NASA Astrophysics Data System (ADS)
Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.
2009-07-01
Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.
NASA Astrophysics Data System (ADS)
Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.
2008-09-01
Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.
Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albersheim, P.; Anderson-Prouty, A.J.
1975-01-01
General plant resistance to pathogenic attack by a myriad of microorganisms, viruses, nematodes, and insects are reviewed. Specifically discussed are: The role of the cell wall and wall-degrading enzymes in infective processes; an hypothesis to account for varietal specificity in gene-for-gene host-pathogen systems; examples which demonstrate that cell surface recognition phenomena are mediated through the interaction of carbohydrate-containing macromolecules and proteins; elicitors of phytoalexin production; and further consideration of the hypothesis and how the gene-for-gene relationship may have evolved. (JWP)
Mechanics of the Adhesive Properties of Ivy Nanoparticles
2013-11-21
macromolecule with multiple physiological functions in the growth of plants, such as signaling, cell wall plasticizer, guiding pollen tube growth, and many...others. The AGPs on the stigma surface were believed to act as an adhesive base for pollens , indicating the adhesion function that AGPs play in plants
Ganeva, V; Galutzov, B; Teissié, J
1995-12-13
The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.
Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.
1974-01-01
Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352
USDA-ARS?s Scientific Manuscript database
Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...
Sarin, Hemant
2010-08-11
Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.
Chooi, K Yean; Comerford, Andrew; Cremers, Stephanie J; Weinberg, Peter D
2016-07-01
Transport of macromolecules between plasma and the arterial wall plays a key role in atherogenesis. Scattered hotspots of elevated endothelial permeability to macromolecules occur in the aorta; a fraction of them are associated with dividing cells. Hotspots occur particularly frequently downstream of branch points, where lesions develop in young rabbits and children. However, the pattern of lesions varies with age, and can be explained by similar variation in the pattern of macromolecule uptake. We investigated whether patterns of hotspots and mitosis also change with age. Evans' Blue dye-labeled albumin was injected intravenously into immature or mature rabbits and its subsequent distribution in the aortic wall around intercostal branch ostia examined by confocal microscopy and automated image analysis. Mitosis was detected by immunofluorescence after adding 5-bromo-2-deoxiuridine to drinking water. Hotspots were most frequent downstream of branches in immature rabbits, but a novel distribution was observed in mature rabbits. Neither pattern was explained by mitosis. Hotspot uptake correlated spatially with the much greater non-hotspot uptake (p < 0.05), and the same pattern was seen when only the largest hotspots were considered. The pattern of hotspots changes with age. The data are consistent with there being a continuum of local permeabilities rather than two distinct mechanisms. The distribution of the dye, which binds to elastin and collagen, was similar to that of non-binding tracers and to lesions apart from a paucity at the lateral margins of branches that can be explained by lower levels of fibrous proteins in those regions. Copyright © 2016. Published by Elsevier Ireland Ltd.
Controlled doping by self-assembled dendrimer-like macromolecules
NASA Astrophysics Data System (ADS)
Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping
2017-02-01
Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.
Method for selective immobilization of macromolecules on self assembled monolayer surfaces
Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA
2011-11-29
Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.
Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1987-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
A mathematical model for filtration and macromolecule transport across capillary walls.
Facchini, L; Bellin, A; Toro, E F
2014-07-01
Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed of two coupled second-order ordinary differential equations for the hydrostatic and osmotic pressures, one, expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of pressure across the microvessel walls, not consistent with observations. Copyright © 2014 Elsevier Inc. All rights reserved.
Diffusion of macromolecules through sclera.
