Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2018-06-01
Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.
NASA Astrophysics Data System (ADS)
Tang, Zhanqi; Jiang, Nan
2018-05-01
This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.
Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.
Baars, W J; Hutchins, N; Marusic, I
2017-03-13
Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Scale growth of structures in the turbulent boundary layer with a rod-roughened wall
NASA Astrophysics Data System (ADS)
Lee, Jin; Kim, Jung Hoon; Lee, Jae Hwa
2016-01-01
Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.
Large-scale influences in near-wall turbulence.
Hutchins, Nicholas; Marusic, Ivan
2007-03-15
Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence J.
We examine the role of periodic sinusoidal free-stream disturbances on the inner law law-of-the-wall (log-law) for turbulent boundary layers. This model serves a surrogate for the interaction of flight vehicles with atmospheric disturbances. The approximate skin friction expression that is derived suggests that free-stream disturbances can cause enhancement of the mean skin friction. Considering the influence of grid generated free stream turbulence in the laminar sublayer/log law region (small scale/high frequency) the model recovers the well-known shear layer enhancement suggesting an overall validity for the approach. The effect on the wall shear associated with the lower frequency due to themore » passage of the vehicle through large (vehicle scale) atmospheric disturbances is likely small i.e. on the order 1% increase for turbulence intensities on the order of 2%. The increase in wall pressure fluctuation which is directly proportional to the wall shear stress is correspondingly small.« less
2017-01-01
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167576
Structure of high and low shear-stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, G.; de Kat, R.; Ganapathisubramani, B.
2018-01-01
Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.
On the large eddy simulation of turbulent flows in complex geometry
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1993-01-01
Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-13
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Small-Scale Metal Tanks for High Pressure Storage of Fluids
NASA Technical Reports Server (NTRS)
London, Adam (Inventor)
2016-01-01
Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.
MSE wall void repair effect on corrosion of reinforcement - phase 2 : specialty fill materials.
DOT National Transportation Integrated Search
2015-08-01
This project provided information and recommendations for material selection for best : corrosion control of reinforcement in mechanically stabilized earth (MSE) walls with void repairs. The : investigation consisted of small- and large-scale experim...
Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Kristy, Michael H.
1995-01-01
A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.
2016-08-03
insulated from behind (using an air gap) as shown in figure III.3-1c. Each of the heated side walls are instrumented with seven equally-spaced T-Type...AFRL-AFOSR-VA-TR-2016-0339 Enhanced convection heat transfer using small-scale vorticity concentrations effected by flow-driven, aeroelastically...public release. Enhanced Forced Convection Heat Transfer using Small-Scale Vorticity Concentrations Effected by Flow-Driven, Aeroelastically Vibrating
Failure evolution in granular material retained by rigid wall in active mode
NASA Astrophysics Data System (ADS)
Pietrzak, Magdalena; Leśniewska, Danuta
2012-10-01
This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.
Active earth pressure model tests versus finite element analysis
NASA Astrophysics Data System (ADS)
Pietrzak, Magdalena
2017-06-01
The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.
Extremely high wall-shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
Cosmological perturbations of axion with a dynamical decay constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste; Takahashi, Fuminobu
2016-08-25
A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the numbermore » of degenerate vacua along the axion potential.« less
NASA Astrophysics Data System (ADS)
Obabko, Aleksandr Vladimirovich
Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.
Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram
2017-03-13
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Richter, Nicole; Poland, Michael P.; Lundgren, Paul R.
2013-04-01
On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai`i, heralded the formation of a new vent along the east wall of Halema`uma`u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse—information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.
Richter, Nichole; Poland, Michael P.; Lundgren, Paul R.
2013-01-01
On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai‘i, heralded the formation of a new vent along the east wall of Halema‘uma‘u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse -- information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.
Domain walls in the extensions of the Standard Model
NASA Astrophysics Data System (ADS)
Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł
2018-05-01
Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.
Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets
NASA Astrophysics Data System (ADS)
Pouransari, Z.; Biferale, L.; Johansson, A. V.
2015-02-01
The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.
NASA Astrophysics Data System (ADS)
Ranjan, R.; Menon, S.
2018-04-01
The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.
Inner-outer interactions in a turbulent boundary layer overlying complex roughness
NASA Astrophysics Data System (ADS)
Pathikonda, Gokul; Christensen, Kenneth T.
2017-04-01
Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.
Skin Friction Reduction Through Large-Scale Forcing
NASA Astrophysics Data System (ADS)
Bhatt, Shibani; Artham, Sravan; Gnanamanickam, Ebenezer
2017-11-01
Flow structures in a turbulent boundary layer larger than an integral length scale (δ), referred to as large-scales, interact with the finer scales in a non-linear manner. By targeting these large-scales and exploiting this non-linear interaction wall shear stress (WSS) reduction of over 10% has been achieved. The plane wall jet (PWJ), a boundary layer which has highly energetic large-scales that become turbulent independent of the near-wall finer scales, is the chosen model flow field. It's unique configuration allows for the independent control of the large-scales through acoustic forcing. Perturbation wavelengths from about 1 δ to 14 δ were considered with a reduction in WSS for all wavelengths considered. This reduction, over a large subset of the wavelengths, scales with both inner and outer variables indicating a mixed scaling to the underlying physics, while also showing dependence on the PWJ global properties. A triple decomposition of the velocity fields shows an increase in coherence due to forcing with a clear organization of the small scale turbulence with respect to the introduced large-scale. The maximum reduction in WSS occurs when the introduced large-scale acts in a manner so as to reduce the turbulent activity in the very near wall region. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0194 monitored by Dr. Douglas Smith.
Fabrication method for small-scale structures with non-planar features
Burckel, David Bruce; Ten Eyck, Gregory A.
2016-09-20
The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.
Fabrication of small-scale structures with non-planar features
Burckel, David B.; Ten Eyck, Gregory A.
2015-11-19
The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.
Lagrangian acceleration statistics in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Stelzenmuller, Nickolas; Polanco, Juan Ignacio; Vignal, Laure; Vinkovic, Ivana; Mordant, Nicolas
2017-05-01
Lagrangian acceleration statistics in a fully developed turbulent channel flow at Reτ=1440 are investigated, based on tracer particle tracking in experiments and direct numerical simulations. The evolution with wall distance of the Lagrangian velocity and acceleration time scales is analyzed. Dependency between acceleration components in the near-wall region is described using cross-correlations and joint probability density functions. The strong streamwise coherent vortices typical of wall-bounded turbulent flows are shown to have a significant impact on the dynamics. This results in a strong anisotropy at small scales in the near-wall region that remains present in most of the channel. Such statistical properties may be used as constraints in building advanced Lagrangian stochastic models to predict the dispersion and mixing of chemical components for combustion or environmental studies.
NASA Astrophysics Data System (ADS)
Yang, Xiang
2017-11-01
The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.
Measurements of the wall-normal velocity component in very high Reynolds number pipe flow
NASA Astrophysics Data System (ADS)
Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.
2012-11-01
Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall
NASA Astrophysics Data System (ADS)
Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team
2015-11-01
Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).
Interplay between shape and roughness in early-stage microcapillary imbibition.
Girardo, Salvatore; Palpacelli, Silvia; De Maio, Alessandro; Cingolani, Roberto; Succi, Sauro; Pisignano, Dario
2012-02-07
Flows in microcapillaries and associated imbibition phenomena play a major role across a wide spectrum of practical applications, from oil recovery to inkjet printing and from absorption in porous materials and water transport in trees to biofluidic phenomena in biomedical devices. Early investigations of spontaneous imbibition in capillaries led to the observation of a universal scaling behavior, known as the Lucas-Washburn (LW) law. The LW allows abstraction of many real-life effects, such as the inertia of the fluid, irregularities in the wall geometry, and the finite density of the vacuum phase (gas or vapor) within the channel. Such simplifying assumptions set a constraint on the design of modern microfluidic devices, operating at ever-decreasing space and time scales, where the aforementioned simplifications go under serious question. Here, through a combined use of leading-edge experimental and simulation techniques, we unravel a novel interplay between global shape and nanoscopic roughness. This interplay significantly affects the early-stage energy budget, controlling front propagation in corrugated microchannels. We find that such a budget is governed by a two-scale phenomenon: The global geometry sets the conditions for small-scale structures to develop and propagate ahead of the main front. These small-scale structures probe the fine-scale details of the wall geometry (nanocorrugations), and the additional friction they experience slows the entire front. We speculate that such a two-scale mechanism may provide a fairly general scenario to account for extra dissipative phenomena occurring in capillary flows with nanocorrugated walls.
A two-layer multiple-time-scale turbulence model and grid independence study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.
Experimental, theoretical, and numerical studies of small scale combustion
NASA Astrophysics Data System (ADS)
Xu, Bo
Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number to describe the competition between the mass transport in gas phase and the heat conduction in gas and solid phases was defined. Experimental observation and theoretical analysis suggested that the flame-wall coupling significantly increased the effective Lewis number and led to a new mechanism to promote the thermal diffusion instability. Due to the short flow residence time in small scale combustion, reactants, and oxidizers may not be able to be fully premixed before combustion. As such, non-premixed combustion plays an important role. Non-premixed mixing layer combustion within a constrained mesoscale channel was studied. Depending on the flow rate, it was found that there were two different flame regimes, an unsteady bimodal flame regime and a flame street regime with multiple stable triple flamelets. This multiple triple flame structure was identified experimentally for the first time. A scaling analytical model was developed to qualitatively explain the mechanism of flame streets. The effects of flow velocity, wall temperature, and Lewis number on the distance between flamelets and the diffusion flame length were also investigated. The results showed that the occurrence of flame street regimes was a combined effect of heat loss, curvature, diffusion, and dilution. To complete this thesis, experiments were conducted to measure the OH concentration using Planar Laser Induced Fluorescence (PLIF) in a confined mesoscale combustor. Some preliminary results have been obtained for the OH concentration of flamelets in a flame street. When the scale of the micro reactor is further reduced, the rarefied gas effect may become significant. In this thesis, a new concentration slip model to describe the rarefied gas effect on the species transport in microscale chemical reactors was obtained. The present model is general and recovers the existing models in the limiting cases. The analytical results showed the concentration slip was dominated by two different mechanisms, the surface reaction induced concentration slip (RIC) and the temperature slip induced concentration slip (TIC). It is found that the magnitude of RIC slip was proportional to the product of the Damkohler number and Knudsen number. The results showed the impact of reaction induced concentration slip (RIC slip) effects on catalytic reactions strongly depended on the Damkohler number, the Knudsen number, and the surface accommodation coefficient.
NASA Astrophysics Data System (ADS)
Ni, Weidan; Lu, Lipeng; Fang, Jian; Moulinec, Charles; Yao, Yufeng
2018-05-01
The effect of spanwise alternatively distributed strips (SADS) control on turbulent flow in a plane channel has been studied by direct numerical simulations to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuation, and their potential in suppressing flow separation. SADS control is realized by alternatively arranging out-of-phase control (OPC) and in-phase control (IPC) wall actuations on the lower channel wall surface, in the spanwise direction. It is found that the coherent structures are suppressed or enhanced alternatively by OPC or IPC, respectively, leading to the formation of a vertical shear layer, which is responsible for the LSSVs’ presence. Large-scale low-speed region can also be observed above the OPC strips, which resemble large-scale low-speed streaks. LSSVs are found to be in a statistically-converged steady state and their cores are located between two neighboring OPC and IPC strips. Their motions contribute significantly to the momentum transport in the wall-normal and spanwise directions, demonstrating their potential ability to suppress flow separation.
QCD axion dark matter from long-lived domain walls during matter domination
NASA Astrophysics Data System (ADS)
Harigaya, Keisuke; Kawasaki, Masahiro
2018-07-01
The domain wall problem of the Peccei-Quinn mechanism can be solved if the Peccei-Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dominated epoch. We show how the viable parameter space is expanded.
Small-Scale Tests of MX Vertical Shelter Structures.
1983-06-29
models were built with as much geometric and material similitude as practical. They 7were not identical to the 1/3-scale structures tested in the VST ...comparison with the 1/30-scale models and the 1/6-scale models, the 1/3-scale VST 7 models had different geometry (wall thickness variations), different...1/30-scale and 1/6-scale results with the 1/3-scale VST results. For example, the strains measured in the 1/3-scale ’B’ structure are about twice as
NASA Astrophysics Data System (ADS)
Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S.
2011-12-01
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of `superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.
Sequential buckling of an elastic wall
NASA Astrophysics Data System (ADS)
Bico, Jose; Bense, Hadrien; Keiser, Ludovic; Roman, Benoit; Melo, Francisco; Abkarian, Manouk
A beam under quasistatic compression classically buckles beyond a critical threshold. In the case of a free beam, the lowest buckling mode is selected. We investigate the case of a long ``wall'' grounded of a compliant base and compressed in the axial compression. In the case of a wall of slender rectangular cross section, the selected buckling mode adopts a nearly fixed wavelength proportional to the height of the wall. Higher compressive loads only increase the amplitude of the buckle. However if the cross section has a sharp shape (such as an Eiffel tower profile), we observe successive buckling modes of increasing wavelength. We interpret this unusual evolution in terms of scaling arguments. At small scales, this variable periodicity might be used to develop tunable optical devices. We thank ECOS C12E07, CNRS-CONICYT, and Fondecyt Grant No. N1130922 for partially funding this work.
NASA Astrophysics Data System (ADS)
Hidalgo, Pablo; Glezer, Ari
2011-11-01
Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.
Small scale exact coherent structures at large Reynolds numbers in plane Couette flow
NASA Astrophysics Data System (ADS)
Eckhardt, Bruno; Zammert, Stefan
2018-02-01
The transition to turbulence in plane Couette flow and several other shear flows is connected with saddle node bifurcations in which fully three-dimensional, nonlinear solutions to the Navier-Stokes equation, so-called exact coherent states (ECS), appear. As the Reynolds number increases, the states undergo secondary bifurcations and their time-evolution becomes increasingly more complex. Their spatial complexity, in contrast, remains limited so that these states cannot contribute to the spatial complexity and cascade to smaller scales expected for higher Reynolds numbers. We here present families of scaling ECS that exist on ever smaller scales as the Reynolds number is increased. We focus in particular on two such families for plane Couette flow, one centered near the midplane and the other close to a wall. We discuss their scaling and localization properties and the bifurcation diagrams. All solutions are localized in the wall-normal direction. In the spanwise and downstream direction, they are either periodic or localized as well. The family of scaling ECS localized near a wall is reminiscent of attached eddies, and indicates how self-similar ECS can contribute to the formation of boundary layer profiles.
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
Short, Mark; Jackson, Scott I.
2015-01-23
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Jackson, Scott I.
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Predominance of sperm motion in corners.
Nosrati, Reza; Graham, Percival J; Liu, Qiaozhi; Sinton, David
2016-05-23
Sperm migration through the female tract is crucial to fertilization, but the role of the complex and confined structure of the fallopian tube in sperm guidance remains unknown. Here, by confocal imaging microchannels head-on, we distinguish corner- vs. wall- vs. bulk-swimming bull sperm in confined geometries. Corner-swimming dominates with local areal concentrations as high as 200-fold that of the bulk. The relative degree of corner-swimming is strongest in small channels, decreases with increasing channel size, and plateaus for channels above 200 μm. Corner-swimming remains predominant across the physiologically-relevant range of viscosity and pH. Together, boundary-following sperm account for over 95% of the sperm distribution in small rectangular channels, which is similar to the percentage of wall swimmers in circular channels of similar size. We also demonstrate that wall-swimming sperm travel closer to walls in smaller channels (~100 μm), where the opposite wall is within the hydrodynamic interaction length-scale. The corner accumulation effect is more than the superposition of the influence of two walls, and over 5-fold stronger than that of a single wall. These findings suggest that folds and corners are dominant in sperm migration in the narrow (sub-mm) lumen of the fallopian tube and microchannel-based sperm selection devices.
Predominance of sperm motion in corners
Nosrati, Reza; Graham, Percival J.; Liu, Qiaozhi; Sinton, David
2016-01-01
Sperm migration through the female tract is crucial to fertilization, but the role of the complex and confined structure of the fallopian tube in sperm guidance remains unknown. Here, by confocal imaging microchannels head-on, we distinguish corner- vs. wall- vs. bulk-swimming bull sperm in confined geometries. Corner-swimming dominates with local areal concentrations as high as 200-fold that of the bulk. The relative degree of corner-swimming is strongest in small channels, decreases with increasing channel size, and plateaus for channels above 200 μm. Corner-swimming remains predominant across the physiologically-relevant range of viscosity and pH. Together, boundary-following sperm account for over 95% of the sperm distribution in small rectangular channels, which is similar to the percentage of wall swimmers in circular channels of similar size. We also demonstrate that wall-swimming sperm travel closer to walls in smaller channels (~100 μm), where the opposite wall is within the hydrodynamic interaction length-scale. The corner accumulation effect is more than the superposition of the influence of two walls, and over 5-fold stronger than that of a single wall. These findings suggest that folds and corners are dominant in sperm migration in the narrow (sub-mm) lumen of the fallopian tube and microchannel-based sperm selection devices. PMID:27211846
Dogan, Eda; Hearst, R. Jason
2017-01-01
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to ‘simulate’ high Reynolds number wall–turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167584
Motion of a Spherical Domain Wall and the Large-Scale Structure Formation
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Tomita, K.
1991-11-01
The evolution of a wall-like structure in the universe is investigated by assuming a simplified model of a domain wall. The domain wall is approximated as a thin spherical shell with domain wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic manner, and its motion in an expanding universe is numerically studied in the general-relativistic treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic age, in order that the walls avoid the collapse to the present time and play an important role in the structure formation of the universe. It is shown that, in spite of the above interaction, the strong restriction is imposed on the surface density of the domain walls and the allowed values are too small to have any influences on the background model.
NASA Astrophysics Data System (ADS)
McKeon, Beverley
2015-11-01
The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.
2017-06-01
This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.
Comparison of the U.S. and European approaches to passenger train fire safety
DOT National Transportation Integrated Search
2012-09-28
The Federal Railroad Administration (FRA) approach to passenger rail equipment fires safety requires the use of primarily small-scale flammability and smoke emission tests and performance criteria for interior materials, such as seats and wall and ce...
Statistics of spatial derivatives of velocity and pressure in turbulent channel flow
NASA Astrophysics Data System (ADS)
Vreman, A. W.; Kuerten, J. G. M.
2014-08-01
Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure are reported for turbulent channel flow at Reτ = 590. The statistics were extracted from a high-resolution direct numerical simulation. To quantify the anisotropic behavior of fine-scale structures, the variances of the derivatives are compared with the theoretical values for isotropic turbulence. It is shown that appropriate combinations of first- and second-order velocity derivatives lead to (directional) viscous length scales without explicit occurrence of the viscosity in the definitions. To quantify the non-Gaussian and intermittent behavior of fine-scale structures, higher-order moments and probability density functions of spatial derivatives are reported. Absolute skewnesses and flatnesses of several spatial derivatives display high peaks in the near wall region. In the logarithmic and central regions of the channel flow, all first-order derivatives appear to be significantly more intermittent than in isotropic turbulence at the same Taylor Reynolds number. Since the nine variances of first-order velocity derivatives are the distinct elements of the turbulence dissipation, the budgets of these nine variances are shown, together with the budget of the turbulence dissipation. The comparison of the budgets in the near-wall region indicates that the normal derivative of the fluctuating streamwise velocity (∂u'/∂y) plays a more important role than other components of the fluctuating velocity gradient. The small-scale generation term formed by triple correlations of fluctuations of first-order velocity derivatives is analyzed. A typical mechanism of small-scale generation near the wall (around y+ = 1), the intensification of positive ∂u'/∂y by local strain fluctuation (compression in normal and stretching in spanwise direction), is illustrated and discussed.
Non-linear scale interactions in a forced turbulent boundary layer
NASA Astrophysics Data System (ADS)
Duvvuri, Subrahmanyam; McKeon, Beverley
2015-11-01
A strong phase-organizing influence exerted by a single synthetic large-scale spatio-temporal mode on directly-coupled (through triadic interactions) small scales in a turbulent boundary layer forced by a spatially-impulsive dynamic wall-roughness patch was previously demonstrated by the authors (J. Fluid Mech. 2015, vol. 767, R4). The experimental set-up was later enhanced to allow for simultaneous forcing of multiple scales in the flow. Results and analysis are presented from a new set of novel experiments where two distinct large scales are forced in the flow by a dynamic wall-roughness patch. The internal non-linear forcing of two other scales with triadic consistency to the artificially forced large scales, corresponding to sum and difference in wavenumbers, is dominated by the latter. This allows for a forcing-response (input-output) type analysis of the two triadic scales, and naturally lends itself to a resolvent operator based model (e.g. McKeon & Sharma, J. Fluid Mech. 2010, vol. 658, pp. 336-382) of the governing Navier-Stokes equations. The support of AFOSR (grant #FA 9550-12-1-0469, program manager D. Smith) is gratefully acknowledged.
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2006-12-31
The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy-dissipation rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.
Downstream fish passage guide walls: A hydraulic scale model analysis
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2018-01-01
Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R
2015-06-30
The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.
2015-01-01
The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. PMID:26080447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.
We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; ...
2015-06-15
We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less
Ability of finger-jointed lumber to maintain load at elevated temperatures
Douglas R. Rammer; Samuel L. Zelinka; Laura E Hasburgh; Steven T. Craft
2018-01-01
This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an...
Random close packing of disks and spheres in confined geometries
NASA Astrophysics Data System (ADS)
Desmond, Kenneth W.; Weeks, Eric R.
2009-11-01
Studies of random close packing of spheres have advanced our knowledge about the structure of systems such as liquids, glasses, emulsions, granular media, and amorphous solids. In confined geometries, the structural properties of random-packed systems will change. To understand these changes, we study random close packing in finite-sized confined systems, in both two and three dimensions. Each packing consists of a 50-50 binary mixture with particle size ratio of 1.4. The presence of confining walls significantly lowers the overall maximum area fraction (or volume fraction in three dimensions). A simple model is presented, which quantifies the reduction in packing due to wall-induced structure. This wall-induced structure decays rapidly away from the wall, with characteristic length scales comparable to the small particle diameter.
NASA Astrophysics Data System (ADS)
Atkinson, Callum; Amili, Omid; Stanislas, Michel; Cuvier, Christophe; Foucaut, Jean-Marc; Srinath, Sricharan; Laval, Jean-Philippe; Kaehler, Christian; Hain, Rainer; Scharnowski, Sven; Schroeder, Andreas; Geisler, Reinhard; Agocs, Janos; Roese, Anni; Willert, Christian; Klinner, Joachim; Soria, Julio
2016-11-01
The study of adverse pressure gradient turbulent boundary layers is complicated by the need to characterise both the local pressure gradient and it's upstream flow history. It is therefore necessary to measure a significant streamwise domain at a resolution sufficient to resolve the small scales features. To achieve this collaborative particle image velocimetry (PIV) measurements were performed in the large boundary layer wind-tunnel at the Laboratoire de Mecanique de Lille, including: planar measurements spanning a streamwise domain of 3.5m using 16 cameras covering 15 δ spanwise wall-normal stereo-PIV measurements, high-speed micro-PIV of the near wall region and wall shear stress; and streamwise wall-normal PIV in the viscous sub layer. Details of the measurements and preliminary results will be presented.
An efficient liner cooling scheme for advanced small gas turbine combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.
1993-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.
NASA Astrophysics Data System (ADS)
Shimokuri, D.; Hara, T.; Matsumoto, R.
2015-10-01
A small-scale vortex combustion power system has been developed using a thermo-electric device (TED). The system consisted of a heat medium, TED, and cooling plates. A vortex combustion chamber (7 mm inner diameter and 27 mm long) was fabricated inside the heat medium (40 × 40 × 20 mm and 52 g of duralumin). It was found that a stable propane/air flame could be established in the narrow 7 mm channel even for the large heat input conditions of 213 ~ 355 W. With a couple of TEDs, the maximum of 8.1 W (9.8 V × 0.83 A) could be successfully obtained for 355 W heat input, which corresponded to the energy conversion rate of 2.4%. The results of the gas and the combustor wall temperature measurements showed that the heat transfer from the burned gas to combustor wall was significantly enhanced by the vortex flow, which contributed to the relatively high efficiency energy conversion on the vortex combustion power system.
NASA Astrophysics Data System (ADS)
Kergaravat, Charlie; Ribes, Charlotte; Darnault, Romain; Callot, Jean-Paul; Ringenbach, Jean-Claude
2017-04-01
The aim of this study is to present the influence of regional shortening on the evolution of a minibasin province and the associated foldbelt geometry based on a natural example, the Sivas Basin, then compared to a physical experiment. The Sivas Basin in the Central Anatolian Plateau (Turkey) is a foreland fold-and-thrust belt, displaying in the central part a typical wall and basin province characterized by spectacularly exposed minibasins, separated by continuous steep-flanked walls and diapirs over a large area (45x25 km). The advance of the orogenic wedge is expressed within the second generation of minibasins by a shortening-induced squeezing of diapirs. Network of walls and diapirs evolve form polygonal to linear pattern probably induced by the squeezing of pre-existing evaporite walls and diapirs, separating linear primary minibasins. From base to top of secondary minibasins, halokinetic structures seem to evolve from small-scale objects along diapir flanks, showing hook and wedges halokinetic sequences, to large stratigraphic wedging, megaflap and salt sheets. Minibasins show progressively more linear shape at right angle to the regional shortening and present angular unconformities along salt structures related to the rejuvenation of pre-existing salt diapirs and walls probably encouraged by the shortening tectonic regime. The advance of the fold-and-thrust belts during the minibasins emplacement is mainly expressed during the late stage of minibasins development by a complex polygonal network of small- and intermediate-scale tectonic objects: (1) squeezed evaporite walls and diapirs, sometimes thrusted forming oblique or vertical welds, (2) allochthonous evaporite sheets, (3) thrusts and strike-slip faults recording translation and rotation of minibasins about vertical axis. Some minibasins are also tilted, with up to vertical position, associated with both the salt expulsion during minibasins sinking, recorded by large stratigraphic wedge, and the late thrust faults developments. The influence of the regional shortening deformation seems to be effective when the majority of the evaporite is remobilized toward the foreland. Results of scaled physical experiments, where continuous shortening is applied during minibasins emplacement, closely match with the deformation patterns observed in the Sivas minibasins. Shortening induce deformations such as translation of minibasins basinward, strike-slip fault zones along minibasin margin, rejuvenation of silicon walls and diapirs, emergence of silicon glaciers and rotation of minibasins along vertical and horizontal axis.
Elastohydrodynamic Lift at a Soft Wall
NASA Astrophysics Data System (ADS)
Davies, Heather S.; Débarre, Delphine; El Amri, Nouha; Verdier, Claude; Richter, Ralf P.; Bureau, Lionel
2018-05-01
We study experimentally the motion of nondeformable microbeads in a linear shear flow close to a wall bearing a thin and soft polymer layer. Combining microfluidics and 3D optical tracking, we demonstrate that the steady-state bead-to-surface distance increases with the flow strength. Moreover, such lift is shown to result from flow-induced deformations of the layer, in quantitative agreement with theoretical predictions from elastohydrodynamics. This study thus provides the first experimental evidence of "soft lubrication" at play at small scale, in a system relevant, for example, to the physics of blood microcirculation.
The minimal flow unit in near-wall turbulence
NASA Technical Reports Server (NTRS)
Jimeez, Javier; Moin, Parviz
1991-01-01
Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.
NASA Astrophysics Data System (ADS)
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.
Knudsen pump inspired by Crookes radiometer with a specular wall
NASA Astrophysics Data System (ADS)
Baier, Tobias; Hardt, Steffen; Shahabi, Vahid; Roohi, Ehsan
2017-03-01
A rarefied gas is considered in a channel consisting of two infinite parallel plates between which an evenly spaced array of smaller plates is arranged normal to the channel direction. Each of these smaller plates is assumed to possess one ideally specularly reflective and one ideally diffusively reflective side. When the temperature of the small plates differs from the temperature of the sidewalls of the channel, these boundary conditions result in a temperature profile around the edges of each small plate that breaks the reflection symmetry along the channel direction. This in turn results in a force on each plate and a net gas flow along the channel. The situation is analyzed numerically using the direct simulation Monte Carlo method and compared with analytical results where available. The influence of the ideally specularly reflective wall is assessed by comparing with simulations using a finite accommodation coefficient at the corresponding wall. The configuration bears some similarity to a Crookes radiometer, where a nonsymmetric temperature profile at the radiometer vanes is generated by different temperatures on each side of the vane, resulting in a motion of the rotor. The described principle may find applications in pumping gas on small scales driven by temperature gradients.
Investigation on the electron flux to the wall in the VENUS ion source
NASA Astrophysics Data System (ADS)
Thuillier, T.; Angot, J.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.
2016-02-01
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.
Rathnayake, Samira; Mongan, John; Torres, Andrew S.; Colborn, Robert; Gao, Dong-Wei; Yeh, Benjamin M; Fu, Yanjun
2016-01-01
To assess the ability of dual-energy CT (DECT) to separate intravenous contrast of bowel wall from intraluminal contrast, we scanned 16 rabbits on a clinical DECT scanner: n=3 using only iodinated intravenous contrast; and n=13 double-contrast enhanced scans using iodinated intravenous contrast and experimental enteric non-iodinated contrast agents in the bowel lumen (5 bismuth-, 4 tungsten-, and 4 tantalum-based). Representative image pairs from conventional CT images and DECT iodine density maps of small bowel (116 pairs from 232 images) were viewed by four abdominal imaging attending radiologists to independently score each comparison pair on a visual analog scale (−100 to +100%) for: 1) preference in small bowel wall visualization; and 2) preference in completeness of intraluminal enteric contrast subtraction. Median small bowel wall visualization was scored 39 and 42 percentage points (95% CI: 30–44% and 36–45%, p<0.001 both) higher at double-contrast DECT than at conventional CT with enteric tungsten and tantalum contrast, respectively. Median small bowel wall visualization at double-contrast DECT was scored 29 and 35 percentage points (95% CI: 20–35% and 33–39%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Median completeness of intraluminal enteric contrast subtraction in double-contrast DECT iodine density maps was scored 28 and 29 percentage points (95% CI: 15–31% and 28–33%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Results suggest that in vivo double-contrast DECT with iodinated intravenous and either tantalum- or tungsten-based enteric contrast provide better visualization of small bowel than conventional CT. PMID:26892945
Implication of Taylor's hypothesis on amplitude modulation
NASA Astrophysics Data System (ADS)
Howland, Michael; Yang, Xiang
2017-11-01
Amplitude modulation is a physical phenomenon which describes the non-linear inter-scale interaction between large and small scales in a turbulent wall-bounded flow. The amplitude of the small scale fluctuations are modulated by the large scale flow structures. Due to the increase of amplitude modulation as a function of Reynolds number (Reτ = δuτ / ν), this phenomenon is frequently studied using experimental temporal 1D signals, taken using hot-wire anemometry. Typically, Taylor's frozen turbulence hypothesis has been invoked where the convection by velocity fluctuations is neglected and the mean velocity is used as the convective velocity. At high Reynolds numbers, turbulent fluctuations are comparable to the mean velocity in the near wall region (y+ O(10)), and as a result, using a constant global convective velocity systematically locally compresses or stretches a velocity signal when converting from temporal to spatial domain given a positive or negative fluctuation respectively. Despite this, temporal hot-wire data from wind tunnel or field experiments of high Reynolds number boundary layer flows can still be used for measuring modulation provided that the local fluid velocity is used as the local convective velocity. MH is funded through the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518 and the Stanford Graduate Fellowship. XY is funded by the US AFOSR, Grant No. 1194592-1-TAAHO monitored by Dr. Ivett Leyva.
Thermionic Emission of Single-Wall Carbon Nanotubes Measured
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.
2004-01-01
Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.
The development of methods for predicting and measuring distribution patterns of aerial sprays
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.
1979-01-01
The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.
