl cellulase and carrageenase. The extracellular production of the above carbohydrases was investigated by growing Microbulbifer strain CMC-5 in a sea water based medium containing homologous/heterologous polysaccharides as a single substrate or as a combination of mixed assorted substrate. Presence of singular homologous polysaccharides in the growth medium induces respective carbohydrase at high levels. Any two polysaccharides in various combinations produced high level of homologous carbohydrase and low level of other heterologous carbohydrase. All five carbohydrases were consistently produced by strain CMC-5, when carboxymethyl cellulose was included as one of the substrate in dual substrate combination, or in presence of mix blends of all five polysaccharides. Interestingly, thalli of Gracilaria sp. that contain agar and cellulose predominantly in their cell wall induces only agarase expression in strain CMC-5.

  16. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. Copyright © 2013. Published by Elsevier Ltd.

  17. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy

    USDA-ARS?s Scientific Manuscript database

    Cellulose and the other polysaccharides present in forage cell walls can be completely degraded by the rumen microflora but only when these polysaccharides have been isolated from the wall and all matrix structures eliminated. Understanding how cell wall component interactions limit microbial degrad...

  18. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.).

    PubMed

    Hromádková, Z; Ebringerová, A; Valachovic, P

    2002-01-01

    The insoluble plant residues, obtained after preparation of medicinal tinctures from the roots of valerian (Valeriana officinalis L.) by classical and ultrasound-assisted extraction with aqueous ethanol in a pilot plant, were subsequently treated with hot water to isolate the accessible polysaccharide cell wall components. At almost equal amounts of the hot-water extractable material, the yields of the recovered polysaccharides were lower in the ultrasonical experiment. This is due to the fact that a part of accessible polysaccharides were already solubilised by the aqueous ethanol and recoverable from the medicinal tincture. Therefore, the net yield of extracted polysaccharides was enhanced in the ultrasonical procedure. This fact as well as the sugar composition and structural features of the isolated polysaccharides suggest that ultrasonication have attacked the integrity of cell walls, released and degraded its most accessible polysaccharides (pectic polysaccharides and starch) and increased also the extractibility of its less accessible components--xylan, mannan and glucan. The water-soluble polysaccharide fractions from both the conventional and ultrasonical experiments exhibit significant immunostimulatory activities in mitogenic and comitogenic thymocyte tests.

  19. The plant secretory pathway seen through the lens of the cell wall.

    PubMed

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  20. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance.

    PubMed

    Damm, Tatjana; Pattathil, Sivakumar; Günl, Markus; Jablonowski, Nicolai David; O'Neill, Malcolm; Grün, Katharina Susanne; Grande, Philipp Michael; Leitner, Walter; Schurr, Ulrich; Usadel, Björn; Klose, Holger

    2017-07-15

    The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500 ® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  2. Ion chromatography characterization of polysaccharides in ancient wall paintings.

    PubMed

    Colombin, Maria Perla; Ceccarini, Alessio; Carmignani, Alessia

    2002-08-30

    An analytical procedure for the characterisation of polysaccharides and the identification of plant gums in old polychrome samples is described. The procedure is based on hydrolysis with 2 M trifluoroacetic acid assisted by microwaves (20 min, 120 degrees C, 500 W), clean-up of the hydrolysate by an ion-exchange resin, and analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Using this method the hydrolysis time was reduced to 20 min and the chromatographic separation of seven monosaccharides (fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose) and two uronic acids (galacturonic and glucuronic) was achieved in 40 min. The whole analytical procedure allows sugar determination in plant gums at picomole levels, with an average recovery of 72% with an RSD of 8% as tested on arabic gum. The analytical procedure was tested with several raw gums, watercolour samples and reference painting specimens prepared according to old recipes at the Opificio delle Pietre Dure of Florence (Italian Ministry of Cultural Heritage, Italy). All the data collected expressed in relative sugar percentage contents were submitted to principal components analysis for gum identification: five groups were spatially separated and this enabled the identification of arabic, tragacanth, karaya, cherry+ghatty, and guar+locust bean gum. Wall painting samples from Macedonian tombs (Greece) of the 4th-3rd Centuries B.C., processed by the suggested method, showed the presence of a complex paint media mainly consisting of tragacanth and fruit tree gums. Moreover, starch had probably been added to plaster as highlighted by the presence of a huge amount of glucose.

  3. Enzymatic degradation of cell wall and related plant polysaccharides.

    PubMed

    Ward, O P; Moo-Young, M

    1989-01-01

    Polysaccharides such as starch, cellulose and other glucans, pectins, xylans, mannans, and fructans are present as major structural and storage materials in plants. These constituents may be degraded and modified by endogenous enzymes during plant growth and development. In plant pathogenesis by microorganisms, extracellular enzymes secreted by infected strains play a major role in plant tissue degradation and invasion of the host. Many of these polysaccharide-degrading enzymes are also produced by microorganisms widely used in industrial enzyme production. Most commerical enzyme preparations contain an array of secondary activities in addition to the one or two principal components which have standardized activities. In the processing of unpurified carbohydrate materials such as cereals, fruits, and tubers, these secondary enzyme activities offer major potential for improving process efficiency. Use of more defined combinations of industrial polysaccharases should allow final control of existing enzyme processes and should also lead to the development of novel enzymatic applications.

  4. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  5. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction.

    PubMed

    Bačáková, L; Novotná, K; Pařízek, M

    2014-01-01

    Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.

  6. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  7. Determining the Subcellular Location of Synthesis and Assembly of the Cell Wall Polysaccharide (1,3; 1,4)-β-d-Glucan in Grasses[OPEN

    PubMed Central

    Wilson, Sarah M.; Ho, Yin Ying; Lampugnani, Edwin R.; Van de Meene, Allison M.L.; Bain, Melissa P.; Bacic, Antony; Doblin, Monika S.

    2015-01-01

    The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly. PMID:25770111

  8. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Johnnie A.; Pattathil, Sivakumar; Bergeman, Lai F.

    Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss ofmore » specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.« less

  9. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling

    DOE PAGES

    Walker, Johnnie A.; Pattathil, Sivakumar; Bergeman, Lai F.; ...

    2017-02-02

    Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss ofmore » specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.« less

  10. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  11. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  12. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  13. Role of polysaccharides in food, digestion, and health

    PubMed Central

    Lovegrove, A.; Edwards, C. H.; De Noni, I.; Patel, H.; El, S. N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P. J.; Ellis, P. R; Shewry, P. R.

    2017-01-01

    ABSTRACT Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets. PMID:25921546

  14. Role of polysaccharides in food, digestion, and health.

    PubMed

    Lovegrove, A; Edwards, C H; De Noni, I; Patel, H; El, S N; Grassby, T; Zielke, C; Ulmius, M; Nilsson, L; Butterworth, P J; Ellis, P R; Shewry, P R

    2017-01-22

    Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets.

  15. Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants

    PubMed Central

    Aquino, Rafael S.; Grativol, Clicia; Mourão, Paulo A. S.

    2011-01-01

    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops. PMID:21552557

  16. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.

    PubMed

    Aquino, Rafael S; Grativol, Clicia; Mourão, Paulo A S

    2011-04-28

    High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.

  17. Antibacterial and antiviral study of dialdehyde polysaccharides

    NASA Astrophysics Data System (ADS)

    Song, Le

    Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was

  18. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    PubMed

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Genetics and physiology of cell wall polysaccharides in the model C4 grass, Setaria viridis spp.

    PubMed

    Ermawar, Riksfardini A; Collins, Helen M; Byrt, Caitlin S; Henderson, Marilyn; O'Donovan, Lisa A; Shirley, Neil J; Schwerdt, Julian G; Lahnstein, Jelle; Fincher, Geoffrey B; Burton, Rachel A

    2015-10-02

    Setaria viridis has emerged as a model species for the larger C4 grasses. Here the cellulose synthase (CesA) superfamily has been defined, with an emphasis on the amounts and distribution of (1,3;1,4)-β-glucan, a cell wall polysaccharide that is characteristic of the grasses and is of considerable value for human health. Orthologous relationship of the CesA and Poales-specific cellulose synthase-like (Csl) genes among Setaria italica (Si), Sorghum bicolor (Sb), Oryza sativa (Os), Brachypodium distachyon (Bradi) and Hordeum vulgare (Hv) were compared using bioinformatics analysis. Transcription profiling of Csl gene families, which are involved in (1,3;1,4)-β-glucan synthesis, was performed using real-time quantitative PCR (Q-PCR). The amount of (1,3;1,4)-β-glucan was measured using a modified Megazyme assay. The fine structures of the (1,3;1,4)-β-glucan, as denoted by the ratio of cellotriosyl to cellotetraosyl residues (DP3:DP4 ratio) was assessed by chromatography (HPLC and HPAEC-PAD). The distribution and deposition of the MLG was examined using the specific antibody BG-1 and captured using fluorescence and transmission electron microscopy (TEM). The cellulose synthase gene superfamily contains 13 CesA and 35 Csl genes in Setaria. Transcript profiling of CslF, CslH and CslJ gene families across a vegetative tissue series indicated that SvCslF6 transcripts were the most abundant relative to all other Csl transcripts. The amounts of (1,3;1,4)-β-glucan in Setaria vegetative tissues ranged from 0.2% to 2.9% w/w with much smaller amounts in developing grain (0.003% to 0.013% w/w). In general, the amount of (1,3;1,4)-β-glucan was greater in younger than in older tissues. The DP3:DP4 ratios varied between tissue types and across developmental stages, and ranged from 2.4 to 3.0:1. The DP3:DP4 ratios in developing grain ranged from 2.5 to 2.8:1. Micrographs revealing the distribution of (1,3;1,4)-β-glucan in walls of different cell types and the data were

  20. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae.

    PubMed

    Kinnaert, Christine; Daugaard, Mathilde; Nami, Faranak; Clausen, Mads H

    2017-09-13

    Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately, structurally defined oligosaccharides can be used as models for the glycans, to study processes such as cell wall biosynthesis, polysaccharide deposition, protein-carbohydrate interactions, and cell-cell adhesion. Synthetic chemists have focused on preparing such model compounds, as they can be produced in good quantities and with high purity. This Review contains an overview of those plant and algal polysaccharides that have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin, and arabinogalactans, as well as glycans unique to algae. Representative synthetic routes within each class are discussed in detail, and the progress in carbohydrate chemistry over recent decades is highlighted.

  1. Grass cell walls: A story of cross-linking

    USDA-ARS?s Scientific Manuscript database

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how the cell wall components are assembled into comple...

  2. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Malcolm

    Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae.more » This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.« less

  3. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    PubMed Central

    Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C. H.; Labavitch, John M.; Powell, Ann L. T.; Cantu, Dario

    2014-01-01

    Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue. PMID:25232357

  4. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  5. The Cell Wall-Associated Proteins in the Dimorphic Pathogenic Species of Paracoccidioides.

    PubMed

    Puccia, Rosana; Vallejo, Milene C; Longo, Larissa V G

    2017-01-01

    Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis (PCM). They are dimorphic ascomycetes that grow as filaments at mild temperatures up to 28oC and as multibudding pathogenic yeast cells at 37oC. Components of the fungal cell wall have an important role in the interaction with the host because they compose the cell outermost layer. The Paracoccidioides cell wall is composed mainly of polysaccharides, but it also contains proportionally smaller rates of proteins, lipids, and melanin. The polysaccharide cell wall composition and structure of Paracoccidioides yeast cells, filamentous and transition phases were studied in detail in the past. Other cell wall components have been better analyzed in the last decades. The present work gives to the readers a detailed updated view of cell wall-associated proteins. Proteins that have been localized at the cell wall compartment using antibodies are individually addressed. We also make an overview about PCM, the Paracoccidioides cell wall structure, secretion mechanisms, and fungal extracellular vesicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  7. The cell wall: a carbohydrate armour for the fungal cell.

    PubMed

    Latgé, Jean-Paul

    2007-10-01

    The cell wall is composed of a polysaccharide-based three-dimensional network. Considered for a long time as an inert exoskeleton, the cell wall is now seen as a dynamic structure that is continuously changing as a result of the modification of culture conditions and environmental stresses. Although the cell wall composition varies among fungal species, chemogenomic comparative analysis have led to a better understanding of the genes and mechanisms involved in the construction of the common central core composed of branched beta1,3 glucan-chitin. Because of its essential biological role, unique biochemistry and structural organization and the absence in mammalian cells of most of its constitutive components, the cell wall is an attractive target for the development of new antifungal agents. Genomic as well as drug studies have shown that the death of the fungus can result from inhibition of cell wall polysaccharide synthases. To date, only beta1,3 glucan synthase inhibitors have been launched clinically and many more targets remain to be explored.

  8. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    PubMed

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  9. Arabinan-rich pectic polysaccharides from buriti (Mauritia flexuosa): an Amazonian edible palm fruit.

    PubMed

    Cantu-Jungles, Thaisa Moro; Almeida, Carolina Pierobom de; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2015-05-20

    Primary cell wall polysaccharides from aqueous extract of buriti fruit pulp (Mauritia flexuosa, an exotic tropical palm) were isolated and characterized. After freeze-thaw and α-amylase treatments, extracted polysaccharides were purified by sequential ultrafiltration through membranes. Two homogeneous fractions were obtained, SBW-100R and SBW-30R (Mw of 126 kDa and 20 kDa, respectively). Monosaccharide composition, methylation and (13)C NMR analysis showed that fraction SBW-100R contained a (1 → 5)-linked arabinan, branched at O-3 and O-2 positions, linked to a type I rhamnogalacturonan. Low amounts of these polymers were also present in fraction SBW-30R according to (13)C NMR analysis and monosaccharide composition. However, a high methyl esterified homogalacturonan (HG) was present in higher proportions. These results reinforce previous findings present in literature data which indicate that pectic polysaccharides are found in high amounts in primary cell walls of palms, which are commelinid monocotyledons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method.

    PubMed

    Airianah, Othman B; Vreeburg, Robert A M; Fry, Stephen C

    2016-03-01

    Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides

  11. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method

    PubMed Central

    Fry, Stephen C.

    2016-01-01

    Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (•OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ •OH-attacked polysaccharides. Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during •OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (•OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by •OH. The evidence shows that •OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen

  12. Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

    PubMed

    Kováčová, Kristína; Farkaš, Vladimír

    2016-04-01

    Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated.

  13. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  14. Synchrotron Microtomography Reveals the Fine Three-Dimensional Porosity of Composite Polysaccharide Aerogels

    PubMed Central

    Ghafar, Abdul; Parikka, Kirsti; Tenkanen, Maija; Suuronen, Jussi-Petteri

    2017-01-01

    This study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels’ mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications. PMID:28773235

  15. Polysaccharide composition of raw and cooked chayote (Sechium edule Sw.) fruits and tuberous roots.

    PubMed

    Shiga, Tânia M; Peroni-Okita, Fernanda Helena Gonçalves; Carpita, Nicholas C; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2015-10-05

    Chayote is a multipurpose table vegetable widely consumed in Latin America countries. Chayote fruits, leaves and tuberous roots contain complex carbohydrates as dietary fiber and starch, vitamins and minerals. The complex polysaccharides (cell walls and starch) were analyzed in the black and green varieties of chayote fruits as well as in green chayote tuberous root before and after a controlled cooking process to assess changes in their composition and structure. The monosaccharide composition and linkage analysis indicated pectins homogalacturonans and rhamnogalacturonan I backbones constitute about 15-20% of the wall mass, but are heavily substituted with, up to 60% neutral arabinans, galactans, arabinogalactans. The remainder is composed of xyloglucan, glucomannans and galactoglucomannans. Chayote cell-wall polysaccharides are highly stable under normal cooking conditions, as confirmed by the optical microscopy of wall structure. We found also that tuberous roots constitute a valuable additional source of quality starch and fiber. Published by Elsevier Ltd.

  16. Chemical studies on the polysaccharides of Salicornia brachiata.

    PubMed

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions.

    PubMed

    Netanel Liberman, Gal; Ochbaum, Guy; Malis Arad, Shoshana; Bitton, Ronit

    2016-11-05

    The cell-wall sulfated polysaccharide of the marine red microalga Porphyridium sp. is a high molecular weight biopolymer that has potential for use as a platform for metal complexation for various applications. This paper describes the structural and rheological characterization and antibacterial activity of the polysaccharide in combination with Zn(2+) (Zn-PS). SAXS and rheology studies indicate that with the addition of ZnCl2 to the sulfated polysaccharide the only change was the increase in viscosity in the entangled regime. The antibacterial activity of Zn-PS solutions was more potent than that of the native polysaccharide against Gram-negative and Gram-positive bacteria. The synergy between the bioactivities of Zn(2+) (which is a key player in wound healing and is active against variety of pathogens) and the unique bioactivities of the polysaccharide (e.g., anti-inflammatory) indicates promising potential for the development of novel products for the pharmaceutical and cosmetics industries. Copyright © 2016. Published by Elsevier Ltd.

  18. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    PubMed Central

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  19. Effect of okra cell wall and polysaccharide on physical properties and stability of ice cream.

    PubMed

    Yuennan, Pilapa; Sajjaanantakul, Tanaboon; Goff, H Douglas

    2014-08-01

    Stabilizers are used in ice cream to increase mix viscosity, promote smooth texture, and improve frozen stability. In this study, the effects of varying concentrations (0.00%, 0.15%, 0.30%, and 0.45%) of okra cell wall (OKW) and its corresponding water-soluble polysaccharide (OKP) on the physical characteristics of ice cream were determined. Ice cream mix viscosity was measured as well as overrun, meltdown, and consumer acceptability. Ice recrystallization was determined after ice cream was subjected to temperature cycling in the range of -10 to -20 °C for 10 cycles. Mix viscosity increased significantly as the concentrations of OKW and OKP increased. The addition of either OKW or OKP at 0.15% to 0.45% significantly improved the melting resistance of ice cream. OKW and OKP at 0.15% did not affect sensory perception score for flavor, texture, and overall liking of the ice cream. OKW and OKP (0.15%) reduced ice crystal growth to 107% and 87%, respectively, as compared to 132% for the control (0.00%). Thus, our results suggested the potential use of OKW and OKP at 0.15% as a stabilizer to control ice cream quality and retard ice recrystallization. OKP, however, at 0.15% exhibited greater effect on viscosity increase and on ice recrystallization inhibition than OKW. © 2014 Institute of Food Technologists®

  20. Relevance, structure and analysis of ferulic acid in maize cell walls.

    PubMed

    Bento-Silva, Andreia; Vaz Patto, Maria Carlota; do Rosário Bronze, Maria

    2018-04-25

    Phenolic compounds in foods have been widely studied due to their health benefits. In cereals, phenolic compounds are extensively linked to cell wall polysaccharides, mainly arabinoxylans, which cross-link with each other and with other cell wall components. In maize, ferulic acid is the phenolic acid present in the highest concentration, forming ferulic acid dehydrodimers, trimers and tetramers. The cross-linking of polysaccharides is important for the cell wall structure and growth, and may protect against pathogen invasion. In addition to the importance for maize physiology, ferulic acid has been recognized as an important chemical structure with a wide range of health benefits when consumed in a diet rich in fibre. This review paper presents the different ways ferulic acid can be present in maize, the importance of ferulic acid derivatives and the methodologies that can be used for their analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Changes in cell wall architecture of wheat coleoptiles grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Modifications of cell wall structure of wheat coleoptiles in response to continuous hypergravity (300 g) treatment were investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The net amounts of cell wall polysaccharides, such as hemicellulose and cellulose, of hypergravity-treated coleoptiles increased as much as those of 1 g control coleoptiles during the incubation period. As a result, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. Particularly, the amounts of hemicellulosic polymers with middle molecular mass (0.2-1 MDa) largely increased from day 2 to 3 under hypergravity conditions. The major sugar components of the hemicellulose fraction are arabinose, xylose and glucose. The ratios of arabinose and xylose to glucose were higher in hypergravity-treated coleoptiles than in control coleoptiles. The fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers (mainly composed of arabinoxylans) in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. In addition to wall polysaccharides, the amounts of cell wall-bound phenolics, such as ferulic acid and diferulic acid, substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. Especially, the levels of diferulic acid which cross-links hemicellulosic polymers were higher in hypergravity-treated coleoptiles than in control coleoptiles during the incubation period. These results suggest that hypergravity stimuli from the germination stage bias the type of synthesized hemicellulosic polysaccharides, although they do not restrict the net synthesis of cell wall constituents in wheat coleoptiles. The stimulation of the synthesis of arabinoxylans and of the

  2. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  3. Cell wall proteome of pathogenic fungi.

    PubMed

    Karkowska-Kuleta, Justyna; Kozik, Andrzej

    2015-01-01

    A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.

  4. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  5. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    DOE PAGES

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less

  6. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7.

    PubMed

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2013-10-18

    Lipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Analyzing Xyloglucan Endotransglycosylases by Incorporating Synthetic Oligosaccharides into Plant Cell Walls.

    PubMed

    Ruprecht, Colin; Dallabernardina, Pietro; Smith, Peter J; Urbanowicz, Breeanna R; Pfrengle, Fabian

    2018-04-16

    The plant cell wall is a cellular exoskeleton consisting predominantly of a complex polysaccharide network that defines the shape of cells. During growth, this network can be loosened through the action of xyloglucan endotransglycosylases (XETs), glycoside hydrolases that "cut and paste" xyloglucan polysaccharides through a transglycosylation process. We have analyzed cohorts of XETs in different plant species to evaluate the substrate specificities of xyloglucan acceptors by using a set of synthetic oligosaccharides obtained by automated glycan assembly. The ability of XETs to incorporate the oligosaccharides into polysaccharides printed as microarrays and into stem sections of Arabidopsis thaliana, beans, and peas was assessed. We found that single xylose substitutions are sufficient for transfer, and xylosylation of the terminal glucose residue is not required by XETs, independent of plant species. To obtain information on the potential xylosylation pattern of the natural acceptor of XETs, that is, the nonreducing end of xyloglucan, we further tested the activity of xyloglucan xylosyl transferase (XXT) 2 on the synthetic xyloglucan oligosaccharides. These data shed light on inconsistencies between previous studies towards determining the acceptor substrate specificities of XETs and have important implications for further understanding plant cell wall polysaccharide synthesis and remodeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cell-wall polysaccharide composition and glycanase activity of Silene vulgaris callus transformed with rolB and rolC genes.

    PubMed

    Günter, Elena A; Shkryl, Yury N; Popeyko, Oxana V; Veremeichik, Galina N; Bulgakov, Victor P

    2015-03-15

    The aim of this research is to investigate the effects of the Agrobacterium rhizogenes rol genes on the composition of cell-wall polysaccharides and glycanase activity in the campion callus. The expression of the rolC gene reduces the yield of campion pectin, while the expression of the rolB or rolC gene inhibits the volumetric production of both pectin and intracellular arabinogalactan. The rol genes are involved in regulating the activity of glycanases and esterases, thereby contributing to the modification of polysaccharide structures, their molecular weight (Mw) and the degree of pectin methyl esterification (DE). The increase in pectin arabinose residue appears to be connected to a decrease in intracellular and extracellular α-l-arabinofuranosidase activity in transgenic campion calluses. In transgenic calluses expressing the rolB and rolC genes, the increase in pectin galactose residue is likely due to a decrease in β-galactosidase activity. The decrease in the Mw of pectin and its d-galacturonic acid content appears to be connected to an increase in extracellular polygalacturonase activity. Finally, the increase in pectinesterase activity causes a decrease in the DE of pectin. Thus, the expression of rolB and rolC genes in campion callus has a considerable effect on pectin's sugar composition, DE and Mw, while it appears to have an insignificant influence on intracellular and extracellular arabinogalactans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.

    PubMed

    Eslick, Enid M; Beilby, Mary J; Moon, Anthony R

    2014-04-01

    A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.

  10. [In vitro studies on antioxidant and antimicrobial activities of polysaccharide from Lycoris aurea].

    PubMed

    Ru, Qiao-Mei; Pei, Zhen-Ming; Zheng, Hai-Lei

    2008-10-01

    To study the preliminary antioxidant and antimicrobial activities of polysaccharide extracted from Lycoris aurea. The scavenging activities of the polysaccharide in vitro on superoxide radical (O2-*), hydroxyl radical (*OH), alkyl radical (R*) and hydrogen peroxide (H2O2) were investigated by modified chemical systems. Meanwhile, the antimicrobial activities were tested using paper-discagar diffusion method. In general, the antioxidant activities of the polysaccharide were lower compared with Vc. However, the scavenging effects to *OH and H2O2 were parallel to Vc. Meanwhile, polysaccharide from Lycoris aurea had strong antimicrobial activities against Micrococcus luteus, Bacillus pumilus and Staphylococcus aureus. The polysaccharide extracted from L. aurea can scavenge *OH and H2O2 effectively and inhibit Gram-positive bacterias.

  11. The role of exo-(1-->4)-beta-galactanase in the mobilization of polysaccharides from the cotyledon cell walls of Lupinus angustifolius following germination.

    PubMed

    Buckeridge, Marcos S; Hutcheon, Ian S; Reid, J S Grant

    2005-09-01

    The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1-->4)-beta-linked D-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1-->4)-beta-galactanase with a very high specificity towards (1-->4)-beta-linked D-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. Storage mesophyll cell walls ('ghosts') were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1-->4)-beta-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1-->4)-beta-D-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. On comparing the morphologies of isolated cell walls, the post-mobilization 'ghosts' did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. The exo-(1-->4)-beta-galactanase is the principal enzyme involved in

  12. β-1,3-Glucans are components of brown seaweed (Phaeophyceae) cell walls.

    PubMed

    Raimundo, Sandra Cristina; Pattathil, Sivakumar; Eberhard, Stefan; Hahn, Michael G; Popper, Zoë A

    2017-03-01

    LAMP is a cell wall-directed monoclonal antibody (mAb) that recognizes a β-(1,3)-glucan epitope. It has primarily been used in the immunolocalization of callose in vascular plant cell wall research. It was generated against a brown seaweed storage polysaccharide, laminarin, although it has not often been applied in algal research. We conducted in vitro (glycome profiling of cell wall extracts) and in situ (immunolabeling of sections) studies on the brown seaweeds Fucus vesiculosus (Fucales) and Laminaria digitata (Laminariales). Although glycome profiling did not give a positive signal with the LAMP mAb, this antibody clearly detected the presence of the β-(1,3)-glucan in situ, showing that this epitope is a constituent of these brown algal cell walls. In F. vesiculosus, the β-(1,3)-glucan epitope was present throughout the cell walls in all thallus parts; in L. digitata, the epitope was restricted to the sieve plates of the conductive elements. The sieve plate walls also stained with aniline blue, a fluorochrome used as a probe for callose. Enzymatic digestion with an endo-β-(1,3)-glucanase removed the ability of the LAMP mAb to label the cell walls. Thus, β-(1,3)-glucans are structural polysaccharides of F. vesiculosus cell walls and are integral components of the sieve plates in these brown seaweeds, reminiscent of plant callose.