Miao, Heng; Wu, Bi-Dong; Tao, Yong; Li, Xiao-Xin
2013-02-01
To quantify the in vitro permeability coefficient over different topographical locations of porcine sclera to macromolecules with different molecular weight. Fresh equatorial and posterior superotemporal porcine sclera was mounted in a two-chamber diffusion apparatus, and its permeability to fluorescein isothiocyanate (FITC)-conjugated dextrans ranging in molecular weight from 40 kDa to 150 kDa was determined by fluorescence spectrophotometry. The sclera was processed as frozen sections and viewed with a fluorescence microscope. The thickness of the area and the thickness that macromolecules enriched in the surface of sclera were measured. The permeability coefficient (Pc) of porcine sclera to macromolecules was significantly higher (40 kDa, p = 0.028; 70 kDa, p = 0.033; 150 kDa, p = 0.007) in equatorial region than posterior, which could be attributed to the significant difference of thickness (p < 0.001, Kruskal-Wallis) between them. Moreover, linear regression indicated a significant negative relationship (40 kDa, p < 0.001; 70 kDa, p = 0.015; 150 kDa, p < 0.001) between scleral permeability coefficient and thickness. Also, Pc declined significantly with increasing molecular weight (MW, p < 0.001, Kruskal-Wallis). The area that the macromolecules enriched in the scleral surface was thicker for those with larger MW (p < 0.001, Kruskal-Wallis). The maximum MW and size for equatorial and posterior superotemporal scleral tissue were 185.01 KDa and 180.42 KDa, 9.92 nm and 9.67 nm, respectively. The permeability coefficient of porcine sclera has a significant negative relationship with scleral thickness and MW of macromolecules. Larger macromolecules are more likely to accumulate in scleral surface. The difference between topographical locations may have pharmacokinetic implications when considering transscleral diffusion of macromolecules. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Zhao, Qing; Petersen, Elijah J.; Cornelis, Geert; Wang, Xilong; Guo, Xiaoying; Tao, Shu; Xing, Baoshan
2016-01-01
Developing methods to measure interactions of carbon nanotubes (CNTs) with soils and sediments and understanding the impact of soil and sediment properties on CNT deposition are essential for assessing CNT environmental risks. In this study, we utilized functionalized carbon-14 labeled nanotubes to systematically investigate retention of multiwall CNTs (MWCNTs) by 3 humic acids, 3 natural biopolymers, and 10 model solid-phase polymers, collectively termed macromolecules. Surface properties, rather than bulk properties of macromolecules, greatly influenced MWCNT retention. As shown via multiple linear regression analysis and path analysis, aromaticity and surface polarity were the two most positive factors for retention, suggesting retention was regulated by π-π stacking and hydrogen bonding interactions. Moreover, MWCNT deposition was irreversible. These observations may explain the high retention of MWCNT in natural soils. Moreover, our findings on the relative contribution of each macromolecule property on CNT retention provide information on macromolecule selection for removal of MWCNTs from wastewater and provide a method for measuring CNT interactions with organic macromolecules. PMID:27458320
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
A sweet new role for LCP enzymes in protein glycosylation
Amer, Brendan R.; Clubb, Robert T.
2014-11-21
The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amer, Brendan R.; Clubb, Robert T.
The peptidoglycan that surrounds Gram-positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytRCpsA-Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton-That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromoleculesmore » to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Furthermore, since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell-based tool to discover inhibitors of this important enzyme family.« less
Ye, Sang-Ho; Arazawa, David T.; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D.; Kimmel, Jeremy D.; Gamble, Lara J.; Ishihara, Kazuhiko; Federspiel, William J.; Wagner, William R.
2015-01-01
Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer. PMID:25669307
Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J
2015-07-28
Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria. Copyright © 2015 Wheeler et al.
Adsorption of polymethacrylic acid from aqueous solutions on disperse titanium dioxide
NASA Astrophysics Data System (ADS)
Yaremko, Z. M.; Tkachenko, N. G.; Fedushinskaya, L. B.
2011-10-01
The state of macromolecules of polymethacrylic acid adsorbed on the surface of disperse titanium dioxide was assessed using a combination of the differential concentration approach to the determination of adsorption and methods for determining the size of disperse adsorbents by dynamic light scattering and sedimentation analysis in the field of centrifugal forces. Three sections were found on the isotherm of adsorption: in the first, isolated islands of adsorbed macromolecules formed; in the second, layers of macromolecules with a different degree of deformation were observed; in the third, determining the adsorption of macromolecules is complicated by other accompanying processes, and assessing the state of macromolecules in the adsorption layer becomes difficult.
Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.
2015-01-01
ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963
Modeling Pressure-Driven Transport of Proteins through a Nanochannel
Carr, Rogan; Comer, Jeffrey; Ginsberg, Mark D.; Aksimentiev, Aleksei
2012-01-01
Reducing the size of a nanofluidic channel not only creates new opportunities for high-precision manipulation of biological macromolecules, but also makes the performance of the entire nanofluidic system more susceptible to undesirable interactions between the transported biomolecules and the walls of the channel. In this manuscript, we report molecular dynamics simulations of a pressure-driven flow through a silica nanochannel that characterized, with atomic resolution, adsorption of a model protein to its surface. Although the simulated adsorption of the proteins was found to be nonspecific, it had a dramatic effect on the rate of the protein transport. To determine the relative strength of the protein–silica interactions in different adsorbed states, we simulated flow-induced desorption of the proteins from the silica surface. Our analysis of the protein conformations in the adsorbed states did not reveal any simple dependence of the adsorption strength on the size and composition of the protein–silica contact, suggesting that the heterogeneity of the silica surface may be a important factor. PMID:22611338
Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter
2006-05-01
Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.
Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R; Hong, Yi; Gamble, Lara J; Ishihara, Kazuhiko; Wagner, William R
2013-07-02
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi- and SBSSi-modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys.
NASA Astrophysics Data System (ADS)
Castelain, Mickaël; Rouxhet, Paul G.; Pignon, Frédéric; Magnin, Albert; Piau, Jean-Michel
2012-06-01
A facile method of using optical trapping to measure cell adhesion forces is presented and applied to the adhesion of Saccharomyces cerevisiae on glass, in contact with solutions of different compositions. Trapping yeast cells with optical tweezers (OT) is not perturbed by cell wall deformation or cell deviation from a spherical shape. The trapping force calibration requires correction not only for the hydrodynamic effect of the neighboring wall but also for spherical aberrations affecting the focal volume and the trap stiffness. Yeast cells trapped for up to 5 h were still able to undergo budding but showed an increase of doubling time. The proportion of adhering cells showed the expected variation according to the solution composition. The detachment force varied in the same way. This observation and the fact that the detachment stress was exerted parallel to the substrate surface point to the role of interactions involving solvated macromolecules. Both the proportion of adhering cells and the removal force showed a distribution which, in our experimental conditions, must be attributed to a heterogeneity of surface properties at the cell level or at the subcellular scale. As compared with magnetic tweezers, atomic force microscopy, and more conventional ways of studying cell adhesion (shear-flow cells), OT present several advantages that are emphasized in this paper.
Small-Molecule-Based Self-Assembled Ligands for G-Quadruplex DNA Surface Recognition.
Rivera-Sánchez, María Del C; García-Arriaga, Marilyn; Hobley, Gerard; Morales-de-Echegaray, Ana V; Rivera, José M
2017-10-31
Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding. Herein, we report SALs made from 8-aryl-2'-deoxyguanosine derivatives forming precise hydrophilic supramolecular G-quadruplexes (SGQs) with excellent size, shape, and charge complementarity to G-quadruplex DNA (QDNA). We show that only those compounds forming SGQs act as SALs, which in turn differentially stabilize QDNAs from selected oncogene promoters and the human telomeric regions. Fluorescence resonance energy-transfer melting assays are consistent with spectroscopic, calorimetric, and light scattering studies, showing the formation of a "sandwichlike" complex QDNA·SGQ·QDNA. These results open the door for the advent of SALs that recognize QDNAs and potentially the surfaces of other bio-macromolecules such as proteins.
Lytic agents, cell permeability, and monolayer penetrability.
Salton, M R
1968-07-01
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20-30 % lipid and 50-75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2-3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.
Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R.; Hong, Yi; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.