Terêncio, D P S; Sanches Fernandes, L F; Cortes, R M V; Moura, J P; Pacheco, F A L
2018-02-01
Rainwater harvesting (RWH) is used to support small-scale agriculture and handle seasonal water availability, especially in regions where populations are scattered or the costs to develop surface or groundwater resources are high. However, questions may arise as whether this technique can support larger-scale irrigation projects and in complement help the struggle against wildfires in agro-forested watersheds. The issue is relevant because harvested rainwater in catchments is usually accumulated in small-capacity reservoirs created by small-height dams. In this study, a RWH site allocation method was improved from a previous model, by introducing the dam wall height as evaluation parameter. The studied watershed (Sabor River basin) is mostly located in the Northeast of Portugal. This is a rural watershed where agriculture and forestry uses are dominant and where ecologically relevant regions (e.g., Montezinho natural park) need to be protected from wildfires. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The height parameter was set to 3m because this value is a reference to detention basins that hold sustainability values (e.g., landscape integration, environmental protection), but the irrigation capacity under these settings was smaller than 10ha in 50% of cases, while continuous arable lands in the Sabor basin cover on average 222ha. Besides, the number of sub-catchments capable to irrigate the average arable land was solely 7. When the dam wall height increased to 6 and 12m, the irrigation capacity increased to 46 and 124 sub-catchments, respectively, meaning that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Copyright © 2017 Elsevier B.V. All rights reserved.
Passive wall cooling panel with phase change material as a cooling agent
NASA Astrophysics Data System (ADS)
Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd
2017-11-01
The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.
Slow transition of the Osborne Reynolds pipe flow: A direct numerical simulation study.
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.
2015-11-01
Osborne Reynolds' pipe transition experiment marked the onset of fundamental turbulence research, yet the precise dynamics carrying the laminar state to fully-developed turbulence has been quite elusive. Our spatially-developing direct numerical simulation of this problem reveals interesting connections with theory and experiments. In particular, during transition the energy norms of localized, weakly finite inlet perturbations grow exponentially, rather than algebraically, with axial distance, in agreement with the edge-state based temporal results of Schneider et al. (PRL, 034502, 2007). When inlet disturbance is the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow produces small-scale hairpin packets. When inlet disturbance is near the wall, optimally positioned quasi-spanwise structure is stretched into a Lambda vortex, which grows into a turbulent spot of concentrated small-scale hairpin vortices. Waves of hairpin-like structures were observed by Mullin (Ann. Rev. Fluid Mech., Vol.43, 2011) in their experiment with very weak blowing and suction. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition. Further details of our simulation are reported in Wu et al. (PNAS, 1509451112, 2015).
Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon
2016-04-01
The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was supported by Korea National Research Foundation (NRF) grants NRF-2012M2A8A5007440 and NRF-2013R1A1A1076071 funded by the Ministry of Science, ICT & Future Planning, Korea.
Thermal Impacts of Vertical Greenery Systems
NASA Astrophysics Data System (ADS)
Safikhani, Tabassom; Abdullah, Aminatuzuhariah Megat; Ossen, Dilshan Remaz; Baharvand, Mohammad
2014-12-01
- Using vertical greenery systems to reduce heat transmission is becoming more common in modern architecture. Vertical greenery systems are divided into two main categories; green facades and living walls. This study aims to examine the thermal performance of vertical greenery systems in hot and humid climates. An experimental procedure was used to measure indoor temperature and humidity. These parameters were also measured for the gap between the vertical greenery systems and wall surfaces. Three boxes were used as small-scale rooms. Two boxes were provided with either a living wall or a green facade and one box did not have any greenery (benchmark). Blue Trumpet Vine was used in the vertical greenery systems. The data were recorded over the course of three sunny days in April 2013. An analyses of the results showed that the living wall and green facade reduced indoor temperature up to 4.0 °C and 3.0 °C, respectively. The living wall and green facade also reduced cavity temperatures by 8.0 °C and 6.5 °C, respectively.
NASA Astrophysics Data System (ADS)
van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry
2018-02-01
In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692
NASA Astrophysics Data System (ADS)
Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.
2016-06-01
A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.
Improving efficiency of polystyrene concrete production with composite binders
NASA Astrophysics Data System (ADS)
Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhina, A. A.
2018-03-01
According to leading marketing researchers, the construction market in Russia and CIS will continue growing at a rapid rate; this applies not only to a large-scale major construction, but to a construction of single-family houses and small-scale industrial facilities as well. Due to this, there are increased requirements for heat insulation of the building enclosures and a significant demand for efficient walling materials with high thermal performance. All these developments led to higher requirements imposed on the equipment that produces such materials.
NASA Astrophysics Data System (ADS)
Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.
2008-12-01
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.
Hemming, C J; Patey, G N
2004-10-01
Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. (c) 2004 American Institute of Physics
Null Environmental Effects of the Cosmic Web on Dark Matter Halo Properties
NASA Astrophysics Data System (ADS)
Goh, Tze; Primack, Joel; Aragon-Calvo, Miguel; Hellinger, Doug; Rodriguez-Puebla, Aldo; Lee, Christoph; Eckleholm, Elliot; Johnston, Kathryn
2018-01-01
We study the effects of the cosmic web environment (filaments, voids and walls) and environmental density on key properties of dark matter halos at redshift z = 0 using the Bolshoi-Planck ΛCDM. The z=0 Bolshoi-Planck simulation is analysed into filaments, voids and walls using the SpineWeb method, as well as VIDE method, both of which use Voronoi tessellation and the watershed transform. The key halo properties that we study are the mass accretion rate, spin parameter, concentration, prolateness, scale factor of the last major merger, and scale factor when the halo had half of its z=0 mass. For all these properties, we find that there is no discernible difference between the halo properties in filaments, walls or voids when compared at the same environmental density. As a result, we conclude that environmental density is the core attribute that affects these properties. This conclusion is in line with recent findings that properties of galaxies in redshift surveys are independent of their cosmic web environment at the same environmental density. We also find that the local web environment of the Milky Way and the Andromeda galaxy near the centre of a cosmic wall does not appear to have any effect on the key properties of these galaxies' dark matter halos, although we find that it is rather rare to have such massive halos near the centre of a relatively small cosmic wall.
Karsten, Schober; Stephanie, Savino; Vedat, Yildiz
2017-11-10
The objective of the study was to evaluate the effects of body weight (BW), breed, and sex on two-dimensional (2D) echocardiographic measures, reference ranges, and prediction intervals using allometrically-scaled data of left atrial (LA) and left ventricular (LV) size and LV wall thickness in healthy cats. Study type was retrospective, observational, and clinical cohort. 150 healthy cats were enrolled and 2D echocardiograms analyzed. LA diameter, LV wall thickness, and LV dimension were quantified using three different imaging views. The effect of BW, breed, sex, age, and interaction (BW*sex) on echocardiographic variables was assessed using univariate and multivariate regression and linear mixed model analysis. Standard (using raw data) and allometrically scaled (Y=a × M b ) reference intervals and prediction intervals were determined. BW had a significant (P<0.05) independent effect on 2D variables whereas breed, sex, and age did not. There were clinically relevant differences between reference intervals using mean ± 2SD of raw data and mean and 95% prediction interval of allometrically-scaled variables, most prominent in larger (>6 kg) and smaller (<3 kg) cats. A clinically relevant difference between thickness of the interventricular septum (IVS) and dimension of the LV posterior wall (LVPW) was identified. In conclusion, allometric scaling and BW-based 95% prediction intervals should be preferred over conventional 2D echocardiographic reference intervals in cats, in particular in small and large cats. These results are particularly relevant to screening examinations for feline hypertrophic cardiomyopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek
We study domain walls which can be created in the Standard Model under the assumption that it is valid up to very high energy scales. We focus on domain walls interpolating between the physical electroweak vacuum and the global minimum appearing at very high field strengths. The creation of the network which ends up in the electroweak vacuum percolating through the Universe is not as difficult to obtain as one may expect, although it requires certain tuning of initial conditions. Our numerical simulations confirm that such domain walls would swiftly decay and thus cannot dominate the Universe. We discuss themore » possibility of detection of gravitational waves produced in this scenario. We have found that for the standard cosmology the energy density of these gravitational waves is too small to be observed in present and planned detectors.« less
NASA Astrophysics Data System (ADS)
Tang, Zhanqi; Jiang, Nan; Zheng, Xiaobo; Wu, Yanhua
2016-05-01
Hot-wire measurements on a turbulent boundary layer flow perturbed by a wall-mounted cylinder roughness element (CRE) are carried out in this study. The cylindrical element protrudes into the logarithmic layer, which is similar to those employed in turbulent boundary layers by Ryan et al. (AIAA J 49:2210-2220, 2011. doi: 10.2514/1.j051012) and Zheng and Longmire (J Fluid Mech 748:368-398, 2014. doi: 10.1017/jfm.2014.185) and in turbulent channel flow by Pathikonda and Christensen (AIAA J 53:1-10, 2014. doi: 10.2514/1.j053407). The similar effects on both the mean velocity and Reynolds stress are observed downstream of the CRE perturbation. The series of hot-wire data are decomposed into large- and small-scale fluctuations, and the characteristics of large- and small-scale bursting process are observed, by comparing the bursting duration, period and frequency between CRE-perturbed case and unperturbed case. It is indicated that the CRE perturbation performs the significant impact on the large- and small-scale structures, but within the different impact scenario. Moreover, the large-scale bursting process imposes a modulation on the bursting events of small-scale fluctuations and the overall trend of modulation is not essentially sensitive to the present CRE perturbation, even the modulation extent is modified. The conditionally averaging fluctuations are also plotted, which further confirms the robustness of the bursting modulation in the present experiments.
Investigation on the electron flux to the wall in the VENUS ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuillier, T.; Angot, J.; Benitez, J. Y.
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. Here, a burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines aremore » presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Investigation on the electron flux to the wall in the VENUS ion source
Thuillier, T.; Angot, J.; Benitez, J. Y.; ...
2015-12-01
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. Here, a burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines aremore » presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Investigation on the electron flux to the wall in the VENUS ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Benitez, J. Y.
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented.more » The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
ITER-FEAT vacuum vessel and blanket design features and implications for the R&D programme
NASA Astrophysics Data System (ADS)
Ioki, K.; Dänner, W.; Koizumi, K.; Krylov, V. A.; Cardella, A.; Elio, F.; Onozuka, M.; ITER Joint Central Team; ITER Home Teams
2001-03-01
A configuration in which the vacuum vessel (VV) fits tightly to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the toroidal field ripple. The blanket modules are supported directly by the VV. A full scale VV sector model has provided critical information related to fabrication technology and for testing the magnitude of welding distortions and achievable tolerances. This R&D validated the fundamental feasibility of the double wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and robustness of solid hot isostatic pressing joining were demonstrated in the R&D by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal.
Reynolds number scaling of straining motions in turbulence
NASA Astrophysics Data System (ADS)
Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.
2017-11-01
Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2017-11-01
The limits of low Reynolds number forced convection heat transport within rectangular, mm-scale channels that model segments of air-cooled heat sinks are overcome by the deliberate formation of unsteady small-scale vortical motions that are induced by autonomous aero-elastic fluttering of cantilevered planar thin-film reeds. The coupled flow-structure interactions between the fluttering reeds and the embedding channel flow and the formation and evolution of the induced unsteady small-scale vortical motions are explored using video imaging and PIV. Concave/convex undulations of the reed's surface that are bounded by the channel's walls lead to the formation and advection of cells of vorticity concentration and ultimately to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the channel height, and result in increased turbulent kinetic energy and enhanced dissipation that persist far downstream from the reed and are reminiscent of a turbulent flow at significantly higher Reynolds numbers (e.g., at Re = 800, TKE increases by 86% ,40 channel widths downstream of reed tip). These small-scale motions lead to strong enhancement in heat transfer that increases with Re (e.g., at Re = 1,000 and 14,000, Nu increases by 36% and 91%, respectively). The utility of this approach is demonstrated in improving the thermal performance of low-Re heat sinks in air-cooled condensers of thermoelectric power plants. NSF-EPRI.
Blood Flow: Multi-scale Modeling and Visualization (July 2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less
NASA Astrophysics Data System (ADS)
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
Flow-induced separation in wall turbulence.
Nguyen, Quoc; Srinivasan, Chiranth; Papavassiliou, Dimitrios V
2015-03-01
One of the defining characteristics of turbulence is its ability to promote mixing. We present here a case where the opposite happens-simulation results indicate that particles can separate near the wall of a turbulent channel flow, when they have sufficiently different Schmidt numbers without use of any other means. The physical mechanism of the separation is understood when the interplay between convection and diffusion, as expressed by their characteristic time scales, is considered, leading to the determination of the necessary conditions for a successful separation between particles. Practical applications of these results can be found when very small particles need to be separated or removed from a fluid.
NASA Astrophysics Data System (ADS)
Csordás, A.; Graham, R.; Szépfalusy, P.; Vattay, G.
1994-01-01
One wall of an Artin's billiard on the Poincaré half-plane is replaced by a one-parameter (cp) family of nongeodetic walls. A brief description of the classical phase space of this system is given. In the quantum domain, the continuous and gradual transition from the Poisson-like to Gaussian-orthogonal-ensemble (GOE) level statistics due to the small perturbations breaking the symmetry responsible for the ``arithmetic chaos'' at cp=1 is studied. Another GOE-->Poisson transition due to the mixed phase space for large perturbations is also investigated. A satisfactory description of the intermediate level statistics by the Brody distribution was found in both cases. The study supports the existence of a scaling region around cp=1. A finite-size scaling relation for the Brody parameter as a function of 1-cp and the number of levels considered can be established.
NASA Astrophysics Data System (ADS)
Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi
1994-07-01
Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.
NASA Technical Reports Server (NTRS)
Stewart, R. B.
1972-01-01
Numberical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time dependent natural convection flow within a horizontal cylinder. The early time flow development and wall heat transfer is obtained after imposing a uniformly cold wall boundary condition on the cylinder. Solutions are also obtained for the case of a time varying cold wall boundary condition. Windware explicit differ-encing is used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first order accuracy is maintained in time and space. The results encompass a range of Grashof numbers from 8.34 times 10,000 to 7 times 10 to the 7th power which is within the laminar flow regime for gravitationally driven fluid flows. Experiments within a small scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer and also the decay of wall heat transfer with time.
Shear localization and effective wall friction in a wall bounded granular flow
NASA Astrophysics Data System (ADS)
Artoni, Riccardo; Richard, Patrick
2017-06-01
In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.
Logic and memory concepts for all-magnetic computing based on transverse domain walls
NASA Astrophysics Data System (ADS)
Vandermeulen, J.; Van de Wiele, B.; Dupré, L.; Van Waeyenberge, B.
2015-06-01
We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation.
NASA Astrophysics Data System (ADS)
Li, Tianmeng; Hui, Hui; Ma, He; Yang, Xin; Tian, Jie
2018-02-01
Non-invasive imaging technologies, such as magnetic resonance imaging (MRI) and optical multimodality imaging methods, are commonly used for diagnosing and supervising the development of inflammatory bowel disease (IBD). These in vivo imaging methods can provide morphology changes information of IBD in macro-scale. However, it is difficult to investigate the intestinal wall in molecular and cellular level. State-of-art light-sheet and two-photon microscopy have the ability to acquire the changes for IBD in micro-scale. The aim of this work is to evaluate the size of the enterocoel and the thickness of colon wall using both MRI for in vivo imaging, and light-sheet and two-photon microscope for in vitro imaging. C57BL/6 mice were received 3.5% Dextran sodium sulfate (DSS) in the drinking water for 5 days to build IBD model. Mice were imaged with MRI on days 0, 6 to observe colitis progression. After MRI imaging, the mice were sacrificed to take colons for tissue clearing. Then, light-sheet and two-photon microscopies are used for in vitro imaging of the cleared samples. The experimental group showed symptoms of bloody stools, sluggishness and weight loss. It showed that the colon wall was thicker while the enterocoel was narrower compare to control group. The more details are observed using light-sheet and two-photon microscope. It is demonstrated that hybrid of MRI in macro-scale and light-sheet and two-photon microscopy in micro-scale imaging is feasible for colon inflammation diagnosing and supervising.
OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun; Jiang, Fayu
With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low.more » The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.« less
NASA Astrophysics Data System (ADS)
Neigh, C. S. R.; Carroll, M.; Wooten, M.; McCarty, J. L.; Powell, B.; Husak, G. J.; Enenkel, M.; Hain, C.
2017-12-01
Global food production in the developing world occurs within sub-hectare fields that are difficult to identify with moderate resolution satellite imagery. Knowledge about the distribution of these fields is critical in food security programs. We developed a semi-automated image segmentation approach using wall-to-wall sub-meter imagery with high-end computing (HEC) to map crop area (CA) throughout Tigray, Ethiopia that encompasses over 41,000 km2. Our approach tested multiple HEC processing streams to reduce processing time and minimize mapping error. We applied multiple resolution smoothing kernels to capture differences in land surface texture associated to CA. Typically, very-small fields (mean < 2 ha) have a smooth image roughness compared to natural scrub/shrub woody vegetation at the 1 m scale and these features can be segmented in panchromatic imagery with multi-level histogram thresholding. We found multi-temporal very-high resolution (VHR) panchromatic imagery with multi-spectral VHR and moderate resolution imagery are sufficient in extracting critical CA information needed in food security programs. We produced a 2011 ‒ 2015 CA map using over 3,000 WorldView-1 panchromatic images wall-to-wall in 1/2° mosaics for Tigray, Ethiopia in 1 week. We evaluated CA estimates with nearly 3,000 WorldView-2 2 m multispectral 250 × 250 m image subsets, with seven expert interpretations, and with in-situ global positioning system (GPS) photography. Our CA estimates ranged from 32 to 41% in sub-regions of Tigray with median maximum per bin commission and omission errors of 11% and 1% respectively, with most of the error occurring in bins less than 15%. This empirical, simple, and low direct cost approach via U.S. government license agreement and HEC could be a viable big-data methodology to extract wall-to-wall CA for other regions of the world that have very-small agriculture fields with similar image texture.
NASA Astrophysics Data System (ADS)
Iwao, Toru; Naito, Yuto; Shimizu, Yuta; Yamamoto, Shinji
2016-10-01
The problem of an emergency large-scale lighting with the high-intensity discharge (HID) lamp is the lack of radiation intensity because of inappropriate energy balance. Some researchers have researched that the radiation power depended on the arc temperature increases with increasing the current. However, the heat loss and the erosion of the electrode as well as the radiation power increases with increasing the current excessively. AC current replaces alternately the cathode and the anode. Thus, it is possible to avoid the concentration of the heat transfer to the anode. Moreover, the lamp efficiency decreases with increasing the current excessively because of ultra violet rays increment. It is necessary to control the temperature distribution with controlling the current and radius. In this paper, the radiation power as a function of the current in the wall-stabilized AC arc of water-cooled vortex type with small caliber was measured. As a result, the radiation power increased with increasing the current and appropriate wall radius. The radiation of AC arc is smaller than it of DC arc. And, the erosion of electrode decreases.
Turbulent dusty boundary layer in an ANFO surface-burst explosion
NASA Astrophysics Data System (ADS)
Kuhl, A. L.; Ferguson, R. E.; Chien, K. Y.; Collins, J. P.
1992-01-01
This paper describes the results of numerical simulations of the dusty, turbulent boundary layer created by a surface burst explosion. The blast wave was generated by the detonation of a 600-T hemisphere of ANFO, similar to those used in large-scale field tests. The surface was assumed to be ideally noncratering but contained an initial loose layer of dust. The dust-air mixture in this fluidized bed was modeled as a dense gas (i.e., an equilibrium model, valid for very small-diameter dust particles). The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws. Shock interactions with dense layer generated vorticity near the wall, a result that is similar to viscous, no-slip effects found in clean flows. The resulting wall shear layer was unstable, and rolled up into large-scale rotational structures. These structures entrained dense material from the wall layer and created a chaotically striated flow. The boundary layer grew due to merging of the large-scale structures and due to local entrainment of the dense material from the fluidized bed. The chaotic flow was averaged along similarity lines (i.e., lines of constant values of x = r/Rs and y = z/Rs where R(sub s) = ct(exp alpha)) to establish the mean-flow profiles and the r.m.s. fluctuating-flow profiles of the boundary layer.
Small-scale deflagration cylinder test with velocimetry wall-motion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooks, Daniel E; Hill, Larry G; Pierce, Timothy H
Predicting the likelihood and effects of outcomes resultant from thermal initiation of explosives remains a significant challenge. For certain explosive formulations, the general outcome can be broadly predicted given knowledge of certain conditions. However, there remain unexplained violent events, and increased statistical understanding of outcomes as a function of many variables, or 'violence categorization,' is needed. Additionally, the development of an equation of state equivalent for deflagration would be very useful in predicting possible detailed event consequences using traditional hydrodynamic detonation moders. For violence categorization, it is desirable that testing be efficient, such that it is possible to statistically definemore » outcomes reliant on the processes of initiation of deflagration, steady state deflagration, and deflagration to detonation transitions. If the test simultaneously acquires information to inform models of violent deflagration events, overall predictive capabilities for event likelihood and consequence might improve remarkably. In this paper we describe an economical scaled deflagration cylinder test. The cyclotetramethylene tetranitramine (HMX) based explosive formu1lation PBX 9501 was tested using different temperature profiles in a thick-walled copper cylindrical confiner. This test is a scaled version of a recently demonstrated deflagration cylinder test, and is similar to several other thermal explosion tests. The primary difference is the passive velocimetry diagnostic, which enables measurement of confinement vessel wall velocities at failure, regardless of the timing and location of ignition.« less
NASA Astrophysics Data System (ADS)
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2007-11-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.
Cheerios Effect Controlled by Electrowetting.
Yuan, Junqi; Feng, Jian; Cho, Sung Kwon
2015-08-04
The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the wettability of the wall and floating object and the density of the object. In this paper, electrowetting on dielectric (EWOD) is implemented to the wall or floating object in order to actively control the wettability and thus capillary interaction. As such, the capillary force on buoyant and dense floating objects can be easily switched between repulsion and attraction by simply applying an electrical input. In addition, the theoretical prediction for the capillary force is verified experimentally by measuring the motion of floating particle and the critical contact angle on the wall at which the capillary force changes from attraction to repulsion. This successive verification is enabled by the merit of EWOD that allows for continuous change in the contact angle. Finally, the control method is extended to continuously move a floating object along a linear path and to continuously rotate a dumbbell-like floating object in centimeter scales using arrays of EWOD electrodes. A continuous linear motion is also accomplished in a smaller scale where the channel width (3 mm) is comparable to the capillary length.
Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang
2010-02-01
Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.
Second order closure modeling of turbulent buoyant wall plumes
NASA Technical Reports Server (NTRS)
Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing
1992-01-01
Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki; Kanai, Hiroshi; Hoshimiya, Nozomu; Chubachi, Noriyoshi; Koiwa, Yoshiro
1998-05-01
For the diagnosis of the early stages of atherosclerosis, it isimportant to evaluate the local acoustic characteristics of thearterial wall. For this purpose, it is necessary to increase thespatial resolution in the axial direction to several millimeters,which corresponds to the size of the macular lesion on the surface ofthe wall. We have proposed a method for measuring small velocitysignals on the intima and adventitia of the arterial wall from theskin surface using pulsive ultrasonic waves. The small change inthickness of the arterial wall is obtained by integrating thedifference between the two velocity signals on the intima andadventitia. The elastic property of the arterial wall is noninvasivelyevaluated from the change in thickness and the arterial innerpressure. In this paper, we evaluate the accuracy of the proposedmethod for measuring the small displacement. Moreover, we applied thismethod to evaluate the elastic property of the arterial wall of 50patients and 8 healthy subjects.
The formation of topological defects in phase transitions
NASA Technical Reports Server (NTRS)
Hodges, Hardy M.
1989-01-01
It was argued, and fought through numerical work that the results of non-dynamical Monte Carlo computer simulations cannot be applied to describe the formation of topological defects when the correlation length at the Ginzburg temperature is significantly smaller than the horizon size. To test the current hypothesis that infinite strings at formation are essentially described by Brownian walks of size the correlation length at the Ginzburg temperature, fields at the Ginzburg temperature were equilibrated. Infinite structure do not exist in equilibrium for reasonable definitions of the Ginzburg temperature, and horizons must be included in a proper treatment. A phase transition, from small-scale to large-scale string or domain wall structure, is found to occur very close to the Ginzburg temperature, in agreement with recent work. The formation process of domain walls and global strings were investigated through the breaking of initially ordered states. To mimic conditions in the early Universe, cooling times are chosen so that horizons exist in the sample volume when topological structure formation occurs. The classical fields are evolved in real-time by the numerical solution of Langevin equations of motion on a three dimensional spatial lattice. The results indicate that it is possible for most of the string energy to be in small loops, rather than in long strings, at formation.
Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai
2016-01-01
On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19–334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths. PMID:26861330
Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai
2016-02-05
On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19-334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.
Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall
NASA Astrophysics Data System (ADS)
Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng
2018-03-01
The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.
Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.
Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco
2017-06-27
Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.
Aon, Juan C; Sun, Jianxin; Leighton, Julie M; Appelbaum, Edward R
2016-08-15
In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.
Retrofitted green roofs and walls and improvements in thermal comfort
NASA Astrophysics Data System (ADS)
Feitosa, Renato Castiglia; Wilkinson, Sara
2017-06-01
Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.
Evolution of vortex-surface fields in transitional boundary layers
NASA Astrophysics Data System (ADS)
Yang, Yue; Zhao, Yaomin; Xiong, Shiying
2016-11-01
We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.
Lee, Seul Bi; Kim, Seung Ho; Son, Jung Hee; Baik, Ji Yeon
2017-12-01
To compare small bowel distension and bowel wall visualization among three different patients' positions (supine, sitting and right decubitus) during administration of oral contrast media in preparation for CT enterography (CTE). A total of 150 consecutive patients (104 males and 46 females; mean age 34.6 years, range 15-78 years) who were scheduled to undergo CTE were recruited. Patients were randomly allocated into the three position groups during oral contrast media administration, and there were 50 patients in each group. Two blinded radiologists independently scored the luminal distension and visualization of the bowel wall using a continuous 5-point scale (1: worst and 5: best) at the jejunum and ileum. The Mann-Whitney U test was used to evaluate differences between any two groups among the three positions for bowel distension and wall visualization. For ileal distension, the supine and sitting positions performed better than the right decubitus position [for reader 1, mean: 3.4/3.2/2.9 (hereafter, supine/sitting/right decubitus in order), p = 0.002/0.033; for reader 2, 3.3/3.0/2.6, p < 0.001/0.027]. However, there was no significant difference among the three groups for jejunal distension (for reader 1, 2.4/2.3/2.2; for reader 2, 2.4/2.4/2.2, p > 0.05, respectively). For bowel wall visualization, the supine and sitting positions were superior to the right decubitus position for the ileum when scored by one reader (4.0/3.8/3.4, p = 0.001/0.015). Supine and sitting positions during the administration of oral contrast media provided better ileal distension than the right decubitus position in obtaining CTE. Advances in knowledge: The performance of CTE largely depends on adequate luminal distension and wall visualization. As the terminal ileum is the predominant site of small bowel pathology for inflammatory bowel disease, the supine or sitting position would be preferable for patients who are suspected of having small bowel pathology.
Analysis of the 2H-evaporator scale samples (HTF-17-56, -57)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Coleman, C.; Diprete, D.
Savannah River National Laboratory analyzed scale samples from both the wall and cone sections of the 242-16H Evaporator prior to chemical cleaning. The samples were analyzed for uranium and plutonium isotopes required for a Nuclear Criticality Safety Assessment of the scale removal process. The analysis of the scale samples found the material to contain crystalline nitrated cancrinite and clarkeite. Samples from both the wall and cone contain depleted uranium. Uranium concentrations of 16.8 wt% 4.76 wt% were measured in the wall and cone samples, respectively. The ratio of plutonium isotopes in both samples is ~85% Pu-239 and ~15% Pu-238 bymore » mass and shows approximately the same 3.5 times higher concentration in the wall sample versus the cone sample as observed in the uranium concentrations. The mercury concentrations measured in the scale samples were higher than previously reported values. The wall sample contains 19.4 wt% mercury and the cone scale sample 11.4 wt% mercury. The results from the current scales samples show reasonable agreement with previous 242-16H Evaporator scale sample analysis; however, the uranium concentration in the current wall sample is substantially higher than previous measurements.« less
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Breakdown of cell wall nanostructure in dilute acid pretreated biomass.
Pingali, Sai Venkatesh; Urban, Volker S; Heller, William T; McGaughey, Joseph; O'Neill, Hugh; Foston, Marcus; Myles, Dean A; Ragauskas, Arthur; Evans, Barbara R
2010-09-13
The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to submicrometer length scales resulting from the industrially relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of R(g) ∼ 135 A lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 A, and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the breakdown process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.
Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.
Mouri, Hideaki
2015-12-01
For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.
Selectively Structural Determination of Cellulose and Hemicellulose in Plant Cell Wall
NASA Astrophysics Data System (ADS)
Huang, Shih-Chun; Park, Yong; Cosgrove, Daniel; Maranas, Janna; Janna Maranas Team; Daniel Cosgrove Team
2013-03-01
Primary plant cell walls support the plant body, and regulate cell size, and plant growth. It contains several biopolymers that can be categorized into three groups: cellulose, hemicellulose and pectin. To determine the structure of plant cell wall, we use small angle neutron scattering in combination with selective deuteration and contrast matching method. We compare the structure between wild Arabidopsis thaliana and its xyloglucan-deficient mutant. Hemicellulose in both samples forms coil with similar radii of gyration, and weak scattering from the mutant suggests a limited amount of hemicellulose in the xyloglucan-deficient mutant. We observe good amount of hemicellulose coating on cellulose microfibrils only in wild Arabidopsis. The absence of coating in its xyloglucan-deficient mutation suggests the other polysaccharides do not have comparable interaction with cellulose. This highlights the importance of xyloglucan in plant cell wall. At larger scale, the average distance between cellulose fibril is found smaller than reported value, which directly reflects on their smaller matured plant size. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Center for LignoCellulose Structure and Formation
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transpiration Cooling Experiment
NASA Technical Reports Server (NTRS)
Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.
1997-01-01
The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.
5. Credit BG. This interior view shows the weigh room, ...
5. Credit BG. This interior view shows the weigh room, looking west (240°): Electric lighting and scale read-outs (boxes with circular windows on the wall) are fitted with explosion-proof enclosures; these enclosures prevent malfunctioning electrical parts from sparking and starting fires or explosions. One marble table and scale have been removed at the extreme left of the view. Two remaining scales handle small and large quantities of propellants and additives. Marble tables do not absorb chemicals or conduct electricity; their mass also prevents vibration from upsetting the scales. The floor has an electrically conductive coating to dissipate static electric charges, thus preventing sparks which might ignite propellants. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers
NASA Astrophysics Data System (ADS)
Wei, Tie; Maciel, Yvan
2018-01-01
This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.
Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.
Liao, Xiangyun; Si, Weixin; Yuan, Zhiyong; Sun, Hanqiu; Qin, Jing; Wang, Qiong; Heng, Pheng-Ann; Xiangyun Liao; Weixin Si; Zhiyong Yuan; Hanqiu Sun; Jing Qin; Qiong Wang; Pheng-Ann Heng
2018-03-01
Turbulent vortices in smoke flows are crucial for a visually interesting appearance. Unfortunately, it is challenging to efficiently simulate these appealing effects in the framework of vortex filament methods. The vortex filaments in grids scheme allows to efficiently generate turbulent smoke with macroscopic vortical structures, but suffers from the projection-related dissipation, and thus the small-scale vortical structures under grid resolution are hard to capture. In addition, this scheme cannot be applied in wall-bounded turbulent smoke simulation, which requires efficiently handling smoke-obstacle interaction and creating vorticity at the obstacle boundary. To tackle above issues, we propose an effective filament-mesh particle-particle (FMPP) method for fast wall-bounded turbulent smoke simulation with ample details. The Filament-Mesh component approximates the smooth long-range interactions by splatting vortex filaments on grid, solving the Poisson problem with a fast solver, and then interpolating back to smoke particles. The Particle-Particle component introduces smoothed particle hydrodynamics (SPH) turbulence model for particles in the same grid, where interactions between particles cannot be properly captured under grid resolution. Then, we sample the surface of obstacles with boundary particles, allowing the interaction between smoke and obstacle being treated as pressure forces in SPH. Besides, the vortex formation region is defined at the back of obstacles, providing smoke particles flowing by the separation particles with a vorticity force to simulate the subsequent vortex shedding phenomenon. The proposed approach can synthesize the lost small-scale vortical structures and also achieve the smoke-obstacle interaction with vortex shedding at obstacle boundaries in a lightweight manner. The experimental results demonstrate that our FMPP method can achieve more appealing visual effects than vortex filaments in grids scheme by efficiently simulating more vivid thin turbulent features.