  13. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides.

    PubMed

    Tamura, Kazune; Hemsworth, Glyn R; Déjean, Guillaume; Rogers, Theresa E; Pudlo, Nicholas A; Urs, Karthik; Jain, Namrata; Davies, Gideon J; Martens, Eric C; Brumer, Harry

    2017-10-10

    Microbial utilization of complex polysaccharides is a major driving force in shaping the composition of the human gut microbiota. There is a growing appreciation that finely tuned polysaccharide utilization loci enable ubiquitous gut Bacteroidetes to thrive on the plethora of complex polysaccharides that constitute "dietary fiber." Mixed-linkage β(1,3)/β(1,4)-glucans (MLGs) are a key family of plant cell wall polysaccharides with recognized health benefits but whose mechanism of utilization has remained unclear. Here, we provide molecular insight into the function of an archetypal MLG utilization locus (MLGUL) through a combination of biochemistry, enzymology, structural biology, and microbiology. Comparative genomics coupled with growth studies demonstrated further that syntenic MLGULs serve as genetic markers for MLG catabolism across commensal gut bacteria. In turn, we surveyed human gut metagenomes to reveal that MLGULs are ubiquitous in human populations globally, which underscores the importance of gut microbial metabolism of MLG as a common cereal polysaccharide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  15. Conformational studies of the capsular polysaccharide produced by Neisseria meningitidis group A.

    PubMed

    Foschiatti, Michela; Hearshaw, Meredith; Cescutti, Paola; Ravenscroft, Neil; Rizzo, R

    2009-05-12

    The effect of different cations on the conformational and morphological properties of the capsular polysaccharide produced by Neisseria meningitidis group A was investigated. Circular dichroism studies showed that the presence of Na(+), NH4+ or Ca(2+) ions induced different local conformations of the polysaccharide chain through interactions with the phosphodiester group bridging the saccharide residues in the polymer chain. Atomic force microscopy experiments confirmed that the morphology of the polysaccharide chains was different depending on the nature of the counterion. Ammonium ions were associated with the presence of single polymer chains in an elongated conformation, whereas sodium ions favored the folding of the chains into a globular conformation. The addition of calcium ions produced the aggregation of a limited number of globular polysaccharide chains to form a 'toroidal-like' structure.

  16. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE PAGES

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; ...

    2016-05-26

    Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing

  17. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas

    Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing

  18. The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens

    PubMed Central

    Harholt, Jesper; Willats, William G. T.; Boomsma, Jacobus J.

    2011-01-01

    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants. PMID:21423735

  19. Polysaccharides from the South African medicinal plant Artemisia afra: Structure and activity studies.

    PubMed

    Braünlich, Paula Marie; Inngjerdingen, Kari Tvete; Inngjerdingen, Marit; Johnson, Quinton; Paulsen, Berit Smestad; Mabusela, Wilfred

    2018-01-01

    Artemisia afra (Jacq. Ex. Willd), is an indigenous plant in South Africa and other parts of the African continent, where it is used as traditional medicine mostly for respiratory conditions. The objective of this study was to investigate the structural features of the polysaccharides from the leaves of this plant, as well as the biological activities of the polysaccharide fractions against the complement assay. Leaves of Artemisia afra were extracted sequentially with organic solvents (dichloromethane and methanol), 50% aqueous ethanol, and water at 50 and 100°C respectively. The polysaccharide extracts were fractionated by ion exchange chromatography and the resulting fractions were tested for biological activity against the complement fixation assay. Active fractions were further fractionated using gel filtration. Monosaccharide compositions and linkage analyses were determined for the relevant fractions. Polysaccharides were shown to be of the pectin type, and largely contain arabinogalactan, rhamnogalacturonan and homogalacturonan structural features. The presence of arabinogalactan type II features as suggested by methylation analysis was further confirmed by the ready precipitation of the relevant polysaccharides with the Yariv reagent. An unusual feature of some of these polysaccharides was the presence of relatively high levels of xylose as one of its monosaccharide constituents. Purified polysaccharide fractions were shown to possess higher biological activity than the selected standard in the complement assay. Digestion of these polysaccharides with an endo-polygalacturonase enzyme resulted in polymers with lower molecular weights as expected, but still with biological activity which exceeded that of the standard. Thus on the basis of these studies it may be suggested that immunomodulating properties probably contribute significantly to the health-promoting effects of this medicinal plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    PubMed Central

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  1. [Separation, purification and primary reverse cholesterol transport study of Cordyceps militaris polysaccharide].

    PubMed

    Guo, Shou-Dong; Cui, Ying-Jie; Wang, Ren-Zhong; Wang, Ren-Yuan; Wu, Wen-Xue; Ma, Teng

    2014-09-01

    The authors designed to separate, purify and determine the monosaccharide composition of the polysaccharide from Cordyceps militaris, and study its effect on reverse cholesterol transport in vivo by isotope tracing assay. Polysaccharides were separate and purify by ion exchange column Q-sepharose Fast Flow and size exclusion column Sephacryl S200HR; the molecular weight and monosaccharide composition of the polysaccharides were determined by high performance gel permeation chromatography and high performance liquid chromatography coming with pre-column derivation, respectively. Finally, three purified polysaccharides CMBW1, CMBW2 and CMYW1 were obtained, their total carbohydrate contents were 87%, 89%, 95%, respectively; their protein contents were 6.5%, 1.3%, 2.8%, respectively; their molecular weights were 772.1, 20.9, 13.2 kDa, respectively; CMBW1 was composed of mannose, glucosamine, rhamnose, glucuronic acid, glucose, galactose and arabinose with a molar ratio of 7.25: 0.17: 1.29: 0.23: 6.30: 11.08: 0.79; CMBW2 was composed of mannose, glucosamine, galactose and arabinose with a molar ratio of 2.40: 0.16: 2.92: 0.24; CMYW1 was composed of mannose, glucosamine, glucuronic acid and glucose with a molar ratio of 0.59: 0.57: 0.45: 25.61. Polysaccharide at 50 mg x kg(-1) could significantly improve the transport of 3H- cholesterol to blood and excretion from feces. All of the three purified polysaccharides CMBW1, CMBW2 and CMYW1 were heteropolysaccharide; and they could improve reverse cholesterol transport in vivo, the underlying mechanisms are being studied.

  2. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons.

    PubMed

    Wood, Jennifer A; Tan, Hwei-Ting; Collins, Helen M; Yap, Kuok; Khor, Shi Fang; Lim, Wai Li; Xing, Xiaohui; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B; Tucker, Matthew R

    2018-03-13

    Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  3. Glycoprotein of the wall of sycamore tissue-culture cells.

    PubMed

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  4. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEX TM -pre-treated biomass

    DOE PAGES

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; ...

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is amore » trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.« less

  5. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  6. Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay

    NASA Astrophysics Data System (ADS)

    Sakugawa, Hiroshi; Handa, Nobuhiko

    1985-05-01

    Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum. Dissolved polysaccharides were concentrated from 5-101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 10 4-5 × 10 6 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l -1 at 1 m, and 2 and 26 μg l -1 at 6 m. A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.

  7. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  8. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. Results Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. Conclusions Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell

  9. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    PubMed

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P < 0.05). One mutant of S. cerevisiae 2.0016 with increased biomass, cell wall thickness, and cell wall glucan was isolated (P < 0.05). The spaceflight mutant of S. cerevisiae 2.0016 showed 46.7%, 62.6%, and 146.0% increment in biomass, cell wall thickness and beta-glucan content, respectively, when compared to the ground strain. Moreover, growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production.

  10. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins.

    PubMed

    Peaucelle, Alexis; Louvet, Romain; Johansen, Jorunn N; Höfte, Herman; Laufs, Patrick; Pelloux, Jérome; Mouille, Grégory

    2008-12-23

    Plant organs are produced from meristems in a characteristic pattern. This pattern, referred to as phyllotaxis, is thought to be generated by local gradients of an information molecule, auxin. Some studies propose a key role for the mechanical properties of the cell walls in the control of organ outgrowth. A major cell-wall component is the linear alpha-1-4-linked D-GalAp pectic polysaccharide homogalacturonan (HG), which plays a key role in cell-to-cell cohesion. HG is deposited in the cell wall in a highly (70%-80%) methyl-esterified form and is subsequently de-methyl-esterified by pectin methyl-esterases (PME, EC 3.1.1.11). PME activity is itself regulated by endogenous PME inhibitor (PMEI) proteins. PME action modulates cell-wall-matrix properties and plays a role in the control of cell growth. Here, we show that the formation of flower primordia in the Arabidopsis shoot apical meristem is accompanied by the de-methyl-esterification of pectic polysaccharides in the cell walls. In addition, experimental perturbation of the methyl-esterification status of pectins within the meristem dramatically alters the phyllotactic pattern. These results demonstrate that regulated de-methyl-esterification of pectins is a key event in the outgrowth of primordia and possibly also in phyllotactic patterning.

  11. Protein and cell wall polysaccharide carbonyl determination by a neutral pH 2,4-dinitrophenylhydrazine-based photometric assay.

    PubMed

    Georgiou, Christos D; Zisimopoulos, Dimitrios; Argyropoulou, Vasiliki; Kalaitzopoulou, Electra; Salachas, George; Grune, Tilman

    2018-04-10

    polysaccharides, thus paving the way on studies to investigate cell walls acting as antioxidant defense in plants, fungi, bacteria and lichens. Copyright © 2018. Published by Elsevier B.V.

  12. Metatranscriptomic Analyses of Plant Cell Wall Polysaccharide Degradation by Microorganisms in the Cow Rumen

    PubMed Central

    Dai, Xin; Tian, Yan; Li, Jinting; Su, Xiaoyun; Wang, Xuewei; Zhao, Shengguo; Liu, Li; Luo, Yingfeng; Liu, Di; Zheng, Huajun; Wang, Jiaqi; Dong, Zhiyang

    2014-01-01

    The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for ∼1% and ∼0.1% of the total non-rRNAs, respectively. The majority (∼98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (∼82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen. PMID:25501482

  13. Application of two-dimensional NMR spectroscopy and molecular dynamics simulations to the conformational analysis of oligosaccharides corresponding to the cell-wall polysaccharide of Streptococcus group A.

    PubMed

    Kreis, U C; Varma, V; Pinto, B M

    1995-06-01

    This paper describes the use of a protocol for conformational analysis of oligosaccharide structures related to the cell-wall polysaccharide of Streptococcus group A. The polysaccharide features a branched structure with an L-rhamnopyranose (Rhap) backbone consisting of alternating alpha-(1-->2) and alpha-(1-->3) links and D-N-acetylglucosamine (GlcpNAc) residues beta-(1-->3)-connected to alternating rhamnose rings: [formula: see text] Oligomers consisting of three to six residues have been synthesized and nuclear magnetic resonance (NMR) assignments have been made. The protocol for conformational analysis of the solution structure of these oligosaccharides involves experimental and theoretical methods. Two-dimensional NMR spectroscopy methods (TOCSY, ROESY and NOESY) are utilized to obtain chemical shift data and proton-proton distances. These distances are used as constraints in 100 ps molecular dynamics simulations in water using QUANTA and CHARMm. In addition, the dynamics simulations are performed without constraints. ROE build-up curves are computed from the averaged structures of the molecular dynamics simulations using the CROSREL program and compared with the experimental curves. Thus, a refinement of the initial structure may be obtained. The alpha-(1-->2) and the beta-(1-->3) links are unambiguously defined by the observed ROE cross peaks between the A-B',A'-B and C-B,C'-B' residues, respectively. The branch-point of the trisaccharide CBA' is conformationally well-defined. Assignment of the conformation of the B-A linkage (alpha-(1-->3)) was problematic due to TOCSY relay, but could be solved by NOESY and T-ROESY techniques. A conformational model for the polysaccharide is proposed.

  14. Heterogeneity and Glycan Masking of Cell Wall Microstructures in the Stems of Miscanthus x giganteus, and Its Parents M. sinensis and M. sacchariflorus

    PubMed Central

    Xue, Jie; Bosch, Maurice; Knox, J. Paul

    2013-01-01

    Plant cell walls, being repositories of fixed carbon, are important sources of biomass and renewable energy. Miscanthus species are fast growing grasses with a high biomass yield and they have been identified as potential bioenergy crops. Miscanthus x giganteus is the sterile hybrid between M. sinensis and M. sacchariflorus, with a faster and taller growth than its parents. In this study, the occurrence of cell wall polysaccharides in stems of Miscanthus species has been determined using fluorescence imaging with sets of cell wall directed monoclonal antibodies. Heteroxylan and mixed linkage-glucan (MLG) epitopes are abundant in stem cell walls of Miscanthus species, but their distributions are different in relation to the interfascicular parenchyma and these epitopes also display different developmental dynamics. Detection of pectic homogalacturonan (HG) epitopes was often restricted to intercellular spaces of parenchyma regions and, notably, the high methyl ester LM20 HG epitope was specifically abundant in the pith parenchyma cell walls of M. x giganteus. Some cell wall probes cannot access their target glycan epitopes because of masking by other polysaccharides. In the case of Miscanthus stems, masking of xyloglucan by heteroxylan and masking of pectic galactan by heteroxylan and MLG was detected in certain cell wall regions. Knowledge of tissue level heterogeneity of polysaccharide distributions and molecular architectures in Miscanthus cell wall structures will be important for both understanding growth mechanisms and also for the development of potential strategies for the efficient deconstruction of Miscanthus biomass. PMID:24312403

  15. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  16. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

    PubMed

    Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina

    2014-02-26

    Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by

  17. The Role of Exo-(1→4)-β-galactanase in the Mobilization of Polysaccharides from the Cotyledon Cell Walls of Lupinus angustifolius Following Germination

    PubMed Central

    BUCKERIDGE, MARCOS S.; HUTCHEON, IAN S.; REID, J. S. GRANT

    2005-01-01

    • Background and Aims The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1→4)-β-linked d-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1→4)-β-galactanase with a very high specificity towards (1→4)-β-linked d-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. • Methods Storage mesophyll cell walls (‘ghosts’) were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1→4)-β-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1→4)-β-d-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. • Key Results On comparing the morphologies of isolated cell walls, the post-mobilization ‘ghosts’ did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. • Conclusions The

  18. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.

    PubMed

    Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo

    2017-11-01

    Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In

  19. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture

    PubMed Central

    Camacho, Emma; Chrissian, Christine; Cordero, Radames J. B.; Liporagi-Lopes, Livia; Stark, Ruth E.; Casadevall, Arturo

    2017-01-01

    Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother–daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In

  20. Plant cell wall: Never too much acetate

    DOE PAGES

    Scheller, Henrik V.

    2017-03-03

    Here, plant cell walls incorporate a variety of acetylated polysaccharides. In addition to enzymes catalysing acetylation (acetyltransferases), plants could produce enzymes to remove acetyl groups (acetylesterases). Previously, pectin acetylesterases were known and now a xylan acetylesterase has been identified — and it has many surprises.

  1. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance1[OPEN

    PubMed Central

    Wang, Tuo; Park, Yong Bum; Hong, Mei

    2015-01-01

    The structural role of pectins in plant primary cell walls is not yet well understood because of the complex and disordered nature of the cell wall polymers. We recently introduced multidimensional solid-state nuclear magnetic resonance spectroscopy to characterize the spatial proximities of wall polysaccharides. The data showed extensive cross peaks between pectins and cellulose in the primary wall of Arabidopsis (Arabidopsis thaliana), indicating subnanometer contacts between the two polysaccharides. This result was unexpected because stable pectin-cellulose interactions are not predicted by in vitro binding assays and prevailing cell wall models. To investigate whether the spatial contacts that give rise to the cross peaks are artifacts of sample preparation, we now compare never-dried Arabidopsis primary walls with dehydrated and rehydrated samples. One-dimensional 13C spectra, two-dimensional 13C-13C correlation spectra, water-polysaccharide correlation spectra, and dynamics data all indicate that the structure, mobility, and intermolecular contacts of the polysaccharides are indistinguishable between never-dried and rehydrated walls. Moreover, a partially depectinated cell wall in which 40% of homogalacturonan is extracted retains cellulose-pectin cross peaks, indicating that the cellulose-pectin contacts are not due to molecular crowding. The cross peaks are observed both at −20°C and at ambient temperature, thus ruling out freezing as a cause of spatial contacts. These results indicate that rhamnogalacturonan I and a portion of homogalacturonan have significant interactions with cellulose microfibrils in the native primary wall. This pectin-cellulose association may be formed during wall biosynthesis and may involve pectin entrapment in or between cellulose microfibrils, which cannot be mimicked by in vitro binding assays. PMID:26036615

  2. Advances on Bioactive Polysaccharides from Medicinal Plants.

    PubMed

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  3. Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent.

    PubMed

    Gartaula, Ghanendra; Dhital, Sushil; Netzel, Gabriele; Flanagan, Bernadine M; Yakubov, Gleb E; Beahan, Cherie T; Collins, Helen M; Burton, Rachel A; Bacic, Antony; Gidley, Michael J

    2018-09-15

    The cell walls of cereal endosperms are a major source of fibre in many diets and of importance in seed structure and germination. Cell walls were isolated from both pure wheat endosperm and milled flour. 13 C CP/MAS NMR in conjunction with methylation analysis before and after acid hydrolysis showed that, in addition to arabinoxylan (AX) and (1, 3; 1, 4)-β-D-glucan (MLG), wheat endosperm cell walls contain a significant proportion of cellulose (ca 20%) which is tightly bound to xylans and mannans. Light microscopy showed that the cellulose was relatively evenly distributed across the grain endosperm. The cell walls contain a fibrous acid-resistant core structure laminated by matrix polysaccharides as revealed by AFM imaging. A model for endosperm cell wall structural organisation is proposed, based on a core of cellulose and interacting non-cellulosic polysaccharides which anchors AX (with very occasional diferulic acid cross-linking) that in turn retains MLGs through physical entanglement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    PubMed Central

    Mikkelsen, Maria D.; Harholt, Jesper; Ulvskov, Peter; Johansen, Ida E.; Fangel, Jonatan U.; Doblin, Monika S.; Bacic, Antony; Willats, William G. T.

    2014-01-01

    Background and Aims The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. Methods Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. Key Results Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. Conclusions The results provide new insights into the evolution of

  5. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth.

    PubMed

    Nowak, Renata; Nowacka-Jechalke, Natalia; Juda, Marek; Malm, Anna

    2018-06-01

    According to the vast body of evidence demonstrating that the intestinal microbiota is undoubtedly linked with overall health, including cancer risk, searching for functional foods and novel prebiotic influencing on beneficial bacteria is necessary. The present study aimed to investigate the potential of polysaccharides from 53 wild-growing mushrooms to stimulate the growth of Lactobacillus acidophilus and Lactobacillus rhamnosus and to determine the digestibility of polysaccharide fractions. Mushroom polysaccharides were precipitated with ethanol from aqueous extracts. Determination of growth promoting activity of polysaccharides was performed in U-shaped 96-plates in an ELISA reader in relation to the reference strain of L. acidophilus and two clinical strains of L. rhamnosus. The digestibility of mushroom polysaccharides was investigated in vitro by exposing them to artificial human gastric juice. Obtained results revealed that fungal polysaccharides stimulate the growth of Lactobacillus strains stronger than commercially available prebiotics like inulin or fructooligosaccharides. Moreover, selected polysaccharides were subjected to artificial human gastric juice and remain undigested in more than 90%. Obtained results indicate that mushroom polysaccharides are able to pass through the stomach unchanged, reaching the colon and stimulating the growth of beneficial bacteria. Majority of 53 polysaccharide fractions were analysed for the first time in our study. Overall, our findings suggest that polysaccharide fractions from edible mushrooms might be useful in producing functional foods and nutraceuticals.

  6. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth1[W][OA

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A.M.; Fry, Stephen C.; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species. PMID:19493972

  7. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    PubMed Central

    2010-01-01

    Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and

  8. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition.

    PubMed

    Nawrocka, Agnieszka; Krekora, Magdalena; Niewiadomski, Zbigniew; Miś, Antoni

    2018-06-30

    FTIR spectroscopy was used to determine changes in secondary structure, as well as water state, in gluten and model doughs supplemented by four fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin). The gluten and model doughs were obtained from commercially available wheat gluten and model flour, respectively. The polysaccharides were used in five concentrations: 3%, 6%, 9%, 12% and 18%. Analysis of the FTIR spectra indicated that polysaccharides could be divided into two groups: first - microcrystalline cellulose and inulin, second - apple and citrus pectins that induced opposite structural changes. Changes in secondary structure concern mainly β-sheets and β-turns that form aggregated β-structures, suggesting dehydration of the gluten matrix as a result of competition for water between gluten proteins and polysaccharides. Moreover, the positive band at ca. 1226 cm -1 in the spectra of pectin-modified samples indicates formation of 'ether' type hydrogen bonds between gluten proteins and pectins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Richards, Gil F. (Inventor); Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  11. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  12. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  13. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels.

    PubMed

    Pielesz, A

    2012-07-01

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants

  14. Vibrational spectroscopy and electrophoresis as a "golden means" in monitoring of polysaccharides in medical plant and gels

    NASA Astrophysics Data System (ADS)

    Pielesz, A.

    In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. Of them, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. Pharmacotherapy using plant-derived substances can be currently regarded as a very promising future alternative to conventional therapy. The advanced biotechnologies available today enable chemical investigation of well-defined bioactive plant components as sources of novel drugs. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. Special interest is focused on plant polysaccharides. This article attempts to review the current structural and conformational characterization of some importantly bioactive monosaccharides isolated from following plant cell-wall: Symphytum officinale (comfrey), Thymus pulegioides (thyme), Trigonella foenum-graecum L. (fenugreek), Tussilago farfara L. (coltsfoot), Hyssopus officinalis (hyssop), Althaea officinalis L. (marshmallow) and Equisetum arvense L. (horsetail). The chemical structures of monosaccharides were analysed using FTIR and Raman spectroscopies as well as cellulose acetate membrane electrophoresis (CAE). The dried plant samples were gently hydrolysed with sulphuric acid. The presence of glucuronic acid, galacturonic acid, alginic acid, glucose, mannose and xylose in the hydrolysates of reference substances and non-defatted plant films was proved. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. Individual bands were selected to monitor the sugar content in medical plant cell walls and to confirm the identity of the analysed plants.

  15. [Studies on separation, purification and structure characteristics of a polysaccharide LTC-II from Pyrola corbieri].

    PubMed

    Mo, Zhengchang; Wu, Lanfang; Yang, Juan; Wang, Daoping

    2011-06-01

    To characterize the structure of polysaccharide LTC-II obtained from Pyrola corbieri. The polysaccharide was extracted from P. corbieri by hot water and ethanol precipitation. Crude polysaccharide was purified by DEAE-Cellulose chromatography and Sephacryl S-300 HR column chromatography. The purity and molecular weight of polysaccharide was determined by gel permeation chromatography. UV, IR, optical rotation, complete acid hydrolysis, periodate oxydation, Smith degradation, partial acid hydrolysis and methylation analysis were applied to determine the structural features. A homogeneous fraction LTC-II was obtained and its relative molecular mass was 22 000 Da. It consisted of arabinose, mannose, glucose, galactose in the molar ratio of 35. 2: 1.0: 13. 4: 4. 2. LTC-II had a backbone consisting glucose, mannose, galactose and mainly contained (1 --> 6)-linkaged glucose. The side chain possessed arabinose, glucose, galactose and mainly contained (1 --> 5)-linkaged arabinose. The terminal sugar were mainly glucose and galactose. Studies on the preliminary characterization of polysaccharide LTC-II from P. corbieri for the first time.

  16. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    PubMed

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  17. The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG

    PubMed Central

    Ganguly, Jhuma; Low, Lieh Y; Kamal, Nazia; Saile, Elke; Forsberg, L Scott; Gutierrez-Sanchez, Gerardo; Hoffmaster, Alex R; Liddington, Robert; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2013-01-01

    Endolysins are bacteriophage enzymes that lyse their bacterial host for phage progeny release. They commonly contain an N-terminal catalytic domain that hydrolyzes bacterial peptidoglycan (PG) and a C-terminal cell wall-binding domain (CBD) that confers enzyme localization to the PG substrate. Two endolysins, phage lysin L (PlyL) and phage lysin G (PlyG), are specific for Bacillus anthracis. To date, the cell wall ligands for their C-terminal CBD have not been identified. We recently described structures for a number of secondary cell wall polysaccharides (SCWPs) from B. anthracis and B. cereus strains. They are covalently bound to the PG and are comprised of a -ManNAc-GlcNAc-HexNAc- backbone with various galactosyl or glucosyl substitutions. Surface plasmon resonance (SPR) showed that the endolysins PlyL and PlyG bind to the SCWP from B. anthracis (SCWPBa) with high affinity (i.e. in the μM range with dissociation constants ranging from 0.81 × 10−6 to 7.51 × 10−6 M). In addition, the PlyL and PlyG SCWPBa binding sites reside with their C-terminal domains. The dissociation constants for the interactions of these endolysins and their derived C-terminal domains with the SCWPBa were in the range reported for other protein–carbohydrate interactions. Our findings show that the SCWPBa is the ligand that confers PlyL and PlyG lysin binding and localization to the PG. PlyL and PlyG also bound the SCWP from B. cereus G9241 with comparable affinities to SCWPBa. No detectable binding was found to the SCWPs from B. cereus ATCC (American Type Culture Collection) 10987 and ATCC 14579, thus demonstrating specificity of lysin binding to SCWPs. PMID:23493680

  18. Chemical Modification of Polysaccharides

    PubMed Central

    Cumpstey, Ian

    2013-01-01

    This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557

  19. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by

  20. Medicinal benefits of sulfated polysaccharides from sea vegetables.

    PubMed

    Kim, Se-Kwon; Li, Yong-Xin

    2011-01-01

    The cell walls of sea vegetables or marine algae are rich in sulfated polysaccharides (SPs) such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae. These SPs exhibit various biological activities such as anticoagulant, antiviral, antioxidative, and anticancer activities with potential health benefits. Therefore, SPs derived from sea vegetables have great potential in further development as nutraceuticals and medicinal foods. This chapter presents an overview of biological activities and potential medicinal benefits of SPs derived from sea vegetables. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    PubMed

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.