2013-01-01
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi and SBSSi modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys. PMID:23705967
Suberin: the biopolyester at the frontier of plants
NASA Astrophysics Data System (ADS)
Graça, José
2015-10-01
Suberin is a lipophilic macromolecule found in specialized plant cell walls, wherever insulation or protection towards the surroundings is needed. Suberized cells form the periderm, the tissue that envelops secondary stems as part of the bark, and develop as the sealing tissue after wounding or leaf abscission. Suberin is a complex polyester built from poly-functional long-chain fatty acids (suberin acids) and glycerol. The suberin acids composition of a number of plant tissues and species is now established, but how the polyester macromolecule is assembled within the suberized cell walls is not known. In the last years contributions from several areas have however significantly enriched our understanding of suberin. The primary structure of the polyester, i.e. how the suberin acids and glycerol are sequentially linked was revealed, together with the stereochemistry of the mid-chain functional groups some suberin acids have; solid-state NMR studies showed the presence of methylene chains spatially separated and with different molecular mobility; biophysical studies showed the membrane behaviour of suberin acids derivatives, allowing new insights on structure-properties relationships; and a number of candidate genes were conclusively related to suberin biosynthesis. The comprehension of suberin as a macromolecule will be essential to understand its vital protective roles in plants and how they will deal with eventual environmental changes. Suberin is also expected to be a source for high-performing bio-based chemicals, taking advantage of the structural uniqueness of their constituent suberin acids.
The Effect of Hypertension on the Transport of LDL Across the Deformable Arterial Wall
NASA Astrophysics Data System (ADS)
Dabagh, Mahsa; Jalali, Payman
2010-05-01
The influences of increased endothelial cell turnover and deformation of the intima on the transport of low-density lipoprotein (LDL) under hypertension are investigated by applying a multilayered model of aortic wall. The thickness and properties of the endothelium, intima, internal elastic lamina (IEL), and media are affected by the transmural pressure. Navier-Stokes and Brinkman equations are applied for the transport of the transmural flow and the convective-diffusion equation is solved for LDL transport. LDL macromolecules enter the intima through leaky junctions, and then pass through the media layer where they permeate over the surface of smooth muscle cells (SMC). Uptake of LDL by cells is modeled through a uniform reaction evenly distributed in the macroscopically homogeneous media layer. The results show that transmural pressure significantly affects the LDL fluxes across the leaky junction, the intima, fenestral pores in the IEL, and the media layer. Many realistic predictions including the proper magnitudes for the permeability of endothelium and intimal layers, and the hydraulic conductivity of all layers as well as their trends with pressure are predicted by the present model.
NASA Astrophysics Data System (ADS)
Wang, Yu; Zhao, Yan-Jiao; Huang, Ji-Ping
2012-07-01
The detection of macromolecular conformation is particularly important in many physical and biological applications. Here we theoretically explore a method for achieving this detection by probing the electricity of sequential charged segments of macromolecules. Our analysis is based on molecular dynamics simulations, and we investigate a single file of water molecules confined in a half-capped single-walled carbon nanotube (SWCNT) with an external electric charge of +e or -e (e is the elementary charge). The charge is located in the vicinity of the cap of the SWCNT and along the centerline of the SWCNT. We reveal the picosecond timescale for the re-orientation (namely, from one unidirectional direction to the other) of the water molecules in response to a switch in the charge signal, -e → +e or +e → -e. Our results are well understood by taking into account the electrical interactions between the water molecules and between the water molecules and the external charge. Because such signals of re-orientation can be magnified and transported according to Tu et al. [2009 Proc. Natl. Acad. Sci. USA 106 18120], it becomes possible to record fingerprints of electric signals arising from sequential charged segments of a macromolecule, which are expected to be useful for recognizing the conformations of some particular macromolecules.
Kozieradzka-Kiszkurno, Małgorzata; Płachno, Bartosz Jan; Bohdanowicz, Jerzy
2012-07-01
The development of the suspensor in two species - Sempervivum arachnoideum and Jovibarba sobolifera - was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species - S. arachnoideum and J. sobolifera - the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.