Numerical simulation of gas-phonon coupling in thermal transpiration flows.
Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A
2009-10-01
Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.
Magnetic domain walls as reconfigurable spin-wave nano-channels
NASA Astrophysics Data System (ADS)
Wagner, Kai
Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Ghorbanirenani, Iman
This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program) methods using the shake table feedback signals as input. Good agreement was generally obtained between numerical and experimental results. Both computer programs were able to predict the natural frequency of the walls in the undamaged and damaged conditions. Both modeling techniques could predict that the maximum bending moment at the base of the walls reached the actual wall moment capacity. The inelastic response and the dual plastic hinge behaviour of the walls could be adequately reproduced using the fibre element and finite element analysis programs. The fibre element method is a good alternative in terms of computing time. It produces reasonable results in comparison with the finite element method, although particular attention needs to be given to the selection of the damping ratios. The different parametric analyses performed in this thesis showed that, for both models, adding a small amount of global viscous damping in combination with a refined reinforced concrete hysteretic model could predict better the seismic behaviour of the tested structures. For the VecTor2 program, a viscous damping of 1% led to reasonable results for the studied RC walls. For the OpenSees program, 2% damping resulted in a good match between test and predictions for the 100% EQ test on the initially undamaged wall. When increasing the earthquake intensities, the damping had to be reduced between 1.5% and 1% to achieve good results for a damaged wall with elongated vibration periods. According to the experimental results and numerical analyses on reinforced concrete shear walls subjected to ground motions from Eastern North America earthquakes, there is a high possibility of having a second plastic hinge forming in the upper part of walls in addition to the one assumed in design at the base. This second hinge could dissipate the earthquake energy more effectively and decrease the force demand on the wall. A dual plastic hinge design approach in which the structures become plastic in the upper wall segment as well as the base could be therefore more appropriate. Preliminary design recommendations considering higher mode effects on dual hinge response and base shear forces for ductile slender shear walls are given in this thesis. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Tecle, Amanuel Sebhatu
Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30--40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30--40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.
A numerical simulation of the dispersal of aerial sprays
NASA Technical Reports Server (NTRS)
Bragg, M. B.
1981-01-01
A computer program was developed to predict the trajectory, ground deposition, and drift of liquid sprays injected into the wake of an agricultural aircraft in ground effect. The program uses a horseshoe vortex wake model and includes the effects of liquid droplet evaporation, crosswind, the propeller slipstream, ground effect, and tunnel walls on small scale models. This user's guide includes several case examples demonstrating user options. A complete listing of the FORTRAN program is provided.
CFD-DEM study of effect of bed thickness for bubbling fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul
2011-10-01
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2017-12-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Inger, George R.
1999-01-01
The local viscous-inviscid interaction field generated by a wall temperature jump on a flat plate in supersonic flow and on the windside of a Reusable Launch Vehicle in hypersonic flow is studied in detail by both a Navier-Stokes numerical code and an analytical triple-deck model. Treatment of the rapid heat transfer changes both upstream and downstream of the jump is included. Closed form relationships derived from the triple-deck theory are presented. The analytically predicted pressure and heating variations including upstream influence are found to be in generally good agreement with the Computational Fluid Dynamic (CFD) predictions. These analyses not only clarify the interactive physics involved but also are useful in preliminary design of thermal protection systems and as an insertable module to improve CFD code efficiency when applied to such small-scale interaction problems. The analyses only require conditions at the wall and boundary-layer edge which are easily extracted from a baseline, constant wall temperature, CFD solution.
Spatial variations in shear stress in a 3-D bifurcation model at low Reynolds numbers.
Rouhanizadeh, Mahsa; Lin, Tiantian C; Arcas, Diego; Hwang, Juliana; Hsiai, Tzung K
2005-10-01
Real-time wall shear stress is difficult to monitor precisely because it varies in space and time. Microelectromechanical systems sensor provides high spatial resolution to resolve variations in shear stress in a 3-D bifurcation model for small-scaled hemodynamics. At low Reynolds numbers from 1.34 to 6.7 skin friction coefficients (C(f)) varied circumferentially by a factor of two or more within the bifurcation. At a Reynolds number of 6.7, the C(f) value at the lateral wall of the bifurcation along the 270 degree plane was 7.1, corresponding to a shear stress value of 0.0061 dyn/cm(2). Along the 180 degree plane, C(f) was 13 or 0.0079 dyn/cm(2), and at the medial wall along the 90 degree plane, C(f) was 10.3 or 0.0091 dyn/cm(2). The experimental skin friction coefficients correlated with values derived from the Navier-Stokes solutions.
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2018-06-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
NASA Astrophysics Data System (ADS)
Zamil, Mohammad Shafayet
The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To the best of our knowledge, the plant cell wall at subcellular scale was never characterized under tensile loading. By coupling the structure based multiscale modeling and mechanical characterizations at different length scales, an attempt was made to provide novel insights towards understanding the mechanics and architecture of cell wall. This study also suggests that a multiscale investigation is essential for garnering fundamental insights into the hierarchical deformation of biological systems.
Impact of solvent granularity and layering on tracer hydrodynamics in confinement.
Bollinger, Jonathan A; Carmer, James; Jain, Avni; Truskett, Thomas M
2016-11-28
Classic hydrodynamic arguments establish that when a spherical tracer particle is suspended between parallel walls, tracer-wall coupling mediated by the solvent will cause the tracer to exhibit position-dependent diffusivity. We investigate how the diffusivity profiles of confined tracers are impacted by the diameter size-ratio of the tracer to solvent: starting from the classic limit of infinite size-ratio (i.e., continuum solvent), we consider size-ratios of four or less to examine how hydrodynamic predictions are disrupted for systems where the tracer and solvent are of similar scale. We use computer simulations and techniques based on the Fokker-Planck formalism to calculate the diffusivity profiles of hard-sphere tracer particles in hard-sphere solvents, focusing on the dynamics perpendicular to the walls. Given wall separations of several tracer diameters, we first consider confinement between hard walls, where anisotropic structuring at the solvent lengthscale generates inhomogeneity in the tracer free-energy landscape and undermines hydrodynamic predictions locally. We then introduce confining planes that we term transparent walls, which restrict tracer and solvent center-accessibilities while completely eliminating static anisotropy, and reveal position-dependent signatures in tracer diffusivity solely attributable to confinement. With or without suppressing static heterogeneity, we find that tracer diffusivity increasingly deviates on a local basis from hydrodynamic predictions at smaller size-ratios. However, hydrodynamic theory still approximately captures spatially-averaged dynamics across the pores even for very small tracer-solvent size-ratios over a wide range of solvent densities and wall separations.
Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P
2015-07-10
Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abu Rowin, W.; Hou, J.; Ghaemi, S.
2017-09-01
The inner and outer layers of a turbulent channel flow over a superhydrophobic surface (SHS) are characterized using simultaneous long-range microscopic particle tracking velocimetry (micro-PTV) and particle image velocimetry, respectively. The channel flow is operated at a low Reynolds number of ReH = 4400 (based on full channel height and 0.174 m/s bulk velocity), equivalent to Reτ = 140 (based on half channel height and friction velocity). The SHS is produced by spray coating, and the root-mean-square of wall roughness normalized by wall-unit is k+rms = 0.11. The micro-PTV shows 0.023 m/s slip velocity over the SHS (about 13% of the bulk velocity), which corresponds to a slip-length of ˜200 μm. A drag reduction of ˜19% based on the slope of the linear viscous sublayer and 22% based on an analytical expression of Rastegari and Akhavan [J. Fluid Mech. 773, R4 (2015)] realized. The reduced Reτ over the SHS based on the corresponding friction velocity is ˜125, which is in the lower limit of a turbulence regime. The results show the increase of streamwise Reynolds stresses
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Stoeffler, R. C.
1972-01-01
Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.
Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel
NASA Astrophysics Data System (ADS)
Moghadam, Ali Jabari
2015-10-01
A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.
Logarithmic scaling for fluctuations of a scalar concentration in wall turbulence.
Mouri, Hideaki; Morinaga, Takeshi; Yagi, Toshimasa; Mori, Kazuyasu
2017-12-01
Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. By using heat as such a scalar in a laboratory experiment of a turbulent boundary layer, the existence of the logarithmic scaling is shown here for the variance of fluctuations of the scalar concentration. It is reproduced by a model of energy-containing eddies that are attached to the wall.
Evolution of light domain walls interacting with dark matter, part 1
NASA Technical Reports Server (NTRS)
Massarotti, Alessandro
1990-01-01
The evolution of domain walls generated in the early Universe is discussed considering an interaction between the walls and a major gaseous component of the dark matter. The walls are supposed able to reflect the particles elastically and with a reflection coefficient of unity. A toy Lagrangian that could give rise to such a phenomenon is discussed. In the simple model studied, highly non-relativistic and slowly varying speeds are obtained for the domain walls (approximately 10 (exp -2)(1+z)(exp -1)) and negligible distortions of the microwave background. In addition, these topological defects may provide a mechanism of forming the large scale structure of the Universe, by creating fluctuations in the dark matter (delta rho/rho approximately O(1)) on a scale comparable with the distance the walls move from the formation (in the model d less than 20 h(exp -1) Mpc). The characteristic scale of the wall separation can be easily chosen to be of the order of 100 Mpc instead of being restricted to the horizon scale, as usually obtained.
Scaling properties of multitension domain wall networks
NASA Astrophysics Data System (ADS)
Oliveira, M. F.; Martins, C. J. A. P.
2015-02-01
We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.
Wall roughness induces asymptotic ultimate turbulence
NASA Astrophysics Data System (ADS)
Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-04-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
NASA Technical Reports Server (NTRS)
Wiwattananon, Peerawan; Bryant, Robert G.
2015-01-01
This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.
Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.
2013-09-11
Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporatormore » pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different locations within the evaporator pot the major radioactive components (on a mass basis) in the additional radionuclide analyses were Sr-90, Cs-137 Np-237, Pu-239/240 and Th-232. Small quantities of americium and curium were detected in the blanks used for Am/Cm method for these radionuclides. These trace radionuclide amounts are assumed to come from airborne contamination in the shielded cells drying or digestion oven, which has been replaced. Therefore, the Am/Cm results, as presented, may be higher than the true Am/Cm values for these samples. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA. With a few exceptions, a comparison of select radionuclides measurements from this 2013 2H evaporator scale characterization (pot bottom and wall scale samples) with those measurements for the same radionuclides in the 2010 2H evaporator scale analysis shows that the radionuclide analysis for both years are fairly comparable; the analyses results are about the same order of magnitude.« less
A LES-Langevin model for turbulence
NASA Astrophysics Data System (ADS)
Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe
2006-11-01
The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.
NASA Technical Reports Server (NTRS)
Basu, Abhijit
1988-01-01
Lunar experiences show that unmanned sample return missions, despite limitations on sample size, can produce invaluable data to infer crustal processes, regolith processes, regolith-atmosphere/ionosphere interaction processes, etc. Drill cores provide a record of regolith evolution as well as a more complete sample of the regolith than small scoops and/or rakes. It is proposed that: (1) a hole be drilled in a sand body to obtain continuous oriented cores; a depth of about 10 m would be compatible with what we know of bed form hierarchy of terrestrial stream deposits; (2) two trenches, at right angles to each other and close to the drill-hole, be dug and the walls scraped lightly such that primary/internal sedimentary structures of the sand body become visible; (3) the walls of the trenches be made gravitationally stable by impregnation techniques; (4) acetate or other peels of a strip on each wall be taken; and (5) appropriately scaled photographs of the walls be taken at different sun-angles to ensure maximum ease of interpretation of sedimentary structures; and, to correlate these structural features with those in the core at different depth levels of the core.
Onset of thermal convection in a rectangular parallelepiped cavity of small aspect ratios
NASA Astrophysics Data System (ADS)
Funakoshi, Mitsuaki
2018-04-01
Onset of thermal convection of a fluid in a rectangular parallelepiped cavity of small aspect ratios is examined both numerically and analytically under the assumption that all walls are rigid and of perfect thermal conductance exposed to a vertically linear temperature field. Critical Rayleigh number R c and the steady velocity and temperature fields of most unstable modes are computed by a Galerkin spectral method of high accuracy for aspect ratios A x and A y either or both of which are small. We find that if A x is decreased to 0 with A y being kept constant, R c increases proportionally to {A}x-4, the convection rolls of most unstable mode whose axes are parallel to the shorter side walls become narrower, and their number increases proportionally to {A}x-\\tfrac{1{2}}. Moreover, as A x is decreased, we observe the changes of the symmetry of most unstable mode that occur more frequently for smaller A x . However, if {A}x={A}y=A is decreased to 0, although we again observe the increase in R c proportional to {A}-4, we obtain only one narrow convection roll as the velocity field of most unstable mode for all A. The expressions of R c and velocity fields in the limit of {A}x\\to 0 or A\\to 0 are obtained by an asymptotic analysis in which the dependences of R c and the magnitude and length scale of velocity fields of most unstable modes on A x and A y in the numerical computations are used. For example, R c is approximated by {π }4{A}x-4 and 25{π }4{A}-4 in the limits of {A}x\\to 0 and A\\to 0, respectively. Moreover, analytical expressions of some components of velocity fields in these limits are derived. Finally, we find that for small A x or A the agreement between the numerical and analytical results on R c and velocity field is quite good except for the velocity field in thin wall layers near the top and bottom walls.
Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light
Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE
2011-04-26
Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.
A close-range photogrammetric technique for mapping neotectonic features in trenches
Fairer, G.M.; Whitney, J.W.; Coe, J.A.
1989-01-01
Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors
9. NORTHEAST FROM SOUTH ENTRANCE ACROSS RECEIVING AREA OF FACTORY ...
9. NORTHEAST FROM SOUTH ENTRANCE ACROSS RECEIVING AREA OF FACTORY PAST THE GLASS-ENCLOSED OFFICE TOWARD SHOP AREA. BESIDE THE VERTICAL POST ROOF SUPPORT IN THE LEFT FOREGROUND IS A SCALE AND DRAFTING TABLE. BESIDE THE OFFICE WALL ON THE RIGHT IS A SMALL SHOP REPAIR BENCH, WHILE ABOVE THE OFFICE WINDOWS ARE BOXES OF COMPANY MANUSCRIPT BUSINESS RECORDS. THE WELDED METAL PIPE RACK IS A MODERN INTRUSION. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE
NASA Astrophysics Data System (ADS)
Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji
2017-11-01
With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Flow characteristics and scaling past highly porous wall-mounted fences
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2017-07-01
An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.
Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes
NASA Technical Reports Server (NTRS)
Orlandi, P.
1995-01-01
Finite-difference second-order accurate direct simulation of a turbulent pipe has been used to investigate how the turbulence production and dissipation change when a solid body rotation is applied. It is shown that when the helicity increases, the dissipation is reduced. It is asserted that to have a drag reduction the external action should be such as to disrupt the symmetry of right- and left-handed helical structures. In this study the Navier-Stokes equations in rotational form permit the turbulent energy production to be split into a part related to the energy cascade from large to small scales and into a part related to the convection by large scales. The full simulation data have shown the latter is greater than the former in the wall region and that, on the contrary, these two terms balance each other in the central region. From the pdf of the former, it has been shown how the vortical structures are changed in the wall region by the background radiation and how they are related to the changes in the energy production.
The Mediterranean Overflow in the Gulf of Cadiz: A rugged journey
Sánchez-Leal, Ricardo F.; Bellanco, María Jesús; Fernández-Salas, Luis Miguel; García-Lafuente, Jesús; Gasser-Rubinat, Marc; González-Pola, César; Hernández-Molina, Francisco J.; Pelegrí, Josep L.; Peliz, Alvaro; Relvas, Paulo; Roque, David; Ruiz-Villarreal, Manuel; Sammartino, Simone; Sánchez-Garrido, José Carlos
2017-01-01
The pathways and transformations of dense water overflows, which depend on small-scale interactions between flow dynamics and erosional-depositional processes, are a central piece in the ocean’s large-scale circulation. A novel, high-resolution current and hydrographic data set highlights the intricate pathway travelled by the saline Mediterranean Overflow as it enters the Atlantic. Interaction with the topography constraints its spreading. Over the initial 200 km west of the Gibraltar gateway, distinct channels separate the initial gravity current into several plunging branches depth-sorted by density. Shallow branches follow the upper slope and eventually detach as buoyant plumes. Deeper branches occupy mid slope channels and coalesce upon reaching a diapiric ridge. A still deeper branch, guided by a lower channel wall marked by transverse furrows, experiences small-scale overflows which travel downslope to settle at mid-depths. The Mediterranean salt flux into the Atlantic has implications for the buoyancy balance in the North Atlantic. Observations on how this flux enters at different depth levels are key to accurately measuring and understanding the role of Mediterranean Outflow in future climate scenarios. PMID:29152570
Nanoscale movements of cellulose microfibrils in primary cell walls.
Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M; Cosgrove, Daniel J
2017-04-28
The growing plant cell wall is commonly considered to be a fibre-reinforced structure whose strength, extensibility and anisotropy depend on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix and matrix viscoelasticity 1-4 . Structural reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant growth, mechanics and meristem dynamics 4-12 . Although passive microfibril reorientation during wall extension has been inferred from theory and from bulk measurements 13-15 , nanometre-scale movements of individual microfibrils have not been directly observed. Here we combined nanometre-scale imaging of wet cell walls by atomic force microscopy (AFM) with a stretching device and endoglucanase treatment that induces wall stress relaxation and creep, mimicking wall behaviours during cell growth. Microfibril movements during forced mechanical extensions differ from those during creep of the enzymatically loosened wall. In addition to passive angular reorientation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of molecular connections between microfibrils. Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch. These insights into microfibril movements and connectivities need to be incorporated into refined models of plant cell wall structure, growth and morphogenesis.
Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003
NASA Astrophysics Data System (ADS)
Hoyas, Sergio; Jiménez, Javier
2006-01-01
A new numerical simulation of a turbulent channel in a large box at Reτ=2003 is described and briefly compared with simulations at lower Reynolds numbers and with experiments. Some of the fluctuation intensities, especially the streamwise velocity, do not scale well in wall units, both near and away from the wall. Spectral analysis traces the near-wall scaling failure to the interaction of the logarithmic layer with the wall. The present statistics can be downloaded from http://torroja.dmt.upm.es/ftp/channels. Further ones will be added to the site as they become available.
Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.
2014-01-01
Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268
Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R
2014-11-01
Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).
Scale and geometry effects on heat-recirculating combustors
NASA Astrophysics Data System (ADS)
Chen, Chien-Hua; Ronney, Paul D.
2013-10-01
A simple analysis of linear and spiral counterflow heat-recirculating combustors was conducted to identify the dimensionless parameters expected to quantify the performance of such devices. A three-dimensional (3D) numerical model of spiral counterflow 'Swiss roll' combustors was then used to confirm and extend the applicability of the identified parameters. It was found that without property adjustment to maintain constant values of these parameters, at low Reynolds number (Re) smaller-scale combustors actually showed better performance (in terms of having lower lean extinction limits at the same Re) due to lower heat loss and internal wall-to-wall radiation effects, whereas at high Re, larger-scale combustors showed better performance due to longer residence time relative to chemical reaction time. By adjustment of property values, it was confirmed that four dimensionless parameters were sufficient to characterise combustor performance at all scales: Re, a heat loss coefficient (α), a Damköhler number (Da) and a radiative transfer number (R). The effect of diffusive transport effect (i.e. Lewis number) was found to be significant only at low Re. Substantial differences were found between the performance of linear and spiral combustors; these were explained in terms of the effects of the area exposed to heat loss to ambient and the sometimes detrimental effect of increasing heat transfer to adjacent outlet turns of the spiral exchanger. These results provide insight into the optimal design of small-scale combustors and choice of operation conditions.
Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique
NASA Technical Reports Server (NTRS)
Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.
1986-01-01
The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.
1981-01-01
A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.
Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Vandresar, N. T.
1994-01-01
Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2018-04-01
We have studied the effects of topographically driven secondary flows on inner-outer interaction in turbulent channel flow. Recent studies have revealed that large-scale motions in the logarithmic region impose an amplitude and frequency modulation on the dynamics of small-scale structures near the wall. This led to development of a predictive model for near-wall dynamics, which has practical relevance for large-eddy simulations. Existing work on amplitude modulation has focused on smooth-wall flows; however, Anderson [J. Fluid Mech. 789, 567 (2016), 10.1017/jfm.2015.744] addressed the problem of rough-wall turbulent channel flow in which the correlation profiles for amplitude modulation showed trends similar to those reported by Mathis et al. [Phys. Fluids 21, 111703 (2009), 10.1063/1.3267726]. For the present study, we considered flow over surfaces with a prominent spanwise heterogeneity, such that domain-scale turbulent secondary flows in the form of counter-rotating vortices are sustained within the flow. (We also show results for flow over a homogeneous roughness, which serves as a benchmark against the spanwise-perturbed cases.) The vortices are anchored to the topography such that prominent upwelling and downwelling occur above the low and high roughness, respectively. We have quantified the extent to which such secondary flows disrupt the distribution of spectral density across constituent wavelengths throughout the depth of the flow, which has direct implications for the existence of amplitude and frequency modulation. We find that the distinct outer peak associated with large-scale motions—the "modulators"—is preserved within the upwelling zone but vanishes in the downwelling zone. Within the downwelling zones, structures are steeper and shorter. Single- and two-point correlations for inner-outer amplitude and frequency modulation demonstrate insensitivity to resolution across cases. We also show a pronounced crossover between the single- and two-point correlations, a product of modulation quantification based upon Parseval's theorem (i.e., spectral density, but not the wavelength at which energy resides, defines the strength of modulation).
Measuring the topology of large-scale structure in the universe
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1988-01-01
An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.
Measuring the topology of large-scale structure in the universe
NASA Astrophysics Data System (ADS)
Gott, J. Richard, III
1988-11-01
An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgiamore » Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.« less
Stability of cosmological deflagration fronts
NASA Astrophysics Data System (ADS)
Mégevand, Ariel; Membiela, Federico Agustín
2014-05-01
In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated with their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.
Formation of Martian araneiforms by gas-driven erosion of granular material
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. de Villiers; A. Nermoen; B. Jamtveit
Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m-1 km scale branched channels known as spiders or araneiforms and dark dust fans deposited on top of the ice. We show that patterns very similar to araneiforms are formed in a Hele-Shaw cell filled with an unconsolidated granular material by slowly deforming the upper wall upward and allowing it to return rapidly tomore » its original position to drive air and entrained particles through a small hole in the upper wall. Straight, braided and quasiperiodic oscillating channels, unlike meandering channels on Earth were also formed.« less
Hydrogen film/conductive cooling
NASA Technical Reports Server (NTRS)
Ewen, R. L.
1972-01-01
Small scale nozzle tests using heated nitrogen were run to obtain effectiveness and wall heat transfer data with hydrogen film cooling. Effectiveness data are compared with an entrainment model developed from planar, unaccelerated flow data. Results indicate significant effects due to flow turning and acceleration. With injection velocity effects accounted for explicitly, heat transfer correlation coefficients were found to be the same with and without film cooling when properties are evaluated at an appropriate reference temperature for the local gas composition defined by the coolant effectiveness. A design study for an O2/H2 application with 300 psia (207 N/sq cm) chamber pressure and 1500 lbs (6670 N) thrust indicates an adiabatic wall design requires 4 to 5 percent of the total flow as hydrogen film cooling. Internal regenerative cooling designs were found to offer no reduction in coolant requirements.
Natural convection flows and associated heat transfer processes in room fires
NASA Astrophysics Data System (ADS)
Sargent, William Stapf
This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A finite source plume model is combined with conservation equations across the interface to compute the evolution of the plume above the interface. This calculation then provides the starting point for an integral analysis of the flow and heat transfer in the turbulent ceiling jet.The computed results both for the average floor and ceiling zone gas temperatures, and for the connective heat transfer in the ceiling jet agreed reasonably well with our experimental data. This agreement suggests that our computational procedures can be applied to answer practical questions, such as whether the connective heat flux from a given fire in a real room would be sufficient to trigger sprinklers or other detection systems in a given amount of time.
Modeling near-wall turbulent flows
NASA Astrophysics Data System (ADS)
Marusic, Ivan; Mathis, Romain; Hutchins, Nicholas
2010-11-01
The near-wall region of turbulent boundary layers is a crucial region for turbulence production, but it is also a region that becomes increasing difficult to access and make measurements in as the Reynolds number becomes very high. Consequently, it is desirable to model the turbulence in this region. Recent studies have shown that the classical description, with inner (wall) scaling alone, is insufficient to explain the behaviour of the streamwise turbulence intensities with increasing Reynolds number. Here we will review our recent near-wall model (Marusic et al., Science 329, 2010), where the near-wall turbulence is predicted given information from only the large-scale signature at a single measurement point in the logarithmic layer, considerably far from the wall. The model is consistent with the Townsend attached eddy hypothesis in that the large-scale structures associated with the log-region are felt all the way down to the wall, but also includes a non-linear amplitude modulation effect of the large structures on the near-wall turbulence. Detailed predicted spectra across the entire near- wall region will be presented, together with other higher order statistics over a large range of Reynolds numbers varying from laboratory to atmospheric flows.
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.
2016-11-03
The rotation of m/n = 2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final 'notch' point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on amore » forecast of initial island rotation using the n = 1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Here, recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.« less
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.
The rotation of m/n = 2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final 'notch' point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on amore » forecast of initial island rotation using the n = 1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Here, recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.« less
A new time scale based k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1992-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
New time scale based k-epsilon model for near-wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
Life stages of wall-bounded decay of Taylor-Couette turbulence
NASA Astrophysics Data System (ADS)
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Spandan, Vamsi; Verzicco, Roberto; Lohse, Detlef
2017-11-01
The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5 ×104 . The effect of wall friction is analyzed by comparing three separate cases, in which the cylinders are either suddenly made no-slip or stress-free. Different life stages are observed during the decay. In the first stage, the decay is dominated by large-scale rolls. Counterintuitively, when these rolls fade away, if the flow inertia is small a redistribution of energy occurs and the energy of the azimuthal velocity behaves nonmonotonically, first decreasing by almost two orders of magnitude and then increasing during the redistribution. The second stage is dominated by non-normal transient growth of perturbations in the axial (spanwise) direction. Once this mechanism is exhausted, the flow enters the final life stage, viscous decay, which is dominated by wall friction. We show that this stage can be modeled by a one-dimensional heat equation, and that self-similar velocity profiles collapse onto the theoretical solution.
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
1999-01-01
Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.
Collective motion of squirmers in a quasi-2D geometry
NASA Astrophysics Data System (ADS)
Zöttl, Andreas; Stark, Holger
2013-03-01
Microorganisms like bacteria, algae or spermatozoa typically move in an aqueous environment where they interact via hydrodynamic flow fields. Recent experiments studied the collective motion of dense suspensions of bacteria where swarming and large-scale turbulence emerged. Moreover, spherical artificial microswimmers, so-called squirmers, have been constructed and studied in a quasi-2D geometry. Here we present a numerical study of the collective dynamics of squirmers confined in quasi-2D between two parallel walls. Because of their spherical shape the reorientation of squirmers is solely due to noise and hydrodynamic interactions via induced flow fields. This is in contrast to elongated swimmers like bacteria which locally align due to steric interactions. We study the collective motion of pushers, pullers and potential swimmers at different densities. At small densities the squirmers are oriented parallel to the walls and pairwise collisions determine the reorientation rate. In dense suspensions rotational diffusion is greatly enhanced and pushers, in particular, tend to orient perpendicular to the walls. This effects the dynamics of the emerging clusters. In very dense suspensions we observe active jamming and long-lived crystalline structures.
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1986-01-01
Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment.
Dynamical evolution of domain walls in an expanding universe
NASA Technical Reports Server (NTRS)
Press, William H.; Ryden, Barbara S.; Spergel, David N.
1989-01-01
Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.
Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.
Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer
2015-12-01
Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase.
Gravitational domain walls and the dynamics of the gravitational constant G
NASA Astrophysics Data System (ADS)
Bunster, Claudio; Gomberoff, Andrés
2017-07-01
From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a "G -wall." The idea is implemented by introducing a gauge potential Aμ ν ρ, and its conjugate D , which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G -wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G -wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G (D ) which may be chosen so as to diminish the value of G towards the asymptote G =0 . It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G -walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G -wall may be refracted or reflected. (iii) The various forces between two particles change when a G -wall is inserted in between them. (iv) G -walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole.
Large Eddy Simulation Study for Fluid Disintegration and Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2011-01-01
A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not totally satisfactory. With a model for the additional term in the momentum equation, the predictions of the constant-coefficient Smagorinsky and constant-coefficient Scale-Similarity models were improved to a certain extent; however, most of the improvement was obtained for the Gradient model. The previously derived model and a newly developed model for the additional term in the momentum equation were both tested, with the new model proving even more successful than the previous model at reproducing the high density-gradient magnitude regions. Several dynamic SGS-flux models, in which the SGS-flux model coefficient is computed as part of the simulation, were tested in conjunction with the new model for this additional term in the momentum equation. The most successful dynamic model was a "mixed" model combining the Smagorinsky and Gradient models. This work is directly applicable to simulations of gas turbine engines (aeronautics) and rocket engines (astronautics).
Interaction of flexible surface hairs with near-wall turbulence.
Brücker, Ch
2011-05-11
The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).
Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Avila, Marc
2018-04-01
We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.
Homage to Bob Brodkey at 85: ejections, sweeps and the genesis and extensions of quadrant analysis
NASA Astrophysics Data System (ADS)
Wallace, James
2013-11-01
Almost 50 years ago Bob Brodkey and his student, Corino, conceived and carried out a visualization experiment for the very near wall region of a turbulent pipe flow (JFM 37) that, together with the turbulent boundary layer visualization of Kline et al. (JFM 30), excited the turbulence community. Using a high speed movie camera mounted on a lathe bed that recorded magnified images in a moving frame of reference, they observed the motions of small particles in the sub- and buffer-layers. Surprisingly, these motion were not nearly so locally random as was the general view of turbulence at the time. Rather, connected regions of the near wall flow decelerated and then erupted away from the wall in what they called ``ejections.'' These decelerated motions were followed by larger scale connected motions toward the wall from above that they called ``sweeps.'' Brodkey and Corino estimated that ejections accounted for 70 % the Reynolds shear stress at Red = 20 , 000 while only occurring about 18 % of the time. Wallace et al. (JFM 54) attempted to quantify these visual observations by conceiving of and carrying out a quadrant analyisis in a turbulent oil channel flow. This paper will trace this history and describe the expanding use of these ideas in turbulence research today.
Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples
NASA Astrophysics Data System (ADS)
Kuester, Matthew
2017-11-01
Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.
Investigation of surface tension phenomena using the KC-135 aircraft
NASA Technical Reports Server (NTRS)
Alter, W. S.
1982-01-01
The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.
Nanofluidic rocking Brownian motors
NASA Astrophysics Data System (ADS)
Skaug, Michael J.; Schwemmer, Christian; Fringes, Stefan; Rawlings, Colin D.; Knoll, Armin W.