  2. Effects of supercritical carbon dioxide (SC-CO(2)) oil extraction on the cell wall composition of almond fruits.

    PubMed

    Femenia, A; García-Marín, M; Simal, S; Rosselló, C; Blasco, M

    2001-12-01

    Extraction of oil from almond fruits using supercritical carbon dioxide (SC-CO(2)) was carried out at 50 degrees C and 330 bar on three sets of almonds: raw almond seeds, raw almond kernels, and toasted almond seeds. Three different oil extraction percentages were applied on each set ranging from approximately 15 to 16%, from approximately 27 to 33%, and from approximately 49 to 64%. Although no major changes were detected in the fatty acid composition between fresh and partially defatted samples, carbohydrate analysis of partially defatted materials revealed important changes in cell wall polysaccharides from almond tissues. Thus, at low extraction percentages (up to approximately 33%), pectic polysaccharides and hemicellulosic xyloglucans were the main type of polymers affected, suggesting the modification of the cell wall matrix, although without breakage of the walls. Then, as supercritical fluid extraction (SCFE) continues and higher extraction rates are achieved (up to approximately 64%), a major disruption of the cell wall occurred as indicated by the losses of all major types of cell wall polysaccharides, including cellulose. These results suggest that, under the conditions used for oil extraction using SC-CO(2), fatty acid chains are able to exit the cells through nonbroken walls; the modification of the pectin-hemicellulose network might have increased the porosity of the wall. However, as high pressure is being applied, there is a progressive breakage of the cell walls allowing the free transfer of the fatty acid chains from inside the cells. These findings might contribute to providing the basis for the optimization of SCFE procedures based on plant food sources.

  3. Some structural studies on the galactose-containing polysaccharide from bovine placenta.

    PubMed

    Pontarolo, R; Duarte, J H; Feijó, M A

    1993-01-01

    Polysaccharides were extracted from 8-month-old placenta with aqueous HgCl2. The protein-free material was purified by selective precipitation with Cetavlon in the presence of sodium borate at pH 8.5 and was homogeneous on molecular-sieve chromatography, electrophoresis, and on treatment with Concanavalin A. The preparation contained galactose and glucose as principal monosaccharides with 5 per cent of hexosamines. Methylation studies suggested that D-gluco and D-galactopyranosyl units may be constituents of glucan and galactan respectively which form a molecular aggregate that does not dissociate during the fractionation procedures. After treatment of the fraction with beta-amylase, the proportion of glucose in the polysaccharide diminished, indicating the presence of (1-->4)-linked alpha-D-glucopyranosyl residues. Also, when the fraction was treated with a crude protease having glucosidase activity a residual alpha-D-galactopyranan was isolated and found to contain non-reducing end-groups (30.0 per cent), 3-O-(39.5 per cent) and 3,6-di-O-substituted (30.5 per cent) units. The structure of the galactan was not modified according to methylation data, on removal of the glucosyl component. The polysaccharide fraction (pH 8.5 Cetavlon), isolated from bovine placenta, thus contains a glycogen-like material associated with a galactan as molecular aggregate. This galactan has not been previously recognized in bovine placenta and its occurrence in this organ supports the hypothesis that galactose-containing polysaccharides are involved in foetal development.

  4. G-fibre cell wall development in willow stems during tension wood induction

    PubMed Central

    Gritsch, Cristina; Wan, Yongfang; Mitchell, Rowan A. C.; Shewry, Peter R.; Hanley, Steven J.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) are important as a potential feedstock for bioenergy and biofuels. Previous work suggested that reaction wood (RW) formation could be a desirable trait for biofuel production in willows as it is associated with increased glucose yields, but willow RW has not been characterized for cell wall components. Fasciclin-like arabinogalactan (FLA) proteins are highly up-regulated in RW of poplars and are considered to be involved in cell adhesion and cellulose biosynthesis. COBRA genes are involved in anisotropic cell expansion by modulating the orientation of cellulose microfibril deposition. This study determined the temporal and spatial deposition of non-cellulosic polysaccharides in cell walls of the tension wood (TW) component of willow RW and compared it with opposite wood (OW) and normal wood (NW) using specific antibodies and confocal laser scanning microscopy and transmission electron microscopy. In addition, the expression patterns of an FLA gene (SxFLA12) and a COBRA-like gene (SxCOBL4) were compared using RNA in situ hybridization. Deposition of the non-cellulosic polysaccharides (1–4)-β-D-galactan, mannan and de-esterified homogalacturonan was found to be highly associated with TW, often with the G-layer itself. Of particular interest was that the G-layer itself can be highly enriched in (1–4)-β-D-galactan, especially in G-fibres where the G-layer is still thickening, which contrasts with previous studies in poplar. Only xylan showed a similar distribution in TW, OW, and NW, being restricted to the secondary cell wall layers. SxFLA12 and SxCOBL4 transcripts were specifically expressed in developing TW, confirming their importance. A model of polysaccharides distribution in developing willow G-fibre cells is presented. PMID:26220085

  5. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

    PubMed Central

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567

  6. In vitro prebiotic effects of seaweed polysaccharides

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  7. Modification of Pectin and Hemicellulose Polysaccharides in Relation to Aril Breakdown of Harvested Longan Fruit

    PubMed Central

    Wang, Duoduo; Zhang, Haiyan; Wu, Fuwang; Li, Taotao; Liang, Yuxiang; Duan, Xuewu

    2013-01-01

    To investigate the modification of cell wall polysaccharides in relation to aril breakdown in harvested longan fruit, three pectin fractions (WSP, water soluble pectin; CSP, CDTA-soluble pectin; ASP, alkali soluble pectin) and one hemicellulose fraction (4 M KOH-SHC, 4 M KOH-soluble hemicellulose) were extracted, and their contents, monosaccharide compositions and molecular weights were evaluated. As aril breakdown intensified, CSP content increased while ASP and 4 M KOH-SHC contents decreased, suggesting the solubilization and conversion of cell wall components. Furthermore, the molar percentage of arabinose (Ara), as the main component of the side-chains, decreased largely in CSP and ASP while that of rhamnose (Rha), as branch point for the attachment of neutral sugar side chains, increased during aril breakdown. Analysis of (Ara + Gal)/Rha ratio showed that the depolymerization of CSP and ASP happened predominantly in side-chains formed of Ara residues. For 4 M KOH-SHC, more backbones were depolymerized during aril breakdown. Moreover, it was found that the molecular weights of CSP, ASP and 4 M KOH-SHC polysaccharides tended to decrease as aril breakdown intensified. These results suggest that both enhanced depolymerization and structural modifications of polysaccharides in the CSP, ASP and 4 M KOH-SHC fractions might be responsible for aril breakdown of harvested longan fruit. PMID:24287911

  8. Plant cell wall sugars: sweeteners for a bio-based economy.

    PubMed

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  9. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor).

    PubMed

    Zhao, X; Moates, G K; Wellner, N; Collins, S R A; Coleman, M J; Waldron, K W

    2014-10-13

    Duckweed is potentially an ideal biofuel feedstock due to its high proportion of cellulose and starch and low lignin content. However, there is little detailed information on the composition and structure of duckweed cell walls relevant to optimising the conversion of duckweed biomass to ethanol and other biorefinery products. This study reports that, for the variety and batch evaluated, carbohydrates constitute 51.2% (w/w) of dry matter while starch accounts for 19.9%. This study, for the first time, analyses duckweed cell wall composition through a detailed sequential extraction. The cell wall is rich in cellulose and also contains 20.3% pectin comprising galacturonan, xylogalacturonan, rhamnogalacturonan; 3.5% hemicellulose comprising xyloglucan and xylan, and 0.03% phenolics. In addition, essential fatty acids (0.6%, α-linolenic and linoleic/linoelaidic acid) and p-coumaric acid (0.015%) respectively are the most abundant fatty acids and phenolics in whole duckweed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    PubMed

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  12. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa).

    PubMed

    Sumiyoshi, Minako; Inamura, Takuya; Nakamura, Atsuko; Aohara, Tsutomu; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2015-02-01

    l-Arabinose is one of the main constituents of cell wall polysaccharides such as pectic rhamnogalacturonan I (RG-I), glucuronoarabinoxylans and other glycoproteins. It is found predominantly in the furanose form rather than in the thermodynamically more stable pyranose form. UDP-L-arabinofuranose (UDP-Araf), rather than UDP-L-arabinopyranose (UDP-Arap), is a sugar donor for the biosynthesis of arabinofuranosyl (Araf) residues. UDP-arabinopyranose mutases (UAMs) have been shown to interconvert UDP-Araf and UDP-Arap and are involved in the biosynthesis of polysaccharides including Araf. The UAM gene family has three members in Oryza sativa. Co-expression network in silico analysis showed that OsUAM3 expression was independent from OsUAM1 and OsUAM2 co-expression networks. OsUAM1 and OsUAM2 were expressed ubiquitously throughout plant development, but OsUAM3 was expressed primarily in reproductive tissue, particularly at the pollen cell wall formation developmental stage. OsUAM3 co-expression networks include pectin catabolic enzymes. To determine the function of OsUAMs in reproductive tissues, we analyzed RNA interference (RNAi)-knockdown transformants (OsUAM3-KD) specific for OsUAM3. OsUAM3-KD plants grew normally and showed abnormal phenotypes in reproductive tissues, especially in terms of the pollen cell wall and exine. In addition, we examined modifications of cell wall polysaccharides at the cellular level using antibodies against polysaccharides including Araf. Immunolocalization of arabinan using the LM6 antibody showed low levels of arabinan in OsUAM3-KD pollen grains. Our results suggest that the function of OsUAM3 is important for synthesis of arabinan side chains of RG-I and is required for reproductive developmental processes, especially the formation of the cell wall in pollen. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins

    PubMed Central

    Ghamrawi, Sarah; Gastebois, Amandine; Zykwinska, Agata; Vandeputte, Patrick; Marot, Agnès; Mabilleau, Guillaume; Cuenot, Stéphane; Bouchara, Jean-Philippe

    2015-01-01

    Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of human infections, notably respiratory infections in patients with cystic fibrosis. The development of new therapeutic strategies targeting S. boydii necessitates a better understanding of the physiology of this fungus and the identification of new molecular targets. In this work, we studied the conidium-to-germ tube transition using a variety of techniques including scanning and transmission electron microscopy, atomic force microscopy, two-phase partitioning, microelectrophoresis and cationized ferritin labeling, chemical force spectroscopy, lectin labeling, and nanoLC-MS/MS for cell wall GPI-anchored protein analysis. We demonstrated that the cell wall undergoes structural changes with germination accompanied with a lower hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes during germination also included a higher accessibility of some cell wall polysaccharides to lectins and less CH3/CH3 interactions (hydrophobic adhesion forces mainly due to glycoproteins). We also extracted and identified 20 GPI-anchored proteins from the cell wall of S. boydii, among which one was detected only in the conidial wall extract and 12 only in the mycelial wall extract. The identified sequences belonged to protein families involved in virulence in other fungi like Gelp/Gasp, Crhp, Bglp/Bgtp families and a superoxide dismutase. These results highlighted the cell wall remodeling during germination in S. boydii with the identification of a substantial number of cell wall GPI-anchored conidial or hyphal specific proteins, which provides a basis to investigate the role of these molecules in the host-pathogen interaction and fungal virulence. PMID:26038837

  14. A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins.

    PubMed

    Ghamrawi, Sarah; Gastebois, Amandine; Zykwinska, Agata; Vandeputte, Patrick; Marot, Agnès; Mabilleau, Guillaume; Cuenot, Stéphane; Bouchara, Jean-Philippe

    2015-01-01

    Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of human infections, notably respiratory infections in patients with cystic fibrosis. The development of new therapeutic strategies targeting S. boydii necessitates a better understanding of the physiology of this fungus and the identification of new molecular targets. In this work, we studied the conidium-to-germ tube transition using a variety of techniques including scanning and transmission electron microscopy, atomic force microscopy, two-phase partitioning, microelectrophoresis and cationized ferritin labeling, chemical force spectroscopy, lectin labeling, and nanoLC-MS/MS for cell wall GPI-anchored protein analysis. We demonstrated that the cell wall undergoes structural changes with germination accompanied with a lower hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes during germination also included a higher accessibility of some cell wall polysaccharides to lectins and less CH3/CH3 interactions (hydrophobic adhesion forces mainly due to glycoproteins). We also extracted and identified 20 GPI-anchored proteins from the cell wall of S. boydii, among which one was detected only in the conidial wall extract and 12 only in the mycelial wall extract. The identified sequences belonged to protein families involved in virulence in other fungi like Gelp/Gasp, Crhp, Bglp/Bgtp families and a superoxide dismutase. These results highlighted the cell wall remodeling during germination in S. boydii with the identification of a substantial number of cell wall GPI-anchored conidial or hyphal specific proteins, which provides a basis to investigate the role of these molecules in the host-pathogen interaction and fungal virulence.

  15. A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun

    2013-01-01

    The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.

  16. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  17. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters.

    PubMed

    Temple, Henry; Saez-Aguayo, Susana; Reyes, Francisca C; Orellana, Ariel

    2016-09-01

    The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  19. Phosphorylation of psyllium seed polysaccharide and its characterization.

    PubMed

    Rao, Monica R P; Warrier, Deepa U; Gaikwad, Snehal R; Shevate, Prachi M

    2016-04-01

    Psyllium is widely used as a medicinally active natural polysaccharide for treating conditions like constipation, diarrhea, and irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis and colon cancer. Studies have been performed to characterize and modify the polysaccharide obtained from psyllium seed husk and to evaluate its use as a pharmaceutical excipient, but no studies have been performed to evaluate the properties of the polysaccharide present in psyllium seeds. The present study focuses on phosphorylation of psyllium seed polysaccharide (PPS) using sodium tri-meta phosphate as the cross-linking agent. The modified phosphorylated psyllium seed polysaccharide was then evaluated for physicochemical properties, rheological properties, spectral analysis, thermal analysis, crosslinking density and acute oral toxicity studies. The modified polysaccharide (PhPPS) has a high swelling index due to which it can be categorized as a hydrogel. The percent increase in swelling of PhPPS as compared to PPS was found to be 90.26%. The PPS & PhPPS mucilages of all strengths were found to have shear thinning properties. These findings are suggestive of the potential use of PhPPS as gelling & suspending agent. PhPPS was found to have a mucoadhesive property which was comparable with carbopol. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biochemical And Genetic Modification Of Polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  1. A comparative study of mucilage and pulp polysaccharides from tamarillo fruit (Solanum betaceum Cav.).

    PubMed

    do Nascimento, Georgia Erdmann; Iacomini, Marcello; Cordeiro, Lucimara M C

    2016-07-01

    A comparative study of mucilage (locular tissue) and pulp polysaccharides from ripe tamarillo fruits (Solanum betaceum Cav.) was carried out. After aqueous and alkaline extractions and various purification steps (freeze-thaw and α-amylase - EC 3.2.1.1 treatments, Fehling precipitation and ultrafiltration through 50 kDa cut-off membrane), the obtained fractions from mucilage were analyzed by sugar composition, HPSEC, and NMR spectroscopy analyses. The results showed that the mucilage of tamarillo contains a highly methoxylated homogalacturonans mixed with type I arabinogalactans, a linear (1 → 5)-linked α-L-arabinan, and a linear (1 → 4)-β-D-xylan. A comparison with polysaccharides extracted from the pulp revealed that differences were observed in the yield and in the ratio of extracted polysaccharides. Moreover, structural differences between pulp and mucilage polysaccharides were also observed, such as in the length of side chains of the pectins, and in the degree of branching of the xylans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    PubMed

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a

  3. Cell wall composition and digestibility alterations in Brachypodium distachyon acheived through reduced expression of the UDP-arabinopyranose mutase

    USDA-ARS?s Scientific Manuscript database

    Plant cell-wall polysaccharide biosynthesis requires nucleotide-activated sugars. The prominent grass cell wall sugars, glucose (Glc), xylose (Xyl), and arabinose (Ara), are biosynthetically related via the UDP-sugar interconversion pathway. RNA-seq analysis of Brachypodium distachyon UDP-sugar inte...

  4. Compositional changes in cell wall polysaccharides from five sweet cherry (Prunus avium L.) cultivars during on-tree ripening.

    PubMed

    Basanta, María F; Ponce, Nora M A; Salum, María L; Raffo, María D; Vicente, Ariel R; Erra-Balsells, Rosa; Stortz, Carlos A

    2014-12-24

    Excessive softening is a major cause of postharvest deterioration during transportation and storage of fresh cherries. In continuing our studies to identify the factors determining the textural differences between sweet cherry fruit genotypes, we evaluated the solubilization, depolymerization, and monosaccharide composition of pectin and hemicelluloses from five sweet cherry cultivars ('Chelan', 'Sumele', 'Brooks', 'Sunburst', and 'Regina') with contrasting firmness and cracking susceptibility at two developmental stages (immature and ripe). In contrast to what is usually shown in most fruits, cherry softening could occur is some cultivars without marked increases in water-soluble pectin. Although polyuronide and hemicellulose depolymerization was observed in the water-soluble and dilute-alkali-soluble fractions, only moderate association occurs between initial polymer size and cultivar firmness. In all the genotypes the Na2CO3-soluble polysaccharides (NSF) represented the most abundant and dynamic wall fraction during ripening. Firm cultivars showed upon ripening a lower neutral sugars/uronic acid ratio in the NSF, suggesting that they have a lower proportion of highly branched polyuronides. The similar molar ratios of arabinose plus galactose to rhamnose [(Ara+Gal)/Rha] suggest that the cultivars differed in their relative proportion of homogalacturonan (HG) and rhamnogalacturonan I (RG-I) rather than in the size of the RG side chains; with greater proportions of HG in firmer cherries. Ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was useful to identify the depolymerization patterns of weakly bound pectins, but gave less accurate results on ionically bound pectins, and was unable to find any pattern on covalently bound pectins.

  5. A comparative study on immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi).

    PubMed

    Meng, Lan-Zhen; Xie, Jing; Lv, Guang-Ping; Hu, De-Jun; Zhao, Jing; Duan, Jin-Ao; Li, Shao-Ping

    2014-01-01

    Two Ganoderma species, G. lucidum and G. sinense, are listed as Lingzhi in Chinese Pharmacopoeia and they are considered to have the same therapeutic effects. Polysaccharides were the main immunomodulatory and anticancer components in Ganoderma. In this study, the chemical characters and the effects of polysaccharides from G. lucidum (GLPS) and G. sinense (GSPS) on macrophage functions were investigated and compared. Chemical studies showed that GLPS and GSPS were different, displaying various molecular weight distribution and ratio of monosaccharide components. In vitro pharmacological studies showed that both GLPS and GSPS had potent effects on macrophage functions, such as promoting macrophage phagocytosis, increasing their release of nitric oxide and cytokines interleukin (IL)-1α, IL-6, IL-10, and tumor necrosis factor-α. Generally, GLPS was more powerful than GSPS. This study is helpful to elucidate the active components and pharmacological variation between the 2 Ganoderma species. The structure-activity relationship of polysaccharides from Ganoderma needs further study.

  6. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels.

    PubMed

    Le, Xuan T; Rioux, Laurie-Eve; Turgeon, Sylvie L

    2017-01-01

    Protein and polysaccharide mixed systems have been actively studied for at least 50years as they can be assembled into functional particles or gels. This article reviews the properties of electrostatic gels, a recently discovered particular case of associative protein-polysaccharide mixtures formed through associative electrostatic interaction under appropriate solution conditions (coupled gel). This review highlights the factors influencing gel formation such as protein-polysaccharide ratio, biopolymer structural characteristics, final pH, ionic strength and total solid concentration. For the first time, the functional properties of protein-polysaccharide coupled gels are presented and discussed in relationship to individual protein and polysaccharide hydrogels. One of their outstanding characteristics is their gel water retention. Up to 600g of water per g of biopolymer may be retained in the electrostatic gel network compared to a protein gel (3-9g of water per g of protein). Potential applications of the gels are proposed to enable the food and non-food industries to develop new functional products with desirable attributes or new interesting materials to incorporate bioactive molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    PubMed

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Polysaccharides and food processing.

    PubMed

    Pilnik, W; Rombouts, F M

    1985-10-01

    The rôle of polysaccharides during processing and for the quality of foods is discussed. Starch is the most important energy source for man. Most other polysaccharides are not metabolized for energy, but play an important rôle as dietary fibres. Pectins, alginates, carrageenans, and galactomannans are discussed as functional food additives in relation to their structure and their rheological behaviour, stability and interactions. Endogenous polysaccharides of fruits and vegetables and in products derived from them are responsible for such phenomena as texture (changes), press yields, ease of filtration and clarification, cloud stability, and mouth feel. To achieve desirable properties, the action of endogenous enzymes on polysaccharides must be inactivated and/or exogenous enzymes added as processing aids. This is also true for overcoming haze phenomena in clear juices or to break down undesirable microbial polysaccharides. Dough properties for bread baking can be improved by enzymic breakdown of a restrictive pentoglycan network. Network formation may come about by oxidative coupling of phenol rings of ferulic acid bound to hemicelluloses by ester links. Gels may be made by inducing oxidative coupling in natural or synthetic systems. Stagnation in development of new polysaccharide food additives is ascribed to difficulties in obtaining government approval for food use.

  9. Uronic polysaccharide degrading enzymes.

    PubMed

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Polysaccharide-based antibiofilm surfaces.

    PubMed

    Junter, Guy-Alain; Thébault, Pascal; Lebrun, Laurent

    2016-01-01

    Surface treatment by natural or modified polysaccharide polymers is a promising means to fight against implant-associated biofilm infections. The present review focuses on polysaccharide-based coatings that have been proposed over the last ten years to impede biofilm formation on material surfaces exposed to bacterial contamination. Anti-adhesive and bactericidal coatings are considered. Besides classical hydrophilic coatings based on hyaluronic acid and heparin, the promising anti-adhesive properties of the algal polysaccharide ulvan are underlined. Surface functionalization by antimicrobial chitosan and derivatives is extensively surveyed, in particular chitosan association with other polysaccharides in layer-by-layer assemblies to form both anti-adhesive and bactericidal coatings. Bacterial contamination of surfaces, leading to biofilm formation, is a major problem in fields as diverse as medicine, first, but also food and cosmetics. Many prophylactic strategies have emerged to try to eliminate or reduce bacterial adhesion and biofilm formation on surfaces of materials exposed to bacterial contamination, in particular implant materials. Polysaccharides are widely distributed in nature. A number of these natural polymers display antibiofilm properties. Hence, surface treatment by natural or modified polysaccharides is a promising means to fight against implant-associated biofilm infections. The present manuscript is an in-depth look at polysaccharide-based antibiofilm surfaces that have been proposed over the last ten years. This review, which is a novelty compared to published literature, will bring well documented and updated information to readers of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.

    PubMed

    Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng

    2018-06-06

    Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.

  12. Complete structure of the polysaccharide from Streptococcus sanguis J22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.

    1990-01-09

    The cell wall polysaccharides of certain oral streptococci such as Streptococcus sanguis strains 34 and J22, although immunologically distinct, act as receptors for the fimbrial lectins of Actinomyces viscosus T14V. The authors report the complete covalent structure of the polysaccharide from S. sanguis J22 which is composed of a heptasaccharide subunit linked by phosphodiester bonds. The repeating subunit, which contains {alpha}-GalNAc, {alpha}-rhamnose, {beta}-rhamnose, {beta}-glucose, and {beta}-galactose all in the pyranoside form and {beta}-galactofuranose, is compared with the previously published structure of the polysaccharide from strain 34. The structure has been determined almost exclusively by high-resolution nuclear magnetic resonance methods. Themore » {sup 1}H and {sup 13}C NMR spectra of the polysaccharides from both strains 34 and J22 have been completely assigned. The stereochemistry of pyranosides was assigned from J{sub H-H} values determined from phase-sensitive COSY spectra, and acetamido sugars were assigned by correlation of the resonances of the amide {sup 1}H with the sugar ring protons. The {sup 13}C spectra were assigned by {sup 1}H-detected multiple-quantum correlation (HMQC) spectra, and the assignments were confirmed by {sup 1}H-detected multiple-bond correlation (HMBC) spectra. The positions of the glycosidic linkages were assigned by detection of three-bond {sup 1}H-{sup 13}C correlation across the glycosidic linkage in the HMBC spectra. The positions of the phosphodiester linkages were determined by splittings observed in the {sup 13}C resonances due to {sup 31}P coupling and also by {sup 1}H-detected {sup 31}P correlation spectroscopy.« less

  13. Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau.

    PubMed

    Yeager, Chris M; Gallegos-Graves, La Verne; Dunbar, John; Hesse, Cedar N; Daligault, Hajnalka; Kuske, Cheryl R

    2017-03-15

    Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae , Pseudonocardiaceae , Micromonosporaceae , and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae ). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae ) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils. IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in

  14. Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau

    PubMed Central

    Gallegos-Graves, La Verne; Dunbar, John; Hesse, Cedar N.; Daligault, Hajnalka; Kuske, Cheryl R.

    2017-01-01

    ABSTRACT Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils. IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa

  15. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  16. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    PubMed

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  17. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  19. Effective control of massive venous bleeding by "multioverlapping therapy" using polysaccharide nanosheets in a rabbit inferior vena cava injury model.

    PubMed

    Hagisawa, Kohsuke; Saito, Akihiro; Kinoshita, Manabu; Fujie, Toshinori; Otani, Naoki; Shono, Satoshi; Park, Young-Kwang; Takeoka, Shinji

    2013-07-01

    To investigate the efficacy of multioverlapping therapy using a polysaccharide nanosheet having 75-nm thickness for sealing and stopping massive venous hemorrhage. The hydrostatic durability of the polysaccharide nanosheet was evaluated in vitro when secured to an incised silicon tube. For in vivo studies, the inferior vena cava (IVC) of rabbits was cut longitudinally, and multiple polysaccharide nanosheets were overlapped onto the injured IVC. The mechanical hydrostatic durability of the nanosheets was gradually augmented by an increasing number of multilayered nanosheets in vitro. This durability was saturated at 80 ± 6 mm Hg by four layers of nanosheets, which was robust enough to seal injured vessel walls of the large IVC. Multioverlapping therapy using nanosheets effectively sealed and stopped bleeding from the injured IVC in vivo. One month later, no inflammatory tissue response was observed around the nanosheet attachment sites of the IVC, while conventional suturing repair in control rabbits showed a severe inflammatory response around the sutured area. The multioverlapping therapy using the polysaccharide nanosheets will effectively stop massive venous bleeding without adverse effects in the immediate or chronic postoperative setting. Copyright © 2013 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.

    PubMed

    Chabbert, Brigitte; Habrant, Anouck; Herbaut, Mickaël; Foulon, Laurence; Aguié-Béghin, Véronique; Garajova, Sona; Grisel, Sacha; Bennati-Granier, Chloé; Gimbert-Herpoël, Isabelle; Jamme, Frédéric; Réfrégiers, Matthieu; Sandt, Christophe; Berrin, Jean-Guy; Paës, Gabriel

    2017-12-19

    Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.

  1. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  2. Molecular weight determination and correlation analysis of Dalbergia sissoo polysaccharide with constituent oligosaccharides.