Do plant cell walls have a code?
Tavares, Eveline Q P; Buckeridge, Marcos S
2015-12-01
A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Specificity of marine microbial surface interactions.
Imam, S H; Bard, R F; Tosteson, T R
1984-01-01
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea. PMID:6508293
The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.
Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert
2008-01-01
Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood.
NASA Astrophysics Data System (ADS)
Singha, Somdutta; Ghosh, Swapankumar
2017-09-01
Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.
Protein-targeted corona phase molecular recognition
Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.
2016-01-01
Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890
Perfect mixing of immiscible macromolecules at fluid interfaces
NASA Astrophysics Data System (ADS)
Sheiko, Sergei S.; Zhou, Jing; Arnold, Jamie; Neugebauer, Dorota; Matyjaszewski, Krzysztof; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Rubinstein, Michael
2013-08-01
The difficulty of mixing chemically incompatible substances—in particular macromolecules and colloidal particles—is a canonical problem limiting advances in fields ranging from health care to materials engineering. Although the self-assembly of chemically different moieties has been demonstrated in coordination complexes, supramolecular structures, and colloidal lattices among other systems, the mechanisms of mixing largely rely on specific interfacing of chemically, physically or geometrically complementary objects. Here, by taking advantage of the steric repulsion between brush-like polymers tethered to surface-active species, we obtained long-range arrays of perfectly mixed macromolecules with a variety of polymer architectures and a wide range of chemistries without the need of encoding specific complementarity. The net repulsion arises from the significant increase in the conformational entropy of the brush-like polymers with increasing distance between adjacent macromolecules at fluid interfaces. This entropic-templating assembly strategy enables long-range patterning of thin films on sub-100 nm length scales.
Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography
NASA Astrophysics Data System (ADS)
Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John
2014-11-01
We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.
Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-01-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.
Lopez-Sanchez, Patricia; Schuster, Erich; Wang, Dongjie; Gidley, Michael J; Strom, Anna
2015-05-28
Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.
Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V
2009-01-01
Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.
Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C
2005-04-01
The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.
Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors
Stern, Eric; Wagner, Robin; Sigworth, Fred J.; Breaker, Ronald; Fahmy, Tarek M.; Reed, Mark A.
2009-01-01
Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors. PMID:17914853
Importance of the Debye screening length on nanowire field effect transistor sensors.
Stern, Eric; Wagner, Robin; Sigworth, Fred J; Breaker, Ronald; Fahmy, Tarek M; Reed, Mark A
2007-11-01
Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors.
Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine
2007-01-01
The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.
NASA Astrophysics Data System (ADS)
Yavorsky, D. P.
1981-08-01
The structure of an adsorbed macromolecular layer at the solid/liquid interface under both stationary and flow conditions is examined. The conformation of adsorbed bovine serum albumin (BSA) is deduced from the thickness of surface layers formed on the pore walls of track etched (mica) membranes. Changes in membrane permeability due to protein adsorption are related directly to a net reduction in pore size or an equivalent adsorbed layer thickness. Complementary permeability measurements using electrolyte conduction, tracer diffusion, and pressure driven flow have verified the unique structural qualities of the track etched membrane and collectively demonstrate an ability to determine bare pore size with an accuracy of + or - 2A. The average static thickness of an adsorbed BSA layer, as derived from electrolyte conduction and tracer diffusion, was 43 + or - 3A independent of pore size. In comparison with the known BSA solution dimensions, this measured thickness is consistent with a monolayer of structurally unperturbed protein molecules each oriented in a "side-on" position. Pronounced conformational changes in adsorbed BSA layers were observed under conditions of shear flow. Electrostatic interactions were also shown to significantly affect adsorbed protein conformation through changes in solution ionic strength and surface charge.