2018-03-01
Control and transport of nanoscale objects in fluids is challenging because of the unfavorable scaling of most interaction mechanisms to small length scales. We designed energy landscapes for nanoparticles by accurately shaping the geometry of a nanofluidic slit and exploiting the electrostatic interaction between like-charged particles and walls. Directed transport was performed by combining asymmetric potentials with an oscillating electric field to achieve a rocking Brownian motor. Using gold spheres 60 nanometers in diameter, we investigated the physics of the motor with high spatiotemporal resolution, enabling a parameter-free comparison with theory. We fabricated a sorting device that separates 60- and 100-nanometer particles in opposing directions within seconds. Modeling suggests that the device separates particles with a radial difference of 1 nanometer.
NASA Astrophysics Data System (ADS)
Jacobson, Benjamin A.; Gleckman, Philip L.; Holman, Robert L.; Sagie, Daniel; Winston, Roland
1991-10-01
We have demonstrated the feasibility of a high temperature cool-wall optical furnace that harnesses the unique power of concentrated solar heating for advanced materials processing and testing. Out small-scale test furnace achieved temperatures as high as 2400 C within a 10 mm X 0.44 mm cylindrical hot-zone. Optimum performance and efficiency resulted from an innovative two-stage optical design using a long-focal length, point-focus, conventional primary concentrator and a non-imaging secondary concentrator specifically designed for the cylindrical geometry of the target fiber. A scale-up analysis suggests that even higher temperatures can be achieved over hot zones large enough for practical commercial fiber post- processing and testing.
Fluid flow in a spiral microfluidic duct
NASA Astrophysics Data System (ADS)
Harding, Brendan; Stokes, Yvonne
2018-04-01
We consider the steady, pressure driven flow of a viscous fluid through a microfluidic device having the geometry of a planar spiral duct with a slowly varying curvature and height smaller than width. For this problem, it is convenient to express the Navier-Stokes equations in terms of a non-orthogonal coordinate system. Then, after applying appropriate scalings, the leading order equations admit a relatively simple solution in the central region of the duct cross section. First-order corrections with respect to the duct curvature and aspect ratio parameters are also obtained for this region. Additional correction terms are needed to ensure that no slip and no penetration conditions are satisfied on the side walls. Our solutions allow for a top wall shape that varies with respect to the radial coordinate which allows us to study the flow in a variety of cross-sectional shapes, including trapezoidal-shaped ducts that have been studied experimentally. At leading order, the flow is found to depend on the local height and slope of the top wall within the central region. The solutions are compared with numerical approximations of a classical Dean flow and are found to be in good agreement for a small duct aspect ratio and a slowly varying and small curvature. We conclude that the slowly varying curvature typical of spiral microfluidic devices has a negligible impact on the flow in the sense that locally the flow does not differ significantly from the classical Dean flow through a duct having the same curvature.
Near-wall turbulence alteration through thin streamwise riblets
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.; Lazos, Barry S.
1987-01-01
The possibility of improving the level of drag reduction associated with near-wall riblets is considered. The methodology involves the use of a hot-wire anemometer to study various surface geometries on small, easily constructed models. These models consist of small, adjacent rectangular channels on the wall aligned in the streamwise direction. The VITA technique is modified and applied to thin-element-array and smooth flat-plate data and the results are indicated schematically.
Inner-outer interactions in the convective atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Salesky, S.
2017-12-01
Recently, observational and numerical studies have revealed the existence of so-called large scale motions (LSMs) that populate the logarithmic layer of wall-bounded turbulent shear flows and modulate the amplitude and frequency of turbulence dynamics near the ground. Properties of LSMs are well understood in neutrally stratified flows over smooth and rough walls. However, the implications of previous studies for the convective atmospheric boundary layer (CBL) are not entirely clear, since the morphology of both small-scale and large-scale turbulent structures is known to be strongly affected by buoyancy [e.g. Salesky et al., Bound.-Layer Meteorol. 163:41-68 (2017)]. In the present study, inner-outer interactions in the CBL are investigated using a suite of large eddy simulations spanning neutral to highly convective conditions. Simulation results reveal that, as the atmosphere becomes increasingly unstable, the inclination angle of structures near the ground increases from 12-15° to nearly 90°. Furthermore, the scale separation between the inner and outer peaks in the premultiplied velocity spectra decreases until only a single peak remains (comparable in magnitude to the boundary layer depth). The extent to which the amplitude modulation of surface layer turbulence by outer layer structures changes with increasing instability will be considered, following the decoupling procedure proposed by Mathis et al. [J. Fluid Mech., vol 628, 311-337 (2009)]. Frequency modulation of surface layer turbulence also will be examined, following the wavelet analysis approach of Baars et al. [Exp. Fluids, 56:188, (2015)].
Light domain walls, massive neutrinos and the large scale structure of the Universe
NASA Technical Reports Server (NTRS)
Massarotti, Alessandro
1991-01-01
Domain walls generated through a cosmological phase transition are considered, which interact nongravitationally with light neutrinos. At a redshift z greater than or equal to 10(exp 4), the network grows rapidly and is virtually decoupled from the matter. As the friction with the matter becomes dominant, a comoving network scale close to that of the comoving horizon scale at z of approximately 10(exp 4) gets frozen. During the later phases, the walls produce matter wakes of a thickness d of approximately 10h(exp -1)Mpc, that may become seeds for the formation of the large scale structure observed in the Universe.
Structure of wall-bounded flows at transcritical conditions
NASA Astrophysics Data System (ADS)
Ma, Peter C.; Yang, Xiang I. A.; Ihme, Matthias
2018-03-01
At transcritical conditions, the transition of a fluid from a liquidlike state to a gaslike state occurs continuously, which is associated with significant changes in fluid properties. Therefore, boiling in its conventional sense does not exist and the phase transition at transcritical conditions is known as "pseudoboiling." In this work, direct numerical simulations (DNS) of a channel flow at transcritical conditions are conducted in which the bottom and top walls are kept at temperatures below and above the pseudoboiling temperature, respectively. Over this temperature range, the density changes by a factor of 18 between both walls. Using the DNS data, the usefulness of the semilocal scaling and the Townsend attached-eddy hypothesis are examined in the context of flows at transcritical conditions—both models have received much empirical support from previous studies. It is found that while the semilocal scaling works reasonably well near the bottom cooled wall, where the fluid density changes only moderately, the same scaling has only limited success near the top wall. In addition, it is shown that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy spectrum exhibits an inverse wave-number scaling, thus providing support to the attached-eddy model at transcritical conditions.
NASA Astrophysics Data System (ADS)
Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.
2011-12-01
Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.
South wall, looking northwest, with scale bar U.S. Veterans ...
South wall, looking northwest, with scale bar - U.S. Veterans Hospital, Jefferson Barracks, Medical Officer in Charge Residence, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO
Eshraghi, Iman; Jalali, Seyed K.; Pugno, Nicola Maria
2016-01-01
Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs) is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ) method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs. PMID:28773911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Kelly A; Chen, Yusheng; Malkovskiy, Andrey
2012-01-01
Electronic and mechanic properties of single-walled carbon nanotubes (SWNTs) are uniquely dependent on the tube's chiralities and diameters. Isolation of different type SWNTs remains one of the fundamental and challenging issues in nanotube science. Herein, we demonstrate that SWNTs can be effectively enriched to a narrow diameter range by sequential treatment of the HiPco sample with nitric acid and a {pi}-conjugated copolymer poly(phenyleneethynylene) (PPE)-co-poly(phenylenevinylene) (PPV). On the basis of Raman, fluorescence, and microscopic evidence, the nitric acid is found to selectively remove the SWNTs of small diameter. The polymer not only effectively dispersed carbon nanotubes but also exhibited a goodmore » selectivity toward a few SWNTs. The reported approach thus offers a new methodology to isolate SWNTs, which has the potential to operate in a relatively large scale.« less
Incorporation of metal nanoparticles into wood substrate and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rector, Kirk D; Lucas, Marcel
Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation processmore » at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.« less
Self-organization of cosmic radiation pressure instability
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1991-01-01
Under some circumstances the absorption of radiation momentum by an absorbing medium opens the possibility of a dynamical instability, sometimes called 'mock gravity'. Here, a simplified abstract model is studied in which the radiation source is assumed to remain spatially uniform, there is no reabsorption or reradiated light, and no forces other than radiative pressure act on the absorbing medium. It is shown that this model displays the unique feature of being not only unstable, but also self-organizing. The structure approaches a statistical dynamical steady state which is almost independent of initial conditions. In this saturated state the absorbers are concentrated in thin walls around empty bubbles; as the instability develops the big bubbles get bigger and the small ones get crushed and disappear. A linear analysis shows that to first order the thin walls are indeed stable structures. It is speculated that this instability may play a role in forming cosmic large-scale structure.
Shock wave propagation within a confined multi-chamber system
NASA Astrophysics Data System (ADS)
Julien, B.; Sochet, I.; Tadini, P.; Vaillant, T.
2018-07-01
The influence of a variation of the opening ratios of rooms and side walls on the propagation of a shock wave within a confined multi-chamber system is analyzed through the evolution of some of the shock parameters (maximum overpressure and positive impulse). The shock wave is generated by the detonation of a hemispherical gaseous charge in one of the rooms. Several small-scale experiments have been carried out using an adjustable model representative of a pyrotechnic workshop. Using the same approach as for a previous article dealing with the impact of the volume of the rooms, we were able to link the evolution of the arrival time of the shock wave within the building with the reference obtained in the free field. Moreover, using a new parameter taking into account the opening ratios of the rooms and side walls, a predictive law was developed to model the maximal overpressure in the rooms.
Tidal Effect in Small-Scale Sound Propagation Experiment
NASA Astrophysics Data System (ADS)
Kamimura, Seiji; Ogasawara, Hanako; Mori, Kazuyoshi; Nakamura, Toshiaki
2012-07-01
A sound propagation experiment in very shallow water was conducted at Hashirimizu port in 2009. We transmitted 5 kHz sinusoidal waves with M-sequence modulation. As a result, we found that the travel time concentrated in two time frames. When comparing the travel time with the tide level, the travel time was dependent on the tide level. In terms of the wave patterns, most of the wave patterns have two peaks. As the tide level changed, the biggest peak switched within two peaks. To discuss this, numerical simulation by finite difference time domain (FDTD) method was carried out. The result agreed with the experimental result. Finally, we changed the material of the quay wall in the FDTD simulation and concluded that the first peak is a multireflected combination wave and the effect of its reflected wave at a quay wall has superiority in the second peak.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2008-03-01
We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
NASA Astrophysics Data System (ADS)
Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck
2014-07-01
Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution. Indeed, the shear-stress near the wall increases during the vortex-ring impingement leading to a less refined mesh in terms of wall units, y+. This loss of resolution induces a poor damping of the dynamic constant, which is no longer able to adjust itself to ensure the expected y3-behavior near the wall. It is shown that the dynamic constant is never small enough to properly balance the large values of the squared magnitude of the strain-rate tensor, 2SijSij. The experimental database is made available to the community upon request to the authors.
Time evolution of shear-induced particle margination and migration in a cellular suspension
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2016-11-01
The inhomogeneous center-of-mass distributions of red blood cells and platelets normal to the flow direction in small vessels play a significant role in hemostasis and drug delivery. Under pressure-driven flow in channels, the migration of deformable red blood cells at steady state is characterized by a cell-free or Fahraeus-Lindqvist layer near the vessel wall. Rigid particles such as platelets, however, "marginate" and thus develop a near-wall excess concentration. In order to evaluate the role of branching and design suitable microfluidic devices, it is important to investigate the time evolution of particle margination and migration from a non-equilibrium state and determine the corresponding entrance lengths. From a mechanistic point of view, deformability-induced hydrodynamic lift and shear-induced diffusion are essential mechanisms for the cross-flow migration and margination. In this talk, we determine the concentration distribution of red blood cells and platelets by solving coupled Boltzmann advection-diffusion equations for both species and explore their time evolution. We verify our model by comparing with large-scale, multi-cell simulations and experiments. Our Boltzmann collision theory serves as a fast alternative to large-scale simulations.
Numerical Studies into Flow Profiles in Confined Lubricant
NASA Astrophysics Data System (ADS)
di Mare, Luca; Ponjavic, Aleks; Wong, Janet
2013-03-01
This paper documents a computational study of flow profiles in confined fluids. The study is motivated by experimental evidence for deviation from Couette flow found by one of the authors (JSW). The computational study examines several possible stress-strain relations. Since a linear profile is the only possible solution for a constant stress layer even in presence of a power law, the study introduces a functional dependence of the fluid viscosity on the distance from the wall. Based on this dependence, a family of scaling laws for the velocity profile near the wall is derived which matches the measured profiles. The existence of this scaling law requires the viscosity of the fluid to increase at least linearly away from the wall. This behaviour is explained at a microscopic level by considerations on the mobility of long molecules near a wall. This behaviour is reminiscent of the variation of eddy length scales in near-wall turbulence.
Wall and corner fire tests on selected wood products
H. C. Tran; M. L. Janssens
1991-01-01
As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...
Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid
2012-07-01
Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.
NASA Technical Reports Server (NTRS)
Wolf, S. W. D.
1984-01-01
Self streamlining two dimensional flexible walled test sections eliminate the uncertainties found in data from conventional test sections particularly at transonic speeds. The test section sidewalls are rigid, while the floor and ceiling are flexible and are positioned to streamline shapes by a system of jacks, without reference to the model. The walls are therefore self streamlining. Data are taken from the model when the walls are good streamlines such that the inevitable residual wall induced interference is acceptably small and correctable. Successful two dimensional validation testing at low speeds has led to the development of a new transonic flexible walled test section. Tunnel setting times are minimized by the development of a rapid wall setting strategy coupled with on line computer control of wall shapes using motorized jacks. Two dimensional validation testing using symmetric and cambered aerofoils in the Mach number range up to about 0.85 where the walls are just supercritical, shows good agreement with reference data using small height-chord ratios between 1.5 and unity.
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.
Sharma, A S; Moarref, R; McKeon, B J
2017-03-13
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner
NASA Astrophysics Data System (ADS)
Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto
2018-01-01
In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.
Meter-Scale Characteristics of Martian Channels and Valleys
Carr, M.H.; Malin, M.C.
2000-01-01
Mars Global Surveyor images, with resolutions as high as 1.5 m pixel, enable characterization of martian channels and valleys at resolutions one to two orders of magnitude better than was previously possible. A major surprise is the near-absence of valleys a few hundred meters wide and narrower. The almost complete absence of fine-scale valleys could be due to lack of precipitation, destruction of small valleys by erosion, or dominance of infiltration over surface runoff. V-shaped valleys with a central channel, such as Nanedi Vallis, provide compelling evidence for sustained or episodic flow of water across the surface. Larger valleys appear to have formed not by headward erosion as a consequence of groundwater sapping but by erosion from water sources upstream of the observed sections. The freshest appearing valleys have triangular cross sections, with talus from opposing walls meeting at the center of the valley. The relations suggest that the width of the valleys is controlled by the depth of incision and the angle of repose of the walls. The flat floors of less fresh-appearing valleys result primarily from later eolian fill. Several discontinuous valleys and lines of craters suggest massive subsurface solution or erosion. The climatic implications of the new images will remain obscure until the cause for the scarcity of fine-scale dissection is better understood. ?? 2000 Academic Press.
Protective interior wall and attaching means for a fusion reactor vacuum vessel
Phelps, R.D.; Upham, G.A.; Anderson, P.M.
1985-03-01
The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.
Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance
NASA Astrophysics Data System (ADS)
Canto Maya, Christian M.
In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor films. Different scenarios were evaluated in this section of the work, such as the loss of corrosion inhibitor due to the formation of foam, and the effect of different substrates on the adsorption of corrosion inhibitor. Erosion/corrosion effects due to solids carried by a multiphase flow were investigated both on a small and large scale. Small scale experiments were performed in order to determine whether the corrosion inhibitor concentration was diminished because of adsorption onto the large surface area of entrained solid particles. The large scale experiments were done to evaluate the effect of mechanical erosion corrosion on inhibitor film performance, and vice versa. The analysis of the results obtained by electrochemical characterization shows that the adsorption mechanism having a corrosion inhibitor competing with water molecules for a place on the steel surface is an accurate approach to describe this phenomenon. From the experimental results obtained in the multiphase part of this research project, it can be concluded that the performance of corrosion inhibitor films is not significantly impacted by mechanical forces alone; even under the worst case scenarios tested here (standing slug and erosion/corrosion). Reduction of inhibitor performance was found to be primarily due to the loss of inhibitor due to consumption by adsorption particularly when a gas phase was present, leading to foam formation.
Scaling study of the combustion performance of gas—gas rocket injectors
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping
2011-10-01
To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.
2005-01-01
A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.
NASA Astrophysics Data System (ADS)
OBrien, V. J.; Kirschner, D. L.
2001-12-01
It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian Apennines. These data are consistent with limited infiltration of fluid through fractures and minor faults into hanging walls of large-displacement thrust faults.
Extrusion of small-diameter, thin-wall tungsten tubing
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Gyorgak, C. A.
1967-01-01
Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, S. Y.
Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.
Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli
2001-01-01
Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.
Fabrication, Characterization, And Deformation of 3D Structural Meta-Materials
NASA Astrophysics Data System (ADS)
Montemayor, Lauren C.
Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (mum -- mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation. Experiments demonstrate that the hollow kagome nanolattices in uniaxial tension always fail at the same load when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. For notches with (a/w) > 1/3, the samples fail at lower peak loads and this is attributed to the increased compliance as fewer unit cells span the un-notched region. Finite element simulations of the kagome tension samples show that the failure is governed by tensile loading for (a/w) < 1/3 but as ( a/w) increases, bending begins to play a significant role in the failure. This work explores the flaw sensitivity of hollow alumina kagome nanolattices in tension, using experiments and simulations, and demonstrates that the discrete-continuum duality of architected structural meta-materials gives rise to their flaw insensitivity even when made entirely of intrinsically brittle materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A S; Roeske, F; Benterou, J
2006-02-10
The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increasedmore » to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.« less
Investigating the Catalytic Growth of Carbon Nanotubes with In Situ Raman Monitoring
2015-06-01
single-walled carbon nanotube growth using cobalt deposited on Si/SiO2 as a model system. In situ Raman studies revealed that thin catalyst layers... cobalt thickness were studied. Surface analyses showed that during the catalyst preparation, catalyst atoms at the interface with silica form small...nanostructures. However, highly-reducing conditions are required to reduce the small silicate domains into small cobalt particles able to grow single-walled
A small cellulose binding domain protein (CBD1) is highly variable in the nonbinding amino terminus
USDA-ARS?s Scientific Manuscript database
The small cellulose binding domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenophile Phytophthora infestans. Transgene expression of the protein in plants has also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. ...
Pan, Qi; Wang, Feng; Zhang, Yang; Cai, Minghong; He, Jianfeng; Yang, Haizhen
2013-08-01
Bacterial diversity was investigated in soil samples collected from 13 sites around the Great Wall Station, Fildes Peninsula, King George Island, Antarctica, using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The classes alpha-, beta-, and gamma-Proteobacteria, as well as the phylum Actinobacteria, were found to be the dominant bacteria in the soils around the Great Wall Station. Although the selected samples were not contaminated by oil, a relationship between soil parameters, microbial biodiversity, and human impact was still seen. Sample sites in human impacted areas showed lower bacterial biodiversity (average H' = 2.65) when compared to non-impacted sites (average H' = 3.05). There was no statistically significant correlation between soil bacterial diversity and total organic carbon (TOC), total nitrogen, or total phosphorus contents of the soil. Canonical correlation analysis showed that TOC content was the most important factor determining bacterial community profiles among the measured soil parameters. In conclusion, microbial biodiversity and community characteristics within relatively small scales (1.5 km) were determined as a function of local environment parameters and anthropogenic impact.
Rotation of an immersed cylinder sliding near a thin elastic coating
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.
2017-07-01
It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.
Axisymmetrical separator for separating particulate matter from a fluid carrying medium
Linhardt, Hans D.
1984-09-04
A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.
Issues on Fabrication and Evaluation of SiC/SiC Tubes With Various Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Fox, D. S.
2004-01-01
SiC/SiC engine components, high-modulus Sylramic-iBN SiC fiber tows were used to form nine different tubular architectural preforms with 13 mm (0.5 in.) inner diameter and lengths of approx. 75 and 230 mm (approx. 3 and approx, 9 in.). The thin-walled preforms were then coated with a BN interphase and densified with a hybrid SiC matrix using nearly the same process steps previously established for slurry-cast melt-infiltrated Sylramic-iBN/BN/SiC flat panels. The as-fabricated CMC tubes were microstructurally evaluated and tested for tensile hoop and flexural behavior, and some of the tubes were also tested in a low-pressure burner rig test with a high thru-thickness thermal gradient. To date, four general tube scale-up issues have been identified: greater CVI deposits on outer wall than inner wall; increased ply thickness and reduced fiber fraction; poor test standards for accurately determining the hoop strength of a small-diameter tube; and poor hoop strength for architectures with seams or ply ends. The underlying mechanisms and possible methods for their minimization are discussed.
Characterisation of minimal-span plane Couette turbulence with pressure gradients
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio
2018-04-01
The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.
NASA Astrophysics Data System (ADS)
Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.
1991-01-01
The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.
Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses
NASA Astrophysics Data System (ADS)
Penyazkov, O.; Skilandz, A.
2018-03-01
To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.
NASA Astrophysics Data System (ADS)
Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan
2017-11-01
An organization in wall-bounded turbulence is evidenced by the classification of distinctly different flow structures, including large-scale motions such as hairpin packets and very large-scale motions or superstructures. In conjunction with less organized turbulence, these flow structures all contribute to the streamwise turbulent kinetic energy
Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.
2014-01-01
An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.
Studies of the Wetting of Gaps in Weightlessness
NASA Astrophysics Data System (ADS)
Collicott, Steven H.; Chen, Yongkang
2010-10-01
The geometry of a thin sheet metal vane terminating near a wall in a surface tension propellant management device (PMD) is common in devices designed by various people. A research program into the capillary fluid physics of the common vane-wall gap began in 1998 with the arrival of the second author at the School of Aeronautics and Astronautics at Purdue University. Drop tower experiments, Surface Evolver computations, and analysis were combined to explore the details of the fluid behavior in the vane-wall gap geometry. Results of four vane-wall gap experiment topics: critical wetting, advance rates, sensitivity to vane orientation, and effect of imperfect initial conditions, are discussed here. This work led to a desire by Weislogel to incorporate this type of geometry into his "Capillary Fluids Experiment" (CFE) that operated flawlessly on the International Space Station in 2006 and 2007. It is found that the wetting of vane-wall gaps is predicted correctly through use of the critical wetting analysis of Concus and Finn. Furthermore, the dynamics of the wetting flows are found to have scaling of flow rates versus time similar to those known for capillary advances in solid corners. In some cases, a seemingly misaligned vane is found to have more rapid capillary advance than for the same vane and gap but with the vane normal to the tank wall. An initial drop tower study of sensitivity to imperfect initial conditions shows that a critical wetting flow is largely immune to small tilts in the initial test orientation but that larger errors can be seen in cases that lack critical wetting and in the measurements of the time history of the meniscus minimum point.
Thermal repellent properties of surface coating using silica
NASA Astrophysics Data System (ADS)
Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.
2017-11-01
Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.
Visualizing chemical functionality in plant cell walls
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
2017-11-30
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls.
Zeng, Yining; Himmel, Michael E; Ding, Shi-You
2017-01-01
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.
Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
NASA Astrophysics Data System (ADS)
Baidya, R.; Philip, J.; Hutchins, N.; Monty, J. P.; Marusic, I.
2017-02-01
An assessment of self-similarity in the inertial sublayer is presented by considering the wall-normal velocity, in addition to the streamwise velocity component. The novelty of the current work lies in the inclusion of the second velocity component, made possible by carefully conducted subminiature ×-probe experiments to minimise the errors in measuring the wall-normal velocity. We show that not all turbulent stress quantities approach the self-similar asymptotic state at an equal rate as the Reynolds number is increased, with the Reynolds shear stress approaching faster than the streamwise normal stress. These trends are explained by the contributions from attached eddies. Furthermore, the Reynolds shear stress cospectra, through its scaling with the distance from the wall, are used to assess the wall-normal limits where self-similarity applies within the wall-bounded flow. The results are found to be consistent with the recent prediction from the work of Wei et al. ["Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows," J. Fluid Mech. 522, 303-327 (2005)], Klewicki ["Reynolds number dependence, scaling, and dynamics of turbulent boundary layers," J. Fluids Eng. 132, 094001 (2010)], and others that the self-similar region starts and ends at z+˜O (√{δ+}) and O (δ+) , respectively. Below the self-similar region, empirical evidence suggests that eddies responsible for turbulent stresses begin to exhibit distance-from-the-wall scaling at a fixed z+ location; however, they are distorted by viscous forces, which remain a leading order contribution in the mean momentum balance in the region z+≲O (√{δ+}) , and thus result in a departure from self-similarity.
Performance and Shock Sensitivity Evaluations of Reduced Sensitivity Explosives
NASA Astrophysics Data System (ADS)
Bowden, Patrick; Tappan, Bryce; Schmitt, Matthew; Lichthardt, Joseph; Hill, Larry
2017-06-01
Making high explosives that possess insensitivity on par with TATB-based plastic bonded explosives (PBXs), while outperforming them, has proven to be a difficult challenge. Many molecules that have challenged TATB have fallen short in either small-scale sensitivity (impact, friction), thermal stability, or possessing a shock sensitivity that is either too high or too low. Recently, an alternative approach to single-molecule-based PBXs has been blending and/or co-crystallizing explosive molecules to address shortcomings of individual components. With this approach in mind, formulations have been prepared containing 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7) or 3,3'-diamino-4,4'-azoxyfurazan (DAAF) with 3-nitro-1,2,4-triazole-5-one (NTO). Detailed characterization of these mixtures has been described in a concurrent study. Here we focus on in depth performance metrics such as cylinder wall expansion and CJ pressure (via free surface velocity) and shock sensitivity, by small-scale gap-testing, were investigated as a function of weight percentages of the components. Results will be contrasted with known insensitive high explosives.
Assessment of crack opening area for leak rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharples, J.K.; Bouchard, P.J.
1997-04-01
This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plasticmore » reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.« less
López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario
2014-04-29
The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.
Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N
2011-10-01
To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.
Fluctuations of local electric field and dipole moments in water between metal walls.
Takae, Kyohei; Onuki, Akira
2015-10-21
We examine the thermal fluctuations of the local electric field Ek (loc) and the dipole moment μk in liquid water at T = 298 K between metal walls in electric field applied in the perpendicular direction. We use analytic theory and molecular dynamics simulation. In this situation, there is a global electrostatic coupling between the surface charges on the walls and the polarization in the bulk. Then, the correlation function of the polarization density pz(r) along the applied field contains a homogeneous part inversely proportional to the cell volume V. Accounting for the long-range dipolar interaction, we derive the Kirkwood-Fröhlich formula for the polarization fluctuations when the specimen volume v is much smaller than V. However, for not small v/V, the homogeneous part comes into play in dielectric relations. We also calculate the distribution of Ek (loc) in applied field. As a unique feature of water, its magnitude |Ek (loc)| obeys a Gaussian distribution with a large mean value E0 ≅ 17 V/nm, which arises mainly from the surrounding hydrogen-bonded molecules. Since |μk|E0 ∼ 30kBT, μk becomes mostly parallel to Ek (loc). As a result, the orientation distributions of these two vectors nearly coincide, assuming the classical exponential form. In dynamics, the component of μk(t) parallel to Ek (loc)(t) changes on the time scale of the hydrogen bonds ∼5 ps, while its smaller perpendicular component undergoes librational motions on time scales of 0.01 ps.
Anisotropy in pair dispersion of inertial particles in turbulent channel flow
NASA Astrophysics Data System (ADS)
Pitton, Enrico; Marchioli, Cristian; Lavezzo, Valentina; Soldati, Alfredo; Toschi, Federico
2012-07-01
The rate at which two particles separate in turbulent flows is of central importance to predict the inhomogeneities of particle spatial distribution and to characterize mixing. Pair separation is analyzed for the specific case of small, inertial particles in turbulent channel flow to examine the role of mean shear and small-scale turbulent velocity fluctuations. To this aim an Eulerian-Lagrangian approach based on pseudo-spectral direct numerical simulation (DNS) of fully developed gas-solid flow at shear Reynolds number Reτ = 150 is used. Pair separation statistics have been computed for particles with different inertia (and for inertialess tracers) released from different regions of the channel. Results confirm that shear-induced effects predominate when the pair separation distance becomes comparable to the largest scale of the flow. Results also reveal the fundamental role played by particles-turbulence interaction at the small scales in triggering separation during the initial stages of pair dispersion. These findings are discussed examining Lagrangian observables, including the mean square separation, which provide prima facie evidence that pair dispersion in non-homogeneous anisotropic turbulence has a superdiffusive nature and may generate non-Gaussian number density distributions of both particles and tracers. These features appear to persist even when the effects of shear dispersion are filtered out, and exhibit strong dependency on particle inertia. Application of present results is discussed in the context of modelling approaches for particle dispersion in wall-bounded turbulent flows.
NASA Technical Reports Server (NTRS)
Goldberg, U. C.; Reshotko, E.
1984-01-01
The method of matched asymptotic expansion was employed to identify the various subregions in three dimensional, turbomachinery end wall turbulent boundary layers, and to determine the proper scaling of these regions. The two parts of the b.l. investigated are the 3D pressure driven part over the endwall, and the 3D part located at the blade/end wall juncture. Models are proposed for the 3d law of the wall and law of the wake. These models and the data of van den Berg and Elsenaar and of Mueller are compared and show good agreement between models and experiments.
Modeling the failure of magmatic foams with application to Stromboli volcano, Italy
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Cedrick; Brun, Francesco; Mancini, Lucia; Fife, Julie L.; Baker, Don R.
2014-10-01
The failure of magmatic foams has been implicated as a fundamental process in eruptions occurring at open-conduit, basaltic volcanoes. In order to investigate the failure of magmatic foams we applied the fiber bundle model using global load sharing. The strengths of the fibers for the model were taken from bubble wall widths measured in four computer-simulated foams of low-porosity and from one very low-porosity and two high-porosity foams produced in the laboratory by heating hydrated basaltic glasses to 1200 °C. The relative strength of an individual fiber in the model was calculated from the square of a bubble wall's average width and absolute strengths of the foams were calculated based upon the correlation of the strength of one modeled foam with experimental data. The fiber bundle model is shown to successfully reproduce measured tensile strengths of porous volcanic rocks studied by other researchers and confirms previous findings of the primary importance of foam porosity, as well as the secondary importance of structural details that affect the number and size of bubble walls and permeability. Because of the success of the fiber bundle model in reproducing experimental foam failure, its results are compared to infrasonic measurements associated with bubbles at Stromboli (Italy) and demonstrate that within uncertainty the power-law exponents of the infrasonic energies and of the fiber bundle model energies are in agreement; both show a crossover from an exponent of 5/2 associated with the bursting of small bubbles in the infrasonic measurements to an exponent of 3/2 for normal Strombolian eruptions associated with infrasonic signals from meter-scale bubbles. The infrasonic signals for major explosions and a paroxysmal eruption at Stromboli fall near the extrapolation of the power law defined by the low-amplitude, bubble bursting events and are interpreted to reflect the bursting of multitudes of small bubbles, rather than a few large bubbles. The measurement of small-amplitude infrasonic events at Stromboli appears useful in predicting the recurrence interval of paroxysmal eruptions at this volcano and may also provide a tool that uses common, small-amplitude infrasonic events to constrain the frequency of larger eruptions at other volcanoes.
NASA Astrophysics Data System (ADS)
D'Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio
2018-02-01
Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.