    PubMed

    Kumar, Vineet; Rana, Vikas; Soni, P L

    2013-01-01

    Mucilaginous polysaccharide extracted from Dalbergia sissoo Roxb. leaves has a number of medicinal applications. Molecular weight studies and correlation analysis of the structure of polysaccharide with oligosaccharides can be helpful for further utilisation, modification and structure-activity relationship for biological applications. To determine molecular weight of medicinally important polysaccharide. To establish an unequivocal correlation of the polysaccharide monosugars with constituting oligosaccharides and glucuronic acid content based on gas-liquid chromatography (GLC) with the spectrophotometric method. Complete and partial hydrolytic studies of pure polysaccharide yielded constituting monosugars and oligosaccharides. The ratio of sugars in polysaccharide and oligosaccharides was studied by preparation of alditol acetates and analysed using GLC. The uronic acid content was studied by GLC analysis and spectrophotometry. Molecular weight of the polysaccharide was determined using the viscometric method. Dalbergia sissoo leaves yielded 14.0% pure polysaccharide, containing 15.7% of glucuronic acid. Complete hydrolysis and GLC analysis of alditol acetate derivatives of reduced and unreduced monosugars indicated the presence of L-rhamnose, D-glucuronic acid, D-galactose and D-glucose in 1.00:1.00:2.00:2.33 molar ratios. Partial hydrolysis followed by monosugar analysis of oligosaccharides established the monosugar ratio in complete agreement with polysaccharide, thereby corroborating the sugar ratio. Similar uronic acid content was obtained by GLC and spectrophotometry. The polysaccharide had an average molecular weight of 1.5 × 10⁵  Da. The study has established an obvious correlation of the structure of polysaccharide with oligosaccharides, leading to unambiguous identification of monosaccharides, which normally is not studied conclusively while reporting the polysaccharide structure. The molecular weight of the polysaccharide was determined

  3. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis

    PubMed Central

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  4. A small cellulose binding domain protein in Phytophtora is cell wall localized

    USDA-ARS?s Scientific Manuscript database

    Cellulose binding domains (CBD) are structurally conserved regions linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are not generally present in plant pathogenic fungi. A genome wide survey of CBDs w...

  5. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    PubMed Central

    Vera, Jeannette; Castro, Jorge; Gonzalez, Alberto; Moenne, Alejandra

    2011-01-01

    Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants. PMID:22363237

  6. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants.

    PubMed

    Vera, Jeannette; Castro, Jorge; Gonzalez, Alberto; Moenne, Alejandra

    2011-12-01

    Plants interact with the environment by sensing "non-self" molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  7. Building a plant cell wall at a glance.

    PubMed

    Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan

    2018-01-29

    Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.

  8. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  9. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function

    PubMed Central

    Limoli, Dominique H.; Jones, Christopher J.; Wozniak, Daniel J.

    2015-01-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms. PMID:26185074

  10. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.

    PubMed

    Limoli, Dominique H; Jones, Christopher J; Wozniak, Daniel J

    2015-06-01

    Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.

  11. Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides.

    PubMed

    López-Casado, Gloria; Matas, Antonio J; Domínguez, Eva; Cuartero, Jesús; Heredia, Antonio

    2007-01-01

    The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.

  12. The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II – Insights from Nucleotide Sugar Formation and Diversity

    PubMed Central

    Bar-Peled, Maor; Urbanowicz, Breeanna R.; O’Neill, Malcolm A.

    2012-01-01

    There is compelling evidence showing that the structurally complex pectic polysaccharide rhamnogalacturonan II (RG-II) exists in the primary cell wall as a borate cross-linked dimer and that this dimer is required for the assembly of a functional wall and for normal plant growth and development. The results of several studies have also established that RG-II structure and cross-linking is conserved in vascular plants and that RG-II likely appeared early in the evolution of land plants. Two features that distinguish RG-II from other plant polysaccharides are that RG-II is composed of 13 different glycoses linked to each other by up to 22 different glycosidic linkages and that RG-II is the only polysaccharide known to contain both apiose and aceric acid. Thus, one key event in land plant evolution was the emergence of genes encoding nucleotide sugar biosynthetic enzymes that generate the activated forms of apiose and aceric acid required for RG-II synthesis. Many of the genes involved in the generation of the nucleotide sugars used for RG-II synthesis have been functionally characterized. By contrast, only one glycosyltransferase involved in the assembly of RG-II has been identified. Here we provide an overview of the formation of the activated sugars required for RG-II synthesis and point to the possible cellular and metabolic processes that could be involved in assembling and controlling the formation of a borate cross-linked RG-II molecule. We discuss how nucleotide sugar synthesis is compartmentalized and how this may control the flux of precursors to facilitate and regulate the formation of RG-II. PMID:22639675

  13. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. Published by Elsevier Ltd.

  14. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation.

    PubMed

    Dumont, Marie; Lehner, Arnaud; Bardor, Muriel; Burel, Carole; Vauzeilles, Boris; Lerouxel, Olivier; Anderson, Charles T; Mollet, Jean-Claude; Lerouge, Patrice

    2015-12-01

    Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  15. Value of allohaemagglutinins in the diagnosis of a polysaccharide antibody deficiency

    PubMed Central

    Schaballie, H; Vermeulen, F; Verbinnen, B; Frans, G; Vermeulen, E; Proesmans, M; De Vreese, K; Emonds, MP; De Boeck, K; Moens, L; Picard, C; Bossuyt, X; Meyts, I

    2015-01-01

    Polysaccharide antibody deficiency is characterized by a poor or absent antibody response after vaccination with an unconjugated pneumococcal polysaccharide vaccine. Allohaemagglutinins (AHA) are antibodies to A or B polysaccharide antigens on the red blood cells, and are often used as an additional or alternative measure to assess the polysaccharide antibody response. However, few studies have been conducted to establish the clinical significance of AHA. To investigate the value of AHA to diagnose a polysaccharide antibody deficiency, pneumococcal polysaccharide antibody titres and AHA were studied retrospectively in 180 subjects in whom both tests had been performed. Receiver operating characteristic curves for AHA versus the pneumococcal vaccine response as a marker for the anti-polysaccharide immune response revealed an area under the curve between 0·5 and 0·573. Sensitivity and specificity of AHA to detect a polysaccharide antibody deficiency, as diagnosed by vaccination response, were low (calculated for cut-off 1/4–1/32). In subjects with only low pneumococcal antibody response, the prevalence of bronchiectasis was significantly higher than in subjects with only low AHA (45·5 and 1·3%, respectively) or normal pneumococcal antibody response and AHA (2·4%). A logistic regression model showed that low pneumococcal antibody response but not AHA was associated with bronchiectasis (odds ratio 46·2). The results of this study do not support the routine use of AHA to assess the polysaccharide antibody response in patients with suspected immunodeficiency, but more studies are warranted to clarify the subject further. PMID:25516411

  16. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    PubMed Central

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a molar ratio of 223:48:1. Although starch was also found, its content was less than 10%. This result indicated that the major polysaccharides in D. officinale stems were non-starch polysaccharides, which might be mannan polysaccharides. The polysaccharides formed granules and were stored in plastids similar to starch grains, were localized in D. officinale stems by semi-thin and ultrathin sections. CELLULOSE SYNTHASE-LIKE A (CSLA) family members encode mannan synthases that catalyze the formation of mannan polysaccharides. To determine whether the CSLA gene from D. officinale was responsible for the synthesis of mannan polysaccharides, 35S:DoCSLA6 transgenic lines were generated and characterized. Our results suggest that the CSLA family genes from D. officinale play an important role in the biosynthesis of mannan polysaccharides. PMID:28261235

  17. Development and gamma-scintigraphy study of Hibiscus rosasinensis polysaccharide-based microspheres for nasal drug delivery.

    PubMed

    Sharma, Nitin; Tyagi, Shanu; Gupta, Satish Kumar; Kulkarni, Giriraj Thirupathirao; Bhatnagar, Aseem; Kumar, Neeraj

    2016-11-01

    This work describes the application of natural plant polysaccharide as pharmaceutical mucoadhesive excipients in delivery systems to reduce the clearance rate through nasal cavity. Novel natural polysaccharide (Hibiscus rosasinensis)-based mucoadhesive microspheres were prepared by using emulsion crosslinking method for the delivery of rizatriptan benzoate (RB) through nasal route. Mucoadhesive microspheres were characterized for different parameters and nasal clearance of technetium-99m ((99m)Tc)-radiolabeled microspheres was determined by using gamma-scintigraphy. Their Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies showed that the drug was stable during preparation of microspheres. Aerodynamic diameter of microspheres was in the range 13.23 ± 1.83-33.57 ± 3.69 µm. Change in drug and polysaccharide ratio influenced the mucoadhesion, encapsulation efficiency and in-vitro release property. Scintigraphs taken at regular interval indicate that control solution was cleared rapidly from nasal cavity, whereas microspheres showed slower clearance (p < 0.005) with half-life of 160 min. Natural polysaccharide-based microspheres achieved extended residence by minimizing effect of mucociliary clearance with opportunity of sustained delivery for longer duration.

  18. Enzymatic method for improving the injectability of polysaccharides

    DOEpatents

    Griffith, William L.; Compere, Alicia L.; Holleman, James W.

    1982-01-01

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  19. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    PubMed

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  20. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  1. Characterizing visible and invisible cell wall mutant phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basismore » of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.« less

  2. Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity.

    PubMed

    Laezza, Antonio; Casillo, Angela; Cosconati, Sandro; Biggs, Caroline I; Fabozzi, Antonio; Paduano, Luigi; Iadonisi, Alfonso; Novellino, Ettore; Gibson, Matthew I; Randazzo, Antonio; Corsaro, Maria M; Bedini, Emiliano

    2017-08-14

    Several threonine (Thr)- and alanine (Ala)-rich antifreeze glycoproteins (AFGPs) and polysaccharides act in nature as ice recrystallization inhibitors. Among them, the Thr-decorated capsular polysaccharide (CPS) from the cold-adapted Colwellia psychrerythraea 34H bacterium was recently investigated for its cryoprotectant activity. A semisynthetic mimic thereof was here prepared from microbial sourced chondroitin through a four-step strategy, involving a partial protection of the chondroitin polysaccharide as a key step for gaining an unprecedented quantitative amidation of its glucuronic acid units. In-depth NMR and computational analysis suggested a fairly linear conformation for the semisynthetic polysaccharide, for which the antifreeze activity by a quantitative ice recrystallization inhibition assay was measured. We compared the structure-activity relationships for the Thr-derivatized chondroitin and the natural Thr-decorated CPS from C. psychrerythraea.

  3. Structurally altered capsular polysaccharides produced by mutant bacteria

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)

    1995-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  4. [Study on variation of main ingredients from spores and fruiting bodies of Ganoderma lucidum].

    PubMed

    Li, Jing-Jing; Hu, Xiao-Qin; Zhang, Xin-Feng; Liu, Jing-Jing; Cao, Long-Shu

    2014-11-01

    To reveal the quality variation of polysaccharides, triterpenoids and proteins in spores and fruiting bodies of Ganoderma lucidum from producing areas, different varieties, harvesting parts and periods, and wall-breaking treatments. Spores and fruiting bodies from varieties of Longzhi No. 1 and Hunong No. 1 were collected as test samples, together with wall-broken spores sold in domestic main producing areas. The anthrone-sulfuric acid colorimetric method was used to determine the content of total polysaccharides. The vanillin-glacial acetic acid-perchloric acid colorimetric method was used to determine the content of total triterpenoids. The Lowry method was used to determine the content of total proteins. The content ranges of total polysaccharides, total triterpenoids, and total proteins from 6 domestic main producing areas were 0.40% - 2.25%, 1.36%-3.15% and 0.74% -1.91% respectively. The content ranges of total polysaccharides, triterpenoids, and proteins in the fruiting bodies from 2 varieties cultured in Zhejiang were 0.25% -1.42%, 0.44% -1.42% and 1.82% -3.67% respectively. In addition, the ranges of samples from wall-unbroken spores were 0.41% - 0.91%, 0.09% - 0.12%, 0.78% - 0.90% respectively and wall-broken spores are 1.03% - 2.25%, 1.89% - 3.15%, 0.96% - 1.04% respectively. There are significant differences in the contents of main chemical ingredients of wall-broken G. lucidum spores saled in the markets. The samples from Zhejiang contain high content of total polysaccharides and triterpenoids, and samples from Fujian contains more proteins. Between the 2 major varieties cultured in Zhejiang, Longzhi No. 1 contains higher content of triterpenoids, but Hunong No. 1 has more polysaccharides. Contents of triterpenoids and polysaccharides from wall-broken spores are much higher than those of fruiting bodies. The stipes from fruiting bodies contains more polysaccharides than those of the pileus, while the triterpenoids contents are higher in the pileus than

  5. Anticancer polysaccharides from natural resources: a review of recent research.

    PubMed

    Zong, Aizhen; Cao, Hongzhi; Wang, Fengshan

    2012-11-06

    Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Fortunately, several previous studies have shown that some non-toxic biological macromolecules, including polysaccharides and polysaccharide-protein complexes, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and complexes for the development of effective therapeutics for various human cancers. This review focuses on the advancements in the anti-cancer efficacy of various natural polysaccharides and polysaccharide complexes in the past 5 years. Most polysaccharides were tested using model systems, while several involved clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    PubMed

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  7. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure

    PubMed Central

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-01-01

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp. PMID:27483255

  8. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure.

    PubMed

    Fimbres-Olivarría, Diana; López-Elías, José Antonio; Carvajal-Millán, Elizabeth; Márquez-Escalante, Jorge Alberto; Martínez-Córdova, Luis Rafael; Miranda-Baeza, Anselmo; Enríquez-Ocaña, Fernando; Valdéz-Holguín, José Eduardo; Brown-Bojórquez, Francisco

    2016-07-30

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl₃, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp.

  9. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2017-11-18

    Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.

  11. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi

    PubMed Central

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2017-01-01

    Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579

  12. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis.

    PubMed

    Kaupert Neto, Antonio Adalberto; Borin, Gustavo Pagotto; Goldman, Gustavo Henrique; Damásio, André Ricardo de Lima; Oliveira, Juliana Velasco de Castro

    2016-03-01

    In second-generation (2G) bioethanol production, plant cell-wall polysaccharides are broken down to release fermentable sugars. The enzymes of this process are classified as carbohydrate-active enzymes (CAZymes) and contribute substantially to the cost of biofuel production. A novel basidiomycete yeast species, Pseudozyma brasiliensis, was recently discovered. It produces an endo-β-1,4-xylanase with a higher specific activity than other xylanases. This enzyme is essential for the hydrolysis of biomass-derived xylan and has an important role in 2G bioethanol production. In spite of the P. brasiliensis biotechnological potential, there is no information about how it breaks down polysaccharides. For the first time, we characterized the secretome of P. brasiliensis grown on different carbon sources (xylose, xylan, cellobiose and glucose) and also under starvation conditions. The growth and consumption of each carbohydrate and the activity of the CAZymes of culture supernatants were analyzed. The CAZymes found in its secretomes, validated by enzymatic assays, have the potential to hydrolyze xylan, mannan, cellobiose and other polysaccharides. The data show that this yeast is a potential source of hydrolases, which can be used for biomass saccharification. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Marine Polysaccharides in Pharmaceutical Applications: An Overview

    PubMed Central

    Laurienzo, Paola

    2010-01-01

    The enormous variety of polysaccharides that can be extracted from marine plants and animal organisms or produced by marine bacteria means that the field of marine polysaccharides is constantly evolving. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of micro-organisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. Following an overview of the current knowledge on marine polysaccharides, with special attention to potential pharmaceutical applications and to more recent progress on the discovering of new polysaccharides with biological appealing characteristics, this review will focus on possible strategies for chemical or physical modification aimed to tailor the final properties of interest. PMID:20948899

  14. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop

  15. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    PubMed

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture.

    PubMed

    Vermerris, Wilfred; Abril, Alejandra

    2015-04-01

    Cellulose from plant biomass can serve as a sustainable feedstock for fuels, chemicals and polymers that are currently produced from petroleum. In order to enhance economic feasibility, the efficiency of cell wall deconstruction needs to be enhanced. With the use of genetic and biotechnological approaches cell wall composition can be modified in such a way that interactions between the major cell wall polymers—cellulose, hemicellulosic polysaccharides and lignin—are altered. Some of the resulting plants are compromised in their growth and development, but this may be caused in part by the plant's overcompensation for metabolic perturbances. In other cases novel structures have been introduced in the cell wall without negative effects. The first field studies with engineered bioenergy crops look promising, while detailed structural analyses of cellulose synthase offer new opportunities to modify cellulose itself. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans.

    PubMed

    Baker, Lorina G; Specht, Charles A; Donlin, Maureen J; Lodge, Jennifer K

    2007-05-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.

  18. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa.

    PubMed

    Samal, Areejit; Craig, James P; Coradetti, Samuel T; Benz, J Philipp; Eddy, James A; Price, Nathan D; Glass, N Louise

    2017-01-01

    Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa . To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa . Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.

  19. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems.

    PubMed

    Schäfer, Judith; Stanojlovic, Luisa; Trierweiler, Bernhard; Bunzel, Mirko

    2017-03-01

    Storage related changes in the cell wall composition potentially affect the texture of plant-based foods and the physiological effects of cell wall based dietary fiber components. Therefore, a detailed characterization of cell wall polysaccharides and lignins from broccoli stems was performed. Freshly harvested broccoli and broccoli stored at 20°C and 1°C for different periods of time were analyzed. Effects on dietary fiber contents, polysaccharide composition, and on lignin contents/composition were much more pronounced during storage at 20°C than at 1°C. During storage, insoluble dietary fiber contents of broccoli stems increased up to 13%. Storage related polysaccharide modifications include an increase of the portions of cellulose, xylans, and homogalacturonans and a decrease of the neutral pectic side-chains arabinans and galactans. Broccoli stem lignins are generally rich in guaiacyl units. Lignins from freshly harvested broccoli stems contain slightly larger amounts of p-hydroxyphenyl units than syringyl units. Syringyl units are predominantly incorporated into the lignin polymers during storage, resulting in increased acetyl bromide soluble lignin contents. NMR-based analysis of the interunit linkage types of broccoli stem lignins revealed comparably large portions of resinol structures for a guaiacyl rich lignin. Incorporation of syringyl units into the polymers over storage predominantly occurs through β-O-4-linkages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.

    PubMed

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  1. Polysaccharide structure of tetrasporic red seaweed Tichocarpus crinitus.

    PubMed

    Byankina Barabanova, A O; Sokolova, E V; Anastyuk, S D; Isakov, V V; Glazunov, V P; Volod'ko, A V; Yakovleva, I M; Solov'eva, T F; Yermak, I M

    2013-10-15

    Sulfated polysaccharide isolated from tetrasporic plants of Tichocarpus crinitus was investigated. The polysaccharide was isolated by two methods: with water extraction at 80 °C (HT) and with a mild alkaline extraction (AE). The extracted polysaccharides were presented by non-gelling ones only, while galactose and 3,6-AG were the main monosaccharides, at the same time amount of 3,6-AG in AE polysaccharides was the similar to that of HT. According to methods of spectroscopy and mass spectrometry, the polysaccharide from tetrasporic T. crinitus contains main blocks of 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl while 6-sulfated 4-linked galactopyranosyl resudies are randomly distributed along the polysaccharide chain. The alkaline treatment of HT polysaccharide results in obtaining polysaccharide with regular structure that composed of alternating 1,3-linked β-D-galactopyranosyl-2,4-disulfates and 1,4-linked 3,6-anhydro-α-D-galactopyranosyl residues. Native polysaccharide (HT) possessed both high anticoagulant and antiplatelet activity measured by fibrin clotting and platelet aggregation induced by collagen. This activity could be connected with peculiar chemical structure of HT polysaccharide which has high sulfation degree and contains also 3,6-anhydrogalactose in the polymer chain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    PubMed

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  3. Mast cell activation by group A streptococcal polysaccharide in the rat and its role in experimental arthritis.

    PubMed Central

    Dalldorf, F. G.; Anderle, S. K.; Brown, R. R.; Schwab, J. H.

    1988-01-01

    Acute edematous responses were induced in Sprague-Dawley rats by the intravenous injection of group-specific polysaccharide (PS) isolated from group A streptococci. Thirty minutes after the intravenous injection of PS there was marked degranulation of subcutaneous and periarticular mast cells in all 4 feet, carbon particle labeling of adjacent venules, and an 8-fold increase in Evans blue dye content of the extremities. This acute reaction to PS was completely blocked by pretreatment with compound 48/80, but the polyarticular relapsing arthritis following the systemic injection of an arthropathic dose of streptococcal cell wall fragments containing large, covalently bound peptidoglycan-polysaccharide (PG-PS) was not blocked. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3041843

  4. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly c...

  5. Apple beta-galactosidase. Activity against cell wall polysaccharides and characterization of a related cDNA clone.

    PubMed Central

    Ross, G S; Wegrzyn, T; MacRae, E A; Redgwell, R J

    1994-01-01

    A beta-galactosidase was purified from cortical tissue of ripe apples (Malus domestica Borkh. cv Granny Smith) using a procedure involving affinity chromatography on lactosyl-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that two polypeptides of 44 and 32 kD were present in the fraction that showed activity against the synthetic substrate p-nitrophenol-beta-D-galactopyranoside. The enzyme preparation was incubated with polysaccharide extracts from apple cell walls containing beta-(1-->4)-linked galactans, and products of digestion were analyzed by gas chromatography. Small amounts of monomeric galactose were released during incubation, showing that the enzyme was active against native substrates. Amino acid sequence information was obtained from the purified protein, and this showed high homology with the anticipated polypeptide coded by the ethylene-regulated SR12 gene in carnation (K.G. Raghothama, K.A. Lawton, P.B. Goldborough, W.R. Woodson [1991] Plant Mol Biol 17: 61-71) and a harvest-related pTIP31 cDNA from asparagus (G. King, personal communication). Using the asparagus cDNA clone as a probe, an apple homolog (pABG1) was isolated. This clone contains a 2637-bp insert, including an open reading frame that codes for a polypeptide of 731 amino acids. Cleavage of an N-terminal signal sequence would leave a predicted polypeptide of 78.5 kD. Genomic DNA analysis and the isolation of other homologous apple clones suggest that pABG1 represents one member of an apple beta-galactosidase gene family. Northern analysis during fruit development and ripening showed accumulation of pABG1-homologous RNA during fruit ripening. Enzyme activity as measured in crude extracts increased during fruit development to a level that was maintained during ripening. PMID:7991682

  6. Multiple fingerprinting analyses in quality control of Cassiae Semen polysaccharides.

    PubMed

    Cheng, Jing; He, Siyu; Wan, Qiang; Jing, Pu

    2018-03-01

    Quality control issue overshadows potential health benefits of Cassiae Semen due to the analytic limitations. In this study, multiple-fingerprint analysis integrated with several chemometrics was performed to assess the polysaccharide quality of Cassiae Semen harvested from different locations. FT-IR, HPLC, and GC fingerprints of polysaccharide extracts from the authentic source were established as standard profiles, applying to assess the quality of foreign sources. Analyses of FT-IR fingerprints of polysaccharide extracts using either Pearson correlation analysis or principal component analysis (PCA), or HPLC fingerprints of partially hydrolyzed polysaccharides with PCA, distinguished the foreign sources from the authentic source. However, HPLC or GC fingerprints of completely hydrolyzed polysaccharides couldn't identify all foreign sources and the methodology using GC is quite limited in determining the monosaccharide composition. This indicates that FT-IR/HPLC fingerprints of non/partially-hydrolyzed polysaccharides, respectively, accompanied by multiple chemometrics methods, might be potentially applied in detecting and differentiating sources of Cassiae Semen. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    PubMed

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  9. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    DTIC Science & Technology

    1990-02-01

    which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were

  10. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2015-03-01

    In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  12. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik Etlar

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the followingmore » objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.« less

  13. Intestinal microbiota are involved in the immunomodulatory activities of longan polysaccharide.

    PubMed

    Zhang, Jiachao; Yang, Guangmei; Wen, Yazhou; Liu, Sixin; Li, Congfa; Yang, Ruili; Li, Wu

    2017-11-01

    It is difficult for polysaccharides to be directly absorbed through the intestine, which implies other utilization mechanisms involved in the bioactivity performance of polysaccharide. In this study, the multi-omics approach was applied to investigate the impacts of longan polysaccharide on mouse intestinal microbiome and the interaction between the polysaccharide-derived microbiome and host immune system. According to the result, the longan polysaccharide showed a significant improvement in the typical intestinal immunity index of mice. Meanwhile, at the taxonomy level, the intestinal microbiota from the control group and polysaccharide group were highly distinct in organismal structure. At the functional level, a significant decline in the microbial metabolites of pyruvate, butanoate fructose and mannose in the control group was found. Additionally, a significant increase was observed in the succinic acid and the short-chain fatty acid, including acetic acid, propionic acid and butyric acid, in the polysaccharide group. Furthermore, the multi-omic based network analysis indicated that the intake of longan polysaccharide resulted in the changes of the intestinal microbiota as well as the gut metabolites, which led to the enhancement of host's immune function under the stress conditions. These results indicated the polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain l-fucosylation.

    PubMed

    Naumenko, Olesya I; Zheng, Han; Xiong, Yanwen; Senchenkova, Sof'ya N; Wang, Hong; Shashkov, Alexander S; Li, Qun; Wang, Jianping; Knirel, Yuriy A

    2018-05-22

    An O-polysaccharide was isolated from the lipopolysaccharide of Escherichia albertii O2 and studied by chemical methods and 1D and 2D 1 H and 13 C NMR spectroscopy. The following structure of the O-polysaccharide was established: . The O-polysaccharide is characterized by masked regularity owing to a non-stoichiometric O-acetylation of an l-fucose residue in the main chain and a non-stoichiometric side-chain l-fucosylation of a β-GlcNAc residue. A regular linear polysaccharide was obtained by sequential Smith degradation and alkaline O-deacetylation of the O-polysaccharide. The content of the O-antigen gene cluster of E. albertii O2 was found to be essentially consistent with the O-polysaccharide structure established. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  16. Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy.

    PubMed

    Garozzo, D; Spina, E; Cozzolino, R; Cescutti, P; Fett, W F

    2000-01-12

    The introduction of size-exclusion chromatography (SEC) analysis of polysaccharides prior to MALDI mass spectroscopy accounts for the determination of the molecular mass of the repeating unit when neutral homopolymers are investigated. In the case of natural polysaccharides characterised by more complicated structural features (presence of non-carbohydrate substituents, charged groups, etc.), this mass value usually is in agreement with more than one sugar composition. Therefore, it is not sufficient to give the correct monosaccharidic composition of the polysaccharide investigated. To solve this problem, MALDI spectra were recorded on the permethylated sample and post-source decay experiments were performed on precursor ions. In this way, the composition (in terms of Hex, HexNAc, etc.), size and sequence of the repeating unit were determined.

  17. Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion.