Fabrication of a novel biosensor for macromolecules detection through molecular imprinting technique
NASA Astrophysics Data System (ADS)
Yu, Yingjie
There is an increasing need for precise molecular detection as a diagnostic tool for early identification of diseases, pathogens, and abnormal protein levels in the body. Typical chemical analytical methods are generally costly, unstable, and time-consuming. Molecular imprinting (MI) technique, based on the "lock and key model", could be a simple method to overcome those shortcomings. In this study, a self-assembled monolayer (SAM) was employed as a platform to fabricate MI biosensor for detection of macromolecules. I demonstrated that, when the monolayer was formed on a rough surface, this method was in fact templating molecules in three dimensions, and hence was not limited by the height of the monolayer, but rather by the height of the roughness. This hypothesis was tested on biomolecules of multiple length scales. The SAM is assembled on the walls of the niche, forming a 3D pattern of the analyte uniquely molded to its contour. The surfaces with multi-scale roughness were prepared by evaporation of gold onto electropolished (smooth) and unpolished (rough) Si wafers, where the native roughness was found to have a normal distribution centered around 5 and 90 nm respectively. Our studies, using molecules, such as proteins, i.e., hemoglobin, ranging from a few nanometers, to viruses (i.e. polio, adenovirus), ranging from several tens of nanometers, and protein complexes ranging from several hundred nanometers, showed that when the size of the analyte matched the roughness of the gold surface, this method was very effective and could detect even small changes in the configuration, such as those induced by changes in the pH of the system. The detection method was further quantified by applying it to the detection of CEA in pancreatic cyst fluid obtained from 18 patients under IRB 95867-6. The results of the MI biosensor were directly compared with those obtained using ELISA in the hospital pathology laboratory with excellent agreement, except that the MI biosensor used only 1% of the volume of the ELISA test and produced results in less than 5 minutes, as compared to at least 10 hours.
Wang, Tuo; Hong, Mei
2016-01-01
Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to determine the spatial arrangements of macromolecules in near-native plant cell walls. Here we review key evidence from 2D and 3D correlation NMR spectra that show relatively few cellulose-hemicellulose cross peaks but many cellulose-pectin cross peaks, indicating that cellulose microfibrils are not extensively coated by hemicellulose and all three major polysaccharides exist in a single network rather than two separate networks as previously proposed. The number of glucan chains in the primary-wall cellulose microfibrils has been under active debate recently. We show detailed analysis of quantitative (13)C SSNMR spectra of cellulose in various wild-type (WT) and mutant Arabidopsis and Brachypodium primary cell walls, which consistently indicate that primary-wall cellulose microfibrils contain at least 24 glucan chains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Measuring the shapes of macromolecules – and why it matters
Li, Jie; Mach, Paul; Koehl, Patrice
2013-01-01
The molecular basis of life rests on the activity of biological macromolecules, mostly nucleic acids and proteins. A perhaps surprising finding that crystallized over the last handful of decades is that geometric reasoning plays a major role in our attempt to understand these activities. In this paper, we address this connection between geometry and biology, focusing on methods for measuring and characterizing the shapes of macromolecules. We briefly review existing numerical and analytical approaches that solve these problems. We cover in more details our own work in this field, focusing on the alpha shape theory as it provides a unifying mathematical framework that enable the analytical calculations of the surface area and volume of a macromolecule represented as a union of balls, the detection of pockets and cavities in the molecule, and the quantification of contacts between the atomic balls. We have shown that each of these quantities can be related to physical properties of the molecule under study and ultimately provides insight on its activity. We conclude with a brief description of new challenges for the alpha shape theory in modern structural biology. PMID:24688748
Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; ...
2015-10-13
Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less
NASA Astrophysics Data System (ADS)
Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza
2018-07-01
Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.
Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)
NASA Astrophysics Data System (ADS)
Wu, Tao; Efimenko, Kirill; Genzer, Jan
2001-03-01
We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.
Adsorption of Wine Constituents on Functionalized Surfaces.
Mierczynska-Vasilev, Agnieszka; Smith, Paul A
2016-10-18
The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.
Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...
Brand, Philipp; Lin, Wei; Johnson, Brian R.