Indirect Coupling of Magnetic Layers via Domain Wall Fringing fields
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2001-03-01
Ferromagnetic films separated by thin metallic spacer layers are usually coupled through an indirect exchange interaction which oscillates in sign between ferro and antiferromagnetic coupling as a function of the spacer layer thickness^1. For both such metallic systems, and for multilayered systems in which the ferromagnetic films are separated by thin insulating layers, correlated roughness of the magnetic layers gives rise to a weak ferromagnetic coupling via dipole fields. Another type of dipolar coupling mechanism, which has largely been ignored, is that arising from domain wall fringing fields. These fields can be locally very large^2 and can result in the demagnetization of ferromagnetic films which are nominally highly coercive ("hard") in sandwiches comprised of "hard" and "soft" ferromagnetic layers. When the moment of the soft layer is reversed back and forth in small magnetic fields, much too small to affect the moment of the hard layer, substantial local fringing fields from domain walls created in the soft film gradually result in the demagnetization of the hard film. In some cases the moment of the hard layer decays in an oscillatory manner as it is successively partially demagnetized and remagnetized. This process has been observed on both macroscopic and microscopic length scales using SQUID magnetometry and high resolution photoemission electron microscopy, respectively^3. Magnetic interactions from domain wall fringing fields may be very important for magnetic devices, especially, magnetoresistance sensors and memory elements. [1] S.S.P. Parkin, N. More and K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990); S.S.P. Parkin, Phys. Rev. Lett., 67, 3598 (1991). [2] L. Thomas, M. Samant and S.S.P. Parkin, Phys. Rev. Lett. 84, 1816 (2000). [3] L. Thomas, J Lüning, A. Scholl, F. Nolting, S. Anders, J. Stöhr and S.S.P. Parkin, Phys. Rev. Lett. 84, 3462 (2000).
Domain wall and isocurvature perturbation problems in a supersymmetric axion model
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Sonomoto, Eisuke
2018-04-01
The axion causes two serious cosmological problems, domain wall and isocurvature perturbation problems. Linde pointed out that the isocurvature perturbations are suppressed when the Peccei-Quinn (PQ) scalar field takes a large value ˜Mpl (Planck scale) during inflation. In this case, however, the PQ field with large amplitude starts to oscillate after inflation, and large fluctuations of the PQ field are produced through parametric resonance, which leads to the formation of domain walls. We consider a supersymmetric axion model and examine whether domain walls are formed by using lattice simulation. It is found that the domain wall problem does not appear in the SUSY axion model when the initial value of the PQ field is less than 1 03×v , where v is the PQ symmetry breaking scale.
Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Duck, P. W.
1992-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.
Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Duck, P. W.
1990-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.
Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider.
Zhang, ZhiGuo; Fan, YuBo; Deng, XiaoYan; Wang, GuiXue; Zhang, He; Guidoin, Robert
2008-10-01
Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the velocity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.
Evolution of hairpin vortices in a shear flow
NASA Technical Reports Server (NTRS)
Hon, T.-L.; Walker, J. D. A.
1988-01-01
Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations.
Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows.
Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul
2016-09-23
The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as a function of the particle size and volume fraction.
A Galilean and tensorial invariant k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bounded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation rate equation is reformulated using this time scale and no singularity exists at the wall. A new parameter R = k/S(nu) is introduced to characterize the damping function in the eddy viscosity. This parameter is determined by local properties of both the mean and the turbulent flow fields and is free from any geometry parameter. The proposed model is then Galilean and tensorial invariant. The model constants used are the same as in the high Reynolds number Standard k-epsilon Model. Thus, the proposed model will also be suitable for flows far from the wall. Turbulent channel flows and turbulent boundary layer flows with and without pressure gradients are calculated. Comparisons with the data from direct numerical simulations and experiments show that the model predictions are excellent for turbulent channel flows and turbulent boundary layers with favorable pressure gradients, good for turbulent boundary layers with zero pressure gradients, and fair for turbulent boundary layer with adverse pressure gradients.
A field-guide to the geology of Kythnos, Western Cyclades, Greece
NASA Astrophysics Data System (ADS)
Rice, A. Hugh N.; Grasemann, Bernhard
2017-04-01
This poster advertises a new field-guide to the island of Kythnos, within the Western Cyclades: kmz files of the outcrop descriptions etc. can be downloaded from the QR-code. Kythnos comprises schists and marbles of the Cycladic Blueschist Nappe in the footwall of the Miocene West Cycladic Detachment System, with a small outcrop of the hanging wall (Pelagonian Zone) in the southwest of the island. Stretching lineations change from ENE-WSW in the north to NNE-SSW in the south, reflecting a reorientation of Eocene exhumation strains towards the West Cycladic Detachment System extension direction; overall, finite strains increase towards the south and west. The guide is divided into six day-long excursions, with a total of 63 stops; for several excursions more outcrops than can be reasonably visited in one day are given, allowing some choice in the outcrops seen. However, the island is so small (20 x 11 km) that almost any selection of outcrops can be included in a day, since most lie beside or close to a road and require little walking. Descriptions of six outcrops as seen from the local ferries are also given. The guide documents both the dominant and unusual lithologies on the island as well as the major structural features of the island. In particular; deformation associated with the emplacement of the Pelagonian Zone hanging wall along the West Cycladic Detachment System; the development of an intermediate-scale low-angled detachment linking higher-angled Riedel fractures (Ag. Ioannis Detachment); the pervasive thinning and down-faulting of the rocks to the west, with contemporary ductile deformation in blue-grey marble and brittle deformation in quartz-rich layers within the blue-grey marble; and the possibility that a very large-scale recumbent isoclinal fold forms the island.
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A
2008-07-24
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
Mixed-mode VLSI optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Barrows, Geoffrey Louis
We develop practical, compact optic flow sensors. To achieve the desired weight of 1--2 grams, mixed-mode and mixed-signal VLSI techniques are used to develop compact circuits that directly perform computations necessary to measure optic flow. We discuss several implementations, including a version fully integrated in VLSI, and several "hybrid sensors" in which the front end processing is performed with an analog chip and the back end processing is performed with a microcontroller. We extensively discuss one-dimensional optic flow sensors based on the linear competitive feature tracker (LCFT) algorithm. Hardware implementations of this algorithm are shown able to measure visual motion with contrast levels on the order of several percent. We argue that the development of one-dimensional optic flow sensors is therefore reduced to a problem of engineering. We also introduce two related two-dimensional optic flow algorithms that are amenable to implementation in VLSI. This includes the planar competitive feature tracker (PCFT) algorithm and the trajectory method. These sensors are being developed to solve small-scale navigation problems in micro air vehicles, which are autonomous aircraft whose maximum dimension is on the order of 15 cm. We obtain a proof-of-principle of small-scale navigation by mounting a prototype sensor onto a toy glider and programming the sensor to control a rudder or an elevator to affect the glider's path during flight. We demonstrate the determination of altitude by measuring optic flow in the downward direction. We also demonstrate steering to avoid a collision with a wall, when the glider is tossed towards the wall at a shallow angle, by measuring the optic flow in the direction of the glider's left and right side.
Textures and traction: how tube-dwelling polychaetes get a leg up
Merz, Rachel Ann
2015-01-01
By controlling the traction between its body and the tube wall, a tube-dwelling polychaete can move efficiently from one end of its tube to the other, brace its body during normal functions (e.g., ventilation and feeding), and anchor within its tube avoiding removal by predators. To examine the potential physical interaction between worms and the tubes they live in, scanning electron microscopy was used to reveal and quantify the morphology of worm bodies and the tubes they produce for species representing 13 families of tube-dwelling polychaetes. In the tubes of most species there were macroscopic or nearly macroscopic (∼10 μm–1 mm) bumps or ridges that protruded slightly into the lumen of the tube; these could provide purchase as a worm moves or anchors. At this scale (∼10 μm-1 mm), the surfaces of the chaetal heads that interact with the tube wall were typically small enough to fit within spaces between these bumps (created by the inward projection of exogenous materials incorporated into the tube wall) or ridges (made by secretions on the interior surface of the tube). At a finer scale (0.01–10 μm), there was a second overlap in size, usually between the dentition on the surfaces of chaetae that interact with the tube walls and the texture provided by the secreted strands or microscopic inclusions of the inner linings. These linings had a surprising diversity of micro-textures. The most common micro-texture was a “fabric” of secreted threads, but there were also orderly micro-ridges, wrinkles, and rugose surfaces provided by microorganisms incorporated into the inner tube lining. Understanding the fine structures of tubes in conjunction with the morphologies of the worms that build them gives insight into how tubes are constructed and how worms live within them. PMID:25834379
Liesche, Johannes; Pace, Marcelo R; Xu, Qiyu; Li, Yongqing; Chen, Shaolin
2017-04-01
In the sieve elements (SEs) of the phloem, carbohydrates are transported throughout the whole plant from their site of production to sites of consumption or storage. SE structure, especially of the pore-rich end walls, has a direct effect on translocation efficiency. Differences in pore size and other features were interpreted as an evolutionary trend towards reduced hydraulic resistance. However, this has never been confirmed. Anatomical data of 447 species of woody angiosperms and gymnosperms were used for a phylogenetic analysis of end wall types, calculation of hydraulic resistance and correlation analysis with morphological and physiological variables. end wall types were defined according to pore arrangement: either grouped into a single area (simple) or into multiple areas along the end wall (compound). Convergent evolution of end wall types was demonstrated in woody angiosperms. In addition, an optimization of end wall resistance with plant height was discovered, but found to be independent of end wall type. While physiological factors also showed no correlation with end wall types, the number of sieve areas per end wall was found to scale with SE length. The results exclude the minimization of hydraulic resistance as evolutionary driver of different end wall types, contradicting this long-standing assumption. Instead, end wall type might depend on SE length. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model
NASA Astrophysics Data System (ADS)
Dordevich, Milorad C. W.
This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee
2017-06-01
Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.
Wide operating window spin-torque majority gate towards large-scale integration of logic circuits
NASA Astrophysics Data System (ADS)
Vaysset, Adrien; Zografos, Odysseas; Manfrini, Mauricio; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
Spin Torque Majority Gate (STMG) is a logic concept that inherits the non-volatility and the compact size of MRAM devices. In the original STMG design, the operating range was restricted to very small size and anisotropy, due to the exchange-driven character of domain expansion. Here, we propose an improved STMG concept where the domain wall is driven with current. Thus, input switching and domain wall propagation are decoupled, leading to higher energy efficiency and allowing greater technological optimization. To ensure majority operation, pinning sites are introduced. We observe through micromagnetic simulations that the new structure works for all input combinations, regardless of the initial state. Contrary to the original concept, the working condition is only given by threshold and depinning currents. Moreover, cascading is now possible over long distances and fan-out is demonstrated. Therefore, this improved STMG concept is ready to build complete Boolean circuits in absence of external magnetic fields.
Inter-allotropic transformations in the heterogeneous carbon nanotube networks.
Jung, Hyun Young; Jung, Sung Mi; Kim, Dong Won; Jung, Yung Joon
2017-01-19
The allotropic transformations of carbon provide an immense technological interest for tailoring the desired molecular structures in the scalable nanoelectronic devices. Herein, we explore the effects of morphology and geometric alignment of the nanotubes for the re-engineering of carbon bonds in the heterogeneous carbon nanotube (CNT) networks. By applying alternating voltage pulses and electrical forces, the single-walled CNTs in networks were predominantly transformed into other predetermined sp 2 carbon structures (multi-walled CNTs and multi-layered graphitic nanoribbons), showing a larger intensity in a coalescence-induced mode of Raman spectra with the increasing channel width. Moreover, the transformed networks have a newly discovered sp 2 -sp 3 hybrid nanostructures in accordance with the alignment. The sp 3 carbon structures at the small channel are controlled, such that they contain up to about 29.4% networks. This study provides a controllable method for specific types of inter-allotropic transformations/hybridizations, which opens up the further possibility for the engineering of nanocarbon allotropes in the robust large-scale network-based devices.
Effect of silicone oil on solid propellant combustion in small motors. [for rockets
NASA Technical Reports Server (NTRS)
Ramohalli, K.
1980-01-01
The feasibility of reducing troublesome nozzle blockage (by condensation deposits) in laboratory-scale solid rockets by addition of a silicone oil as a propellant ingredient was explored experimentally. An aluminized composite propellant and its counterpart with 1% silicone oil replacing part of the binder were fired in a 63.5 mm diameter, end-burning, all-metal burner. Pressure-time histories were recorded for all of the tests by a Taber gauge mounted at the downstream end of the chamber; temperature-time data at the nozzle throat were obtained in some of the runs by thermocouples having junctions positioned at the wall but insulated from the metal. Deposition of condensables on the nozzle walls causing a progressive increase in the chamber pressure with time was noted. The fraction of firings exhibiting practically no condensation was 59% with silicone and 32% without. On the average, temperature readings at the nozzle throat were higher with the silicone propellants. Although various phenomena may contribute to these findings, the results are not understood completely.
Evaluation of transition-sensitive eddy-viscosity turbulence models for separated flow in OpenFOAM
NASA Astrophysics Data System (ADS)
Fadhila, H.; Medina, H.; Beechook, A.; Aleksandrova, S.; Benjamin, S.
2017-07-01
A recently published transition-sensitive turbulence model, k-kL-ω-υ2 [1], is implemented in the open-source CFD package OpenFOAM, and its performance is evaluated in comparison with k-kL-ω [2] and υ2- f [3] models. On T3A and T3B flat plate cases, the k-kL-ω-υ2 model gives accurate transitional predictions. On a flapped NACA 23012 aerofoil, it is found to give only a small improvement over the k-kL-ω model (under 5% reduction in error for lift coefficient) compared with experimental results obtained at the Coventry University wind tunnel, showing limited effects of the extra transport equation which was added to sensitise the model to rotation and curvature effects. Assessment of fluctuating kinetic energy and the new wall-normal turbulent velocity scale shows overprediction near the wall compared to the υ2- f model which indicates a delayed prediction of separation.
Computations of Vertical Displacement Events with Toroidal Asymmetry
NASA Astrophysics Data System (ADS)
Sovinec, C. R.; Bunkers, K. J.
2017-10-01
Nonlinear numerical MHD modeling with the NIMROD code [https://nimrodteam.org] is being developed to investigate asymmetry during vertical displacement events. We start from idealized up/down symmetric tokamak equilibria with small levels of imposed toroidally asymmetric field errors. Vertical displacement results when removing current from one of the two divertor coils. The Eulerian reference-frame modeling uses temperature-dependent resistivity and anisotropic thermal conduction to distinguish the hot plasma region from surrounding cold, low-density conditions. Diffusion through a resistive wall is slow relative to Alfvenic scales but much faster than resistive plasma diffusion. Loss of the initial edge pressure and current distributions leads to a narrow layer of parallel current, which drives low-n modes that may be related to peeling-dominated ELMs. These modes induce toroidal asymmetry in the conduction current, which connects the simulated plasma to the wall. Work supported by the US DOE through Grant Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin
2016-08-01
Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes.
NASA Technical Reports Server (NTRS)
Acosta, W. A.; Norgren, C. T.
1986-01-01
Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1)splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.
NASA Technical Reports Server (NTRS)
Acosta, W. A.; Norgren, C. T.
1986-01-01
Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.
Time-evolving of very large-scale motions in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.
2014-11-01
Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
Adaptive-Wall Wind-Tunnel Investigations
1981-02-01
boundary condition for unconfined flow. In this way, theory and experiment are combined to minimize wall interference. The concept of an adaptive wall...should be noted that although shock waves extend to the walls, the exterior-flow calculation was based on subcritical-flow theory . Goodyer’s configuration...and v by aerodynamic probes. Both subsonic and transonic small- disturbance theory were used, as appropriate, to evaluate the functional rela
Applications of finite-size scaling for atomic and non-equilibrium systems
NASA Astrophysics Data System (ADS)
Antillon, Edwin A.
We apply the theory of Finite-size scaling (FSS) to an atomic and a non-equilibrium system in order to extract critical parameters. In atomic systems, we look at the energy dependence on the binding charge near threshold between bound and free states, where we seek the critical nuclear charge for stability. We use different ab initio methods, such as Hartree-Fock, Density Functional Theory, and exact formulations implemented numerically with the finite-element method (FEM). Using Finite-size scaling formalism, where in this case the size of the system is related to the number of elements used in the basis expansion of the wavefunction, we predict critical parameters in the large basis limit. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that this combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems. In the second part we look at non-equilibrium one-dimensional model known as the raise and peel model describing a growing surface which grows locally and has non-local desorption. For a specific values of adsorption ( ua) and desorption (ud) the model shows interesting features. At ua = ud, the model is described by a conformal field theory (with conformal charge c = 0) and its stationary probability can be mapped to the ground state of a quantum chain and can also be related a two dimensional statistical model. For ua ≥ ud, the model shows a scale invariant phase in the avalanche distribution. In this work we study the surface dynamics by looking at avalanche distributions using FSS formalism and explore the effect of changing the boundary conditions of the model. The model shows the same universality for the cases with and with our the wall for an odd number of tiles removed, but we find a new exponent in the presence of a wall for an even number of avalanches released. We provide new conjecture for the probability distribution of avalanches with a wall obtained by using exact diagonalization of small lattices and Monte-Carlo simulations.
Interior view, firstfloor room extending between the north wall of ...
Interior view, first-floor room extending between the north wall of the rotunda and the rotunda extensions north exterior wall, looking southwest. The small doorway at center opens onto the vestibule letting onto the rotunda. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Marine Surface Condenser Design Using Vertical Tubes Which Are Enhanced.
1981-06-01
hydraulic diameter. 2. Tube Wall. Heat transfer resistance through the tube wall is dependent upon tube material , wall thickness, and a scaling...B. Heat Transfer Coefficient for a Tube Wall For materials such as pure copper which have extremely high values for thermal conductivity, the...mandate the use of materials with relatively low thermal con- ductivities. The thermal resistance of the tube wall is the reciprocal of the heat
Cleopatra's Bedroom west facade with 12' scale (in tenths) with ...
Cleopatra's Bedroom west facade with 12' scale (in tenths) with picture tube wall along walkway. Structure is made solely of amber colored bottles. Roof supported by telephone poles. Areas of wall collapsed in the 1994 Northridge earthquake. Camera facing east. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA
NASA Astrophysics Data System (ADS)
Diaz Daniel, Carlos; Laizet, Sylvain; Vassilicos, John Christos
2015-11-01
The Townsend-Perry hypothesis of wall-attached eddies relates the friction velocity uτ at the wall to velocity fluctuations at a position y from the wall, resulting in a wavenumber range where the streamwise fluctuating velocity spectrum scales as E (k) ~k-1 and the corresponding structure function scales as uτ2 in the corresponding length-scale range. However, this model does not take in account the fluctuations of the skin friction velocity, which are in fact strongly intermittent. A DNS of zero-pressure gradient turbulent boundary layer suggests a 10 to 15 degree angle from the lag of the peak in the cross-correlations between the fluctuations of the shear stress and streamwise fluctuating velocities at different heights in the boundary layer. Using this result, it is possible to refine the definition of the attached eddy range of scales, and our DNS suggests that, in this range, the second order structure function depends on filtered skin friction fluctuations in a way which is about the same at different distances from the wall and different local Reynolds numbers.
Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles
NASA Technical Reports Server (NTRS)
Gradl, Paul; Brandsmeier, Will
2016-01-01
Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.
Kha, Hung; Tuble, Sigrid C; Kalyanasundaram, Shankar; Williamson, Richard E
2010-02-01
We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.
What Actually Happens When Granular Materials Deform Under Shear: A Look Within
NASA Astrophysics Data System (ADS)
Viggiani, C.
2012-12-01
We all know that geomaterials (soil and rock) are composed of particles. However, when dealing with them, we often use continuum models, which ignore particles and make use of abstract variables such stress and strain. Continuum mechanics is the classical tool that geotechnical engineers have always used for their everyday calculations: estimating settlements of an embankment, the deformation of a sheet pile wall, the stability of a dam or a foundation, etc. History tells us that, in general, this works fine. While we are happily ignoring particles, they will at times come back to haunt us. This happens when deformation is localized in regions so small that the detail of the soil's (or rock's) particular structure cannot safely be ignored. Failure is the perfect example of this. Researchers in geomechanics (and more generally in solid mechanics) have long since known that all classical continuum models typically break down when trying to model failure. All sorts of numerical troubles ensue - all of them pointing to a fundamental deficiency of the model: the lack of microstructure. N.B.: the term microstructure doesn't prescribe a dimension (e.g., microns), but rather a scale - the scale of the mechanisms responsible for failure. A possible remedy to this deficiency is represented by the so-called "double scale" models, in which the small scale (the microstructure) is explicitly taken into account. Typically, two numerical problems are defined and solved - one at the large (continuum) scale, and the other at the small scale. This sort of approach requires a link between the two scales, to complete the picture. Imagine we are solving at the small scale a simulation of an assembly of a few grains, for example using the Discrete Element Method, whose results are in turn fed back to the large scale Finite Element simulation. The key feature of a double scale model is that one can inject the relevant physics at the appropriate scale. The success of such a model crucially depends on the quality of the physics one injects: ideally, this comes directly from experiments. In Grenoble, this is what we do, combining various advanced experimental techniques. We are able to image, in three dimensions and at small scales, the deformation processes accompanying failure in geomaterials. This allows us to understand these processes and subsequently to define models at a pertinently small scale. I will present a few examples of the kind of experimental results which could inform a micro scale model. X-ray micro tomography imaging is the key measurement tool. This is used during loading, providing complete 3D images of a sand specimen at several stages throughout a triaxial compression test. Images from x-rays are then analyzed either in a continuum sense (using 3D Digital Image Correlation) or looking at the individual particle kinematics (Particle Tracking). I will show some of our most recent results, in which individual sand grains are followed with a technique combining very recent developments in image correlation and particle tracking. These advanced techniques offer us a look at what actually happens when a granular material deforms and eventually fails.
2017-05-03
AS A FUNCTION OF SCALING INTO THE QUASI -QUANTUM REGIME Naz Islam University of Missouri Electrical and Computer Engineering 319 Engineering...Carrier Transport Properties in Strained Crystalline Si Wall-Like Structures as a Function of Scaling into the Quasi -Quantum Regime 5b. GRANT NUMBER...curves) and their comparisons with experimental data (black dots in both panels......................................... 16 Approved for public
Composite asymptotic expansions and scaling wall turbulence.
Panton, Ronald L
2007-03-15
In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.
Self-sustaining processes at all scales in wall-bounded turbulent shear flows
Hwang, Yongyun
2017-01-01
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167581
Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
Cossu, Carlo; Hwang, Yongyun
2017-03-13
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
King, Thomas L; Clyburne, Jason A C; Lee, Kenneth; Robinson, Brian J
2013-06-15
Test facilities such as lab basins and wave tanks are essential when evaluating the use of chemical dispersants to treat oil spills at sea. However, these test facilities have boundaries (walls) that provide an ideal environment for surface (interfacial) film formation on seawater. Surface films may form from surfactants naturally present in crude oil as well as dispersant drift/overspray when applied to an oil spill. The objective of this study was to examine the impact of surface film formation on oil spreading rates in a small scale lab basin and on dispersant effectiveness conducted in a large scale wave tank. The process of crude oil spreading on the surface of the basin seawater was influenced in the presence of a surface film as shown using a 1st order kinetic model. In addition, interfacial film formation can greatly influence chemically dispersed crude oil in a large scale dynamic wave tank. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Geier, Brett A.
2014-01-01
A small community in southwest Michigan has been witness to a significant cultural divide within its school system. An influential church has permeated school leadership and in many cases has overstepped the proverbial "wall separating church and state." A fairly high-profile case saw the Sixth Circuit Court enjoin the district to remove…
Convection of wall shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark
2017-11-01
The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2016-11-01
Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
On the receptivity problem for Goertler vortices: Vortex motions induced by wall roughness
NASA Technical Reports Server (NTRS)
Denier, James P.; Hall, Philip; Seddougui, Sharon
1990-01-01
The receptivity problem for Goertler vortices induced by wall roughness is investigated. The roughness is modelled by small amplitude perturbations to the curved wall over which the flow takes place. The amplitude of these perturbations is taken to be sufficiently small for the induced Goertler vortices to be described by linear theory. The roughness is assumed to vary in the spanwise direction on the boundary layer lengthscale, while in the flow direction the corresponding variation is on the lengthscale over which the wall curvature varies. In fact the latter condition can be relaxed to allow for a faster streamwise roughness variation so long as the variation does not become as fast as that in the spanwise direction. The function which describes the roughness is assumed to be such that its spanwise and streamwise dependences can be separated; this enables progress by taking Fourier or Laplace transforms where appropriate. The cases of isolated and distributed roughness elements are investigated and the coupling coefficient which relates the amplitude of the forcing and the induced vortex amplitude is found asymptotically in the small wavelength limit. It is shown that this coefficient is exponentially small in the latter limit so that it is unlikely that this mode can be stimulated directly by wall roughness. The situation at 0(1) wavelengths is quite different and this is investigated numerically for different forcing functions. It is found that an isolated roughness element induces a vortex field which grows within a wedge at a finite distance downstream of the element. However, immediately downstream of the obstacle the disturbed flow produced by the element decays in amplitude. The receptivity problem at larger Goertler numbers appropriate to relatively large wall curvature is discussed in detail.
Basu, Sumita; Plawsky, Joel L; Wayner, Peter C
2004-11-01
In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally.
Chau, S W; Hsu, K L; Chen, S C; Liou, T M; Shih, K C
2004-07-30
The droplet impingement into a cavity at micrometer-scale is one of important fluidic issues for microfabrications, e.g. the inkjet deposition process in the PLED display manufacturing. The related micro-fluidic behaviors in the deposition process should be carefully treated to ensure the desired quality of microfabrication. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle responds very quickly and jets the droplets into cavities on substrates with micrometer size. The nature of droplet impingement depends on the fluid properties, the initial state of droplet, the impact parameters and the surface characteristics. The commonly chosen non-dimensional numbers to describe this process are the Weber number, the Reynolds number, the Ohnesorge number, and the Bond number. This paper discusses the influences of fluid properties of a Newtonian fluid, such as surface tension and fluid viscosity, on micro-fluidic characteristics for a certain jetting speed in the deposition process via a numerical approach, which indicates the impingement process consists of four different phases. In the first phase, the droplet stretching outwards rapidly, where inertia force is dominated. In the second phase, the recoiling of droplet is observed, where surface tension becomes the most important force. In the third phase, the gravitational force pulls the droplet surface towards cavity walls. The fourth phase begins when the droplet surface touches cavity walls and ends when the droplet obtains a stable shape. If the fluid viscosity is relatively small, the droplet surface touches cavity walls in the second phase. A stable fluid layer would not form if the viscosity is relatively small.
High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrach, R.J.
1989-07-24
A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less
Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept
NASA Astrophysics Data System (ADS)
Zuo, Q. L.; Wang, Y. J.; Li, J. S.
2018-05-01
In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.
A KPC-scale X-ray jet in the BL LAC Source S5 2007+777
NASA Technical Reports Server (NTRS)
Sambruna, Rita; Maraschi, Laura; Tavecchio, Fabrizio
2008-01-01
The BL Lac S3 2007++777, a classical radio-selected BL Lac from the sample of Stirkel et al. exhibiting an extended (19") radio jet. was observed with Chandra revealing an X-ray jet with simi1ar morphology. The hard X-ray spectrum and broad band SED is consistent with an IC/CMB origin for the X-ray emission, implying a highly relativistic flow at small angle to the line of sight with an unusually large deprojected length, 300 kpc. A structured jet consisting of a fast spine and slow wall is consistent with the observations.
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.
2018-06-01
For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.
The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.
Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C
2016-12-03
Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.
Regeneration of near-wall turbulence structures
NASA Technical Reports Server (NTRS)
Hamilton, James M.; Kim, John J.; Waleffe, Fabian A.
1993-01-01
An examination of the regeneration mechanisms of near-wall turbulence and an attempt to investigate the critical Reynolds number conjecture of Waleffe & Kim is presented. The basis is an extension of the 'minimal channel' approach of Jimenez and Moin which emphasizes the near-wall region and further reduces the complexity of the turbulent flow. Reduction of the flow Reynolds number to the minimum value which will allow turbulence to be sustained has the effect of reducing the ratio of the largest scales to the smallest scales or, equivalently, of causing the near-wall region to fill more of the area between the channel walls. In addition, since each wall may have an active near-wall region, half of the channel is always somewhat redundant. If a plane Couette flow is instead chosen as the base flow, this redundancy is eliminated: the mean shear of a plane Couette flow has a single sign, and at low Reynolds numbers, the two wall regions share a single set of structures. A minimal flow with these modifications possesses, by construction, the strongest constraints which allow sustained turbulence, producing a greatly simplified flow in which the regeneration process can be examined.
Pikal, Michael J; Bogner, Robin; Mudhivarthi, Vamsi; Sharma, Puneet; Sane, Pooja
2016-11-01
This report presents calculations of the difference between the vial heat transfer coefficient of the "edge vial" and the "center vial" at all scales. The only scale-up adjustment for center vials is for the contribution of radiation from the shelf upon which the vial sits by replacing the emissivity of the laboratory dryer shelf with the emissivity of the production dryer shelf. With edge vials, scales-up adjustments are more complex. While convection is not important, heat transfer from the wall to the bands (surrounding the vial array) by radiation and directly from the band to the vials by both radiation and conduction is important; this radiation heat transfer depends on the emissivity of the vial and the bands and is nearly independent of the emissivity of the dryer walls. Differences in wall temperatures do impact the edge vial effect and scale-up, and estimates for wall temperatures are needed for both laboratory and manufacturing dryers. Auto-loading systems (no bands) may give different edge vial heat transfer coefficients than when operating with bands. Satisfactory agreement between theoretical predictions and experimental values of the edge vial effect indicate that results calculated from the theory are of useful accuracy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lateral resistance of piles near vertical MSE abutment walls.
DOT National Transportation Integrated Search
2013-03-01
Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...
NASA Astrophysics Data System (ADS)
Cheema, Taqi Ahmad; Park, Cheol Woo
2013-08-01
Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.
On streak spacing in wall-bounded turbulent flows
NASA Technical Reports Server (NTRS)
Hamilton, James M.; Kim, John J.
1993-01-01
The present study is a continuation of the examination by Hamilton et al. of the regeneration mechanisms of near-wall turbulence and an attempt to investigate the conjecture of Waleffe et al. The basis of this study is an extension of the 'minimal channel' approach of Jimenez and Moin that emphasizes the near-wall region and reduces the complexity of the turbulent flow by considering a plane Couette flow of near minimum Reynolds number and stream-wise and span-wise extent. Reduction of the flow Reynolds number to the minimum value which will allow turbulence to be sustained has the effect of reducing the ratio of the largest scales to the smallest scales or, equivalently, of causing the near-wall region to fill more of the area between the channel walls. A plane Couette flow was chosen for study since this type of flow has a mean shear of a single sign, and at low Reynolds numbers, the two wall regions are found to share a single set of structures.
Impact gages for detecting meteoroid and other orbital debris impacts on space vehicles.
NASA Technical Reports Server (NTRS)
Mastandrea, J. R.; Scherb, M. V.
1973-01-01
Impacts on space vehicles have been simulated using the McDonnell Douglas Aerophysics Laboratory (MDAL) Light-Gas Guns to launch particles at hypervelocity speeds into scaled space structures. Using impact gages and a triangulation technique, these impacts have been detected and accurately located. This paper describes in detail the various types of impact gages (piezoelectric PZT-5A, quartz, electret, and off-the-shelf plastics) used. This description includes gage design and experimental results for gages installed on single-walled scaled payload carriers, multiple-walled satellites and space stations, and single-walled full-scale Delta tank structures. A brief description of the triangulation technique, the impact simulation, and the data acquisition system are also included.
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki
2017-11-01
Direct numerical simulation (DNS) has been performed in a flat-plate turbulent boundary layer with large adverse and favorable pressure gradients, thus involving separation and reattachment. This work extends a series of our DNSs at lower Reynolds numbers (Abe et al. 2012; 2015), where suction and blowing are imposed at the upper boundary for providing pressure gradients. Particular attention is given to the Re dependence. The present inlet Reynolds number is equal to Reθ = 1500 , which is by a factor of five larger than that for seminal DNSs (Spalart & Coleman 1997; Na & Moin 1998). Number of grid points used are 13 billion (Nx ×Ny ×Nz = 4096 × 1536 × 2048 in the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively) to resolve the essential motions. At the inlet, spatial resolution normalized by wall units is set to Δx+ = 8 , Δy+ = 0.1 10 , Δz+ = 5 . Significant Re effect is observed for skin friction outside the bubble, while it is small for mean quantities inside the bubble. In the separated region, large-scale structures of streamwise velocity fluctuations and pressure rollers become more prominent with increasing Reθ , which impinge significantly on the wall at reattachment.