    PubMed

    Lyu, Qianqian; Jiao, Wenqian; Zhang, Keke; Bao, Zhenmin; Wang, Shi; Liu, Weizhi

    2016-12-16

    Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancreatic proteins of the Zhikong scallop (Chlamys farreri). We identified 435 proteins, the majority of which were lysosomal enzymes and carbohydrate and protein metabolism enzymes. However, several new enzymes related to polysaccharide metabolism were also identified. Phylogenetic and structural analyses of these enzymes suggest that these polysaccharide-degrading enzymes may have a variety of potential substrate specificities. Taken together, our study characterizes several novel polysaccharide-degrading enzymes in the scallop hepatopancreas and provides an enhanced view of these enzymes and a greater understanding of marine polysaccharide digestion.

  18. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  19. Structural modification of polysaccharides: A biochemical-genetic approach

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  20. Polysaccharide enhances Radix Saposhnikoviae efficacy through inhibiting chromones decomposition in intestinal tract.

    PubMed

    Yang, Jing-Ming; Jiang, Hua; Dai, Hong-Liang; Wang, Zi-Wei; Jia, Gui-Zhi; Meng, Xiang-Cai

    2016-09-06

    Vegetative but not reproductive stage of Saposhnikovia divaricate (Turxz.) schischk possesses pharmacological activities. However, our recent study showed that reproductive S. divaricate supplemented with polysaccharide showed evidently elevated pharmacological activities and increased cimifugin content in rat serum. The aims of present study were to assess the influence of polysaccharides on the chromones pharmacological activities in Radix Saposhnikoviae (RS), the dried root of vegetative stage of S. divaricate, and to explore the underlying mechanisms. Only cimifugin was detected in the plasma of chromone treated animals and RS polysaccharide significantly increased the plasma content of cimifugin. It was shown that neither cimifugin absorption nor glycoside components transformation in simulated digestive fluid was affected by RS polysaccharide. However, a significant promotion of transformation of cimifugin to more stable prime-O-glucosylcimifugin (PGCN) by RS polysaccharide, and a protective effect of polysaccharide on chromone components were observed in small intestine solutions. Meanwhile, RS polysaccharide produced a significant elevation of cimifugin and PGCN concentration in vivo. Based on these findings, we concluded that RS polysaccharide could greatly increase the content of cimifugin, which might be related to its degradation-proof effect on cimifugin, via transforming cimifugin to comparatively more stable PGCN and spatial structure protection.

  1. Unexplored possibilities of all-polysaccharide composites.

    PubMed

    Simkovic, Ivan

    2013-06-20

    Composites made solely from polysaccharides are mostly ecological because they can degrade without leaving behind ecologically harmful residues, in contrast to composites which contain synthetic polymers. Herein, the following groups of all-polysaccharide composites (APCs) are discussed: an all-cellulose group that includes cotton composites, cellulose combined with other polysaccharides, as well as those based on chitin/chitosan, heparin, hyaluronan, xylan, glucomannan, pectin, xyloglucan, arabinan, starch, carrageenan, alginate, galactan as one of the components in combination with other polysaccharides. They can be used in medical, paper, food, packing, textile, electronic, mechanical engineering and other applications. The composites were tested for absorptivity, biodegradability, crystallinity, rheology, and mechanical, optical, separation, gelling, pasting, film-forming, adhesive, antimicrobial properties, as well as water vapor permeability, water repellency, dye uptake, and fire-retardancy. Except for food applications, composites based on more than two types of polysaccharides have rarely been used and many possible combinations remain unexplored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Gum arabic glycoprotein is a twisted hairy rope. A new model based on O-galactosylhydroxyproline as the polysaccharide attachment site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Qi; Fong, C.; Lamport, D.T.A.

    1991-07-01

    Separation of the wound exudate from Acacia senegal (L.) Willd., gum arabic, on a preparative Superose-6 column gave two major fractions: a high molecular weight gum arabic glyco-protein (GAGP) containing about 90% carbohydrate and a lower molecular weight heterogeneous gum arabic polysaccharide fraction. Hydrogen fluoride-deglycosylation of GAGP gave a large hydroxyproline-rich polypeptide backbone (dGAGP). Alkaline hydrolysis of GAGP showed that most of the carbohydrate was attached to the polypeptide backbone as small hydroxyproline (Hyp)-polysaccharide substituents. The data imply a rodlike molecule with numerous small polysaccharide substituents (attached to 24% of the Hyp residues), regularly arranged along a highly periodic polypeptidemore » backbone based, hypothetically, on a 10 to 12 residue repetitive peptide motif. Thus, a simple statistical model of the gum arabic glycoprotein predicts a repeating polysaccharide substituents will maximize intramolecular hydrogen bonding if aligned along the long axis of the molecule, forming in effect a twisted hairy rope. Electron micrographs of rotary shadowed GAGP molecules support that prediction and may also explain show such apparently large molecules can exit the cell by endwise reptation through the small pores of the primary cell wall.« less

  3. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    PubMed

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  4. Nanoscale movements of cellulose microfibrils in primary cell walls.

    PubMed

    Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M; Cosgrove, Daniel J

    2017-04-28

    The growing plant cell wall is commonly considered to be a fibre-reinforced structure whose strength, extensibility and anisotropy depend on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix and matrix viscoelasticity 1-4 . Structural reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant growth, mechanics and meristem dynamics 4-12 . Although passive microfibril reorientation during wall extension has been inferred from theory and from bulk measurements 13-15 , nanometre-scale movements of individual microfibrils have not been directly observed. Here we combined nanometre-scale imaging of wet cell walls by atomic force microscopy (AFM) with a stretching device and endoglucanase treatment that induces wall stress relaxation and creep, mimicking wall behaviours during cell growth. Microfibril movements during forced mechanical extensions differ from those during creep of the enzymatically loosened wall. In addition to passive angular reorientation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of molecular connections between microfibrils. Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch. These insights into microfibril movements and connectivities need to be incorporated into refined models of plant cell wall structure, growth and morphogenesis.

  5. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    PubMed

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  6. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications.

    PubMed

    Kirschning, Andreas; Dibbert, Nick; Dräger, Gerald

    2018-01-26

    Hydrogels have emerged as a highly interdisciplinary topic as they play a significant role for a vast number of applications. They have been studied extensively as materials for contact lenses, wound dressing and as filler material in soft-tissue augmentation, in which classical polymer backbones such as hydroxyethylmethacrylate (HEMA) are typically employed. More recently, polysaccharides have received attention, particularly in the fields of regenerative medicine and tissue engineering, as ideal candidate materials for artificial extracellular matrices (ECM). The polysaccharides of choice are dextran, alginate, chitosan, hyaluronic acid and pullulan and in order to obtain suitable hydrogels from these polysaccharides, controlled chemical functionalization is of critical importance. This short review summarizes recent developments in the chemical derivatization of polysaccharides to pave the way for crosslinking and to decorate individual polysaccharide chains with bioactive ligands. The report covers convergent and divergent protocols for crosslinking, as well strategies for bisfunctionalization of polysaccharides. Additionally, information on biological properties and biomedical applications are covered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    NASA Astrophysics Data System (ADS)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  8. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies

    PubMed Central

    Silva, Amanda Karine Andriola; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Natural polysaccharides have received a lot of attention in the biomedical field. Indeed, sources of polysaccharides, extracted or produced from plants, bacteria, fungi or algae, are diverse and renewable. Moreover, recent progresses in polysaccharide chemistry and nanotechnologies allow elaborating new dedicated nanosystems. Polysaccharide-based nanosystems may be designed for interacting in several biological processes. In particular, the atherothrombotic pathology is highly concerned by polysaccharide-mediated recognition. Atherothrombotic diseases, regardless of the anatomical localization, remain the main causes of morbidity and mortality in the industrialized world. This review intends to provide an overview on polysaccharide-based nanosystems as drug delivery systems and targeted contrast agents for molecular imaging with an emphasis on the treatment and imaging of cardiovascular pathologies. PMID:24723980

  9. Autolysis and extension of isolated walls from growing cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Durachko, D. M.

    1994-01-01

    Walls isolated from cucumber hypocotyls retain autolytic activities and the ability to extend when placed under the appropriate conditions. To test whether autolysis and extension are related, we treated the walls in various ways to enhance or inhibit long-term wall extension ('creep') and measured autolysis as release of various saccharides from the wall. Except for some non-specific inhibitors of enzymatic activity, we found no correlation between wall extension and wall autolysis. Most notably, autolysis and extension differed strongly in their pH dependence. We also found that exogenous cellulases and pectinases enhanced extension in native walls, but when applied to walls previously inactivated with heat or protease these enzymes caused breakage without sustained extension. In contrast, pretreatment of walls with pectinase or cellulase, followed by boiling in methanol to inactivate the enzymes, resulted in walls with much stronger expansin-mediated extension responses. Crude protein preparations from the digestive tracts of snails enhanced extension of both native and inactivated walls, and these preparations contained expansin-like proteins (assessed by Western blotting). Our results indicate that the extension of isolated cucumber walls does not depend directly on the activity of endogenous wall-bound autolytic enzymes. The results with exogenous enzymes suggest that the hydrolysis of matrix polysaccharides may not induce wall creep by itself, but may act synergistically with expansins to enhance wall extension.

  10. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus.

    PubMed

    Cao, Yin-Guang; Hao, Yu; Li, Zhi-Hui; Liu, Shun-Tao; Wang, Le-Xin

    2016-12-01

    This study was designed to investigate the inhibition activity of polysaccharide extract from Laminaria japonica against RSV. The polysaccharide from Laminaria japonica was isolated by ethanol precipitation. HEK293 cells were infected with RVS, and the antiviral activity of polysaccharide extract against RSV in host cells was tested. By using ELISA and western blot assay, the expression level of IFN-α and IRF3 and their functional roles in polysaccharide-mediated antiviral activity against RSV were investigated. The polysaccharide extract from Laminaria japonica had low toxicity to HEK293 cell. The TC50 to HEK293 cells was up to 1.76mg/mL. Furthermore, the EC50 of polysaccharide extract to RSV was 5.27μg/mL, and TI was 334. The polysaccharide extract improved IRF-3 expression which promoted the level of IFN-α. Polysaccharide extract from Laminaria japonica elicits antiviral activity against RSV by up-regulation of IRF3 signaling-mediated IFN-α production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  12. Mapping the polysaccharide degradation potential of Aspergillus niger.

    PubMed

    Andersen, Mikael R; Giese, Malene; de Vries, Ronald P; Nielsen, Jens

    2012-07-16

    The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  13. The Capsular Polysaccharide of Staphylococcus aureus Is Attached to Peptidoglycan by the LytR-CpsA-Psr (LCP) Family of Enzymes*

    PubMed Central

    Chan, Yvonne Gar-Yun; Kim, Hwan Keun; Schneewind, Olaf; Missiakas, Dominique

    2014-01-01

    Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan. PMID:24753256

  14. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  15. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    PubMed

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. POLYSACCHARIDES FROM CELL WALLS OF AUREOBASIDIUM (PULLULARIA) PULLULANS. PART I. GLUCANS,

    DTIC Science & Technology

    The cell wall of Aureobasidium (Pullularia) pullulans contains three types of beta - glucan . One, extracted with dilute alkali, has a linear backbone...insoluble in dilute alkali contains a highly crystalline, essentially linear linked glucan and an amorphous glucan . (Author)

  17. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment.

    PubMed

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2015-01-01

    Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    PubMed

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. An Arizona Border Wall Case Study

    DTIC Science & Technology

    2017-12-01

    WALL CASE STUDY by Justin Alexander Bristow December 2017 Thesis Advisor: Erik Dahl Second Reader: Jorge Gonzalez THIS PAGE...4. TITLE AND SUBTITLE AN ARIZONA BORDER WALL CASE STUDY 5. FUNDING NUMBERS 6. AUTHOR(S) Justin Alexander Bristow 7. PERFORMING ORGANIZATION...PAGE INTENTIONALLY LEFT BLANK iii Approved for public release. Distribution is unlimited. AN ARIZONA BORDER WALL CASE STUDY Justin Alexander

  20. The structure of mushroom polysaccharides and their beneficial role in health.

    PubMed

    Huang, Xiaojun; Nie, Shaoping

    2015-10-01

    Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.

  1. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra ofmore » the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.« less

  2. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide.

    PubMed

    Nakamura, Michiko; Miura, Sayaka; Takagaki, Akiko; Nanjo, Fumio

    2017-05-01

    Crude tea polysaccharide (crude TPS) was prepared from instant green tea by ethanol precipitation followed by ultrafiltration membrane treatment and its effects on blood lipid, liver lipid, and fecal lipid levels were examined with Sprague-Dawley rats fed a high-fat diet. Although crude TPS showed no effects on the serum lipid levels, it suppressed the liver lipid accumulation and increased the fecal excretion of dietary fat. Then, the structural features of crude TPS were investigated. After separation of crude TPS by DEAE-cellulose and gel-filtration column chromatography, two kinds of neutral tea polysaccharides (NTPS-LP and NTPS-HH) and an acidic polysaccharide (ATPS-MH) were obtained. According to monosaccharide composition, methylation, and NMR analyses, NTPS-LP, NPTS-HH, and ATPS-MH were presumed to be starch, arabinogalactan with β-1,3-linked galactosyl backbone blanched at position 6 and with 1,5-linked arabinofuranosyl residues, and α-1,4-linked galacturonic acid backbone with arabinogalactan region, respectively.

  3. Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum).

    PubMed

    Chandra, Krishnendu; Ghosh, Kaushik; Ojha, Arnab K; Islam, Syed S

    2009-11-02

    A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of D-galactose, D-methyl galacturonate, D-arabinose, L-arabinose, and L-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as: [structure: see text].

  4. Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 Native Yeasts from D.O. "Vinos de Madrid".

    PubMed

    García, Margarita; Apolinar-Valiente, Rafael; Williams, Pascale; Esteve-Zarzoso, Braulio; Arroyo, Teresa; Crespo, Julia; Doco, Thierry

    2017-08-09

    Polysaccharides and oligosaccharides released into Malvar white wines elaborated through pure, mixed, and sequential cultures with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. "Vinos de Madrid" were studied. Both fractions from different white wines were separated by high-resolution size-exclusion chromatography. Glycosyl composition and wine polysaccharide linkages were determined by GC-EI-MS chromatography. Molar-mass distributions were determined by SEC-MALLS, and intrinsic viscosity was determined by differential viscometer. Yeast species and type of inoculation have a significant impact on wine carbohydrate composition and structure. Mannose residues from mannoproteins were significantly predominant in those cultures where T. delbrueckii was present in the fermentation process in comparison with when pure cultures of S. cerevisiae were present in the fermenation process. Galactose residues from polysaccharides rich in arabinose and galactose presented greater values in pure cultures of S. cerevisiae, indicating that S. cerevisiae released fewer mannoproteins than T. delbrueckii. Moreover, we reported structural differences between mannoproteins released by T. delbrueckii CLI 918 and those released by S. cerevisiae CLI 889. These findings help to provide important information about the polysaccharides and oligosaccharides released from the cell walls of Malvar grapes and the carbohydrates released from each yeast species.

  5. Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles.

    PubMed

    Cesàro, Attilio; Bellich, Barbara; Borgogna, Massimiliano

    2012-04-01

    The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate "a posteriori" the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder-order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical-thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.

  6. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant.

    PubMed

    Pawar, Harshal; Varkhade, Chhaya

    2014-08-01

    Psyllium husk (Plantago ovata, Family: Plantaginaceae) contains a high proportion of hemicellulose, composed of a xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). Polysaccharide was isolated from Psyllium husk using solvent precipitation method. The isolated polysaccharide was evaluated for various physicochemical parameters. The rheological behavior of polysaccharide (1% w/v in water) was studied using Brookfield viscometer. Polysaccharide derived from the husk of P. ovata was investigated as superdisintegrant in the fast dissolving tablets. Valsartan, an antihypertensive drug, was selected as a model drug. The tablets of Valsartan were prepared separately using different concentrations (1, 2.5, 5, 7.5% w/w) of isolated Plantago ovata (P. ovata) husk polysaccharide (Natural) and crospovidone as a synthetic superdisintegrant by direct compression method. The prepared tablets were evaluated for various pre-compression and post-compression parameters. The drug excipient interactions were characterized by FTIR studies. The formulation F4 containing7.5% polysaccharide showed rapid wetting time and disintegration time as compared to formulation prepared using synthetic superdisintegrant at the same concentration level. Hence batch F4 was considered as optimized formulation. The stability studies were performed on formulation F4. The disintegration time and in vitro drug release of the optimized formulation was compared with the marketed formulation (Conventional tablets). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterizing visible and invisible cell wall mutant phenotypes.

    PubMed

    Carpita, Nicholas C; McCann, Maureen C

    2015-07-01

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Development of sustained release antipsychotic tablets using novel polysaccharide isolated from Delonix regia seeds and its pharmacokinetic studies

    PubMed Central

    Krishnaraj, Kaliaperumal; Chandrasekar, Mulla Joghi Nanjan; Nanjan, Mulla Joghi; Muralidharan, Selvadurai; Manikandan, Duraikannu

    2011-01-01

    A natural polysaccharide was isolated from the seeds of Delonix regia. The isolated polysaccharide could maintain aqueous equilibrium between the dosage form and the surrounding medium due to its massive competence of water absorption (80.72%) and swelling index (266.7%). The Scanning Electron Micrograph of a polysaccharide exhibits rough surface with pores and crevices, hence, the drug release will be retarded because of the drug particles entrapment in the pores and crevices. Further, the surface tension of polysaccharide is higher than that of water, which may facilitate sustained release of drugs from dosage forms. An antipsychotic drug, quetiapine fumarate has a short half-life of 6 h and administered multiple times per day. Hence the quetiapine fumarate oral sustained release tablets were formulated using this polysaccharide in the concentration of 5–30% to avoid the side effects and increase patient compliance. Dissolution of the developed tablets with 25% polysaccharide content showed a better release profile than the other batches (5–20%) at the end of 12 h. The strong matrix complex has low solubility in water, it does not dissolve rapidly and the drug continues to diffuse through the gel layer at a consistent rate. Drug release from the matrix tablets follows matrix type except F-4 and F-5 which follow first order and Hix.crow type. The bioavailability study was carried out using healthy male New Zealand white rabbits that show the AUC(0–inf) value for developed SR tablets is 1.44 times higher than the reference thus, indicating more efficient and sustained drug delivery capable of maintaining plasma drug levels better. PMID:24115903

  9. Strategies To Discover the Structural Components of Cyst and Oocyst Walls

    PubMed Central

    Bushkin, G. Guy; Chatterjee, Aparajita; Robbins, Phillips W.

    2013-01-01

    Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins. PMID:24096907

  10. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Simmons, Thomas J.; Mortimer, Jenny C.; Bernardinelli, Oigres D.; Pöppler, Ann-Christin; Brown, Steven P.; Deazevedo, Eduardo R.; Dupree, Ray; Dupree, Paul

    2016-12-01

    Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.

  11. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR.

    PubMed

    Simmons, Thomas J; Mortimer, Jenny C; Bernardinelli, Oigres D; Pöppler, Ann-Christin; Brown, Steven P; deAzevedo, Eduardo R; Dupree, Ray; Dupree, Paul

    2016-12-21

    Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13 C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.

  12. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage[OPEN

    PubMed Central

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; Sanhueza, Dayan; Ejsmentewicz, Troy; Sandoval-Ibañez, Omar; Parra-Rojas, Juan Pablo; Ebert, Berit; Reyes, Francisca C.

    2017-01-01

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix. PMID:28062750

  13. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins.

    PubMed

    Thompson, Abby K; Singh, Harjinder; Dalgleish, Douglas G

    2010-11-24

    Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.

  14. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls.

    PubMed

    Grabber, John H; Hatfield, Ronald D; Lu, Fachuang; Ralph, John

    2008-09-01

    Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production.

  15. The physicochemical properties of a new class of anticancer fungal polysaccharides: a comparative study.

    PubMed

    Ren, Lu; Reynisson, Jóhannes; Perera, Conrad; Hemar, Yacine

    2013-08-14

    The structural and physicochemical properties of polysaccharides isolated from fungi with anticancer properties were investigated. The majority of the polysaccharides considered, have the β-d-Glcp component mostly connected by 1→3 and 1→6 linkages in the backbones and the short branches, respectively. The established parameters of lead-like, drug-like and of known dug space (KDS) were used and the repeating units of the polysaccharides exhibit some overlap with these. It was found that a unique region of chemical space is occupied by the polysaccharides, with MW: 1.0 x 10(5) to 2.5 x 10(5) g mol(-1); LogP: -3.0 x 10(3) to -1.0 x 10(3); HD: 1.0 x 10(3) to 5.0 x 10(3); HA: 5.0 x 10(3) to 1.0 x 10(4); PSA: 5.0 x 10(4) to 1.0 x 10(5) and RB: 5.0 x 10(3) to 1.0 x 10(4). These findings can be exploited in antitumor drug discovery projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  18. Separation of water-soluble polysaccharides from Cyclocarya paliurus by ultrafiltration process.

    PubMed

    Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Zhao, Qiang; Li, Chang; Xie, Ming-Yong

    2014-01-30

    In this study, ultrafiltration membrane process was employed to separate polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus) to simulate industrial production. Meanwhile, the molecular weight distribution of C. paliurus polysaccharides was investigated by gel permeation chromatography. Four fractions were obtained and named as CPPS-A, CPPS-B, CPPS-C and CPPS-D, respectively. CPPS-A and CPPS-B contained approximately 69.5% and 12.7% of polysaccharides, whose molecular weight were in the range of 100-300 kDa and 120 kDa, respectively. CPPS-C was comprised of two polysaccharides with average molecular weight of 40 kDa and 15 kDa. Results showed that ultrafiltration resulted in the removal of parts of small molecule weight polysaccharides, the increase of proportion of high molecule weight ones and the obvious improvement of quality of products. Compared with ethanol precipitation and gel permeation chromatography techniques, ultrafiltration showed many advantages, and also provided theoretical support for industrial manufacturing of C. paliurus polysaccharides in separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Structural determination of the capsular polysaccharide produced by Klebsiella pneumoniae serotype K40. NMR studies of the oligosaccharide obtained upon depolymerisation of the polysaccharide with a bacteriophage-associated endoglycanase.

    PubMed

    Cescutti, P; Toffanin, R; Kvam, B J; Paoletti, S; Dutton, G G

    1993-04-01

    The Klebsiella pneumoniae K40 capsular polysaccharide has been isolated and investigated by use of methylation analysis, specific degradations and NMR spectroscopy. The polysaccharide was depolymerised by a bacteriophage-associated endogalactosidase, and the resulting oligosaccharide was characterised by one-dimensional and two-dimensional NMR spectroscopy and direct chemical ionisation MS. The repeating unit of the K40 capsular polysaccharide was shown to be a linear hexasaccharide with the composition-->3)- alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA++ +-(1-->2-)- alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Galp-(1--> (Rha, rhamnose).

  20. Structural studies of the polysaccharides from the lipopolysaccharides of Azospirillum brasilense Sp246 and SpBr14.

    PubMed

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Grinev, Vyacheslav S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2014-10-29

    Lipopolysaccharides from closely related Azospirillum brasilense strains, Sp246 and SpBr14, were obtained by phenol-water extraction. Mild acid hydrolysis of the lipopolysaccharides followed by GPC on Sephadex G-50 resulted in polysaccharide mixtures. On the basis of sugar and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy data, it was concluded that both bacteria possess the same two distinct polysaccharides having structures 1 and 2: [structure: see text]. Structure 1 has been reported earlier for a polysaccharide of A. brasilense 54 [Fedonenko et al., 2011] whereas to our knowledge structure 2 has not been hitherto found in bacterial polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae.

    PubMed

    Deniaud-Bouët, Estelle; Kervarec, Nelly; Michel, Gurvan; Tonon, Thierry; Kloareg, Bernard; Hervé, Cécile

    2014-10-01

    Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please

  2. Ultrasound assisted extraction of polysaccharides from hazelnut skin.

    PubMed

    Yılmaz, Tuncay; Tavman, Şebnem

    2016-03-01

    In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values. © The Author(s) 2015.

  3. Immunoregulatory activities of polysaccharides from mung bean.

    PubMed

    Yao, Yang; Zhu, Yingying; Ren, Guixing

    2016-03-30

    Ultrasonic treatment was performed on water-extractable polysaccharides from the seed of mung beans. Purified by anion-exchange and gel filtration chromatography, MWP-1' and MWP-2' were obtained. Average molecular weights (Mws) of MWP-1' and MWP-2' were 68.4 kDa, and 52.4 kDa, respectively. Monosaccharides components analysis indicated that MWP-1' was composed of Rha, Ara, Man and Gal in a molar percent of 0.4:2.6:5.3:0.7. MWP-2' was composed of Ara, Man, Gal and Glc in a molar percent of 0.5:1.4:2.1:0.4. In vitro study showed that both polysaccharides samples were able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in a dosage dependent manner. MWP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic treatment polysaccharides isolated in our study have immune potentiation effects on macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Preparation Methods and Antioxidant Activities of Polysaccharides and Their Derivatives.

    PubMed

    Mei, Xinya; Yi, Chengkun; Huang, Gangliang

    2017-01-01

    In recent years, the antioxidant effects of polysaccharides have become a hot spot in the field of polysaccharide research. Herein, the action mechanisms of polysaccharide antioxidation and scavenging free radicals were analyzed. The research progresses on the preparation methods and antioxidant properties of polysaccharides and their derivatives were summarized. Investigating the antioxidant activities of polysaccharides and their derivatives can find useful polysaccharides and their derivatives, which have great potential as natural antioxidants used in functional foods or medicines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.

  6. Extraction and characterization of pectins from primary cell walls of edible açaí (Euterpe oleraceae) berries, fruits of a monocotyledon palm.

    PubMed

    Cantu-Jungles, Thaisa Moro; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C

    2017-02-20

    Açaí berries (Euterpe oleracea) are greatly consumed in Brazil and exported to other countries as a nutritional supplement, due to health benefits attributed to its consumption. However, the complete chemical structure of bioactive polysaccharides was not fully elucidated yet. In this work, we characterize pectic polysaccharides from açaí berries through monosaccharide composition, HPSEC, methylation and 13 C and 1 H/ 13 C HSQC-DEPT-NMR analyses. A highly methoxylated homogalacturonan with a DM of 88% and Mw of 22kDa together with small amounts of a mannoglucan were found. Moreover, a type II arabinogalactan (Mw=45kDa) containing a backbone with high portions of 6-O-linked and 3,6-O-linked Galp chains rather than 3-O-linked Galp was also isolated and structurally characterized. The type II arabinogalactan was found as a side chain of a type I rhamnogalacturonan. These findings contribute to correlate the fine chemical structure with the previously reported action of açaí polysaccharides on innate immune response. Moreover, from the taxonomic point of view, the results bring new information about polysaccharide composition of primary cell walls of palms (Arecaceae), that despite being commelinid monocots, have a distinct cell wall composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioactive polysaccharides and gut microbiome (abstract)

    USDA-ARS?s Scientific Manuscript database

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  8. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage

    DOE PAGES

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; ...