Static in-plane shear behaviour of prefabricated wood-wool panel wallettes
NASA Astrophysics Data System (ADS)
Noh, M. S. Md; Ahmad, Z.; Ibrahim, A.; Kamarudin, A. F.; Mokhatar, S. N.
2018-04-01
The green construction material and technique are the current issue toward improving sustainability in the construction industry in Malaysia. The use of construction material that produced from renewable resources is a part of the effort for greening this industry. WWCP (Wood-wool cement panel) is a wood based product available to the construction industry to be used as a structural building wall element. This renewable material has the potential to replace the less eco-friendly materials such as bricks and other masonry element. However, the behaviour of wall subjected to the different load conditions is not well established and therefore, this study aimed to investigate the structural behaviour of the small scale wall (wallettes) subjected to in-plane lateral load. As a comparison, two types of fabrication technique of wallettes with dimension of 1200 mm × 1200 mm (± 30 mm) were considered. The conventional vertical stacking technique was denoted as W1 and new propose techniques (cross laminated) was denoted as W2. Three replicates of each type were fabricated and tested under in-plane lateral load until failure. The test results revealed that, the wallettes fabricated using the new fabrication technique significantly increased two times in load carrying capacity compared to wallettes with conventional technique.
Domain wall motion in sub-100 nm magnetic wire
NASA Astrophysics Data System (ADS)
Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc
2015-03-01
Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brull, S., E-mail: Stephane.Brull@math.u-bordeaux.fr; Charrier, P., E-mail: Pierre.Charrier@math.u-bordeaux.fr; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux.fr
It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implementedmore » in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.« less
Obeidat, Wasfy M; Sahni, Ekneet; Kessler, William; Pikal, Michael
2018-02-01
The goal of the work described in this publication was to evaluate a new, small, material-sparing freeze dryer, denoted as the "mini-freeze dryer or mini-FD", capable of reproducing the product temperature history of larger freeze dryers, thereby facilitating scale-up. The mini-FD wall temperatures can be controlled to mimic loading procedures and dryer process characteristics of larger dryers. The mini-FD is equipped with a tunable diode laser absorption spectroscopy (TDLAS) water vapor mass flow monitor and with other advanced process analytical technology (PAT) sensors. Drying experiments were performed to demonstrate scalability to larger freeze dryers, including the determination of vial heat transfer coefficients, K v . Product temperature histories during K v runs were evaluated and compared with those obtained with a commercial laboratory-scale freeze dryer (LyoStar II) for sucrose and mannitol product formulations. When the mini-FD wall temperature was set at the LyoStar II band temperature (- 20°C) to mimic lab dryer edge vials, edge vial drying in the mini-FD possessed an average K v within 5% of those obtained during drying in the LyoStar II. When the wall temperature of the mini-FD was set equal to the central vial product temperature, edge vials behaved as center vials, possessing a K v value within 5% of those measured in the LyoStar II. During both K v runs and complete product freeze drying runs, the temperature-time profiles for the average edge vials and central vial in the mini-FD agreed well with the average edge and average central vials of the LyoStar II.
Large-scale control strategy for drag reduction in turbulent channel flows
NASA Astrophysics Data System (ADS)
Yao, Jie; Chen, Xi; Thomas, Flint; Hussain, Fazle
2017-06-01
In a recent article, Canton et al. [J. Canton et al., Phys. Rev. Fluids 1, 081501(R) (2016), 10.1103/PhysRevFluids.1.081501] reported significant drag reduction in turbulent channel flow by using large-scale, near-wall streamwise swirls following the control strategy of Schoppa and Hussain [W. Schoppa and F. Hussain, Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] for low Reynolds numbers only, but found no drag reduction at high friction Reynolds numbers (Reτ=550 ). Here we show that the lack of drag reduction at high Re observed by Canton et al. is remedied by the proper choice of the large-scale control flow. In this study, we apply near-wall opposed wall-jet forcing to achieve drag reduction at the same (high) Reynolds number where Canton et al. found no drag reduction. The steady excitation is characterized by three control parameters, namely, the wall-jet-forcing amplitude A+, the spanwise spacing Λ+, and the wall jet height yc+ (+ indicates viscous scaling); the primary difference between Schoppa and Hussain's work (also that of Canton et al.) and this Rapid Communication is the emphasis on the explicit choice of yc+ here. We show as an example that with a choice of A+≈0.015 ,Λ+≈1200 , and yc+≈30 the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19 %,14 % , and 12 % drag reductions at Reτ=180 , 395, and 550, respectively. Further study should explore optimization of these parameter values.
Turbulent Boundary Layer Drag Reduction by Spanwise Wall Oscillation
NASA Astrophysics Data System (ADS)
Trujillo, S. M.; Bogard, D. G.; Ball, K. S.
1997-11-01
Changes in turbulence structure were investigated in a turbulent water boundary layer flow for which wall shear had been reduced 25 percent by spanwise wall oscillations. LDV and hot film measurements were made of streamwise and wall-normal velocities. For all wall oscillations examined, drag reduction was found to scale best with the peak velocity of the wall oscillation. Burst and sweep strength and duration were all reduced by the wall oscillation, with the greatest effects seen for the strongest events. The pdf of the velocity in the near-wall region showed greatly increased periods of low velocities, but little change was observed in the streamwise velocity autocorrelation.
Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo
2017-11-01
Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.
A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows
NASA Astrophysics Data System (ADS)
Deleon, Rey; Senocak, Inanc
2016-11-01
The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.
Civil Charges in Corporate Scandals. CRS Report for Congress
2004-04-08
advisors (or Wall Street firms and their customers), and manipulation or ausive trading in energy markets . Small "garden variety" examples of...y federal regulatory agencies - principally the Securities and Exchange Commission (SEC), ut also a few actions y the Commodity Futures Trading ...financial advisors (or Wall Street firms and their customers), and manipulation or ausive trading in energy markets . Small "garden variety" examples
29. Interior view, south end of the west (front) wall ...
29. Interior view, south end of the west (front) wall looking at the section between the door and southwestern corner, with scale (note remnants of the post-1915 fire plaster on wall) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA
Plant cell wall characterization using scanning probe microscopy techniques
Yarbrough, John M; Himmel, Michael E; Ding, Shi-You
2009-01-01
Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302
Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere
NASA Astrophysics Data System (ADS)
Frisch, Priscilla C.
2005-10-01
Observations of the weak polarization of light from nearby stars, reported by Tinbergen, are consistent with polarization by small (radius <0.14 μm), interstellar dust grains entrained in the magnetic wall of the heliosphere. The region of maximum polarization is toward ecliptic coordinates (λ, β)~(295deg, 0deg), corresponding to (l, b) = (20°, -21°). The direction of maximum polarization is offset along the ecliptic longitude by ~35° from the nose of the heliosphere and extends to low ecliptic latitudes. An offset is also seen between the region with the best-aligned dust grains, λ~281deg-330deg, and the upwind direction of the undeflected large grains, λ~259deg, β~+8deg, which are observed by Ulysses and Galileo to be flowing into the heliosphere. In the aligned-grain region, the strength of polarization anticorrelates with ecliptic latitude, indicating that the magnetic wall is predominantly at negative ecliptic latitudes. An extension of the magnetic wall to β<0deg, formed by the interstellar magnetic field BIS draped over the heliosphere, is consistent with predictions by Linde (1998). A consistent interpretation follows if the maximum-polarization region traces the heliosphere magnetic wall in a direction approximately perpendicular to BIS, while the region of best-aligned dust samples the region where BIS drapes smoothly over the heliosphere with maximum compression. These data are consistent with BIS being tilted by 60° with respect to the ecliptic plane and parallel to the Galactic plane. Interstellar dust grains captured in the heliosheath may also introduce a weak, but important, large-scale contaminant for the cosmic microwave background signal with a symmetry consistent with the relative tilts of BIS and the ecliptic.
Effects of sedimenting particles on the turbulence structure in a horizontal channel flow
NASA Astrophysics Data System (ADS)
Tay, Godwin F. K.; Kuhn, David C. S.; Tachie, Mark F.
2015-02-01
This work presents the results of experiments conducted in a horizontal channel to characterize low Reynolds number turbulent flows in the presence of small solid particles. The particle diameter relative to the integral length scale, dp/Λx, is approximately 0.02. Particles and fluid turbulence characteristics are measured for three average solid volume fractions of approximately ϕv = 2.0 × 10-4, 4.0 × 10-4, and 8.0 × 10-4 under conditions where the particle number density is evolving due to deposition. The results indicate that the mean slip between particles and the fluid is important only close to the wall. Away from the wall, the particles and unladen fluid mean velocities are similar. Differences between particles and the unladen fluid statistics are more pronounced in the wall-normal velocity fluctuations than the streamwise velocity fluctuations and Reynolds shear stress due to the stronger effect of the gravitational force in the wall-normal direction. The fluid turbulent intensities show no dependency on loading, but the peak Reynolds shear stress is significantly reduced. A quadrant decomposition of the Reynolds shear stress revealed a corresponding reduction in the ejections and sweeps for the laden flow in comparison with the unladen flow. Swirling strength and vorticity root-mean-square fluctuations decayed due to the damping effect of particles. The influence of particles on the turbulence structure was examined using two-point correlations of the velocity fluctuations and swirling strength, where it was demonstrated that the wall structures are attached eddies which are more extensive (much larger) in the particle-laden flow compared to the unladen flow.
NASA Astrophysics Data System (ADS)
Török, Ákos; Czinder, Balázs; Farkas, Orsolya; Görög, Péter; Kopecskó, Katalin; Lógó, János; Rozgonyi-Boissinot, Nikoletta; Vásárhelyi, Balázs
2016-04-01
An emblematic monument the Citadella fortress of Budapest has been studied in details to assess the condition of stone structure. The fortress is a large stone structure of 220 m in length and 60 m in width. The height of the porous limestone walls are in between 12-16 metres. The fortress was completed in 1854 but has been partly rebuilt due to changes in function and war related structural damages. The present paper provides an overview of the lithology, weathering forms and structural condition of the fortress related to a forthcoming restoration-reconstruction project. To assess the condition of stone both on site and laboratory analyses were performed. Lithological varieties were documented. Major identified lithotypes are porous oolitic limestone, less porous bioclastic limestone and fine grained highly porous limestone. To identify wet zones portable moisture meter was applied. Surface strength and weathering grade were also assessed using Schmidt hammer and Duroscop. Decay features were diagnosed and mapped. The most common forms are white weathering crusts, scaling and blistering of crusts as well as granular disintegration. Black weathering crusts were also recognized. Laboratory tests were focused on mechanical properties of stones and on mineralogical and chemical compositional analyses. Small samples of stone were collected and tested by optical microscopy, SEM-EDX, XRD and Thermogravimetric analyses. Laboratory analyses proved that the major salt responsible for the damage of external walls is gypsum, although significant amount of halite and hygroscopic salts were found both on the external walls and in the interior parts of the fortress. During structural analyses displacement of walls, tilting and major amount of cracks were recognized. Loss of material and subsidence also caused problems and at some places unstable wall sections were recognized.
Thermal systems design and analysis for a 10 K Sorption Cryocooler flight experiment
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Bard, Steven
1993-01-01
The design, analysis and predicted performance of the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE) is described from a thermal perspective. BETSCE is a shuttle side-wall mounted cryogenic technology demonstration experiment planned for launch in November 1994. BETSCE uses a significant amount of power (about 500 W peak) and the resultant heat must be rejected passively with radiators, as BETSCE has no access to the active cooling capability of the shuttle. It was a major challenge to design and configure the individual hardware assemblies, with their relatively large radiators, to enable them to reject their heat while satisfying numerous severe shuttle-imposed constraints. This paper is a useful case study of a small shuttle payload that needs to reject relatively high heat loads passively in a highly constrained thermal environment. The design approach described is consistent with today's era of 'faster, better, cheaper' small-scale space missions.
Collision recognition and direction changes for small scale fish robots by acceleration sensors
NASA Astrophysics Data System (ADS)
Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho
2005-05-01
Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.
``Large''- vs Small-scale friction control in turbulent channel flow
NASA Astrophysics Data System (ADS)
Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp
2017-11-01
We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.
Relation between small airways disease and parenchymal destruction in surgical lung specimens.
Willems, L N; Kramps, J A; Stijnen, T; Sterk, P J; Weening, J J; Dijkman, J H
1990-01-01
The relation between small airways disease and parenchymal destruction was investigated in lungs and lobes removed at surgery from 27 patients aged 15-70 years. Eight of the 27 patients were life-long non-smokers. The degree of small airways disease was assessed by semi-quantitative grading (SAD score) and by measuring diameter and wall thickness of membranous bronchioles. Parenchymal destruction was measured in three ways. Firstly, the number of alveolar attachments on membranous bronchioles per millimetre of circumference (AA/mm) was counted; the number of broken attachments was subtracted from the total AA/mm to give the numbers of intact attachments (normal AA/mm). Secondly, a point counting technique was used to give a destructive index (DI). Thirdly, the mean linear intercept (Lm) was determined. Total and normal AA/mm correlated negatively with the SAD score of membranous bronchioles (rs = -0.48 and -0.51) and with wall thickness (rs = -0.37 and -0.45) and DI correlated with wall thickness (rs = 0.5) and with the SAD score of respiratory bronchioles (rs = 0.53). Lm did not correlate with indices of small airway disease and total and normal AA/mm did not correlate with diameter. Multiple regression analyses showed that the correlation of total AA/mm with the SAD score of membranous and respiratory bronchioles and with wall thickness were not confounded by age or smoking. It is concluded that small airways disease is related to destruction of peribronchiolar alveoli, and it is postulated that small airways disease has a direct role in the causation of centrilobular emphysema. PMID:2315880
NASA Astrophysics Data System (ADS)
Cao, Bochao; Xu, Hongyi
2018-05-01
Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.
Small-Scale Thermal Violence Cook Off Test
NASA Astrophysics Data System (ADS)
Cook, Malcolm; Curtis, John; Stennett, Christopher
2015-06-01
The Small-Scale thermal Violence Test (SSVT) is designed to quantify the violence (explosiveness) of test materials by means of observing the velocity history of a metal burst disk that forms one end of a strong thick-walled cylindrical test vehicle. A copper heating block is placed to the rear of, but in contact with, the sample and provides sealing. The difference in thermal conductivity between copper and steel is sufficient that thermal runaway is induced near to the explosive / copper interface in an unlagged test. A series of experiments has been made, in which explosive specimens were confined and heated to explosion. A high-accuracy velocity measurement system was used to record the motion of the bursting disk. These experiments have shown that the early-time motion of the bursting disk corresponds qualitatively to the onset of thermal explosion and growth of reaction within the explosive specimens. However, the velocity history traces are more complex than had been anticipated. In particular, unexplained shoulders were observed in the Phase-Doppler Velocimeter (PDV) data. Some preliminary modelling studies have been carried out in order to shed light on the complex shapes of the projectile velocity histories.
Wetting of heterogeneous substrates. A classical density-functional-theory approach
NASA Astrophysics Data System (ADS)
Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2017-11-01
Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.
2010-11-30
16 Figure 10. Top and Bottom Connections ...Masonry Beams ...............................66 Figure 61. Resistance-displacement Idealization for Reinforced Masonry Beams .......................66...patterns on exterior walls. Masonry can form structural elements (bearing walls, columns , or pilasters) and/or finished cladding systems. Masonry
Turbulent Boundary Layer on a Cylinder in Axial Flow
1988-09-29
finding the wall shea stress. Finally, ft ;hould be noted that the wall shear stress can be found from the streamwrwise gradient of the mornsntum...somewhat butter collapse than inner scaling, suggesting that the outer flow affects events at the wall. By comparison, the burst frequency in a planar
Large-scale additive manufacturing with bioinspired cellulosic materials.
Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G
2018-06-05
Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.
Multi-scale model for the hierarchical architecture of native cellulose hydrogels.
Martínez-Sanz, Marta; Mikkelsen, Deirdre; Flanagan, Bernadine; Gidley, Michael J; Gilbert, Elliot P
2016-08-20
The structure of protiated and deuterated cellulose hydrogels has been investigated using a multi-technique approach combining small-angle scattering with diffraction, spectroscopy and microscopy. A model for the multi-scale structure of native cellulose hydrogels is proposed which highlights the essential role of water at different structural levels characterised by: (i) the existence of cellulose microfibrils containing an impermeable crystalline core surrounded by a partially hydrated paracrystalline shell, (ii) the creation of a strong network of cellulose microfibrils held together by hydrogen bonding to form cellulose ribbons and (iii) the differential behaviour of tightly bound water held within the ribbons compared to bulk solvent. Deuterium labelling provides an effective platform on which to further investigate the role of different plant cell wall polysaccharides in cellulose composite formation through the production of selectively deuterated cellulose composite hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanofluidic rocking Brownian motors.
Skaug, Michael J; Schwemmer, Christian; Fringes, Stefan; Rawlings, Colin D; Knoll, Armin W
2018-03-30
Control and transport of nanoscale objects in fluids is challenging because of the unfavorable scaling of most interaction mechanisms to small length scales. We designed energy landscapes for nanoparticles by accurately shaping the geometry of a nanofluidic slit and exploiting the electrostatic interaction between like-charged particles and walls. Directed transport was performed by combining asymmetric potentials with an oscillating electric field to achieve a rocking Brownian motor. Using gold spheres 60 nanometers in diameter, we investigated the physics of the motor with high spatiotemporal resolution, enabling a parameter-free comparison with theory. We fabricated a sorting device that separates 60- and 100-nanometer particles in opposing directions within seconds. Modeling suggests that the device separates particles with a radial difference of 1 nanometer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro
2015-05-01
In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.
Katul, Gabriel G; Porporato, Amilcare; Nikora, Vladimir
2012-12-01
The existence of a "-1" power-law scaling at low wavenumbers in the longitudinal velocity spectrum of wall-bounded turbulence was explained by multiple mechanisms; however, experimental support has not been uniform across laboratory studies. This letter shows that Heisenberg's eddy viscosity approach can provide a theoretical framework that bridges these multiple mechanisms and explains the elusiveness of the "-1" power law in some experiments. Novel theoretical outcomes are conjectured about the role of intermittency and very-large scale motions in modifying the k⁻¹ scaling.
Reynold-Number Effects on Near-Wall Turbulence
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moser, R. D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The Reynolds stress budget in a full developed turbulent channel flow for three Reynolds numbers (Re = 180,395,590) are used to investigate the near wall scaling of various turbulence quantities. We find that as the Reynolds number increases, the extent of the region where the production of the kinetic energy is equal to the dissipation increases. At the highest Reynolds number the region of equilibrium extends from y+ - 120 to y+ = 240. As the Reynolds number increases, we find that wall scaling collapses the budgets for the streamwise fluctuating component, but the budgets for the other two components show Reynolds number dependency.
Yan, Y.; Qian, S.; Littrell, K.; ...
2015-02-13
A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less
Mapping Urban Ecosystem Services Using High Resolution Aerial Photography
NASA Astrophysics Data System (ADS)
Pilant, A. N.; Neale, A.; Wilhelm, D.
2010-12-01
Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil
Effects of biases in domain wall network evolution. II. Quantitative analysis
NASA Astrophysics Data System (ADS)
Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.
2018-04-01
Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.
2010-02-11
This image taken NASA Lunar Reconnaissance Orbiter shows the wall of crater Van de Graaff C, where brighter material is exposed by more active processes associated with steeper slopes, recent small craters, and even individual rolling boulders.
Oguma, Tsuyoshi; Hirai, Toyohiro; Niimi, Akio; Matsumoto, Hisako; Muro, Shigeo; Shigematsu, Michio; Nishimura, Takashi; Kubo, Yoshiro; Mishima, Michiaki
2013-01-01
Objectives (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. Methods An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai), and the wall area percentage (WA%). To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. Results Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001), and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. Conclusions The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner. PMID:24116105
Figures of Merit for Magnetic Recording Media
NASA Astrophysics Data System (ADS)
Skomski, Ralph; Sellmyer, D. J.
2007-03-01
Since the first nucleation-field calculations for hard-soft nanostructures with multilayered [1] and arbitrary [2] geometries, exchange-spring magnets have attracted much attention in various areas of magnetism, including magnetic recording. Ultrahigh storage densities correspond to the strong-coupling limit, realized on small length scales and described by volume-averaged anisotropies. Second-order perturbation theory yields finite-size corrections that describe a partial decoupling of the phases. Since soft phases reduce the nucleation field, nanostructuring can be used to reduce the coercivity Hc while maintaining the energy barrier EB. However, the ratio EB/Hc is an ill-defined figure of merit, because the comparison with the Stoner-Wohlfarth model requires the introduction of a particle volume, as contrasted to an area. By using elongated particles with a continuous anisotropy gradient, it is possible to reduce the coercivity by a factor scaling as the bit size divided by the domain-wall width of the hard phase. However, with decreasing bit size this effect becomes less pronounced. In the strong-coupling limit, thermal stability yields a maximum storage density of order γ/kBT, where γ is the domain-wall energy of the hard phase. - This research is supported by NSF MRSEC, INSIC, and NCMN. [1] S. Nieber and H. Kronm"uller, phys. stat. sol. (b) 153, 367 (1989). [2] R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).
Buster, N.A.; Holmes, C.W.
2006-01-01
Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1997-01-01
This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.
Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Monnier, J. D.; Berger, J.-P.; Millan-Gabet, R.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Zhao, M.
2006-08-01
Using the three-telescope IOTA interferometer on Mount Hopkins, we report results from the first near-infrared (λ=1.65 μm) closure-phase survey of young stellar objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 mas, expected from generic ``flared disk'' models. Six of 14 targets showed small, yet statistically significant nonzero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main-sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk, and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, & Natta (DDN). Our data support disk models with curved inner rims because the expected emission appears symmetrically distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5%-10% of light on scales 0.01"-0.50") around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Scale resolving computation of submerged wall jets on flat wall with different roughness heights
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Bombardelli, Fabian
2014-11-01
Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.
Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J
2016-01-01
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dalstra, Hilke J.
2014-10-01
The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.
NASA Astrophysics Data System (ADS)
Sawira, S.; Rahman, T.
2018-05-01
Self-organized settlements are formed within the limited capacity of the inhabitants with or without the Government’s interventions. This pattern is mostly found in the informal settlements, where occupants are the planners who are guided by their needs, limited resources and vernacular knowledge about place making. Understanding the process of its development and transformation could be a way of unfolding the complexity it offers to a formal urban setting. To identify the patterns of adaptation process, a study of morphological elements (i.e. house form, streets) could be a possible way. A case study of an informal settlement (Kampung of Tamansari, Bandung in Indonesia) has been taken to dissect these elements. Two of important components of the study area: house forms and streets created the first layer of urban fabric. High population density demanded layers of needs and activities which eventually guided the multifunctional characteristics of streets and house forms. Thus, streets create dialogue with the complex built forms-often known as interface is the key element to understand the underneath order of Tamansari. Here interface can be divided into two categories depending on their scale – small and large. Small scale interfaces are comprised of small elements such as, extended platform, fence, steps, low height wall, blank wall and elements to set above, set forth, set over in house forms. These components help to create and define semipublic spaces in the settlement. These spaces could be visually and physically interactive or no interactive which result into active or inactive spaces respectively. Small scale interfaces are common features of the settlement, whereas large scale interfaces are placed at strategic locations and act as active spaces. Connecting bridges, open spaces and contours often create special dialogue within and beyond the study area. Interfaces cater diversity in the settlement by creating hierarchy of spaces. Sense of belonging and scope of personalization of the inhabitants are integral parts of alleyways and thus they create a complex yet coherent urban fabric. Apart from the physical elements, the settlement embodies some intangible assets like social bonding, trust, kinship, empathy and sense of belonging that add value to the spatial quality which is a distinctive character of Tamansari kampung. Informal settlements are certainly complex in nature, as it is an outcome of multiple people working to accommodate multidimensional needs. Whereas in a formal system, approach to cater for need is guided by a set of rules developed by a set of professionals end up in creating prototypes irrespective of necessity, affordability and cultural diversity. Cities throughout the world, are experiencing rapid urbanization creating different urban issues. Therefore, it is highly necessary to address different need and affordability of users and come up with suitable urban solutions. Understanding Tamansari Kampung as an informal settlement will enrich the knowledge and expertise to work in complex urban settings.
Curvature perturbation and domain wall formation with pseudo scaling scalar dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ema, Yohei; Nakayama, Kazunori; Takimoto, Masahiro, E-mail: ema@hep-th.phys.s.u-tokyo.ac.jp, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp, E-mail: takimoto@hep-th.phys.s.u-tokyo.ac.jp
2016-02-01
Cosmological dynamics of scalar field with a monomial potential φ{sup n} with a general background equation of state is revisited. It is known that if n is smaller than a critical value, the scalar field exhibits a coherent oscillation and if n is larger it obeys a scaling solution without oscillation. We study in detail the case where n is equal to the critical value, and find a peculiar scalar dynamics which is neither oscillating nor scaling solution, and we call it a pseudo scaling solution. We also discuss cosmological implications of a pseudo scaling scalar dynamics, such as themore » curvature perturbation and the domain wall problem.« less
Charles W. McMillin
1969-01-01
In Pinus taeda L., burst, breaking length, and sheet density were improved by using fiber refined from wood having long, narrow-diameter tracheids with thick walls. Only narrow-diameter teacheids with thick walls were required to improve tear factor. A theoretical stress analysis revealed that thick-walled cells of small outside diameter fail by...
Experimenatal analysis of the effect of cartilaginous rings on human tracheobronchial flow
NASA Astrophysics Data System (ADS)
Montoya Segnini, Jose; Bocanegra Evans, Humberto; Castillo, Luciano
2016-11-01
We present a set of high-resolution PIV experiments carried out in a refractive index-matched model of a trachea with cartilage rings at Re 2800. Results show a higher vorticity along the walls of the trachea in the model with cartilaginous rings as well as small recirculation areas on the upstream side of the wall cavities created by the rings. Furthermore, the ringed model experiences higher shear stress in the trachea due to the sudden change in the wall position created by the rings. Additionally, small recirculation areas are identified in the cavities between rings. For the smooth model, a stronger separation bubble is observed at the bronchi entrance, generating a stronger shear layer and increasing the wall shear stress on the bottom bronchi wall. The differences observed go against the notion that the main airway, i.e. trachea and main bronchi, may be modeled as smooth. Our results suggest that cartilage rings will have an impact on the wall shear stress and may affect particle deposition, which is of importance in inhaled drug delivery and pollutant deposition in the airway. Additionally, the effects introduced by the rings may change the flow characteristics in further generations.
Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale
2011-01-01
Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...
31. Interior view, north end of the west wall looking ...
31. Interior view, north end of the west wall looking at the section between the front door and the northwestern corner of the building, with scale (note position of post fire partition wall and floor joists as recorded in the brickwork) - Kiskiack, Naval Mine Depot, State Route 238 vicinity, Yorktown, York County, VA
Wall Paint Exposure Assessment Model (WPEM)
WPEM uses mathematical models developed from small chamber data to estimate the emissions of chemicals from oil-based (alkyd) and latex wall paint which is then combined with detailed use, workload and occupancy data to estimate user exposure.
NASA Technical Reports Server (NTRS)
Bahrami, Parviz A.
1996-01-01
Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.
Nonlinearity and Scaling Behavior in Lead Zirconate Titanate Piezoceramic
NASA Astrophysics Data System (ADS)
Mueller, V.
1998-03-01
The results of a comprehensive study of the nonlinear dielectric and electromechanical response of lead zirconate titanate (PZT) piezoceramics are presented. The piezoelectric strain of a series of donor doped (soft PZT) and acceptor doped (hard PZT) polycrystalline systems was measured under quasistatic (nonresonant) conditions. The measuring field was applied both parallel and perpendicular to the poling direction of the ceramic in order to investigate the influence of different symmetry conditions. Dielectric properties were studied in addition to the electromechanical measurements which enables us to compare piezoelectric and dielectric nonlinearities. Due to the different level and type of dopants, the piezoceramics examined differ significantly with regard to its Curie temperature (190^o C
Wall relaxation and the driving forces for cell expansive growth
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1987-01-01
When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.
Scale interactions of turbulence subjected to a straining relaxation destraining cycle
NASA Astrophysics Data System (ADS)
Chen, Jun; Meneveau, Charles; Katz, Joseph
2006-09-01
The response of turbulence subjected to planar straining and de-straining is studied experimentally, and the impact of the applied distortions on the energy transfer across different length scales is quantified. The data are obtained using planar particle image velocimetry (PIV) in a water tank, in which high-Reynolds-number turbulence with very low mean velocity is generated by an array of spinning grids. Planar straining and de-straining mean flows are produced by pushing and pulling a rectangular piston towards, and away from, the bottom wall of the tank. The data are processed to yield the time evolution of Reynolds stresses, anisotropy tensors, turbulence kinetic energy production, and mean subgrid-scale (SGS) dissipation rate at various scales. During straining, the production rises rapidly. After the relaxation period the small-scale SGS stresses recover isotropy, but the Reynolds stresses still display significant anisotropy. Thus when destraining is applied, a strong negative production (mean backscatter) occurs, i.e. the turbulence returns kinetic energy to the mean flow. The SGS dissipation displays similar behaviour at large filter scales, but the mean backscatter gradually disappears with decreasing filter scales. Energy spectra are compared to predictions of rapid distortion theory (RDT). Good agreement is found for the initial response but, as expected for the time-scale ratios of the experiment, turbulence relaxation causes discrepancies between measurements and RDT at later times.
Mass movements and infiltration on abandoned terraces in the Iberian Range, Northern Spain
NASA Astrophysics Data System (ADS)
Arnáez, José; Lana-Renault, Noemí; Ruiz-Flaño, Purificación; Pascual, Nuria; Lasanta, Teodoro
2017-04-01
Terraced slopes were one of the most common agricultural landscapes in mountain areas of the Mediterranean region. Built to ensure agricultural production, terraces have acted as an effective soil conservation system at both slope and catchment scale. Demographic and socioeconomic changes in the last 60 years in the Mediterranean mountains have led to the abandonment of terraces. The consequent lack of maintenance of such agricultural structures has triggered diverse erosion processes. At the beginning of the 20th century, the upper valleys of the Leza, Jubera and Cidacos rivers, in the Iberian range (northern Spain), held more than 10,000 inhabitants and a cultivated area of 21,021 ha, of which 13,274 ha were farming terraces (63% of the agricultural space). At present, these terraces are abandoned. The most common erosion processes on the walls of abandoned terraces are stone collapses, which leave the riser completely unprotected, and small mass movements. A total amount of 240 terrace failures with mass movement were identified in the 53 studied plots, which means an average number of 4.5 per plot and 10.6 per 100 m of wall. At plot scale, the average volume of debris was 15.1 m3 (33.1 m3 for every 100 m of wall). Soil infiltration capacity and the way the water flows downslope may be the main triggers for mass movements. Rainfall simulations carried out in the study area showed an average infiltration coefficient above 75%. Infiltration coefficients were higher on concave hillslopes (above 85%), probably because the plots in these sectors were intensively tilled in the past, with plowed and permeable anthropogenic soils. The infiltrated water becomes a destabilizing factor for the terrace wall. The lack of deep percolation due to a more impermeable substrate (e.g., the original soil of the slope) favours the accumulation of water within the artificial soil, behind the stone wall. The increasing weight of the material can cause the activation of mass movements. The information obtained can be useful to identify the sectors prone to soil erosion due to terrace failure, and thus help to preserve terraces more efficiently. Acknowledgement This research was supported by the ESPAS project (CGL2015-65569-R, funded by the MINECO-FEDER)
Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.
Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias
2018-06-01
Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Looking Northwest at Office Building Boiler Room, Including Cinderblock Walls, ...
Looking Northwest at Office Building Boiler Room, Including Cinderblock Walls, Fuel Tank and Scale Weights - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO
Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.
Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R
2017-07-01
Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1 week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.
Explosions within a Deep Crater: Detection from Land and Space
NASA Astrophysics Data System (ADS)
Worden, A. K.; Dehn, J.; De Angelis, S.
2012-12-01
Many volcanoes in the North Pacific exhibit small scale explosive activity. This activity is typified by small explosions throwing ash, blocks, and spatter out of a central vent located within a crater. This material can be thrown out onto the flanks of the volcano if the vent is near enough to the crater rim. However, at some volcanoes, the vent is tens to hundreds of meters below the crater rim. The crater walls constrain the erupted material, causing it to fall back into the vent. Infill of material clogs the vent and can cause future explosions to become muffled. The depth of the crater also inhibits clear views of the vent for satellite remote sensing. In order for a satellite to record an image of a very deep vent, it requires very near vertical pass angle (satellite zenith angle). This viewing geometry is rare, meaning that the majority of images at such volcanoes will show the flanks or the crater walls, not the actual vent or crater floor. A method was developed for using satellite data to monitor the frequency of small explosive activity at numerous volcanoes. By determining the frequency of small explosions seen as thermal features in satellite imagery, a baseline of activity was determined. Any changes from this baseline are then used to indicate possible changes in the volcanic system or eruptive activity of the volcano. This method was used on data collected at Mt. Chuginadak (Cleveland) in Alaska, Karymsky Volcano in Russia, and Stromboli Volcano in Italy with good results. The method was then applied to Shishaldin Volcano in Alaska but was not as useful in determining the activity of the volcano due to the depth of Shishaldin's central crater (400m). This highlights the importance of multi-disciplinary and multi-sensor research to determine the actual activity at a volcano. For this project, explosions at Shishaldin Volcano were counted in both satellite data (thermal anomalies) and seismic data (explosion signals) for a time period from 2008-2010. These datasets are then compared to determine if there is a relationship that can be carried through the data, or if there is any other connecting factor to aid in the detection and monitoring of small scale explosive activity at volcanoes with vents deep within a crater. If a distinguishing factor can be verified by looking at a location with both satellite and seismic monitoring, it may aid in the monitoring of volcanoes where land based monitoring is not safe or financially viable.
Hollow porous-wall glass microspheres for hydrogen storage
Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.
2010-02-23
A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.
A Revised Model for Dosimetry in the Human Small Intestine
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Poston; Nasir U. Bhuiyan; R. Alex Redd
2005-02-28
A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.
NASA Technical Reports Server (NTRS)
Ferri, A.; Roffe, G.
1975-01-01
A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.
Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1990-01-01
The biophysical basis for the changes in cell elongation rate during gravitropism was examined in aetiolated cucumber (Cucumis sativus L.) hypocotyls. Bulk osmotic pressures on the two sides of the stem and in the epidermal cells were not altered during the early time course of gravitropism. By the pressure-probe technique, a small increase in turgor (0.3 bar, 30 kPa) was detected on the upper (inhibited) side, whereas there was a negligible decrease in turgor on the lower (stimulated) side. These small changes in turgor and water potential appeared to be indirect, passive consequences of the altered growth and the small resistance for water movement from the xylem, and indicated that the change in growth was principally due to changes in wall properties. The results indicate that the hydraulic conductance of the water-transport pathway was large (.25 h-1 bar-1) and the water potential difference supporting cell expansion was no greater than 0.3 bar (30 kPa). From pressure-block experiments, it appeared that upon gravitropic stimulation (1) the yield threshold of the lower half of the stem did not decrease and (2) the wall on the upper side of the stem was not made more rigid by a cross-linking process. Mechanical measurements of the stress/strain properties of the walls showed that the initial development of gravitropism did not involve an alteration of the mechanical behaviour of the isolated walls. Thus, gravitropism in cucumber hypocotyls occurs principally by an alteration of the wall relaxation process, without a necessary change in wall mechanical properties.
Sarkar, Sandip; Burriesci, Gaetano; Wojcik, Adam; Aresti, Nicholas; Hamilton, George; Seifalian, Alexander M
2009-04-16
Long-term patency of expanded polytetrafluoroethylene (ePTFE) small calibre cardiovascular bypass prostheses (<6mm) is poor because of thrombosis and intimal hyperplasia due to low compliance, stimulating the search for elastic alternatives. Wall porosity allows effective post-implantation graft healing, encouraging endothelialisation and a measured fibrovascular response. We have developed a novel poly (carbonate) urethane-based nanocomposite polymer incorporating polyhedral oligomeric silsesquioxane (POSS) nanocages (UCL-NANO) which shows anti-thrombogenicity and biostability. We report an extrusion-phase-inversion technique for manufacturing uniform-walled porous conduits using UCL-NANO. Image analysis-aided wall measurement showed that two uniform wall-thicknesses could be specified. Different coagulant conditions revealed the importance of low-temperature phase-inversion for graft integrity. Although minor reduction of pore-size variation resulted from the addition of ethanol or N,N-dimethylacetamide, high concentrations of ethanol as coagulant did not provide uniform porosity throughout the wall. Tensile testing showed the grafts to be elastic with strength being directly proportional to weight. The ultimate strengths achieved were above those expected from haemodynamic conditions, with anisotropy due to the manufacturing process. Elemental analysis by energy-dispersive X-ray analysis did not show a regional variation of POSS on the lumen or outer surface. In conclusion, the automated vertical extrusion-phase-inversion device can reproducibly fabricate uniform-walled small calibre conduits from UCL-NANO. These elastic microporous grafts demonstrate favourable mechanical integrity for haemodynamic exposure and are currently undergoing in-vivo evaluation of durability and healing properties.
Nonequilibrium diffusive gas dynamics: Poiseuille microflow
NASA Astrophysics Data System (ADS)
Abramov, Rafail V.; Otto, Jasmine T.
2018-05-01
We test the recently developed hierarchy of diffusive moment closures for gas dynamics together with the near-wall viscosity scaling on the Poiseuille flow of argon and nitrogen in a one micrometer wide channel, and compare it against the corresponding Direct Simulation Monte Carlo computations. We find that the diffusive regularized Grad equations with viscosity scaling provide the most accurate approximation to the benchmark DSMC results. At the same time, the conventional Navier-Stokes equations without the near-wall viscosity scaling are found to be the least accurate among the tested closures.
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Broadband Fan Noise Generated by Small Scale Turbulence
NASA Technical Reports Server (NTRS)
Glegg, Stewart A. L.
1998-01-01
This report describes the development of prediction methods for broadband fan noise from aircraft engines. First, experimental evidence of the most important source mechanisms is reviewed. It is found that there are a number of competing source mechanism involved and that there is no single dominant source to which noise control procedures can be applied. Theoretical models are then developed for: (1) ducted rotors and stator vanes interacting with duct wall boundary layers, (2) ducted rotor self noise, and (3) stator vanes operating in the wakes of rotors. All the turbulence parameters required for these models are based on measured quantities. Finally the theoretical models are used to predict measured fan noise levels with some success.
NASA Astrophysics Data System (ADS)
Sina, Nima; Moosavi, Hassan; Aghaei, Hosein; Afrand, Masoud; Wongwises, Somchai
2017-01-01
In this paper, for the first time, a nonlocal Timoshenko beam model is employed for studying the wave dispersion of a fluid-conveying single-walled carbon nanotube on Viscoelastic Pasternak foundation under high and low temperature change. In addition, the phase and group velocity for the nanotube are discussed, respectively. The influences of Winkler and Pasternak modulus, homogenous temperature change, steady flow velocity and damping factor of viscoelastic foundation on wave dispersion of carbon nanotubes are investigated. It was observed that the characteristic of the wave for carbon nanotubes conveying fluid is the normal dispersion. Moreover, implying viscoelastic foundation leads to increasing the wave frequencies.
Plasma-surface interaction in the context of ITER.
Kleyn, A W; Lopes Cardozo, N J; Samm, U
2006-04-21
The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.
The effects of streamwise concave curvature on turbulent boundary layer structure
NASA Astrophysics Data System (ADS)
Jeans, A. H.; Johnston, J. P.
1982-06-01
Concave curvature has a relatively large, unpredictable effect on turbulent boundary layers. Some, but not all previous studies suggest that a large-scale, stationary array of counter-rotating vortices exists within the turbulent boundary layer on a concave wall. The objective of the present study was to obtain a qualitative model of the flow field in order to increase our understanding of the underlying physics. A large free-surface water channel was constructed in order to perform a visual study of the flow. Streamwise components of mean velocity and turbulence intensity were measured using a hot film anemometer. The upstream boundary was spanwise uniform with a momentum thickness to radius of curvature of 0.05. Compared to flat wall flow, large-scale, randomly distributed sweeps and ejections were seen in the boundary layer on the concave wall. The sweeps appear to suppress the normal mechanism for turbulence production near the wall by inhibiting the bursting process. The ejections appear to enhance turbulence production in the outer layers as the low speed fluid convected from regions near the wall interacts with the higher speed fluid farther out. The large-scale structures did not occur at fixed spanwise locations, and could not be called roll cells or vortices.
A novel VLES model accounting for near-wall turbulence: physical rationale and applications
NASA Astrophysics Data System (ADS)
Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron
2014-11-01
A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.
Patiño, Jairo; Hylander, Kristoffer; González-Mancebo, Juana M
2010-09-01
Forested freshwater ecosystems worldwide are threatened by a number of anthropogenic disturbances, such as water pollution and canalization. Transient or permanent deforestation can also be a serious threat to organisms in forested watersheds, but its effects on different types of freshwater systems has been little studied. We investigated lotic bryophyte communities on rock and soil in subtropical cloud laurel forests on La Gomera Island in the Canary Islands, Spain, and asked whether the response to forest clear-cutting varied among the communities associated with dripping walls, streams, and waterfalls. We compared three successional forest stages: ancient forests (> 250 years), young forests (20-50 years after clear-cutting), and open stands (5-15 years after clear-cutting). In each of 56 study sites we sampled general vegetation and substrate data in a 0.01-ha plot and took composition data of bryophyte species in 3 + 3 subplots of 1 x 1 m. The general pattern of decline in species richness and change in species composition after forest clear-cutting was stronger for streamside assemblages compared to assemblages on dripping walls and in waterfalls. The change in species numbers on rocks was larger than that on soils, because a guild of species growing on soil (but not on rocks) were favored by disturbance and thus increased in the disturbed sites. Most of the sensitive species could be classified as typical laurel forest species. Mosses were generally more tolerant to forest clear-cutting than were liverworts. We suggest that streamsides are more sensitive to disturbance than waterfalls and dripping walls because of a larger variation in microclimate before than after clear-cutting and because they are more easily invaded by early-successional species (both bryophytes and highly competitive vascular plants). We propose that special care should be taken along small streams within disturbed watersheds if bryophyte assemblages and threatened species should be protected. The susceptibility to anthropogenic pressures is probably rather high in ecosystems that do not regularly experience large-scale stand-replacing disturbances, especially on oceanic islands because of isolation and a small total habitat area for focal organisms.
[Impedance between modiolus and different walls of scala tympani].
Du, Qiang; Wang, Zhengmin
2008-10-01
To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.
NASA Technical Reports Server (NTRS)
Shinoda, Patrick M.
1994-01-01
A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-06-01
Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.
Thermal and athermal crackling noise in ferroelastic nanostructures.
Zhao, Z; Ding, X; Sun, J; Salje, E K H
2014-04-09
The evolution of ferroelastic microstructures under external shear is determined by large-scale molecular dynamics simulations in two and three dimensions. Ferroelastic pattern formation was found to be almost identical in two and three dimensions, with only the ferroelastic transition temperature changing. The twin patterns generated by shear deformation depend strongly on temperature, with high wall densities nucleating under optimized temperature conditions. The dynamical tweed and mobile kink movement inside the twin walls is continuous and thermally activated at high temperatures, and becomes jerky and athermal at low temperatures. With decreasing temperature, the statistical distributions of dynamical tweed and kinks vary from a Vogel-Fulcher law P(E)~exp-(E/(T-TVF)) to an athermal power-law distribution P(E)~E-E. During the yield event, the nucleation of needles and kinks is always jerky, and the energy of the jerks is power-law distributed. Low-temperature yield proceeds via one large avalanche. With increasing temperature, the large avalanche is thermally broken up into a multitude of small segments. The power-law exponents reflect the changes in temperature, even in the athermal regime.
Implications of Earth analogs to Martian sulfate-filled Fractures
NASA Astrophysics Data System (ADS)
Holt, R. M.; Powers, D. W.
2017-12-01
Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.
A transonic wind tunnel wall interference prediction code
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.
1988-01-01
A small disturbance transonic wall interference prediction code has been developed that is capable of modeling solid, open, perforated, and slotted walls as well as slotted and solid walls with viscous effects. This code was developed by modifying the outer boundary conditions of an existing aerodynamic wing-body-pod-pylon-winglet analysis code. The boundary conditions are presented in the form of equations which simulate the flow at the wall, as well as finite difference approximations to the equations. Comparisons are presented at transonic flow conditions between computational results and experimental data for a wing alone in a solid wall wind tunnel and wing-body configurations in both slotted and solid wind tunnels.
Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Donald S. Stone
2010-01-01
Bulk wood properties are derived from an ensemble of processes taking place at the micron-scale, and at this level the properties differ dramatically in going from cell wall layers to the middle lamella. To better understand the properties of these micron-scaled regions of wood, we have developed a unique set of nano-indentation tools that allow us to measure local...
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
NASA Astrophysics Data System (ADS)
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
Superdiffusive gas recovery from nanopores
NASA Astrophysics Data System (ADS)
Wu, Haiyi; He, Yadong; Qiao, Rui
2016-11-01
Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.
Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations.
Gumbart, James C; Beeby, Morgan; Jensen, Grant J; Roux, Benoît
2014-02-01
Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.
NASA Astrophysics Data System (ADS)
Brasseur, James; Paes, Paulo; Chamecki, Marcelo
2017-11-01
Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.
Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi
2004-10-01
Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.
Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall
Orlean, Peter
2012-01-01
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325
NASA Technical Reports Server (NTRS)
Rebstock, Rainer; Lee, Edwin E., Jr.
1989-01-01
An initial wind tunnel test was made to validate a new wall adaptation method for 3-D models in test sections with two adaptive walls. First part of the adaptation strategy is an on-line assessment of wall interference at the model position. The wall induced blockage was very small at all test conditions. Lift interference occurred at higher angles of attack with the walls set aerodynamically straight. The adaptation of the top and bottom tunnel walls is aimed at achieving a correctable flow condition. The blockage was virtually zero throughout the wing planform after the wall adjustment. The lift curve measured with the walls adapted agreed very well with interference free data for Mach 0.7, regardless of the vertical position of the wing in the test section. The 2-D wall adaptation can significantly improve the correctability of 3-D model data. Nevertheless, residual spanwise variations of wall interference are inevitable.
Changes in Mass Flux of Tephra from the Lava Lake in Overlook Crater, Kīlauea Volcano, Hawai`i
NASA Astrophysics Data System (ADS)
Swanson, D. A.; Orr, T. R.; Patrick, M. R.
2016-12-01
The mass flux of tephra (mostly Pele's hair and tears, hollow spherules, and lithic clasts) from the lava lake in Overlook crater varies on short (seconds-minutes), intermediate (hours-days), and long (months) time scales. The tephra is collected almost daily from a network of 10 buckets within 400 m of, and 100-150 m above, the lava lake; bucket locations have not changed during the eruption. A mass accumulation rate (AR) is calculated for the network; since April 2008, the AR averages 0.17 g/m2/h ( 5×10-8 kg/m2/s). The tephra forms during almost constant spattering at the SE sink (the main downwelling site) and ephemeral sites along the crater wall, as well as from sporadic, rockfall-induced violent outgassing that can eject decimeter-size spatter clots onto the crater rim; the average AR excludes these violent events. The rockfalls, and nearly constant raveling from the crater wall, introduce lithic clasts into the tephra. The lithic content of the tephra has decreased with time, reflecting both greater wall stability and higher lake level, and was usually <10 mass percent in 2014-2015 and <5 percent in 2016. At short time scales, juvenile AR increases during episodic gas-piston events, rockfalls, and strong winds (>7 m/s). At intermediate and long time scales, juvenile AR shows no correlation with measured SO2 output and only weak or no correlation with wind speed, but it often tracks the elevation of the lake surface—higher when lava is nearer the buckets. For example, both lava level and juvenile AR were unusually high in January-July 2016. Before 2016, however, 7-9 periods of heightened juvenile production (see figure below), each lasting several months, show no correlation with other monitored parameters—lake level, SO2, wind speed and direction, or downwelling location. Often AR gradually increased to a peak before falling off, sometimes to nearly zero. We speculate that such long-term variations result from changes in magma supply rate, gas concentration, or rise frequency of decoupled gas slugs. These changes may be too small or slow to detect by current geodetic and gas monitoring. They suggest a slowly pulsing rate of gas delivery or magma supply on a several-month time scale at Kīlauea.
Hybrid LES RANS technique based on a one-equation near-wall model
NASA Astrophysics Data System (ADS)
Breuer, M.; Jaffrézic, B.; Arora, K.
2008-05-01
In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196 205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.
The multifractal nature of plume structure in high-Rayleigh-number convection
NASA Astrophysics Data System (ADS)
Puthenveettil, Baburaj A.; Ananthakrishna, G.; Arakeri, Jaywant H.
2005-03-01
The geometrically different planforms of near-wall plume structure in turbulent natural convection, visualized by driving the convection using concentration differences across a membrane, are shown to have a common multifractal spectrum of singularities for Rayleigh numbers in the range 1010-1011 at Schmidt number of 602. The scaling is seen for a length scale range of 25 and is independent of the Rayleigh number, the flux, the strength and nature of the large-scale flow, and the aspect ratio. Similar scaling is observed for the plume structures obtained in the presence of a weak flow across the membrane. This common non-trivial spatial scaling is proposed to be due to the same underlying generating process for the near-wall plume structures.
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric
2013-12-01
The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.
NASA Astrophysics Data System (ADS)
Saito, Namiko
Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
Disseminated Mycobacterium intracellulare infection in a broad-snouted caiman Caiman latirostris.
Kik, Marja J L
2013-11-25
A 10 yr old broad-snouted caiman Caiman latirostris from a small Dutch animal park was presented with long-term variable periods of anorexia and weight loss. Blood chemistry showed slightly elevated uric acid levels and low ionised calcium concentration. Ultrasonographical thickening of the intestinal wall in the region of the duodenum was evident. Pathological changes were a thickening of the wall of 90% of the small intestines, enlarged spleen with multifocal white foci and an enlarged light-brown liver. Histopathological lesions consisted of disseminated granulomas in the intestinal wall, the liver and the spleen. Multinucleated giant cells and epitheloid macrophages were abundant. Ziehl-Neelsen staining showed numerous intralesional acid-fast bacteria. Polymerase chain reaction for Mycobacterium intracellulare was positive.
NASA Technical Reports Server (NTRS)
Allen, H Julian; Vincenti, Walter G
1944-01-01
Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio.
NASA Technical Reports Server (NTRS)
Judd, M.; Wolf, S. W. D.; Goodyer, M. J.
1976-01-01
A method has been developed for accurately computing the imaginary flow fields outside a flexible walled test section, applicable to lifting and non-lifting models. The tolerances in the setting of the flexible walls introduce only small levels of aerodynamic interference at the model. While it is not possible to apply corrections for the interference effects, they may be reduced by improving the setting accuracy of the portions of wall immediately above and below the model. Interference effects of the truncation of the length of the streamlined portion of a test section are brought to an acceptably small level by the use of a suitably long test section with the model placed centrally.
Rare Abdominal Wall Malformation: Case Report of Umbilical Cord Hernia.
Gliha, Andro; Car, Andrija; Višnjić, Stjepan; Zupancic, Bozidar; Kondza, Karmen; Petracic, Ivan
The umbilical cord hernia is the rarest form of abdominal wall malformations, anatomically completely different from gastroschisis and omphalocele. It occurs due to the permanent physiological evisceration of abdominal organs into umbilical celom and persistence of a patent umbilical ring. The umbilical cord hernia is often mistaken for omphalocele and called "small omphalocele". Here we present a case of a female newborn with umbilical cord hernia treated in our Hospital. After preoperative examinations surgery was done on the second day of life. The abdominal wall was closed without tension. The aim of this article is to present the importance of the proper diagnose of these three entities and to stimulate academic community for the answer, is this umbilical cord hernia or small omphalocele.
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy
2017-02-01
Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.
Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles
Márquez, Francisco; López, Vicente; Morant, Carmen; ...
2010-01-01
Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 ° C . The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less
Park, Yong Bum; Lee, Christopher M.; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J.; Kim, Seong H.
2013-01-01
Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm−1 correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm−1 intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm−1, whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm−1. Starch (amylose) gave an SFG peak at 2,904 cm−1 (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques. PMID:23995148
Park, Yong Bum; Lee, Christopher M; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J; Kim, Seong H
2013-10-01
Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm(-1) correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm(-1) intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm(-1), whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm(-1). Starch (amylose) gave an SFG peak at 2,904 cm(-1) (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques.
Wall Modeled Large Eddy Simulation of Airfoil Trailing Edge Noise
NASA Astrophysics Data System (ADS)
Kocheemoolayil, Joseph; Lele, Sanjiva
2014-11-01
Large eddy simulation (LES) of airfoil trailing edge noise has largely been restricted to low Reynolds numbers due to prohibitive computational cost. Wall modeled LES (WMLES) is a computationally cheaper alternative that makes full-scale Reynolds numbers relevant to large wind turbines accessible. A systematic investigation of trailing edge noise prediction using WMLES is conducted. Detailed comparisons are made with experimental data. The stress boundary condition from a wall model does not constrain the fluctuating velocity to vanish at the wall. This limitation has profound implications for trailing edge noise prediction. The simulation over-predicts the intensity of fluctuating wall pressure and far-field noise. An improved wall model formulation that minimizes the over-prediction of fluctuating wall pressure is proposed and carefully validated. The flow configurations chosen for the study are from the workshop on benchmark problems for airframe noise computations. The large eddy simulation database is used to examine the adequacy of scaling laws that quantify the dependence of trailing edge noise on Mach number, Reynolds number and angle of attack. Simplifying assumptions invoked in engineering approaches towards predicting trailing edge noise are critically evaluated. We gratefully acknowledge financial support from GE Global Research and thank Cascade Technologies Inc. for providing access to their massively-parallel large eddy simulation framework.
Detail view of basrelief sculpture in tympanum at south wall ...
Detail view of bas-relief sculpture in tympanum at south wall of east entrance loggia, with scale stick - National Zoological Park, Elephant House, 3001 Connecticut Avenue NW, Washington, District of Columbia, DC
Detail view of basrelief sculpture in tympanum at south wall ...
Detail view of bas-relief sculpture in tympanum at south wall of west entrance loggia, with scale stick - National Zoological Park, Elephant House, 3001 Connecticut Avenue NW, Washington, District of Columbia, DC
Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers
NASA Astrophysics Data System (ADS)
Inoue, Michio
The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.
NASA Astrophysics Data System (ADS)
Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo
2018-03-01
We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10-4 J/m2, respectively.
Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.
2008-01-01
Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.
Response of turbulence subjected to a straining-relaxation-destraining cycle
NASA Astrophysics Data System (ADS)
Chen, Jun; Meneveau, Charles; Katz, Joseph
2004-11-01
The response of turbulence subjected to planar straining and de-straining is studied experimentally, and the impact of the applied distortions on the energy transfer across different length scales is quantified. The data are obtained using Planar Particle Image Velocimetry (PIV) in a water tank, in which high Reynolds number turbulence with very low mean velocity is generated by an array of spinning grids. Planar straining and de-straining mean flows are produced by pushing and pulling a rectangular piston towards, and away from, the bottom wall of the tank. The data are processed to yield the time evolution of Reynolds stresses, anisotropy tensors, turbulence kinetic energy production, and mean subgrid dissipation rate at various scales. During straining, the production rises rapidly. After the relaxation period the small-scale SGS stresses recover isotropy, but the Reynolds stresses at large scales still display significant anisotropy. When destraining is applied, a strong negative production (back-scattering) is observed, by which turbulence fluctuations return kinetic energy to the mean flow. Reversed energy transfer is also revealed in the vorticity fluctuations history. The experiment allows to disentangle in detail the causes for this global backscatter phenomenon in terms of non-equilibrium conditions of the Reynolds stresses, and to follow the trends as function of scale.
The effect of truncation on very small cardiac SPECT camerasystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Eisner, Robert L.; Gullberg, Grant T.
2006-08-01
Background: The limited transaxial field-of-view (FOV) of avery small cardiac SPECT camera system causes view-dependent truncationof the projection of structures exterior to, but near the heart. Basictomographic principles suggest that the reconstruction of non-attenuatedtruncated data gives a distortion-free image in the interior of thetruncated region, but the DC term of the Fourier spectrum of thereconstructed image is incorrect, meaning that the intensity scale of thereconstruction is inaccurate. The purpose of this study was tocharacterize the reconstructed image artifacts from truncated data, andto quantify their effects on the measurement of tracer uptake in themyocardial. Particular attention was given to instances wheremore » the heartwall is close to hot structures (structures of high activity uptake).Methods: The MCAT phantom was used to simulate a 2D slice of the heartregion. Truncated and non-truncated projections were formed both with andwithout attenuation. The reconstructions were analyzed for artifacts inthe myocardium caused by truncation, and for the effect that attenuationhas relative to increasing those artifacts. Results: The inaccuracy dueto truncation is primarily caused by an incorrect DC component. Forvisualizing theleft ventricular wall, this error is not worse than theeffect of attenuation. The addition of a small hot bowel-like structurenear the left ventricle causes few changes in counts on the wall. Largerartifacts due to the truncation are located at the boundary of thetruncation and can be eliminated by sinogram interpolation. Finally,algebraic reconstruction methods are shown to give better reconstructionresults than an analytical filtered back-projection reconstructionalgorithm. Conclusion: Small inaccuracies in reconstructed images fromsmall FOV camera systems should have little effect on clinicalinterpretation. However, changes in the degree of inaccuracy in countsfrom slice toslice are due to changes in the truncated structures. Thesecan result in a visual 3-dimensional distortion. As with conventionallarge FOV systems attenuation effects have a much more significant effecton image accuracy.« less
On the three-dimensional instability of laminar boundary layers on concave walls
NASA Technical Reports Server (NTRS)
Gortler, Henry
1954-01-01
A study is made of the stability of laminar boundary-layer profiles on slightly curved walls relative to small disturbances that result from vortices whose axes are parallel to the principal direction of flow. The result is an eigenvalue problem by which, for a given undisturbed flow at a prescribed wall, the amplification or decay is computed for each Reynolds number and each vortex thickness. For neutral disturbances (zero amplification) a critical Reynolds number is determined for each vortex distribution. The numerical calculation produces amplified disturbances on concave walls only.
27. DETAIL: West gate sill, looking northwest toward the south ...
27. DETAIL: West gate sill, looking northwest toward the south facing wall. The chamber wall planks and spikes can be clearly seen. Possible remnants of a gate lie in the bay west of the gate. A portion of the chamber wall's 2' plank sheathing has sprung away from the wall and a small corner can be seen in the right foreground, next to the protective plastic cover. - Wabash & Erie Canal, Lock No. 2, 8 miles east of Fort Wayne, adjacent to U.S. Route 24, New Haven, Allen County, IN
Lynch, Fiona M; Izzard, Ashley S; Austin, Clare; Prendergast, Brian; Keenan, Daniel; Malik, Rayaz A; Heagerty, Anthony M
2012-02-01
Previous studies have demonstrated that hypertension and diabetes induce significant structural remodelling of resistance arteries from various vascular beds. The hypothesis of this study is that structural alterations of small coronary arteries may occur during hypertension and diabetes. This study is the first to compare human coronary small resistance artery structure from normotensive and hypertensive patients, with and without diabetes undergoing coronary arterial bypass graft surgery. Small arteries were dissected from the atrial appendage removed from nondiabetic normotensive patients, nondiabetic hypertension and diabetic normotensive patients and hypertensive diabetic patients. Arteries were mounted in a pressure myograph and lumen diameter and wall thickness were measured across the pressure range of 3-100 mmHg to assess vessel structure and distensibility. There were no significant differences in the lumen diameter, wall thickness, wall-to-lumen ratio and cross-sectional area of arteries in all groups. Arteries from nondiabetic patients with hypertension demonstrated decreased distensibility compared with nondiabetic normotensive patients. There is no difference in distensibility between vessels from diabetic hypertensive patients and either diabetic or nondiabetic normotensive patients. Neither diabetes nor hypertension appears to have influenced arterial structure which may indicate that successful treatment of hypertension is associated with normal vascular structure in coronary small arteries.
Scaling of angiosperm xylem structure with safety and efficiency.
Hacke, Uwe G; Sperry, John S; Wheeler, James K; Castro, Laura
2006-06-01
We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per vessel (the pit area hypothesis) and evaluated a trade-off between cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse-porous tree, shrub) and family affinity were added to published data predominately from the Rosaceae (29 species total). Two types of vulnerability-to-cavitation curves were found. Ring-porous trees and vines showed an abrupt drop in hydraulic conductivity with increasing negative pressure, whereas hydraulic conductivity in diffuse-porous species generally decreased gradually. The ring-porous type curve was not an artifact of the centrifuge method because it was obtained also with the air-injection technique. A safety versus efficiency trade-off was evident when curves were compared across species: for a given pressure, there was a limited range of optimal vulnerability curves. The pit area hypothesis was supported by a strong relationship (r2 = 0.77) between increasing cavitation resistance and diminishing pit membrane area per vessel (A(P)). Small A(P) was associated with small vessel surface area and hence narrow vessel diameter (D) and short vessel length (L)--consistent with an increase in vessel flow resistance with cavitation resistance. This trade-off was amplified at the tissue level by an increase in xylem/vessel area ratio with cavitation resistance. Ring-porous species were more efficient than diffuse-porous species on a vessel basis but not on a xylem basis owing to higher xylem/vessel area ratios in ring-porous anatomy. Across four orders of magnitude, lumen and end-wall resistivities maintained a relatively tight proportionality with a near-optimal mean of 56% of the total vessel resistivity residing in the end-wall. This was consistent with an underlying scaling of L to D(3/2) across species. Pit flow resistance did not increase with cavitation safety, suggesting that cavitation pressure was not related to mean pit membrane porosity.
Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation
NASA Astrophysics Data System (ADS)
Ben-Reuven, M.
1983-10-01
The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.
Formation of Micro-Scale Gas Pockets From Underwater Wall Orifices
NASA Astrophysics Data System (ADS)
Pereira, Francisco A.; Gharib, Morteza
2012-11-01
Our experiments examine the formation of micro-scale gas pockets from orifices on walls with hydrophilic and hydrophobic wetting properties. Bubble injection is operated in a liquid at rest at constant flow rate and in a quasi-static regime, and the mechanism of bubble growth is investigated through high speed recordings. The growth dynamics is studied in terms of orifice size, surface wetting properties and buoyancy sign. The bubble formation is characterized by an explosive growth, with a pressure wave that causes the bubble to take highly transient shapes in its very initial stages, before stabilizing as a sphere and growing at a relatively slow rate. In case of positive buoyancy, the bubble elongates with the formation of a neck before detaching from the wall. When buoyancy acts towards the wall, the bubble attaches to the wall and expands laterally with a moving contact line. In presence of hydrophobic surfaces, the bubble attaches immediately to the wall irrespective of buoyancy direction and takes a hemispherical shape, expanding radially along the surface. A force balance is outlined to explain the different figures. The work was performed by FAP while on leave from CNR-INSEAN, and is supported by the Office of Naval Research (ONR).