    2017-01-01

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less

  9. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry

    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less

  10. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    PubMed Central

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-01-01

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites. PMID:26492255

  11. Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides.

    PubMed

    YouGuo, Chen; ZongJi, Shen; XiaoPing, Chen

    2009-12-01

    In this study, antioxidant and immunity-modulatory activities of Purslane polysaccharide were estimated. The results revealed that in a dose-dependent manner, Purslane polysaccharides could significantly scavenge superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)), nitric oxide and hydroxyl radicals. Furthermore, the Purslane polysaccharides could still effectively inhibit the red blood cell (RBC) haemolysis, and increase spleen, thymocyte T and B lymphocyte proliferation, it could be concluded that Purslane polysaccharides could be of considerable preventive and therapeutic significance to some free radical associated health problems such as ovarian cancer, by scavenging accumulating free radicals and enhancing immunity functions.

  12. Solution NMR spectroscopy of food polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many polysaccharides are allowed for direct food use, where they serve a number of useful functions. In addition to possibly being a source of calories, a food polysaccharide may be a dietary fiber, bulking agent, crystallization inhibitor, thickener, encapsulant, gelling agent, foam and emulsion s...

  13. Modulating surface rheology by electrostatic protein/polysaccharide interactions.

    PubMed

    Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H

    2006-11-21

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.

  14. Factors associated with pneumococcal polysaccharide vaccination of the elderly in Spain: A cross-sectional study

    PubMed Central

    Domínguez, Angela; Soldevila, Núria; Toledo, Diana; Godoy, Pere; Torner, Núria; Force, Luis; Castilla, Jesús; Mayoral, José María; Tamames, Sonia; Martín, Vicente; Egurrola, Mikel; Sanz, Francisco; Astray, Jenaro; Project PI12/02079 Working Group

    2016-01-01

    ABSTRACT Vaccination of the elderly is an important factor in limiting the impact of pneumonia in the community. The aim of this study was to investigate the factors associated with pneumococcal polysaccharide vaccination in patients aged ≥ 65 years hospitalized for causes unrelated to pneumonia, acute respiratory disease, or influenza-like illness in Spain. We made a cross-sectional study during 2013-2014. A bivariate analysis was performed comparing vaccinated and unvaccinated patients, taking into account sociodemographic variables and risk medical conditions. A multivariate analysis was performed using multilevel regression models. 921 patients were included; 403 (43.8%) had received the pneumococcal vaccine (394 received the polysaccharide vaccine). Visiting the general practitioner ≥ 3 times during the last year (OR = 1.79; 95% CI 1.25-2.57); having received the influenza vaccination in the 2013-14 season (OR = 2.57; 95% CI 1.72-3.84) or in any of the 3 previous seasons (OR = 11.70; 95% CI 7.42-18.45) were associated with receiving the pneumococcal polysaccharide vaccine. Pneumococcal vaccination coverage of hospitalized elderly people is low. The elderly need to be targeted about pneumococcal vaccination and activities that encourage healthcare workers to proactively propose vaccination might be useful. Educational campaigns aimed at the elderly could also help to increase vaccination coverages and reduce the burden of pneumococcal disease in the community. PMID:27064311

  15. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway.

    PubMed

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment.

  16. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jeffrey G.

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  17. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  18. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18more » cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.« less

  19. Use of fluorescent ANTS to examine the BBB-permeability of polysaccharide

    PubMed Central

    Christopher, Kevin; Makani, Vishruti; Judy, Wesley; Lee, Erica; Chiaia, Nicolas; Kim, Dong Shik; Park, Joshua

    2015-01-01

    Recently, some polysaccharides showed therapeutic potentials for the treatment of neurodegenerative diseases while the most important property, their permeability to the blood brain barrier (BBB) that sheathes the brain and spinal cord, is not yet determined. The determination has been delayed by the difficulty in tracking a target polysaccharide among endogenous polysaccharides in animal. We developed an easy way to examine the BBB-permeability and, possibly, tissue distribution of a target polysaccharide in animal. We tagged a polysaccharide with fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (ANTS) for tracking. We also developed a simple method to separate ANTS-tagged polysaccharide from unconjugated free ANTS using 75% ethanol. After ANTS-polysaccharide was intra-nasally administered into animals, we could quantify the amounts of ANTS-polysaccharide in the brain and the serum by fluorocytometry. We could also separate free ANTS-polysaccharide from serum proteins using trichloroacetic acid (TCA) and 75% ethanol. Our method will help to track a polysaccharide in animal easily. • ANTS-labeling is less tedious than but as powerful as radiolabeling for tracking a target polysaccharide in animal. • Our simple method can separate structurally intact ANTS-polysaccharide from animal serum and tissues. • This method is good for the fluorometry-based measurement of ANTS-conjugated macromolecules in tissues. PMID:25914873

  20. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides.

    PubMed

    Jiao, Rui; Liu, Yingxia; Gao, Hao; Xiao, Jia; So, Kwok Fai

    2016-01-01

    Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current

  1. Immobilized-type chiral packing materials for HPLC based on polysaccharide derivatives.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2008-11-01

    The polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography (HPLC) have been recognized as the most powerful ones for the analyzing and preparative separating of the chiral compounds. These CPMs have been conventionally prepared by coating polysaccharide derivatives on a silica gel support. This means that the solvents, which swell or dissolve the derivatives on the silica gel and reduce the performance of the chiral columns, do not allow to be applied as components of the eluents. Therefore, the polysaccharide-based CPMs can be used with a rather limited number of eluents. In order to enhance the versatility of the eluent selection for more practical and economical chromatographic enantioseparations, the polysaccharide derivatives must be immobilized onto the silica gel. This review summarizes our latest studies on the development of the immobilized-type CPMs via the radical copolymerization and the polycondensation of the polysaccharide derivatives bearing small amounts of vinyl groups and alkoxysilyl groups, respectively.

  2. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    PubMed

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Influence of polysaccharides on wine protein aggregation.

    PubMed

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine. Copyright © 2016. Published by Elsevier Ltd.

  4. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  5. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    DOEpatents

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  6. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    PubMed

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    PubMed

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  8. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    PubMed

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  9. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce.

    PubMed

    Nie, Chenzhipeng; Zhu, Peilei; Ma, Shuping; Wang, Mingchun; Hu, Youdong

    2018-05-15

    Stem lettuce has a long history of cultivation in China and possesses high nutritional and medicinal value. In our previous studies, extraction optimization, characterization, and bioactivities of stem lettuce polysaccharides (SLP) were investigated. In this study, SLP were further separated into two purified polysaccharides, SLP-1 and SLP-2, by anion exchange chromatography followed by size exclusion chromatography. SLP-1, with a molecular weight of 90 KDa, was mainly composed of galacturonic acid, galactose and arabinose in a molar ratio of 17.6:41.7:33.9. SLP-2, with a molecular weight of 44 KDa, was mainly composed of mannose, galacturonic acid, galactose and arabinose in a molar ratio of 11.5:69.5:9.3:8.2. In addition, both purified polysaccharides contain sulphate radicals, have triple helical structures and can promote macrophage proliferation without cytotoxicity. SLP-2 was better able to stimulate phagocytic and nitric oxide production than SLP-1. The results suggest that polysaccharides from stem lettuce could be explored as immunomodulatory agents in the field of pharmaceuticals and functional foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Selenylation Modification of Epimedium Polysaccharide and Isatis Root Polysaccharide and the Immune-enhancing Activity Comparison of Their Modifiers.

    PubMed

    Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Gao, Zhenzhen; Chen, Jin; Lu, Yu; Wang, Deyun; Liu, Cui; Hu, Yuanliang

    2016-05-01

    Epimedium polysaccharide (EPS) and isatis root polysaccharide (IRPS) were extracted, purified, and selenizingly modified by nitric acid-sodium selenite method to obtain nine selenizing EPSs (sEPSs), sEPS1-sEPS9 and nine selenizing IRPSs (sIRPSs), sIRPS1-sIRPS9, respectively. Their effects on chicken peripheral lymphocyte proliferation in vitro were compared by MTT assay. The results showed that selenium polysaccharides at appropriate concentration could promote lymphocyte proliferation more significantly than unmodified polysaccharides, sEPS5 and sIRPS5 with stronger actions were picked out and injected into the chickens vaccinated with Newcastle disease vaccine in vivo tests. The peripheral lymphocyte proliferation and serum antibody titer were determined. The results showed that sEPS5 and sIRPS5 could elevate serum antibody titer and promote lymphocyte proliferation more significantly than unmodified polysaccharides, sEPS5 possessed the strongest efficacy. These results indicate that selenylation modification can significantly enhance the immune-enhancing activity of EPS and IRPS, and sEPS5 can be as a new-type immunopotentiator of chickens.

  11. Rheology of interfacial protein-polysaccharide composites

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2013-05-01

    The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.

  12. Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves.

    PubMed

    Boudjeko, Thaddée; Megnekou, Rosette; Woguia, Alice Louise; Kegne, Francine Mediesse; Ngomoyogoli, Judith Emery Kanemoto; Tchapoum, Christiane Danielle Nounga; Koum, Olga

    2015-12-09

    Many plant polysaccharides have shown high antioxidant and immunostimulating properties and can be explored as novel molecules with biological properties that can potentially improve immune function. The objective of this work was to characterize soluble and cell wall polysaccharides isolated from the stem bark of Allanblackia floribunda and Chromolaena odorata leaves and to evaluate their antioxidant and immunomodulatory properties. Three polysaccharide fractions: soluble polysaccharides (PoS), pectins (Pec) and hemicelluloses (Hem) were extracted from A. floribunda stem bark and C. odorata leaves. These samples were analysed for their proteins, phenolic compounds and total sugar contents. The monosaccharide composition was determined by gas chromatography and arabinogalactan proteins content in PoS was evaluated by rocket electrophoresis. The in vitro antioxidant activities were evaluated by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis-3-éthylbenzylthiazoline-6-sulphonic acid (ABTS) radical scavenging assays and ferrous ions chelating activity. Immunomodulatory activities were performed on the peripheral blood mononuclear cells (PBMCs) using proliferation and enzyme linked immunospot (ELISPOT) method to determine the production of an interferon-gamma. The characterization of the various fractions showed varied metabolites in each plant. In PoS fractions, Ara and Gal were the major monosaccharides found, indicating that arabinogalactans are the primary macromolecules. Hem fractions contained predominantly Xyl and GalA for A. floribunda and Xyl (upto 80 %) for and C. odorata. A. floribunda Hem fraction and C. odorata PoS fraction showed significant DPPH and ABTS radical scavenging activities and immunostimulatory activity via stimulation of PBMC and production of IFN-γ in a dose-dependent manner. The results obtained from this study support the ethnomedicinal use of the stem bark of A. floribunda and leaves of C. odorata. Further research is

  13. Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea".

    PubMed

    Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio

    2011-12-01

    This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.

  14. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1beta mRNA expression in skin of burn wound-treated rats.

    PubMed

    Sui, ZhiFu; Yang, RongYa; Liu, Biao; Gu, TingMin; Zhao, Zhili; Shi, Dongfang; Chang, DongQing

    2010-08-01

    Agaricus blazei polysaccharides were analyzed by GC-MS. Results indicated that the polysaccharides contained glucose (93.87%), mannose (3.54%), and arabinose (2.25%). The compositional analysis was completed by the methylation data. These data indicated that Agaricus blazei polysaccharides are glucans. Compared to model rats, rats fed with Agaricus blazei polysaccharides showed a decrease of ratio of IL-1beta/beta-actin and IL-1beta level in skin of burn wound. Recovery rate of wound skin increased with increasing dose of polysaccharides. The results indicated that Agaricus blazei polysaccharides could be useful in promote burn wound healing. Copyright 2010 Elsevier B.V. All rights reserved.

  15. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity.

    PubMed

    de Castro, María; Miller, Janice G; Acebes, José Luis; Encina, Antonio; García-Angulo, Penélope; Fry, Stephen C

    2015-04-01

    Cell-suspension cultures (Zea mays L., Black Mexican sweet corn) habituated to 2,6-dichlorobenzonitrile (DCB) survive with reduced cellulose owing to hemicellulose network modification. We aimed to define the hemicellulose metabolism modifications in DCB-habituated maize cells showing a mild reduction in cellulose at different stages in the culture cycle. Using pulse-chase radiolabeling, we fed habituated and non-habituated cultures with [(3)H]arabinose, and traced the distribution of (3)H-pentose residues between xylans, xyloglucans and other polymers in several cellular compartments for 5 h. Habituated cells were slower taking up exogenous [(3)H]arabinose. Tritium was incorporated into polysaccharide-bound arabinose and xylose residues, but habituated cells diverted a higher proportion of their new [(3)H]xylose residues into (hetero) xylans at the expense of xyloglucan synthesis. During logarithmic growth, habituated cells showed slower vesicular trafficking of polymers, especially xylans. Moreover, habituated cells showed a decrease in the strong wall-binding of all pentose-containing polysaccharides studied; correspondingly, especially in log-phase cultures, habituation increased the proportion of (3)H-hemicelluloses ([(3)H]xylans and [(3)H]xyloglucan) sloughed into the medium. These findings could be related to the cell walls' cellulose-deficiency, and consequent reduction in binding sites for hemicelluloses; the data could also reflect the habituated cells' reduced capacity to integrate arabinoxylans by extra-protoplasmic phenolic cross-linking, as well as xyloglucans, during wall assembly. © 2015 Institute of Botany, Chinese Academy of Sciences.

  16. Micro-Spectroscopic Imaging of Lignin-Carbohydrate Complexes in Plant Cell Walls and Their Migration During Biomass Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Zhao, Shuai; Wei, Hui

    2015-04-27

    In lignocellulosic biomass, lignin is the second most abundant biopolymer. In plant cell walls, lignin is associated with polysaccharides to form lignin-carbohydrate complexes (LCC). LCC have been considered to be a major factor that negatively affects the process of deconstructing biomass to simple sugars by cellulosic enzymes. Here, we report a micro-spectroscopic approach that combines fluorescence lifetime imaging microscopy and Stimulated Raman Scattering microscopy to probe in situ lignin concentration and conformation at each cell wall layer. This technique does not require extensive sample preparation or any external labels. Using poplar as a feedstock, for example, we observe variation ofmore » LCC in untreated tracheid poplar cell walls. The redistribution of LCC at tracheid poplar cell wall layers is also investigated when the chemical linkages between lignin and hemicellulose are cleaved during pretreatment. Our study would provide new insights into further improvement of the biomass pretreatment process.« less

  17. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.).

    PubMed

    Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira

    2013-03-01

    Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Optimization of PEG-based extraction of polysaccharides from Dendrobium nobile Lindl. and bioactivity study.

    PubMed

    Zhang, Yi; Wang, Hongxin; Wang, Peng; Ma, ChaoYang; He, GuoHua; Rahman, Md Ramim Tanver

    2016-11-01

    Polyethylene glycol (PEG) as a green solvent was employed to extract polysaccharide. The optimal conditions for PEG-based ultrasonic extraction of Dendrobium nobile Lindl. polysaccharide (JCP) were determined by response surface methodology. Under the optimal conditions: extraction temperature of 58.5°C; ultrasound power of 193W, and the concentration of polyethylene glycol-200 (PEG-200) solution of 45%, the highest JCP yield was obtained as 15.23±0.57%, which was close to the predicted yield, 15.57%. UV and FT-IR analysis revealed the general characteristic absorption peaks of both JCP with water extraction (JCP w ) and PEG-200 solvent extraction (JCP p ). Thermal analysis of both JCPs was performed with Thermal Gravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC). Antioxidant activities of two polysaccharides were also compared and no significant difference in vitro was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Identification and Deletion of Tft1, a Predicted Glycosyltransferase Necessary for Cell Wall β-1,3;1,4-Glucan Synthesis in Aspergillus fumigatus

    PubMed Central

    Samar, Danial; Kieler, Joshua B.; Klutts, J. Stacey

    2015-01-01

    Aspergillus fumigatus is an environmental mold that causes severe, often fatal invasive infections in immunocompromised patients. The search for new antifungal drug targets is critical, and the synthesis of the cell wall represents a potential area to find such a target. Embedded within the main β-1,3-glucan core of the A. fumigatus cell wall is a mixed linkage, β-D-(1,3;1,4)-glucan. The role of this molecule or how it is synthesized is unknown, though it comprises 10% of the glucans within the wall. While this is not a well-studied molecule in fungi, it has been studied in plants. Using the sequences of two plant mixed linkage glucan synthases, a single ortholog was identified in A. fumigatus (Tft1). A strain lacking this enzyme (tft1Δ) was generated along with revertant strains containing the native gene under the control of either the native or a strongly expressing promoter. Immunofluorescence staining with an antibody against β-(1,3;1,4)-glucan and biochemical quantification of this polysaccharide in the tft1Δ strain demonstrated complete loss of this molecule. Reintroduction of the gene into the knockout strain yielded reappearance in amounts that correlated with expected expression of the gene. The loss of Tft1 and mixed linkage glucan yielded no in vitro growth phenotype. However, there was a modest increase in virulence for the tft1Δ strain in a wax worm model. While the precise roles for β-(1,3;1,4)-glucan within A. fumigatus cell wall are still uncertain, it is clear that Tft1 plays a pivotal role in the biosynthesis of this cell wall polysaccharide. PMID:25723175

  20. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  1. Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield

    PubMed Central

    2014-01-01

    Background Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals. Results We show that aspen pectate lyase PL1-27, which degrades homogalacturonan and is expressed at the onset of secondary wall formation, can increase the solubility of wood matrix polysaccharides. Overexpression of this enzyme in aspen increased solubility of not only pectins but also xylans and other hemicelluloses, indicating that homogalacturonan limits the solubility of major wood cell wall components. Enzymatic saccharification of wood obtained from PL1-27-overexpressing trees gave higher yields of pentoses and hexoses than similar treatment of wood from wild-type trees, even after acid pretreatment. Conclusions Thus, the modification of pectins may constitute an important biotechnological target for improved wood processing despite their low abundance in woody biomass. PMID:24450583

  2. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    PubMed

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Preparation of Bioactive Polysaccharide Nanoparticles with Enhanced Radical Scavenging Activity and Antimicrobial Activity.

    PubMed

    Qin, Yang; Xiong, Liu; Li, Man; Liu, Jing; Wu, Hao; Qiu, Hongwei; Mu, Hongyan; Xu, Xingfeng; Sun, Qingjie

    2018-05-02

    Because of their biocompatibility and biodegradability in vivo, natural polysaccharides are effective nanocarriers for delivery of active ingredients or drugs. Moreover, bioactive polysaccharides, such as tea, Ganoderma lucidum, and Momordica charantia polysaccharides (TP, GLP, and MCP), have antibacterial, antioxidant, antitumor, and antiviral properties. In this study, tea, Ganoderma lucidum, and Momordica charantia polysaccharide nanoparticles (TP-NPs, GLP-NPs, and MCP-NPs) were prepared via the nanoprecipitation approach. When the ethanol to water ratio was 10:1, the diameter of the spherical polysaccharide nanoparticles was the smallest, and the mean particle size of the TP-NPs, GLP-NPs, and MCP-NPs was 99 ± 15, 95 ± 7, and 141 ± 9 nm, respectively. When exposed to heat, increased ionic strength and pH levels, the nanoparticles exhibited superior stability and higher activity than the corresponding polysaccharides. In physiological conditions (pH 7.4), the nanoparticles underwent different protein adsorption capacities in the following order: MCP-NPs> TP-NPs> GLP-NPs. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, and superoxide anion radical scavenging rates of the nanoparticles were increased by 9-25% as compared to the corresponding polysaccharides. Compared to the bioactive polysaccharides, the nanoparticles enhanced antimicrobial efficacy markedly and exhibited long-acting antibacterial activity.

  4. Scalable and cleavable polysaccharide nanocarriers for the delivery of chemotherapy drugs.

    PubMed

    Wang, Hao; Dai, Tingting; Li, Shengli; Zhou, Shuyan; Yuan, Xiaojing; You, Jiayi; Wang, Chenglong; Mukwaya, Vincent; Zhou, Guangdong; Liu, Guojun; Wei, Xiaohui; Dou, Hongjing

    2018-05-01

    While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of nanotherapeutics still remains a significant challenge. Most current approaches adopt a postpolymerization self-assembly strategy that follows a separate synthetic step and thus suffers from subgram scale yields and a limited range of application. In this study, we demonstrate the kilogram-scale formation of polysaccharide-polyacrylate nanocarriers at concentrations of up to 5 wt% through a one-pot approach - starting from various acrylate monomers and polysaccharides - that combines aspects of hydrophobicity-induced self-assembly with the free radical graft copolymerization of acrylate monomers from polysaccharide backbones into a single process that is thus denoted as a graft copolymerization induced self-assembly. We also demonstrate that this novel approach is applicable to a broad range of polysaccharides and acrylates. Notably, by choosing a crosslinker that bears a disulfide group and two vinyl capping groups to structurally lock the nanocarriers, the products are rendered cleavable in the reducing environments encountered at tumor sites and thus provide ideal candidates for the construction of anticancer nanotherapeutic systems. In vitro and in vivo studies demonstrated that the use of this nanocarrier for the delivery of doxorubicin hydrochloride (DOX) significantly decreased the side effects of DOX and improved the bio-safety of the chemotherapy accordingly. While polysaccharide-based nanocarriers have been recognized for their crucial roles in tumor theranostics, the industrial-scale production of these nanotherapeutics still remains a significant challenge. Most current approaches adopt a post-polymerization self-assembly strategy which that follows a separate synthetic step, and thus suffers from sub-gram scale yields and a limited range of application. In this study, the hydrophobic effect was combined with

  5. Apoptosis of Hepatocellular Carcinoma Cells Induced by Nanoencapsulated Polysaccharides Extracted from Antrodia Camphorata

    PubMed Central

    Chang, Ke Liang B.; Kong, Zwe-Ling

    2015-01-01

    Antrodia camphorata is a well-known medicinal mushroom in Taiwan and has been studied for decades, especially with focus on anti-cancer activity. Polysaccharides are the major bioactive compounds reported with anti-cancer activity, but the debates on how they target cells still remain. Research addressing the encapsulation of polysaccharides from A. camphorata extract (ACE) to enhance anti-cancer activity is rare. In this study, ACE polysaccharides were nano-encapsulated in chitosan-silica and silica (expressed as ACE/CS and ACE/S, respectively) to evaluate the apoptosis effect on a hepatoma cell line (Hep G2). The results showed that ACE polysaccharides, ACE/CS and ACE/S all could damage the Hep G2 cell membrane and cause cell death, especially in the ACE/CS group. In apoptosis assays, DNA fragmentation and sub-G1 phase populations were increased, and the mitochondrial membrane potential decreased significantly after treatments. ACE/CS and ACE/S could also increase reactive oxygen species (ROS) generation, induce Fas/APO-1 (apoptosis antigen 1) expression and elevate the proteolytic activities of caspase-3, caspase-8 and caspase-9 in Hep G2 cells. Unsurprisingly, ACE/CS induced a similar apoptosis mechanism at a lower dosage (ACE polysaccharides = 13.2 μg/mL) than those of ACE/S (ACE polysaccharides = 21.2 μg/mL) and ACE polysaccharides (25 μg/mL). Therefore, the encapsulation of ACE polysaccharides by chitosan-silica nanoparticles may provide a viable approach for enhancing anti-tumor efficacy in liver cancer cells. PMID:26327534

  6. Isolation and antiviral activity of water-soluble Cynomorium songaricum Rupr. polysaccharides.

    PubMed

    Tuvaanjav, Suvdmaa; Shuqin, Han; Komata, Masashi; Ma, Chunjie; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2016-01-01

    The plant, Cynomorium songaricum Rupr., is used as a traditional medicine in China and Mongolia. In the present study, two new water-soluble polysaccharides isolated from C. songaricum Rupr. were purified by successive Sephadex G-75 and G-50 column chromatographies and then characterized by high resolution NMR and IR spectroscopies. The molecular weights of two polysaccharides were determined by an aqueous GPC to be [Formula: see text] = 3.7 × 10(4) and 1.0 × 10(4), respectively. In addition, it was found that the polysaccharide with the larger molecular weight was an acidic polysaccharide. It was found that the iodine-starch reaction of both isolated polysaccharides was negative and the methylation analysis gave 2, 4, 6-tri-O-methyl alditol acetate as a main product. NMR and IR measurements and sugar analysis revealed that both polysaccharides had a (1 → 3)-α-d-glucopyranosidic main chain with a small number of branches. After sulfation, the sulfated C. songaricum Rupr. polysaccharides were found to have a potent inhibitory effect on HIV infection of MT-4 cells at a 50% effective concentration of 0.3-0.4 μg/ml, a concentration that has almost the same high activity as standard dextran and curdlan sulfates, EC50 = 0.35 and 0.14 μg/ml, respectively. The 50% cytotoxic concentration was low, CC50>1000 μg/ml. In addition, the interaction between the sulfated polysaccharides and poly-l-lysine as a model protein compound was investigated by a surface plasmon resonance to reveal the anti-HIV mechanism.

  7. Formation of a Soluble Amylopectin-Like Polysaccharide in Potato Tubers 1

    PubMed Central

    Frydman, Rosalia B.; Cardini, Carlos E.

    1967-01-01

    When potato sprouts or potato tuber slices were incubated with 0.1 m glucose 1-phosphate, a soluble amylopectin-like polysaccharide was excreted to the medium. This polysaccharide was found to be a very good primer for phosphorylase and a poor one for starch synthetase. Beside the formation of this extracellular polysaccharide, a more branched intracellular polysaccharide could be isolated. This polysaccharide was an excellent primer for starch synthetase. Fructose 6-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, glucose or sucrose could not substitute for glucose 1-phosphate. 2,4-Dinitrophenol or nitrogen did not affect the excretion of the polysaccharide. Some properties of these 2 polysaccharides are described. PMID:16656546

  8. Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications.

    PubMed

    Cimini, Donatella; Restaino, Odile Francesca; Catapano, Angela; De Rosa, Mario; Schiraldi, Chiara

    2010-02-01

    The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 g(cww)/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.

  9. FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment

    PubMed Central

    2012-01-01

    Background This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils. Results Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions. Conclusions Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues. PMID:23095284

  10. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    PubMed

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  11. Cell Wall Modifications in Maize Pulvini in Response to Gravitational Stress1[W][OA

    PubMed Central

    Zhang, Qisen; Pettolino, Filomena A.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott; Taylor, Jillian; Shirley, Neil J.; Hayes, Kevin; Beatty, Mary; Abrams, Suzanne R.; Zaharia, L. Irina; Burton, Rachel A.; Bacic, Antony; Fincher, Geoffrey B.

    2011-01-01

    Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus. PMID:21697508

  12. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    PubMed

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  13. An inventory of factors that affect polysaccharide production by Phaeocystis globosa

    NASA Astrophysics Data System (ADS)

    van Rijssel, M.; Janse, I.; Noordkamp, D. J. B.; Gieskes, W. W. C.

    2000-08-01

    Phaeocystis material contains polysaccharides that are built from at least eight different monosaccharides. Differences have been reported between the carbohydrate composition of different Phaeocystis species, and also between samples taken from Phaeocystis globosa blooms in different areas. In order to elucidate factors that could play a role in determining variation in carbohydrate composition and production, a number of Phaeocystis globosa strains were studied under laboratory conditions. Although there was a clear distinction of a northern and a southern cluster in the Phaeocystis globosa strains based on RAPD analysis, the differences in the composition of the mucopolysaccharides were relatively small. The contribution of glucose, however, ranged from 7-85% of total sugars. A strain that was cultured in seawaters of diverse origin produced polysaccharides of a different composition, suggesting the effect of environmental factors. The presence of bacteria affected neither the amount, nor the composition of the carbohydrates that were produced by Phaeocystis globosa. Glucose is part of both the intracellular polysaccharide pool and of the mucopolysaccharides in the colony matrix. Using specific digestion of the intracellular chrysolaminaran by laminarinase, the distribution of polysaccharides over different pools could be assessed. During growth of an axenic, mucus-producing strain, the portion of glucose present as chrysolaminaran appeared to increase. The polyglucose that was not digested by laminarinase remains unidentified. This study shows that environmental factors rather than strain differences determine differences in the sugar composition of Phaeocystis globosa, especially with respect to the glucose content of the material. A difference in the contribution of glucose could be correlated to the portion of cells in the culture that are not in the colonies. Our study emphasises that for studying polysaccharide dynamics in Phaeocystis globosa it is

  14. Preliminary study on the potential of polysaccharide from indigenous Tiger's Milk mushroom (Lignosus rhinocerus) as anti-lung cancer agent

    NASA Astrophysics Data System (ADS)

    Lai, Wei Hong; Zainal, Zamri; Daud, Fauzi

    2014-09-01

    Tiger's Milk mushroom is a tropical polypore genus that can be found in the tropical part of the world in Australia, Papua New Guinea, Philippines, Indonesia, Malaysia, Sri Lanka and Vanuatu. In Malaysia, Lignosus rhinocerus is the most sought after medicinal mushroom by Semai aborigine upon request by local herbalist. This priced mushroom has been used traditionally to treat various diseases such as asthma, breast cancer, cough, fever and food poisoning. Current results indicated polysaccharide from sclerotia of indigenous L. rhinocerus extracted through hot water is able to inhibit up to 45% growth of human lung carcinoma. Inhibition is achieved when concentration of polysaccharide are in the range of 4-8 μg/ml. Present preliminary study suggests beta-glucan-rich polysaccharide from sclerotia of indigenous L. rhinocerus has anti-proliferation activity on human lung carcinoma (A549).

  15. Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens.

    PubMed

    Herasimenka, Yury; Benincasa, Monica; Mattiuzzo, Maura; Cescutti, Paola; Gennaro, Renato; Rizzo, Roberto

    2005-07-01

    The interaction of two cathelicidin antimicrobial peptides, LL-37 and SMAP-29, with three bacterial polysaccharides, respectively, produced by Pseudomonas aeruginosa, Burkholderia cepacia and Klebsiella pneumoniae, was investigated to identify possible mechanisms adopted by lung pathogens to escape the action of innate immunity effectors. In vitro assays indicated that the antibacterial activity of both peptides was inhibited to a variable extent by the three polysaccharides. Circular dichroism experiments showed that these induced an alpha-helical conformation in the two peptides, with the polysaccharides from K. pneumoniae and B. cepacia showing, respectively, the highest and the lowest effect. Fluorescence measurements also indicated the presence of peptide-polysaccharide interactions. A model is proposed in which the binding of peptides to the polysaccharide molecules induces, at low polysaccharide to peptide ratios, a higher order of aggregation, due to peptide-peptide interactions. Overall, these results suggest that binding of the peptides by the polysaccharides produced by lung pathogens can contribute to the impairment of peptide-based innate defenses of airway surface.

  16. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    PubMed

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  17. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.

    PubMed

    Manivasagan, Panchanathan; Oh, Junghwan

    2016-01-01

    Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods.

    PubMed

    Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong

    2015-11-01

    Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Aggregation of gluten proteins in model dough after fibre polysaccharide addition.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H

    2017-09-15

    FT-Raman spectroscopy, thermogravimetry and differential scanning calorimetry were used to study changes in structure of gluten proteins and their thermal properties influenced by four dietary fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin) during development of a model dough. The flour reconstituted from wheat starch and wheat gluten was mixed with the polysaccharides in five concentrations: 3%, 6%, 9%, 12% and 18%. The obtained results showed that all polysaccharides induced similar changes in secondary structure of gluten proteins concerning formation of aggregates (1604cm -1 ), H-bonded parallel- and antiparallel-β-sheets (1690cm -1 ) and H-bonded β-turns (1664cm -1 ). These changes concerned mainly glutenins since β-structures are characteristic for them. The observed structural changes confirmed hypothesis about partial dehydration of gluten network after polysaccharides addition. The gluten aggregation and dehydration processes were also reflected in the DSC results, while the TGA ones showed that gluten network remained thermally stable after polysaccharides addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng.

    PubMed

    Baek, Seung-Hoon; Lee, Jin Gyun; Park, Seo Young; Bae, Ok Nam; Kim, Dong-Hyun; Park, Jeong Hill

    2010-08-09

    To evaluate the antidiarrheal effect of ginseng, the active principals of ginseng were studied in vitro model of rotavirus infection, the leading cause of severe diarrhea. Two pectic polysaccharides, named as GP50-dHR (56.0 kDa) and GP50-eHR (77.0 kDa), were purified from hot water extract of ginseng by bioassay-linked fractionation. Both polysaccharides rescued cell viability from rotavirus infection dose-dependently (IC50 are 15 and 10 microg/mL, respectively). Both polysaccharides had common structural features of homogalacturonan backbone with hairy regions of rhamnogalacturonan type I. Arabinose-rich side chains with abundant branch points were unique in GP50-eHR and may contribute to a greater antirotavirus effect of GP50-eHR than GP50-dHR. Because homogalacturonan itself did not show an antirotavirus effect, hairy regions might be functional sites. Of note, the antirotavirus effect of both polysaccharides resulted from inhibiting rotavirus attachment to cells. Together with a wide range of noncytotoxicity, these findings suggest that ginseng polysaccharides are viable therapeutic options for rotavirus diarrhea.

  1. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    PubMed

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  2. Microanalysis and preliminary pharmacokinetic studies of a sulfated polysaccharide from Laminaria japonica

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Sun, Delin; Zhao, Xia; Jin, Weihua; Wang, Jing; Zhang, Quanbin

    2016-01-01

    A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular-weight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase ( t 1/2α)=11.24±2.93 min, half-time of elimination phase ( t 1/2β)=98.20±25.78 min, maximum concentration ( C max)=110.53 μg/mL and peak time ( T max)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with postcolumn derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.

  3. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis.

    PubMed

    Kiho, T; Hui, J; Yamane, A; Ukai, S

    1993-12-01

    Crude polysaccharides were obtained from a hot-water extract and alkaline extracts of the cultural mycelium of Cordyceps sinensis. They showed significant activity in normal mice and streptozotocin-induced diabetic mice as a result of intraperitoneal (i.p.) injection. A crude polysaccharide (CS-OHEP) obtained from 5% sodium hydroxide extract slightly lowered the plasma glucose level in normal mice by oral (p.o.) administration. A neutral polysaccharide (CS-F30) exhibited higher hypoglycemic activity than its crude polysaccharide (CS-OHEP), exhibited by i.p. injection, and it significantly lowered the glucose level by p.o. administration (50 mg/kg). However, it hardly affected the plasma insulin level in normal mice. CS-F30 ([alpha]D + 21 degrees in water) is composed of galactose, glucose and mannose (molar percent, 62:28:10), and its molecular weight is about 45000.

  4. Sealing effect of a polysaccharide nanosheet for murine cecal puncture.

    PubMed

    Fujie, Toshinori; Kinoshita, Manabu; Shono, Satoshi; Saito, Akihiro; Okamura, Yosuke; Saitoh, Daizoh; Takeoka, Shinji

    2010-07-01

    Recent developments in nanobiotechnology have led us to develop a method of producing a free-standing polymer nanosheet composed of polysaccharides (ie, polysaccharide nanosheet) with a thickness of tens of nanometers. Owing to its enormous aspect ratio, the polysaccharide nanosheet is semi-absorbent and has a physical adhesive strength 7.5-fold greater than that of conventional films of >1 microm thickness. Herein, we have investigated the therapeutic sealing effect of this polysaccharide nanosheet on murine cecal puncture as a wound dressing material. Murine cecum was punctured and then overlapped with the polysaccharide nanosheet. Thereafter, we evaluated its sealing effect on bacterial peritonitis as well as the protection offered by the polysaccharide nanosheet against bacterial permeability using an in vitro transmembrane assay. The 39-nm-thick polysaccharide nanosheet overlapped tightly the perforated cecum. No adhering agents were required because of the ability of the polysaccharide nanosheet to adhere to the tissue surface by physical adsorption (eg, van der Waals interaction). Sealing the perforated cecum with the polysaccharide nanosheet increased survival rate without postoperative adhesion by comparison with untreated mice (90 vs 30%; P < .01). These data were supported by the improvement in peritonitis related to bacterial counts, white blood cell counts, and the serum tumor necrosis factor level. Moreover, using an in vitro transmembrane assay, we showed that the polysaccharide nanosheet inhibited effectively bacterial penetration. We have demonstrated the potential clinical benefits of the nanosheet-type biomaterial that can be used for repairing a cecal colotomy without chemical bonding agents. Copyright 2010 Mosby, Inc. All rights reserved.

  5. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.

    PubMed

    Li, Ping; Dou, Xiao-Qiu; Tang, Yi-Tian; Zhu, Shenmin; Gu, Jiajun; Feng, Chuan-Liang; Zhang, Di

    2012-12-01

    In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, (1)H Nuclear Magnetic Resonance ((1)H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

    PubMed

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile; Ordaz-Ortiz, José J; Farkas, Vladimir; Pedersen, Henriette L; Willats, William G T; Knox, J Paul

    2008-05-22

    Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re

  7. Characteristics of fucose-containing polysaccharides from submerged fermentation of Agaricus blazei Murill.

    PubMed

    Wang, Hsueh-Ting; Yang, Li-Chan; Yu, Hui-Ching; Chen, Miaw-Ling; Wang, Huei-Ju; Lu, Ting-Jang

    2018-04-01

    Fucose is one of important residues of recognition pattern for many immune cells. In this study, we characterized bioactive fucose-containing acidic polysaccharides from submerged fermentation of Agaricus blazei Murill. We obtained the polysaccharides through a cell-based activity-guided strategy, and used carbohydrate recognition monoclonal antibodies based Enzyme-Linked Immuno Sorbent Assay (ELISA) along with methylation and NMR analyses to investigate the structural characteristics of the polysaccharides. The polysaccharides had Mw of 3.5 × 10 5  Da. The major sugars were l-fucose, l-arabinose, d-galactose, d-xylose, and d-galacturonic acid in the molar ratio of 6.4, 15.5, 28.5, 14.7, and 25.0% with a small amount of d-glucose, d-mannose, l-rhamnose, and d-glucuronic acid. Results indicated that the bioactive polysaccharides consisted of a (1,4)-Galp and (1,4)-GalAp back bone; (1,2)-Xyl and (1,2)-Rha might also comprise backbone or constitute side chain; linkage (1,5)-Ara and terminal fucosyl residues were also involved in the polysaccharides. Regarding bioactivity, removal of the terminal l-fucosyl residues reduced the TNF-α cytokine stimulating activity of the polysaccharides in a RAW 264.7 macrophage cell-line test, whereas NF-κB and TLR4 affected the polysaccharide-induced TNF-α production. Copyright © 2017. Published by Elsevier B.V.

  8. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  9. Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana).

    PubMed

    Raju, T S; Jagadish, R L; Anjaneyalu, Y V

    2001-02-01

    The polysaccharide components present in the scape of Musa paradisiaca (banana) were fractionated into water-soluble (WSP), EDTA-soluble (EDTA-SP), alkali-soluble (ASP) and alkali-insoluble (AISP) polysaccharide fractions [Anjaneyalu, Jagadish and Raju (1997) Glycoconj. J. 14, 507-512]. The EDTA-SP was further fractionated by iso-amyl alcohol into EDTA-SP-A and EDTA-SP-B. The homogeneity of these two polysaccharides was established by repeated precipitation with iso-amyl alcohol, gel-filtration chromatography and sedimentation analysis. The polysaccharides were characterized by monosaccharide composition analysis, methylation linkage analysis, iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase, gold-electron microscopy and X-ray diffraction spectroscopy. Data from all of these studies suggest that EDTA-SP-A is a branched amylose-type alpha-D-glucan and that EDTA-SP-B is a highly branched amylopectin-type polymer. The nature of the branching patterns of these polysaccharides suggests that they are unique to M. paradisiaca.

  10. Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities.

    PubMed

    C, Senthil Kumar; M, Sivakumar; K, Ruckmani

    2016-11-01

    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC 50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC 50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. CROSS-REACTIONS OF ANTITYPHOID AND ANTIPARATYPHOID B HORSE SERA WITH VARIOUS POLYSACCHARIDES

    PubMed Central

    Heidelberger, Michael; Cordoba, Felix

    1956-01-01

    A study was made of cross-reactions of synthetic polyglucose and of numerous plant and bacterial gums in an antityphoid and an antiparatyphoid B horse serum. The observed differences permit conclusions to be drawn regarding certain of the linkages likely to be found in the fine structures of each of the corresponding Salmonella polysaccharides:— 1. Cross-reactions of the antityphoid serum with the specific polysaccharide of Type II pneumococcus and with tamarind seed polysaccharide, glycogen and synthetic polyglucose indicate that the acetic acid-degraded O-polysaccharide of S. typhi, strain O 901, may contain part, at least, of its glucose as 1,4,6-branch points or in 1,6-linkage, perhaps adjacent to a terminal, non-reducing, galactopyranose unit. 2. Cross-reactions of both antisera with arabogalactans point to the existence of (probably β-) 1,3-, 1,6-, and/or 1,3,6-linkages of galactose in both the typhoid and paratyphoid B polysaccharides. 3. The differential reactivities of the galactomannans and yeast mannan suggest that the mannose in the typhoid polysaccharide is linked 1,2- or 1,3- with possible non-reducing mannopyranose end groups attached 1,6-. In the paratyphoid B polysaccharide the linkages are probably galacto-oligomannose 1,4-, or 1,4,6-, or the corresponding linkages of mannose alone. PMID:13357691

  12. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  13. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    PubMed

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Structural, functional and pH sensitive release characteristics of water-soluble polysaccharide from the seeds of Albizia lebbeck L.

    PubMed

    Kumar Varma, Chekuri Ashok; Jayaram Kumar, K

    2017-11-01

    Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review.

    PubMed

    Shi, Lei

    2016-11-01

    Polysaccharides play multiple roles and have extensive bioactivities in life process and an immense potential in healthcare, food and cosmetic industries, due to their therapeutic effects and relatively low toxicity. This review describes their major functions involved in antitumor, anti-virus, and anti-inflammatory bioactivities. Due to their enormous structural heterogeneity, the approaches for isolation and purification of polysaccharides are distinct from that of the other macromolecules such as proteins, etc. Yet, to achieve the homogeneity is the initial step for studies of polysaccharide structure, pharmacology, and its structure-activity relationships. According to the experiences accumulated by our lab and the published literatures, this review also introduces the methods widely used in isolation and purification of polysaccharides. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    PubMed

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.

  17. Marine Polysaccharides in Microencapsulation and Application to Aquaculture: “From Sea to Sea”

    PubMed Central

    Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio

    2011-01-01

    This review’s main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported. PMID:22363241

  18. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    PubMed Central

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.

    2015-01-01

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754

  19. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    DOE PAGES

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; ...

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less

  20. Chemical characteristics and anti-proliferation activities of Ganoderma tsugae polysaccharides.

    PubMed

    Chien, Rao-Chi; Yen, Ming-Tsung; Tseng, Yu-Hsiu; Mau, Jeng-Leun

    2015-09-05

    Polysaccharides were extracted by hot-water and hot-alkali from four forms of Ganoderma tsugae including mature and baby Ling chih, mycelium and filtrate. Different profiles of proximate composition and monosaccharide constituents, and element contents were found in the extracted polysaccharides from different extractions and different forms. The molecular weight distributions of polysaccharides were 2.8×10(4)-6.5×10(5)Da and their infrared spectra were comparable. The hot-alkali extracted polysaccharides exhibited better anti-proliferation on IMR32 cells than the hot-water extracted polysaccharides, which were in turn more effective than the hot-water extracts. Besides, most hot-water extracts and both extracted polysaccharides exhibited an anti-proliferation effect on Hep G2 cells. However, the hot-water extracts showed less effective in anti-proliferation of IMR32 and Hep G2 cells. Based on the anti-tumor effects, both polysaccharides could be prepared for use in the formulation of nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    PubMed

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  2. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    PubMed

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  5. A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.

    PubMed

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian

    2017-11-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Development of an efficient Procedure for Resist Wall Space Experiment

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  7. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. © 2015 Institute of Botany, Chinese Academy of Sciences.

  8. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions.

    PubMed

    Raffo, María D; Ponce, Nora M A; Sozzi, Gabriel O; Vicente, Ariel R; Stortz, Carlos A

    2011-11-23

    Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.

  9. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    PubMed Central

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  10. Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17.

    PubMed

    Vinogradov, E; Sadovskaya, I; Cornelissen, A; van Sinderen, D

    2015-09-02

    Lactobacilli are valuable strains for commercial (functional) food fermentations. Their cell surface-associated polysaccharides (sPSs) possess important functional properties, such as acting as receptors for bacteriophages (bacterial viruses), influencing autolytic characteristics and providing protection against antimicrobial peptides. The current report provides an elaborate molecular description of several surface carbohydrates of Lactobacillus delbrueckii subsp. bulgaricus strain 17. The cell surface of this strain was shown to contain short chain poly(glycerophosphate) teichoic acids and at least two different sPSs, designated here as sPS1 and sPS2, whose chemical structures were examined by 2D nuclear magnetic resonance spectroscopy and methylation analysis. Neutral branched sPS1, extracted with n-butanol, was shown to be composed of hexasaccharide repeating units (-[α-d-Glcp-(1-3)-]-4-β-l-Rhap2OAc-4-β-d-Glcp-[α-d-Galp-(1-3)]-4-α-Rhap-3-α-d-Galp-), while the major component of the TCA-extracted sPS2 was demonstrated to be a linear d-galactan with the repeating unit structure being (-[Gro-3P-(1-6)-]-3-β-Galf-3-α-Galp-2-β-Galf-6-β-Galf-3-β-Galp-). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An Ecological Network of Polysaccharide Utilization Among Human Intestinal Symbionts

    PubMed Central

    Rakoff-Nahoum, Seth; Coyne, Michael J.; Comstock, Laurie E.

    2013-01-01

    Summary Background: The human intestine is colonized with trillions of microorganisms important to health and disease. There has been an intensive effort to catalog the species and genetic content of this microbial ecosystem. However, little is known of the ecological interactions between these microbes, a prerequisite to understanding the dynamics and stability of this host-associated microbial community. Here we perform a systematic investigation of public goods-based syntrophic interactions among the abundant human gut bacteria, the Bacteroidales. Results: We find evidence for a rich interaction network based on the breakdown and use of polysaccharides. Species that utilize a particular polysaccharide (producers) liberate polysaccharide breakdown products (PBP) that are consumed by other species unable to grow on the polysaccharide alone (recipients). Cross-species gene addition experiments demonstrate that recipients can grow on a polysaccharide if the producer-derived glycoside hydrolase, responsible for PBP generation, is provided. These producer-derived glycoside hydrolases are public goods transported extracellularly in outer membrane vesicles allowing for the creation of PBP and concomitant recipient growth spatially distant from the producer. Recipients can exploit these ecological interactions and conditionally outgrow producers. Finally, we show that these public good-based interactions occur among Bacteroidales species co-resident within a natural human intestinal community. Conclusions: This study examines public-goods based syntrophic interactions between bacterial members of the critically important gut microbial ecosystem. This polysaccharide-based network likely represents foundational relationships creating organized ecological units within the intestinal microbiota, knowledge of which can be applied to impact human health. PMID:24332541

  12. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi.

    PubMed

    Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad

    2015-01-01

    The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Pectic polysaccharide from the green fruits of Momordica charantia (Karela): structural characterization and study of immunoenhancing and antioxidant properties.

    PubMed

    Panda, Bibhash C; Mondal, Soumitra; Devi, K Sanjana P; Maiti, Tapas K; Khatua, Somanjana; Acharya, Krishnendu; Islam, Syed S

    2015-01-12

    A water soluble pectic polysaccharide (PS) isolated from the aqueous extract of the green fruits of Momordica charantia contains D-galactose and D-methyl galacturonate in a molar ratio of nearly 1:4. It showed splenocyte, thymocyte as well as macrophage activations. Moreover, it exhibited potent antioxidant activities. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, and 1D and 2D NMR studies, the structure of the repeating unit of the pectic polysaccharide was established as: [Formula: see text]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus.

    PubMed

    Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang

    2014-01-30

    The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  17. Characterization and bioactivities of a novel polysaccharide obtained from Gracilariopsis lemaneiformis.

    PubMed

    Shi, Chen-Shan; Sang, Ya-Xin; Sun, Gui-Qing; Li, Tian-Ye; Gong, Zheng-Si; Wang, Xiang-Hong

    2017-01-01

    Gracilariopsis lemaneiformis is a type of red alga that contains seaweed polysaccharide agar. In this study, a novel non-agar seaweed polysaccharide fraction named GCP (short of crude polysaccharide obtained from Gracilariopsis lemaneiformis) was isolated from Gracilariopsis lemaneiformis. Structural analysis showed that GCP shows triple helical chain conformation when dissolved in water and has many branches and long side chains. Also, 1→3 linkage is the major linkage and the sugar structures are galactopyranose configurations linked by β-type glycosidic linkages. Two macromolecular substance fractions (GCP-1 and GCP-2) were purified by DEAE Sepharose Fast Flow column chromatography. Moreover, a splenocyte damage assay and splenocyte proliferation assay were used to analyse the bioactivities of GCP, GCP-1 and GCP-2. It was demonstrated that polysaccharides could protect splenocyte damaged by H2O2; GCP-2 shows a greatest protection rate, that is, 92.8%, which significantly enhanced the splenocyte proliferation, and GCP showed the highest proliferation rate, 9.30%. The results suggested that this type of novel non-agar polysaccharide displayed remarkable antioxidant and immunomodulatory activities and early alkali treatment could decrease the activities. It may represent a potential material for health food and clinical medicines.

  18. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    PubMed Central

    Aduba, Donald C.; Yang, Hu

    2017-01-01

    Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development. PMID:28952482

  19. The biosynthesis of polysaccharides. Incorporation of d-[1-14C]glucose and d-[6-14C]glucose into plum-leaf polysaccharides

    PubMed Central

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252

  20. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.

    PubMed

    Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C

    2005-04-01

    The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.

  1. Pneumococcal polysaccharide vaccine - what you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Pneumococcal Polysaccharide Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... statements/ppv.html CDC review information for Pneumococcal Polysaccharide VIS: Page last reviewed: April 24, 2015 Page ...

  2. Bacterial Polysaccharide Co-Polymerases Share a Common Framework for Control of Polymer Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocilj,A.; Munger, C.; Proteau, A.

    2008-01-01

    The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 Angstroms into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal formore » its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.« less

  3. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    NASA Astrophysics Data System (ADS)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  4. [Effects of post-harvest processing and extraction methods on polysaccharides content of Dendrobium officinale].

    PubMed

    Li, Cong; Ning, Li-Dan; Si, Jin-Ping; Wu, Ling-Shang; Liu, Jing-Jing; Song, Xian-Shui; Yu, Qiao-Xian

    2013-02-01

    To reveal the quality variation of polysaccharide in Dendrobium officinale by post-harvest processing and extraction methods, and provide a basis for post-harvest processing and clinical and hygienical applications of Tiepifengdou (Dendrobii Officinalis Caulis). The content of polysaccharides were studied by 4 post-harvest processing methods, i. e. drying by drying closet, drying after scalding by boiling water, drying while twisting, and drying while twisting after scalding by boiling water. And a series of temperatures were set in each processing procedure. An orthogonal test L9 (3(4)) with crushed degrees, solid-liquid ratio, extraction time and extraction times as factors were designed to analyze the dissolution rate of polysaccharides in Tiepifengdou processed by drying while twisting at 80 degrees C. The content of polysaccharides was ranged from 26.59% to 32.70% in different samples processed by different processing methods, among which drying while twisting at 80 degrees C and 100 degrees C respectively were the best. Crushed degree was the most important influence on the dissolution rate of polysaccharides. The dissolution rate of polysaccharides was extremely low when the sample was boiled directly without crushing and sieving. Drying while twisting at 80 degrees C was the best post-harvest processing method, which can help to dry the fresh herbs and improve the accumulation of polysaccharides. Boiling the uncrushed Tiepifengdou for a long time as traditional method could not fully extract polysaccharides, while boiling the crushed Tiepifengdou can efficiently extract polysaccharides.

  5. Optimized Extraction of Polysaccharides from Grateloupia livida (Harv.) Yamada and Biological Activities.

    PubMed

    Ye, Danyan; Jiang, Zebin; Zheng, Fuchun; Wang, Hongmei; Zhang, Yanmei; Gao, Fenfei; Chen, Peihong; Chen, Yicun; Shi, Ganggang

    2015-09-16

    Polysaccharides from Grateloupia livida (Harv.) Yamada (GL) were extracted by a heating circumfluence method. Single-factor experiments were performed for the three parameters: extraction time (X₁), extraction temperature (X₂) and the ratio of water to raw material (X₃) and their test range. From preliminary experimental results, one type of the response surface methodology, the Box-Behnken design was applied for the optimizing polysaccharide extraction conditions. The experimental data obtained were fitted to a second-order polynomial equation. The optimal conditions were extraction time 5 h, extraction temperature 100 °C and ratio of water to raw material 70 mL/g. Under these conditions, the experimental yield was 39.22% ± 0.09%, which well matched the predicted value (39.25%), with 0.9774 coefficient of determination (R²). GL polysaccharides had scavenging activities for DPPH and hydroxyl radicals in vitro. The scavenging rates for both radicals peaked at 20 mg/mL GL concentration. However, the positive standard, VC (ascorbic acid), possessed stronger antioxidant activities than GL polysaccharides. Furthermore, the anticancer activity of GL polysaccharides on HepG2 cell proliferation increased dose- and time-dependently, but the positive standard, 5-fluorouracil (5-fu) showed more significant anticancer activity in this study. Overall, GL polysaccharides may have potential applications in the medical and food industries.