NASA Astrophysics Data System (ADS)
Grishkan, I.; Zaady, E.; Kidron, G.
2012-04-01
On a regional scale, we examined variations in microfungal communities inhabiting the biological soil crusts (BSC) and non-crusted soil of the northern and central Negev desert in 10 locations along a southward rainfall gradient (from 325 mm to 81 mm of annual rainfall). A total of 87 species from 49 genera were isolated using the soil dilution plate method. The mycobiota of BSC (80 species) was characterized by dominance of melanin-containing fungi, remarkable contribution of sexual Ascomycota, and low abundance of the typical soil genera Penicillium and Aspergillus. Morphological adaptations to the stressful desert environment were expressed in the prevalence of dark-colored microfungi with large, many-celled spores in the localities of the "drier" part of the rainfall gradient and in dark thick-walled fruit bodies of sexual ascomycetes. The abundance of melanin-containing species with multicellular spores was the only characteristic showed a highly significant (negative) correlation with the rainfall amount. We assume that the main factor influencing the content of these species was the latitudinal position of the locations, determining also the intensity of solar (UV) radiation. In the BSC communities, the xeric "desert" component (melanics, slow-reproducing fungi with large, thick-walled spores) was significantly more pronounced and the mesic "forest" component (Penicillium, fast-reproducing fungi with small, light-colored, and thin-walled spores) was much less represented than in the non-crusted shrub communities. In BSC, density of fungal isolates which can be considered an indirect characteristic of fungal biomass was significantly lower than in the non-crusted soil. Cluster analysis indicated that in most cases, the BSC and shrub localities, separated only by a few meters or less, differed on microfungal community structure much more significantly than BSC or shrub localities in the distance of tens of kilometers. The results of this analysis, together with the fact that the rainfall amount weakly influenced spatial variations of the most observed mycological characteristics, indicated that microenvironmental (edaphic) factors played a more essential role in the formation of studied communities than macroenvironmental (climatic) factors. On a local scale, we studied variations in microfungal communities from different crust types (cyanobacterial - moss-dominated) at the Nizzana research station, the western Negev Desert, and their relationship with moisture retention time and intensity of solar radiation. A total of 78 species from 48 genera was isolated. Microfungal communities in the Nizzana crusts were also dominated by melanin-containing species with large, thick-walled and multi-celled conidia. Abundance of this xeric group significantly increased with the increase of radiation intensity, while abundance of mesic Penicillium spp. and Zygomycota displayed the opposite trend. Density of microfungal isolates showed significant positive non-linear relationship with moisture retention time. The moss dominated crust differed markedly from the cyanobacterial crusts on species relative abundances, diversity level, and isolate density. The study showed the parallelism between structure of crust microfungal communities along a regional precipitation gradient in the Negev desert and within a small drainage basin of the Nizzana research station.
Turbulence modeling for Francis turbine water passages simulation
NASA Astrophysics Data System (ADS)
Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.
2010-08-01
The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.
Could the electroweak scale be linked to the large scale structure of the Universe?
NASA Technical Reports Server (NTRS)
Chakravorty, Alak; Massarotti, Alessandro
1991-01-01
We study a model where the domain walls are generated through a cosmological phase transition involving a scalar field. We assume the existence of a coupling between the scalar field and dark matter and show that the interaction between domain walls and dark matter leads to an energy dependent reflection mechanism. For a simple Yakawa coupling, we find that the vacuum expectation value of the scalar field is theta approx. equals 30GeV - 1TeV, in order for the model to be successful in the formation of large scale 'pancake' structures.
Pressure and wall shear stress in blood hammer - Analytical theory.
Mei, Chiang C; Jing, Haixiao
2016-10-01
We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. Copyright © 2016. Published by Elsevier Inc.
Molecular regulation of plant cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1998-01-01
Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.
8. INTERIOR VIEW, FIRST FLOOR, NORTHEAST ROOM, EAST WALL, ORIGINAL ...
8. INTERIOR VIEW, FIRST FLOOR, NORTHEAST ROOM, EAST WALL, ORIGINAL KITCHEN FIREPLACE AND BAKE OVEN, WITH SCALE - Edgemont, 212 Bridgetown Pike, 1/4 mile East of PA 413 (Middletown Township), Langhorne, Bucks County, PA
3. INTERIOR PERSPECTIVE VIEW OF NORTHEAST AND NORTHWEST WALLS, SHOWING ...
3. INTERIOR PERSPECTIVE VIEW OF NORTHEAST AND NORTHWEST WALLS, SHOWING COOK FIREPLACE WITH BAKE OVEN TO REAR, WITH SCALE - High Farm, Kitchen, Creek Road, 1 mile East of Easton Road, Pipersville, Bucks County, PA
1985-03-01
aluminum outer walls by a matrix of studs screwed into blind holes in the inner wall plates and extending through the outer walls. Thermoelectric cooling...studied. The problem of the uncooled sample ports might have been dealt with, however the failure of several sections of thermoelectric cooling...encountered with the Proto I chamber. It should be kept in mind that the basic cooled wall design consists of thermoelectric cooling modules (TEM’s
Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000
NASA Astrophysics Data System (ADS)
Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.
2018-04-01
The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.
Scaling of near-wall flows in quasi-two-dimensional turbulent channels.
Samanta, D; Ingremeau, F; Cerbus, R; Tran, T; Goldburg, W I; Chakraborty, P; Kellay, H
2014-07-11
The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite the differences with three-dimensional flows, the laws prevail, albeit with notable distinctions: the two parameters of the log law are markedly distinct from their three-dimensional counterpart; further, one parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall-bounded turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.
Excess velocity of magnetic domain walls close to the depinning field
NASA Astrophysics Data System (ADS)
Caballero, Nirvana B.; Fernández Aguirre, Iván; Albornoz, Lucas J.; Kolton, Alejandro B.; Rojas-Sánchez, Juan Carlos; Collin, Sophie; George, Jean Marie; Diaz Pardo, Rebeca; Jeudy, Vincent; Bustingorry, Sebastian; Curiale, Javier
2017-12-01
Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field Hd, the depinning temperature Td, and the characteristic velocity scale v0 for each sample.
On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku
2011-03-01
The purpose of this paper is to present a new method to detect ulcers, which is one of the symptoms of Crohn's disease, from CT images. Crohn's disease is an inflammatory disease of the digestive tract. Crohn's disease commonly affects the small intestine. An optical or a capsule endoscope is used for small intestine examinations. However, these endoscopes cannot pass through intestinal stenosis parts in some cases. A CT image based diagnosis allows a physician to observe whole intestine even if intestinal stenosis exists. However, because of the complicated shape of the small and large intestines, understanding of shapes of the intestines and lesion positions are difficult in the CT image based diagnosis. Computer-aided diagnosis system for Crohn's disease having automated lesion detection is required for efficient diagnosis. We propose an automated method to detect ulcers from CT images. Longitudinal ulcers make rough surface of the small and large intestinal wall. The rough surface consists of combination of convex and concave parts on the intestinal wall. We detect convex and concave parts on the intestinal wall by a blob and an inverse-blob structure enhancement filters. A lot of convex and concave parts concentrate on roughed parts. We introduce a roughness value to differentiate convex and concave parts concentrated on the roughed parts from the other on the intestinal wall. The roughness value effectively reduces false positives of ulcer detection. Experimental results showed that the proposed method can detect convex and concave parts on the ulcers.
Self-sustaining processes at all scales in wall-bounded turbulent shear flows
NASA Astrophysics Data System (ADS)
Cossu, Carlo; Hwang, Yongyun
2017-03-01
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.
Toroidal current asymmetry and boundary conditions in disruptions
NASA Astrophysics Data System (ADS)
Strauss, Henry
2014-10-01
It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the plasma current. The toroidal current asymmetry ΔIϕ is proportional to the vertical current moment ΔMIZ , with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was claimed that this could only be explained by Hiro current. It is shown that instead it is essentially a kinematic effect produced by the VDE displacement of a 3D magnetic perturbation. This is verified by M3D simulations. The simulation results do not require penetration of plasma into the boundary, as in the Hiro current model. It is shown that the normal velocity perpendicular to the magnetic field vanishes at the wall, in the small Larmor radius limit of electromagnetic sheath boundary conditions. Plasma is absorbed into the wall only via the parallel velocity, which is small, penetrates only an infinitesimal distance into the wall, and does not affect forces exerted by the plasma on the wall. Supported by USDOE and ITER.
Small Scale Chemical Segregation Within Keplerian Disk Candidate G35.20-0.74N
NASA Astrophysics Data System (ADS)
Allen, Veronica; van der Tak, Floris; Sánchez-Monge, Álvaro; Cesaroni, Riccardo; Beltrán, Maria T.
2016-06-01
In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive protostar. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. With the advent of the highly sensitive sub-millimeter interferometer, ALMA, the ability to chemically characterize high mass star forming regions other than Orion has become possible. In the up-and-coming field of observational astrochemistry, these sensitive high resolution observations have opened up opportunities to find small scale variations in young protostellar sources.We have done an in depth analysis of high spatial resolution (~1000 AU) Cycle 0 ALMA observations of the high mass star forming region G35.20-0.74N, where Sánchez-Monge et al (2013) found evidence for Keplerian rotation. After further chemical analysis, numerous complex organic species have been identified in this region and we notice an interesting asymmetry in the distribution of the Nitrogen-bearing species within this source. In my talk, I will briefly outline the case for the disk and the consequences for this hypothesis following the chemical segregation we have seen.
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.
A thermocouple thermode for small animals
NASA Technical Reports Server (NTRS)
Williams, B. A.
1972-01-01
Thermode composed of two thin-walled stainless steel hypodermic needles and cooper-constantan thermocouple or small thermistor to indicate temperature at point of perfusion is used to measure brain temperature in animals. Because of relatively small size of thermode, structural damage to brain is minimized.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2007-03-01
It was recently shown that thermal or optical stimulation can be used to increase sensitivity of the conventional nondestructive ultrasonic detection of the small crack, flaws and inclusions in a ferromagnetic thin-walled parts. We proposed another method based on electromagnetic modulation of the ultrasonic scattered signal from the inclusions or defects. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small cracks near small holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
Laroia, N; Phelps, D L; Roy, J
2007-04-18
Studies have shown improved survival of newborn infants maintained in the thermoneutral range. The concept of an incubator with additional insulation, a double plexiglass wall, is appealing for very low birth weight infants as it may help to provide a thermoneutral environment. To assess the effects of double walled incubator versus a single wall incubator on insensible water loss, rate of oxygen consumption, episodes of hypothermia, time to regain birth weight, duration of hospitalization and infant mortality in premature infants. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of electronic databases: Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2006), MEDLINE (1966 - 2006), EMBASE, previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants in all published languages, and CINAHL (1982 - 2006). Only studies using random or quasi-random methods of allocation were considered for this review. Eligible studies assessed at least one of the outcome variables identified as important to this topic. Independent data extraction and quality assessment of included trials was conducted by the review authors. Data were analyzed using generic inverse variance methodology and weighted mean difference (WMD). Results are presented with 95% confidence intervals. Meta-analysis was undertaken using a fixed effect model. Three studies met the criteria. Four other studies were excluded, as they did not compare double versus single wall incubators (details of the studies are given in the included and excluded studies section). Double wall incubators have the advantage of decreasing heat loss, decreasing heat production and decreasing radiant heat loss when compared to single wall incubators. There is also the advantage of reduced oxygen consumption. A minimal increase in conductive heat loss was noted when compared to single wall incubators. All of these effects are small and do not support the proposition that double wall incubators have a beneficial effect on long term outcomes including mortality or the duration of hospitalization. Although it appears that caring for extremely small infants in double wall incubators may theoretically result in shorter hospitalization and may have metabolic advantages, this review was unable to find any data in the literature to support or refute this hypothesis. The studies do not provide any evidence that the small decrease in heat loss improves clinical outcome. Therefore, the available data is insufficient to directly guide clinical practice.
Imaging diagnosis--muscular hypertrophy of the small intestine and pseudodiverticula in a horse.
Navas De Solís, Cristobal; Biscoe, Elisabeth W; Lund, Caleb M; Labbe, Karyn; Muñoz, Juan; Farnsworth, Kelly
2015-01-01
A 14-year-old Thoroughbred gelding was presented for chronic colic and weight loss. Transcutaneous and transrectal abdominal ultrasonography revealed distended, thickened small intestine with primary thickening of the muscularis and a focally more thickened loop with an echoic structure crossing the wall from the mucosa to the serosa. Visualization of diffuse thickening of the muscularis (muscular hypertrophy of the small intestine) and a focal lesion (pseudodiverticulum) helped clinicians make informed decisions. This case illustrates the importance of transabdominal and transrectal ultrasonography in horses with chronic colic and the relevance of considering the abnormalities in layering pattern of the intestinal wall. © 2014 American College of Veterinary Radiology.
Correlation between spin structure oscillations and domain wall velocities
Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias
2013-01-01
Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. PMID:23978905
Microwave background distortions from domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1990-01-01
Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.
NASA Astrophysics Data System (ADS)
Rashid, M.; Shahzadi, Iqra; Nadeem, S.
2018-06-01
This study looks for corrugated walls analysis in microchannels through porous medium under the impact of Electromagnetohydrodynamic (EMHD) effects. The incompressible and electrically conducting second grade fluid is considered between the two slit microparallel plates. The periodic sinusoidal waves are described for the small amplitude either in phase or out of phase for the corrugations of two wavy walls. By employing mathematical computation, we evaluated the corrugation effects on velocity for EMHD flow. By using perturbation technique, we investigated the analytical solutions of the velocity and volume flow rate. The influence of all parameters on velocity and the mean velocity profiles have been analyzed through graphs. The important conclusion from the analysis is that the small value of amplitude ratio parameter reduces the unobvious wave effect on the velocity.
Development of wall climbing robot
NASA Astrophysics Data System (ADS)
Kojima, Hisao; Toyama, Ryousei; Kobayashi, Kengo
1992-03-01
A configuration design is presented for a wall-climbing robot with high payload which is capable of moving on diversified surfaces of walls including the wall surface to ceilings in every direction. A developed quadruped wall climbing robot, NINJYA-1, is introduced. NINJYA-1 is composed of legs based on a 3D parallel link mechanism and a VM (Valve-regulated Multiple) sucker which will be able to suck even if there are grooves and a small difference in level. A wall climbing robot which supports rescue operation at a high building using a VM sucker is also introduced. Finally, a wall climbing robot named Disk Rover with a disk-type magnetic wheel is shown. The wheel shape is calculated by FEM. The disk-type magnetic wheel has a force three times more powerful than the one heretofore in use.
Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE
Fiorini, T.; Bellani, G.; Talamelli, A.
2017-01-01
This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend–Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend–Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167586
The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar
NASA Astrophysics Data System (ADS)
Dubayah, R.
2015-12-01
Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications, but the other ways the underlying lidar data may be used.
Microelectromechanical Systems for Aerodynamics Applications
NASA Technical Reports Server (NTRS)
Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli
1996-01-01
Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight
A 1 T, 0. 33 m bore superconducting magnet operating with cryocoolers at 12 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, M.T.G.; Tax, R.B.; ten Kate, H.H.J.
1992-01-01
The application of small cryocoolers for cooling a superconducting magnet at 12 K has important advantages especially for small and medium sized magnets. A simple construction and a helium free magnet system is obtained. The demonstration magnet developed is a six coil system with a volume of 75 L and can be regarded as a 1:3 scale MRI magnet. With a current of 100 A, a 1 T central field is generated with a maximum of 1.9 T in the windings. The magnet consists of six coil formers and five aluminum spacing rings, providing easy service and disassembly. The superconductor,more » a 0.6 mm diameter Nb{sub 3}Sn wire, is wound on the thin walled stainless steel coil formers after which the coil is heat treated and vacuum impregnated. Afterwards, the coil system is assembled and the electrical and thermal connections are made. This paper describes the development of the superconducting magnet.« less
Development of subminiature multi-sensor hot-wire probes
NASA Technical Reports Server (NTRS)
Westphal, Russell V.; Ligrani, Phillip M.; Lemos, Fred R.
1988-01-01
Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes.
Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays
NASA Astrophysics Data System (ADS)
Gonzales, Daniel L.; Badhiwala, Krishna N.; Vercosa, Daniel G.; Avants, Benjamin W.; Liu, Zheng; Zhong, Weiwei; Robinson, Jacob T.
2017-07-01
Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the first extracellular recordings of body-wall muscle electrophysiology inside an intact roundworm, Caenorhabditis elegans. We can also use nano-SPEARs to record from multiple animals in parallel and even from other species, such as Hydra littoralis. Furthermore, we use nano-SPEARs to establish the first electrophysiological phenotypes for C. elegans models for amyotrophic lateral sclerosis and Parkinson's disease, and show a partial rescue of the Parkinson's phenotype through drug treatment. These results demonstrate that nano-SPEARs provide the core technology for microchips that enable scalable, in vivo studies of neurobiology and neurological diseases.
Electrical properties of 0.4 cm long single walled nanotubes
NASA Astrophysics Data System (ADS)
Yu, Zhen
2005-03-01
Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).
Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes
NASA Astrophysics Data System (ADS)
Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.
2009-02-01
Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakes, Joseph E.; Hunt, Chris G.; Yelle, Daniel J.
Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenolformaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effectivemore » at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.« less
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
Attached flow structure and streamwise energy spectra in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Srinath, S.; Vassilicos, J. C.; Cuvier, C.; Laval, J.-P.; Stanislas, M.; Foucaut, J.-M.
2018-05-01
On the basis of (i) particle image velocimetry data of a turbulent boundary layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum E11(kx) in a wave-number range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy model's prediction of these spectra, at least at the Reynolds numbers Reτ considered here which are between 103 and 104. Instead, we find E11(kx) ˜kx-1 -p where p varies smoothly with distance to the wall from negative values in the buffer layer to positive values in the inertial layer. The exponent p characterizes the turbulence levels inside wall-attached streaky structures conditional on the length of these structures. A particular consequence is that the skin friction velocity is not sufficient to scale E11(kx) for wave numbers directly affected by the wall.
Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M
2013-09-01
Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion (lower ADC values) is associated with multiple MRI findings that are traditionally associated with active inflammation in pediatric small bowel Crohn disease.
Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.
2012-01-01
Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Dodt, D.; Beurskens, M. N. A.; Sirinelli, A.; Boom, J. E.; Eich, T.; Flanagan, J.; Giroud, C.; Jachmich, M. S.; Kempenaars, M.; Lomas, P.; Maddison, G.; Maggi, C.; Neu, R.; Nunes, I.; Perez von Thun, C.; Sieglin, B.; Stamp, M.; Contributors, JET-EFDA
2015-02-01
The baseline type-I ELMy H-mode scenario has been re-established in JET with the new tungsten MKII-HD divertor and beryllium on the main wall (hereafter called the ITER-like wall, JET-ILW). The first JET-ILW results show that the confinement is degraded by 20-30% in the baseline scenarios compared to the previous carbon wall JET (JET-C) plasmas. The degradation is mainly driven by the reduction in the pedestal temperature. Stored energies and pedestal temperature comparable to the JET-C have been obtained to date in JET-ILW baseline plasmas only in the high triangularity shape using N2 seeding. This work compares the energy losses during ELMs and the corresponding time scales of the temperature and density collapse in JET-ILW baseline plasmas with and without N2 seeding with similar JET-C baseline plasmas. ELMs in the JET-ILW differ from those with the carbon wall both in terms of time scales and energy losses. The ELM time scale, defined as the time to reach the minimum pedestal temperature soon after the ELM collapse, is ˜2 ms in the JET-ILW and lower than 1 ms in the JET-C. The energy losses are in the range ΔWELM/Wped ≈ 7-12% in the JET-ILW and ΔWELM/Wped ≈ 10-20% in JET-C, and fit relatively well with earlier multi-machine empirical scalings of ΔWELM/Wped with collisionality. The time scale of the ELM collapse seems to be related to the pedestal collisionality. Most of the non-seeded JET-ILW ELMs are followed by a further energy drop characterized by a slower time scale ˜8-10 ms (hereafter called slow transport events), that can lead to losses in the range ΔWslow/Wped ≈ 15-22%, slightly larger than the losses in JET-C. The N2 seeding in JET-ILW significantly affects the ELMs. The JET-ILW plasmas with N2 seeding are characterized by ELM energy losses and time scales similar to the JET-C and by the absence of the slow transport events.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
NASA Astrophysics Data System (ADS)
Cheng, W.; Samtaney, R.
2014-01-01
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
Gray, J.E.; Gent, C.A.; Snee, L.W.
2000-01-01
A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.
Nelson, Tammie R; Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V
2011-05-12
We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of the CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsystems. In all cases, the CNT-solvent energy transfer is mediated by slow motions in the frequency range of CNT radial breathing modes.
Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry
NASA Astrophysics Data System (ADS)
Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.
2016-10-01
Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.
A small cellulose binding domain protein in Phytophtora is cell wall localized
USDA-ARS?s Scientific Manuscript database
Cellulose binding domains (CBD) are structurally conserved regions linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are not generally present in plant pathogenic fungi. A genome wide survey of CBDs w...
Drag-reducing polymers diminish near-wall concentration of platelets in microchannel blood flow
Zhao, R.; Marhefka, J.N.; Antaki, J.F.; Kameneva, M.V.
2011-01-01
The accumulation of platelets near the blood vessel wall or artificial surface is an important factor in the cascade of events responsible for coagulation and/or thrombosis. In small blood vessels and flow channels this phenomenon has been attributed to the blood phase separation that creates a red blood cell (RBC)-poor layer near the wall. We hypothesized that blood soluble drag-reducing polymers (DRP), which were previously shown to lessen the near-wall RBC depletion layer in small channels, may consequently reduce the near-wall platelet excess. This study investigated the effects of DRP on the lateral distribution of platelet-sized fluorescent particles (diam. = 2 µm, 2.5 × 108/ml) in a glass square microchannel (width and depth = 100 µm). RBC suspensions in PBS were mixed with particles and driven through the microchannel at flow rates of 6–18 ml/h with and without added DRP (10 ppm of PEO, MW = 4500 kDa). Microscopic flow visualization revealed an elevated concentration of particles in the near-wall region for the control samples at all tested flow rates (between 2.4 ± 0.8 times at 6 ml/h and 3.3 ± 0.3 times at 18 ml/h). The addition of a minute concentration of DRP virtually eliminated the near-wall particle excess, effectively resulting in their even distribution across the channel, suggesting a potentially significant role of DRP in managing and mitigating thrombosis. PMID:21084744
Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method
NASA Technical Reports Server (NTRS)
Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.
2009-01-01
A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.
NASA Technical Reports Server (NTRS)
Anders, J. B.; Stainback, P. C.; Beckwith, I. E.; Keefe, L. R.
1975-01-01
Disturbance measurements were made using a hot-wire anemometer and piezoelectric pressure transducers in the settling chamber and free stream of a small Mach 5 wind tunnel. Results from the two instruments are compared and acoustical disturbances in the settling chamber are discussed. The source of the test-section noise is identified as nozzle-wall waviness at low Reynolds numbers and as eddy-Mach-wave radiation from the turbulent boundary layer on the nozzle wall at high Reynolds numbers.
The two-dimensional Stefan problem with slightly varying heat flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, J.; Howarth, J.A.
1995-09-01
The authors solve the two-dimensional stefan problem of solidification in a half-space, where the heat flux at the wall is a slightly varying function of positioning along the wall, by means of a large Stefan number approximation (which turns out to be equivalent to a small time solution), and then by means of the Heat Balance Integral Method, which is valid for all time, and which agrees with the large Stefan number solution for small times. A representative solution is given for a particular form of the heat flux perturbation.
Zero degree contour cutting below 100 μm feature size with femtosecond laser
NASA Astrophysics Data System (ADS)
Stolberg, Klaus; Friedel, Susanna
2016-03-01
By the use of a 16 W femtosecond laser we demonstrate steep wall angles and small feature spacings for non-thermal melt-free laser drilling and contour cutting of 100 to 500 μm thick metals like Cu-alloy, stainless steel, titanium and tantalum as well as for ceramics and polymer (polycarbonate). Especially processing of thin materials is a challenge, because heat accumulation in thermal processing usually causes mechanical distortion or edge melting as well as material. The combination of beam deflection in trepanning optics and sample motion allowed us to work in a special "laser milling mode" with rotating beam. Zero degree taper angle as well as positive or negative tapers can be achieved at micrometer scale.
Imaging the magnetic nanodomains in Nd 2 Fe 14 B
Huang, Lunan; Taufour, Valentin; Lamichhane, T. N.; ...
2016-03-08
Here, we study magnetic domains in Nd 2Fe 14B single crystals using high resolution magnetic force microscopy (MFM). Previous MFM studies and small angle neutron scattering experiments suggested the presence of nanoscale domains in addition to optically detected micrometer-scale ones. We find, in addition to the elongated, wavy nanodomains reported by a previous MFM study, that the micrometer-sized, star-shaped fractal pattern is constructed of an elongated network of nanodomains ~20 nm in width, with resolution-limited domain walls thinner than 2 nm. While the microscopic domains exhibit significant resilience to an external magnetic field, some of the nanodomains are sensitive tomore » the magnetic field of the MFM tip.« less
Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers
NASA Astrophysics Data System (ADS)
Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.
2018-05-01
Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
Friction Angles of Open-Graded Aggregates from Large-Scale Direct Shear Testing : TechBrief
DOT National Transportation Integrated Search
2013-07-08
State and local transportation agencies frequently use opengraded aggregates for wall, roadway, and bridge construction. The primary advantages of using this type of material in wall and abutment applications are ease of constructability, lighter in-...
13. FRIST FLOOR, SOUTHEAST ROOM, SOUTHWEST WALL, HEARTH WITH KETTLES ...
13. FRIST FLOOR, SOUTHEAST ROOM, SOUTHWEST WALL, HEARTH WITH KETTLES USED FOR RENDERING LARD (LEFT) AND MAKING APPLE BUTTER (RIGHT) WITH SCALE - Open Gate Farm, House, Ridge Road, 1 mile East of Elephant Road, Perkasie, Bucks County, PA
Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.
DOT National Transportation Integrated Search
2011-12-01
We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...
NASA Astrophysics Data System (ADS)
Agostini, Lionel; Leschziner, Michael
2017-01-01
Direct numerical simulation data for channel flow at a friction Reynolds number of 4200, generated by Lozano-Durán and Jiménez [J. Fluid Mech. 759, 432 (2014), 10.1017/jfm.2014.575], are used to examine the properties of near-wall turbulence within subranges of eddy-length scale. Attention is primarily focused on the intermediate layer (mesolayer) covering the logarithmic velocity region within the range of wall-scaled wall-normal distance of 80-1500. The examination is based on a number of statistical properties, including premultiplied and compensated spectra, the premultiplied derivative of the second-order structure function, and three scalar parameters that characterize the anisotropic or isotropic state of the various length-scale subranges. This analysis leads to the delineation of three regions within the map of wall-normal-wise premultiplied spectra, each characterized by distinct turbulence properties. A question of particular interest is whether the Townsend-Perry attached-eddy hypothesis (AEH) can be shown to be valid across the entire mesolayer, in contrast to the usual focus on the outer portion of the logarithmic-velocity layer at high Reynolds numbers, which is populated with very-large-scale motions. This question is addressed by reference to properties in the premultiplied scalewise derivative of the second-order structure function (PMDS2) and joint probability density functions of streamwise-velocity fluctuations and their streamwise and spanwise derivatives. This examination provides evidence, based primarily on the existence of a plateau region in the PMDS2, for the qualified validity of the AEH right down the lower limit of the logarithmic velocity range.
A New View of the Dynamics of Reynolds Stress Generation in Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Cantwell, Brian J.; Chacin, Juan M.
1998-01-01
The structure of a numerically simulated turbulent boundary layer over a flat plate at Re(theta) = 670 was studied using the invariants of the velocity gradient tensor (Q and R) and a related scalar quantity, the cubic discriminant (D = 27R(exp 2)/4 + Q(exp 3)). These invariants have previously been used to study the properties of the small-scale motions responsible for the dissipation of turbulent kinetic energy. In addition, these scalar quantities allow the local flow patterns to be unambiguously classified according to the terminology proposed by Chong et al. The use of the discriminant as a marker of coherent motions reveals complex, large-scale flow structures that are shown to be associated with the generation of Reynolds shear stress -u'v'(bar). These motions are characterized by high spatial gradients of the discriminant and are believed to be an important part of the mechanism that sustains turbulence in the near-wall region.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
NASA Technical Reports Server (NTRS)
Roseberg, E. W.
1982-01-01
The objectives were to: obtain nozzle performance characteristics in and out of ground effects; demonstrate the compatibility of the nozzle with a turbofan engine; obtain pressure and temperature distributions on the surface of the D vented nozzle; and establish a correlation of the nozzle performance between small scale and large scale models. The test nozzle was a boilerplate model of the MCAIR D vented nozzle configured for operation with a General Electric YTF-34-F5 turbofan engine. The nozzle was configured to provide: a thrust vectoring range of 0 to 115 deg; a yaw vectoring range of 0 to 10 deg; variable nozzle area control; and variable spacing between the core exit and nozzle entrance station. Compatibility between the YTF-34-T5 turbofan engine and the D vented nozzle was demonstrated. Velocity coefficients of 0.96 and greater were obtained for 90 deg of thrust vectoring. The nozzle walls remained cool during all test conditions.
Behaviour of Masonry Walls under Horizontal Shear in Mining Areas
NASA Astrophysics Data System (ADS)
Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan
2017-12-01
The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.
Tsukamoto, Yoshitane; Futani, Hiroyuki; Yoshiya, Shinichi; Watanabe, Takahiro; Kihara, Takako; Matsuo, Shohei; Hirota, Seiichi
2017-10-01
We experienced a 38-year-old Japanese male with t(10;19) CIC-DUX4 -positive undifferentiated small round cell sarcoma in the deep abdominal wall. Three months before his first visit to our hospital, he noticed a mass in his right abdominal wall. Computed tomography on admission revealed a solid abdominal tumor 70×53mm in size and multiple small tumors in both lungs. The biopsy of the abdominal tumor revealed undifferentiated small round cell sarcoma, suggestive of Ewing sarcoma. Under the clinical diagnosis of Ewing-like sarcoma of the abdominal wall with multiple lung metastases, several cycles of ICE (ifosfamide, carboplatin and etoposide) therapy were performed. After the chemotherapy, the lung metastases disappeared, while the primary lesion rapidly grew. Additional VDC (vincristine, doxorubicin and cyclophosphamide) therapy was carried out without apparent effect. Although the surgical removal of the primary lesion was done, peritoneal dissemination and a huge metastatic liver tumor appeared thereafter. The patient died of disease progression two months after the surgery. The total clinical course was approximately one year, showing that the tumor was extremely aggressive. The tumor cells of the surgical specimen were positive for CD99, WT1, calretinin, INI1, ERG and Fli1 by immunohistochemistry. Fusion gene analyses using the frozen surgical material revealed negativity for EWSR1-Fli1, EWSR1-ERG and t(4;19) CIC-DUX4 fusions, but positivity for t(10;19) CIC-DUX4 fusion. Thus, we made a final pathological diagnosis of t(10;19) CIC-DUX4-positive undifferentiated small round cell sarcoma. To our knowledge, this is the 13th case of t(10;19) CIC-DUX4 undifferentiated small round cell sarcoma with precise clinicopathological information. Especially in our case, two types of t(10;19) CIC-DUX4 fusion transcripts were observed, both of which are in-frame and novel. Copyright © 2017 Elsevier GmbH. All rights reserved.
Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra
2013-01-01
Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.
Simulations of Model Microswimmers with Fully Resolved Hydrodynamics
NASA Astrophysics Data System (ADS)
Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi
2017-10-01
Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that we have developed, allow us to better understand the complex hydrodynamic interactions in microswimmer dispersions.
Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.
2012-01-01
A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.
Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Moldover, Michael R.
1993-01-01
Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.
Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov
2013-04-24
Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less
Ab initio study of edge effect on relative motion of walls in carbon nanotubes
NASA Astrophysics Data System (ADS)
Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.
2013-01-01
Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.