  6. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans.

    PubMed

    Friedman, Mendel

    2016-11-29

    More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.

  7. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans

    PubMed Central

    Friedman, Mendel

    2016-01-01

    More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases. PMID:28231175

  8. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity.

    PubMed

    Cui, Yujiao; Yan, Huidan; Zhang, Xuewu

    2015-01-01

    Polysaccharide is a major bioactive component of mushrooms. In this study, for the first time, starting from a new Lentinula edodes polysaccharide L2, we prepared a novel L2-calcium complex and the process was optimized. Scanning electron microscopy and Fourier Transform infrared spectrometry were used for characterization. The immunostimulating activities of L2 and L2-calcium complex were measured by enhancing the production of two cytokines TNF-α and IL-6 in RAW264.7 cells. While L2-calcium complex significantly stimulates the secretions of TNF-α and IL-6 compared with the control, complex with calcium ion decreased the secretion of them. These facts indicate that calcium ion can modulate immune stimulating activity of Lentinula edodes polysaccharide L2.

  9. Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullin, Chessa; Cruz, Alejandro G.; Chuang, Yi -De

    Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.

  10. Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment

    DOE PAGES

    Scullin, Chessa; Cruz, Alejandro G.; Chuang, Yi -De; ...

    2015-07-04

    Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype.

  11. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability

    PubMed Central

    2010-01-01

    Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation

  12. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    PubMed

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  13. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  14. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    PubMed

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  15. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

    PubMed

    Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

    2016-08-01

    Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review.

  16. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    PubMed

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides

    NASA Astrophysics Data System (ADS)

    Grossutti, Michael; Dutcher, John

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly important example of confined water, with differences in polysaccharide structure providing different spatially confined environments for water adsorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, monodisperse phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA) and chitosan. We find similarities between water structuring in the two linear polysaccharides, and significant differences for phytoglycogen. In particular, the phytoglycogen nanoparticles exhibited high network water connectivity, and a large increase in the fraction of multimer water clusters with increasing RH, whereas the water structure for HA and chitosan was found to be insensitive to changes in RH. These measurements provide unique insight into the relationship between the chain architecture and hydration of polysaccharides.

  18. Immunoenhancement of Edible Fungal Polysaccharides (Lentinan, Tremellan, and Pachymaran) on Cyclophosphamide-Induced Immunosuppression in Mouse Model

    PubMed Central

    Zhang, Qian; Cong, Renhuai; Hu, Minghua; Yang, Xiangliang

    2017-01-01

    Fungal polysaccharides display a variety of important biological activities, including anti-inflammatory, antitumor, and immune-stimulating activities. The aim of present study was to investigate the immunomodulatory effect of fungal polysaccharides on cyclophosphamide-induced immunosuppression in mice. Mice were pretreated orally with lentinan, tremellan, pachymaran, or a mixture of the three, respectively. The results showed that pretreatments with polysaccharides significantly increased the thymus index in cyclophosphamide-induced immunosuppression mice. The level of the cytokine IL-10 in sera of cyclophosphamide-induced mice was decreased after pretreatments of polysaccharides. Flow cytometry results showed that pretreatments with polysaccharides enhanced the phagocytosis of peritoneal macrophages in mice. The increased levels of serum antibody IgG and IgM were observed in the groups pretreated with polysaccharides. Our work demonstrated that the treatment of polysaccharides elicited strong immune activity and a protective effect against cyclophosphamide-induced immunosuppression. PMID:29358974

  19. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    PubMed

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients.

  20. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea.

    PubMed

    Chi, Aiping; Li, Hong; Kang, Chenzhe; Guo, Huanhuan; Wang, Yimin; Guo, Fei; Tang, Liang

    2015-09-01

    The aim of this study was to investigate the anti-fatigue activity of polysaccharides from Ziyang green tea. Polysaccharides were isolated from Ziyang green tea and its physicochemical properties were analyzed. Meanwhile, a 4-week weight-loaded swimming test of mice was established and polysaccharides were orally administrated during exercise. The biochemical parameters related to fatigue were determined, such as exhaustive time, blood urea nitrogen (BUN), blood lactate acid (Bla) levels and lactic dehydrogenase (LDH) activity in serum, Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) activities, Malondialdehyde (MDA) and glycogen levels in skeletal muscle. The results demonstrated that polysaccharide from Ziyang green tea was a selenium-polysaccharide-protein conjugate (Se-TP), and Se-TP administration significantly prolonged exhaustive time and increased glycogen level and GSH-Px activity in muscle, in addition, markedly decreased BUN, Bla levels and LDH activity in serum and MDA level in muscle. In conclusion, Se-TP treatment can significantly improve exercise-induced fatigue and decrease the oxidative stress induced by the exhaustive exercise. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development.

    PubMed

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L; Vega-Sánchez, Miguel E; Williams, Brian; Chiniquy, Dawn M; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G; Willats, William G T; Scheller, Henrik V; Ronald, Pamela C; Bartley, Laura E

    2016-10-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis1[W][OA

    PubMed Central

    Parsons, Harriet T.; Christiansen, Katy; Knierim, Bernhard; Carroll, Andrew; Ito, Jun; Batth, Tanveer S.; Smith-Moritz, Andreia M.; Morrison, Stephanie; McInerney, Peter; Hadi, Masood Z.; Auer, Manfred; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Scheller, Henrik V.; Loqué, Dominique; Heazlewood, Joshua L.

    2012-01-01

    The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized. PMID:22430844

  4. Turbulent flame-wall interaction: a DNS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan

    2010-01-01

    A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less

  5. Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019.

    PubMed

    Luo, Zhengshan; Liu, Song; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2017-06-01

    Candida glabrata has great potential for the accumulation of pyruvate as a preferred strain in pyruvate production by fermentation. However, its substrate conversion rate is relatively low. In this study, a novel polysaccharide containing α-1,4-glucosidic bonds was observed accidentally in screening a high-titer pyruvate strain by atmospheric and room temperature plasma mutagenesis of C. glabrata. Chemical analysis of the partially purified polysaccharide S 4-C10 showed the main components were 1.2% (w/w) protein and 94.2% (w/w) total sugar. Fourier transform infrared and molecular mass distribution analysis indicated that the main component (PSG-2) of S 4-C10 was a small molecular homogeneous protein-bound polysaccharide. Monosaccharide analysis of PSG-2 showed it consisted of glucose, mannose, and fructose. By optimizing the vitamin mix content, 77.6 g L -1 S 4-C10 polysaccharide could be obtained after 72 h fermentation at 30 °C in 500-mL flasks. RT-qPCR analysis showed that transcriptional level of some key genes related to polysaccharide biosynthesis was upregulated compared to that of wild-type strain. By knocking out two most significantly upregulated genes, CAGL0H02695g and CAGL0K10626g, in the wild-type strain, the pyruvate consumption rate was significantly reduced in late pyruvate fermentation phase, while the titer of polysaccharides was reduced by 18.0%. Besides the potential applications of the novel identified polysaccharide, this study provided clues for increasing the conversion ratio of glucose to pyruvate in C. glabrata by further decreasing the accumulation of polysaccharides.

  6. Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant.

    PubMed

    S, Preethi; A, Mary Saral

    2016-11-01

    Polysaccharides were extracted from the dried fruiting bodies of Pithecellobium dulce with 20% ethanol by microwave-assisted extraction. The polysaccharides were isolated by ion exchange chromatography and afford three water-soluble polysaccharides PDP-1, PDP-2, and PDP-3. These isolated compounds were subjected to acid hydrolysis, methylation, IR and GC-MS for its compositional analysis and revealed that all the three fractions are heteropolysaccharides. PDP-1 was found to be composed of xylose, mannose, galactose and Rhamnose. PDP-2 and PDP-3 composed of xylose, Rhamnose, glucose, ribose, galactose, and mannose. The micromeretic properties of the extracted polysaccharides possessed a bulk density of 0.69g/ml, 0.65g/ml and 0.71g/ml for PDP-1, PDP-2, and PDP-3 respectively. The Hausner's ratio and Carr's index confirm the good flow property and compressibility of the polysaccharides. The polysaccharides extracted from Pithecellobium dulce fruits were tested for its application as a pharmaceutical adjuvant. The in vitro drug release study suggests that the extracted polysaccharides are potential candidates as a pharmaceutical adjuvant. Furthermore, the three isolated polysaccharides were subjected to its radical scavenging activity using DPPH, phospho molybdenum assay and reducing power assay. The results exhibited that the polysaccharides can be explored as a novel natural antioxidant and can be recommended as a functional food. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of an acidic polysaccharide isolated from the leaves of Corchorus olitorius (Moroheiya).

    PubMed

    Ohtani, K; Okai, K; Yamashita, U; Yuasa, I; Misaki, A

    1995-03-01

    An acidic polysaccharide was isolated from the water-soluble mucilage extracted from dried leaves of Corchorus olitorius, known as Moroheiya in Japan (3.0 g per 100 g). This polysaccharide showed a single peak in a Sepharose CL-6B column, and the specific rotation in H2O at 25 degrees C was +250 degrees. The polysaccharide was rich in uronic acid (65%), and consisted of rhamnose, glucose, galacturonic acid, and glucuronic acid in a molar ratio of 1.0:0.2:0.2:0.9:1.7, in addition to 3.7% of the acetyl group. A methylation analysis, Smith degradation study and fragmentation analysis suggested that this polysaccharide mainly consisted of O-4 substituted galacturonic acid and glucuronic acid, and O-2 substituted rhamnose residues, and that most of the (1-->4)-linked uronic acid residues were substituted at the O-3 position with glucuronic acid residues. This polysaccharide showed proliferative activity toward the murine splenocyte.

  8. Hot-compressed water extraction of polysaccharides from soy hulls.

    PubMed

    Liu, Hua-Min; Wang, Fei-Yun; Liu, Yu-Lan

    2016-07-01

    The polysaccharides of soy hulls were extracted by hot-compressed water at temperatures of 110 from 180°C and various treatment times (10-150min) in a batch system. It was determined that a moderate temperature and short time are suitable for the preparation of polysaccharides. The structure of xylan and the inter- and intra-chain hydrogen bonding of cellulose fibrils in the soy hulls were not significantly broken down. The polysaccharides obtained were primarily composed of α-L-arabinofuranosyl units, 4-O-methyl-glucuronic acid units and α-D-galactose units attached with substituted units. A sugar analysis indicated that arabinose was the major component, constituting 35.6-46.9% of the polysaccharide products extracted at 130°C, 140°C, and 150°C. This investigation contributes to the knowledge of the polysaccharides of soy by-products, which can reduce the environmental impact of waste from the food industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Suppression of umami aftertaste by polysaccharides in soy sauce.

    PubMed

    Imamura, Miho; Matsushima, Kenichiro

    2013-08-01

    Umami is one of 5 basic tastes that make foods savory and palatable. The umami aftertaste is a long-lasting taste sensation that is important for Japanese broth (dashi) utilized for various Japanese foods. Soy sauce is usually added when making dashi-based dishes; however, different soy sauces produce distinct effects on the umami aftertaste. In this study, we attempted to identify the substances that cause the suppression of the umami aftertaste in soy sauce by combining sensory analysis, size fractionation, chemical analysis, and enzymatic treatment. The suppressive substance was revealed to be polysaccharides with molecular weights between 44900 and 49700. The results of acid hydrolysis and enzymatic treatment suggested that the polysaccharides were cellulose. These results indicate that a type of water-soluble cellulose derived from soybean, wheat, or microorganisms has a suppressive effect on the umami aftertaste of soy sauce. Future studies should focus on developing a strategy that regulates the amount of these polysaccharides generated during soy sauce production, to maintain or enhance the umami aftertaste. © 2013 Institute of Food Technologists®

  11. Structural analysis of a homogeneous polysaccharide from Achatina fulica.

    PubMed

    Liu, Jie; Shang, Feineng; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua

    2017-05-01

    Edible snails have been widely used as a health food and medicine in many countries. In our study, a water-soluble polysaccharide (AF-1) was isolated and purified from Achatina fulica by papain enzymolysis, alcohol precipitation and strong anion exchange chromatography. Structureof the polysaccharide was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, high performance liquid chromatography, analysis of monosaccharide composition, methylation analysis, and nuclear magnetic resonance (NMR) spectroscopy ( 1 H, 13 C, COSY, TOCSY, NOESY, HSQC and HMBC). Chemical composition analysis indicated that AF-1 is composed of glucose (Glc) and its average molecular weight is 1710kDa. Structural analysis suggested that AF-1 is mainly consisted of a linear repeating backbone of (1→4) linked α-d-Glc p residues with one branch, α-d-Glc p, attached to the main chain by (1→6) glycosidic bonds at every five main-chain units. Further studies on biological activities of the polysaccharide are currently in progress. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities.

    PubMed

    Getachew, Adane Tilahun; Chun, Byung Soo

    2017-06-01

    Polysaccharides are an abundant resource in coffee beans and have proved to show numerous bioactivities. Despite their abundance, their activities are not always satisfactory mostly due to their structure and large molecular size. Molecular modifications of native polysaccharides can overcome this problem. In this study, we used a novel and green method to modify native coffee polysaccharides using subcritical water (SCW) treatment. The SCW treatment was used at the temperature of 180°C-220°C and pressure of 30-60bar. The molecular and structural modification of the polysaccharides was confirmed using several techniques such as FT-IR, UV spectroscopy, XRD, and TGA. The antioxidant activity of the modified polysaccharides was evaluated using several chemical and Saccharomyces cerevisiae-based high throughput assays. The modified polysaccharides showed high antioxidant activities in all tested assays. Moreover, the polysaccharides showed high DNA protection activities. Therefore, SCW could be employed as a green solvent for molecular modification of polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Bacillus subtilis biofilm induction by plant polysaccharides.

    PubMed

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  14. The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides.

    PubMed

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-12-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other.

  15. Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root.

    PubMed

    Cai, Liangliang; Wan, Dongwei; Yi, Fanglian; Luan, Libiao

    2017-08-25

    In this study, purification, preliminary characterization and hepatoprotective effects of water-soluble polysaccharides from dandelion root (DRP) were investigated. Two polysaccharides, DRP1 and DRP2, were isolated from DRP. The two polysaccharides were α-type polysaccharides and didn't contain protein. DRP1, with a molecular weight of 5695 Da, was composed of glucose, galactose and arabinose, whereas DRP2, with molecular weight of 8882 Da, was composed of rhamnose, galacturonic acid, glucose, galactose and arabinose. The backbone of DRP1 was mainly composed of (1→6)-linked-α-d-Glc and (1→3,4)-linked-α-d-Glc. DRP2 was mainly composed of (1→)-linked-α-d-Ara and (1→)-linked-α-d-Glc. A proof-of-concept study was performed to assess the therapeutic potential of DRP1 and DRP2 in a mouse model that mimics acetaminophen (APAP) -induced liver injury (AILI) in humans. The present study shows DRP1 and DRP2 could protect the liver from APAP-induced hepatic injury by activating the Nrf2-Keap1 pathway. These conclusions demonstrate that the DRP1 and DRP2 might be suitable as functional foods and natural drugs in preventing APAP-induced liver injury.

  16. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Rui Manuel Santos Costa; de Morais, Alcina Maria Miranda Bernardo

    2013-01-01

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review. PMID:23344113

  17. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    PubMed

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii).

    PubMed

    Zha, Shenghua; Zhao, Qingsheng; Chen, Jinjin; Wang, Liwei; Zhang, Guifeng; Zhang, Hong; Zhao, Bing

    2014-10-13

    Water-soluble polysaccharides were separated from maca (Lepidium meyenii) aqueous extract (MAE). The crude polysaccharides were deproteinized by Sevag method. During the preparation process of maca polysaccharides, amylase and glucoamylase effectively removed starch in maca polysaccharides. Four Lepidium meyenii polysaccharides (LMPs) were obtained by changing the concentration of ethanol in the process of polysaccharide precipitation. All of the LMPs were composed of rhamnose, arabinose, glucose and galactose. Antioxidant activity tests revealed that LMP-60 showed good capability of scavenging hydroxyl free radical and superoxide radical at 2.0mg/mL, the scavenging rate was 52.9% and 85.8%, respectively. Therefore, the results showed that maca polysaccharides had a high antioxidant activity and could be explored as the source of bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention.

    PubMed

    Chen, Huoliang; Ju, Ying; Li, Junjie; Yu, Min

    2012-01-01

    The crude polysaccharide (LEP) was extracted by hot water from the fruiting bodies of Lentinus edodes, and further purified by DEAE-cellulose and Sepharose CL-6B chromatography, giving three polysaccharide fractions coded as LEPA1, LEPB1 and LEPC1. In this study, their chemical and physical characteristics of polysaccharide fractions and antioxidant capacities, including scavenging activity against hydroxyl radicals, superoxide radicals and Fe(2+)-chelating ability, were valuated. The results showed that LEPC1 exhibited significantly antioxidant activity at a concentration-dependent manner. Therefore these results indicated that the water-extractable polysaccharide fraction was a potent antioxidant and could be developed to be new health medicine for fighting against various human diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    PubMed

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  1. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Thales H. F.; Vega-Sánchez, Miguel E.; Milagres, Adriane M. F.

    Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treatmore » the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. Results: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. Conclusions: The collective characteristics of the internode regions were related to the varied recalcitrance found in the

  2. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance

    DOE PAGES

    Costa, Thales H. F.; Vega-Sánchez, Miguel E.; Milagres, Adriane M. F.; ...

    2016-05-04

    Background: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treatmore » the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. Results: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. Conclusions: The collective characteristics of the internode regions were related to the varied recalcitrance found in the

  3. Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics.

    PubMed

    Torode, Thomas A; O'Neill, Rachel; Marcus, Susan E; Cornuault, Valérie; Pose, Sara; Lauder, Rebecca P; Kračun, Stjepan K; Rydahl, Maja Gro; Andersen, Mathias C F; Willats, William G T; Braybrook, Siobhan A; Townsend, Belinda J; Clausen, Mads H; Knox, J Paul

    2018-02-01

    A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis ( Arabidopsis thaliana ), Miscanthus x giganteus , and notably sugar beet ( Beta vulgaris ) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a β-1,6-galactosyl substitution of β-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic ( Allium sativum ) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear β-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls. © 2018 The author(s). All Rights Reserved.

  4. Stimulatory Effects of Polysaccharide Fraction from Solanum nigrum on RAW 264.7 Murine Macrophage Cells

    PubMed Central

    Razali, Faizan Naeem; Ismail, Amirah; Abidin, Nurhayati Zainal; Shuib, Adawiyah Suriza

    2014-01-01

    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth. PMID:25299340

  5. Interactions between soy protein from water-soluble soy extract and polysaccharides in solutions with polydextrose.

    PubMed

    Spada, Jordana C; Marczak, Ligia D F; Tessaro, Isabel C; Cardozo, Nilo S M

    2015-12-10

    This study focuses on the investigation of the interactions between polysaccharides (carrageenan and carboxymethylcellulose--CMC) and soy proteins from the water-soluble soy extract. The influence of pH (2-7) and protein-polysaccharide ratio (5:1-40:1) on the interaction between these polyelectrolytes was investigated in aqueous solutions with 10% of polydextrose and without polydextrose. The studied systems were analyzed in terms of pH-solubility profile of protein, ζ-potential, methylene blue-polysaccharide interactions, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and confocal laser scanning microscopy. Although the mixtures of soy extract with both carrageenan and CMC showed dependency on the pH and protein-polysaccharide ratio, they did not present the same behavior. Both polysaccharides modified the pH-solubility profile of the soy protein, shifting the pH range in which the coacervate is formed to a lower pH region with the decrease of the soy extract-polysaccharide ratio. The samples also presented detectable differences regarding to ζ-potential, DSC, FTIR and microscopy analyses. The complex formation was also detected even in a pH range where both biopolymers were net-negatively charged. The changes promoted by the presence of polydextrose were mainly detected by blue-polysaccharide interactions measures and confocal microscopy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu.

    PubMed

    Zhang, Tian-Tian; Lu, Chuan-Li; Jiang, Jian-Guo; Wang, Min; Wang, Dong-Mei; Zhu, Wei

    2015-10-05

    Polysaccharides of Rubus chingii Hu fruit and leaf were extracted to compare their antioxidant, anti-inflammatory, and anticancer activities against breast cancer cells MCF-7 and liver cancer cells Bel-7402. Results showed that all the tested bioactivities of polysaccharides from leaf (L-Ps) were better than those of polysaccharides from fruit (F-Ps). Response surface methodology was then used to optimize the extraction conditions of polysaccharides from leaf. Additionally, polysaccharides from fruit and leaf were characterized and their contents of total sugars, proteins and uronic acid were compared. It was found that polysaccharides from fruit and leaf were similar in IR and UV absorption, but significantly different in contents of total sugars, protein and uronic acid. Their elution profiles of DEAE-Sepharose fast flow column were different too. The main peak of polysaccharides from fruit was eluted with 0.3 mol/l NaCl solution and the main peak of polysaccharides from leaf was eluted with deionized water. The differences between the two polysaccharides may be responsible for their differences in bioactivities. Further studies are required to explore their complete structural characteristics, structure-activity relationship and the mechanism of their activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Antivirus effect of polysaccharides of brewer yeast in vitro].

    PubMed

    Li, F; Shi, Y; Guan, X; Zhang, S; Tian, T

    1998-03-01

    The antivirus effect of polysaccharides of brewer yeast from yeast mud on 13 kinds of viruses including DNA and RNA virus along with their mechanisms were studied. The result showed that this effect was remarkable on the infections with poliovirus III, adenovirus III, ECHO6 virus, enterovirus 71, vesicular stomatitis virus, herpesvirus I, II, coxsackie A16 virus and coxsackie B3 virus. The polysaccharides of brewer yeast could also inhibit the development of cytopathic effect(CPE) and protect cultural cells from being infected with the above viruses.

  8. Polysaccharide production by lactic acid bacteria: from genes to industrial applications.

    PubMed

    Zeidan, Ahmad A; Poulsen, Vera Kuzina; Janzen, Thomas; Buldo, Patrizia; Derkx, Patrick M F; Øregaard, Gunnar; Neves, Ana Rute

    2017-08-01

    The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure-function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure-function-application relationships is essential to achieve this ambitious goal. © FEMS 2017.

  9. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    PubMed Central

    Esteves, Ana I. S.; Nicolai, Marisa; Humanes, Madalena; Goncalves, Joao

    2011-01-01

    The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition). Cliona celata pellets showed low polysaccharide content (bellow 38.5%) and almost no anti-HIV activity (<10% inhibition). Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%), showed only modest bioactivity (<36% HIV-1 inhibition). Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98%) and the most active against HIV-1 (up to 95% inhibition). Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161) yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa), whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor). PMID:21339952

  10. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.

    PubMed

    Grossutti, Michael; Dutcher, John R

    2016-03-14

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.

  11. Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis.

    PubMed

    Nelson, Michelle; Prior, Joann L; Lever, M Stephen; Jones, Helen E; Atkins, Timothy P; Titball, Richard W

    2004-12-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is a major cause of morbidity and mortality in endemic regions. Currently there is no human vaccine against melioidosis. In this study, LPS or capsular polysaccharide was used to immunize BALB/c mice. The different polysaccharide antigens induced antibody responses. Mice vaccinated with LPS developed predominantly IgM and IgG3 responses. Contrastingly, mice vaccinated with capsular polysaccharide developed a predominantly IgG2b response. After immunization, mice were challenged by the intra-peritoneal route and an increased mean time to death was observed compared with unvaccinated controls. Immunization with LPS provided an optimal protective response. Mice challenged by the aerosol route showed a small increase in the mean time to death compared with the unvaccinated controls. The passive transfer of antigen from immunized into naive mice provided protection against a subsequent challenge. This study is the first time antigens protective by active immunization have been identified and suggests that polysaccharides have potential as vaccine candidates against melioidosis.

  12. Synthetic and semi-synthetic chondroitin sulfate oligosaccharides, polysaccharides, and glycomimetics.

    PubMed

    Bedini, Emiliano; Parrilli, Michelangelo

    2012-07-15

    Chondroitin sulfate (CS) is a sulfated polysaccharide involved in a myriad of biological processes. Due to the variable sulfation pattern of CS polymer chains, the need to study in detail structure-activity relationships regarding CS biomedical features has provoked much interest in obtaining synthetic CS species. This paper reviews two decades of synthetic and semi-synthetic CS oligosaccharides, polysaccharides, and glycomimetics obtained by chemical, chemoenzymatic, enzymatic, and microbiological-chemical strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system.

    PubMed

    Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin

    2016-11-20

    This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  15. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    PubMed Central

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-01-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care. PMID:26932472

  16. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    NASA Astrophysics Data System (ADS)

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-03-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care.

  17. A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo.

    PubMed

    You, Ruxu; Wang, Kaiping; Liu, Jinyu; Liu, Maochang; Luo, Li; Zhang, Yu

    2011-12-01

    Polysaccharide purified Lentinus edodes (Berk.) Sing (Tricholomataceae) has been reported to attenuate oxidative stress in vitro. This study investigated whether polysaccharides from L. edodes with different molecular weight have protective effects against oxidative stress induced by D-galactose (D-gal) in vivo, and determined the specific relationship between molecular weight and antioxidant activity. In the present study, we successfully obtained three purified polysaccharides, coded as LT1, LT2, and LT3, and their molecular weights were 25.5, 306.2, and 605.4 kDa, respectively. The D-gal-treated mice received three polysaccharides once daily for 60 days. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), the content of malondialdehyde (MDA), and erythrocyte membrane fluidity were measured to evaluate the changes of the antioxidant ability. It was demonstrated that the administration of LT1, LT2, and LT3 could improve the antioxidant status to different levels. Furthermore, LT2 exhibited the highest antioxidant ability among these samples in vivo. Indeed, LT2 significantly decreased the content of MDA in liver (15.91 ± 0.31 versus 23.79 ± 1.18 nmol/mg protein for the model group, p < 0.05), enhanced the fluidity of erythrocyte membrane (2.458 ± 0.023 versus 2.167 ± 0.024 for the model group, p < 0.05), and increased the activities of SOD (147.19 ± 4.90 versus 82.26 ± 5.55 units/mg protein for the model group, p < 0.05) and GSH-Px (310.91 ± 6.24 versus 243.64 ± 6.77 units/mg protein for the model group, p < 0.05) in liver. The LT2 had a potential to be used as a novel natural antioxidant.

  18. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    PubMed

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field

    PubMed Central

    Liu, Chao; Sun, Yonghai; Mao, Qian; Guo, Xiaolei; Li, Peng; Liu, Yang; Xu, Na

    2016-01-01

    Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP) extracted by pulsed electric field (PEF) in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta. PMID:27338370

  20. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis1

    PubMed Central

    Amanda, Dhika; Ingram, Gwyneth C.

    2016-01-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling. PMID:27756823