2018-01-01
Plant cell wall components are the most abundant macromolecules on Earth. The study of the breakdown of these molecules is thus a central question in biology. Surprisingly, plant cell wall breakdown by herbivores is relatively poorly understood, as nearly all early work focused on the mechanisms used by symbiotic microbes to breakdown plant cell walls in insects such as termites. Recently, however, it has been shown that many organisms make endogenous cellulases. Insects, and other arthropods, in particular have been shown to express a variety of plant cell wall degrading enzymes in many gene families with the ability to break down all the major components of the plant cell wall. Here we report the genome of a walking stick, Medauroidea extradentata, an obligate herbivore that makes uses of endogenously produced plant cell wall degrading enzymes. We present a draft of the 3.3Gbp genome along with an official gene set that contains a diversity of plant cell wall degrading enzymes. We show that at least one of the major families of plant cell wall degrading enzymes, the pectinases, have undergone a striking lineage-specific gene family expansion in the Phasmatodea. This genome will be a useful resource for comparative evolutionary studies with herbivores in many other clades and will help elucidate the mechanisms by which metazoans breakdown plant cell wall components. PMID:29588379
Alstonine as a potential fluorescent marker for tiny tumor detection and imaging
NASA Astrophysics Data System (ADS)
Viallet, Pierre M.; Vo-Dinh, Tuan; Salmon, Jean-Marie; Watts, Wendi; Rocchi, Emmanuelle; Isola, Narayana R.; Rebillard, Xavier
1997-06-01
3,4,5,6,16,17-Hexadehydro-16-(methoxycarbolyl)-19(alpha) - methyl-20(alpha) -oxyohimbanium (alstonine) is a fluorescent alcaloid which is known to stain tumor cells more efficiently than normal. The interactions between alstonine and biological macromolecules were first investigated to provide the rationale for preferential labelling. Molecular filtration and spectrosfluorometric techniques with different macromolecules and isopolynucleotides have demonstrated that binding occurs only in the presence of uridyl rings. For the binding affect only the fluorescence intensity of alstonine it can be assumed that it involves only the side chain of the fluorescent compound. The capability for preferential staining was verified in culture using SK-OV-3 cells and rat hepatocarcinoma cells as tumor cells and Mouse fibroblasts or rat liver cells as controls. Techniques of image analysis have demonstrated the efficiency of cellular labelling even in aggregates of rat hepatocarcinoma. These experiments lead the way to the detection of tiny tumors developed on thin visceral walls, using a fiber optic device.
The macromolecular aromatic domain in suberized tissue: a changing paradigm
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Lewis, N. G.
1998-01-01
As a structural feature of specialized cell walls, suberization remains an enigma, despite its obvious importance both during normal growth and development and as a stress response in plants. While it is clear that suberized tissues contain both polyaromatic and polyaliphatic domains, and that each of these has its own unique characteristics, whether there is a contiguous macromolecule that can be called suberin is an open question. From a structural perspective, the aromatic domain is unique and distinct from lignin, and is apparently comprised primarily of (poly)hydroxycinnamates, such as amides (e.g., feruloyltyramine). The aliphatic domain is also unique, being quite distinct from cutin in terms of both its chemical composition and cellular location. In the present paper, histochemical, structural and biochemical data, particularly, regarding the polyaromatic domain of suberized tissues, are critically reviewed. A revised description of the polyaromatic domain of suberized tissues, based on the consensus that is emerging from the current data, is presented and especially includes a spatially distinct (poly)hydroxycinnamoyl-containing macromolecule.
Wen, Quan
2014-01-01
Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633
NASA Astrophysics Data System (ADS)
Golovin, Yuri I.; Gribanovsky, Sergey L.; Golovin, Dmitry Y.; Zhigachev, Alexander O.; Klyachko, Natalia L.; Majouga, Alexander G.; Sokolsky, Marina; Kabanov, Alexander V.
2017-02-01
In the past decade, magneto-nanomechanical approach to biochemical systems stimulation has been studied intensively. This method involves macromolecule structure local deformation via mechanical actuation of functionalized magnetic nanoparticles (f-MNPs) by non-heating low frequency (LF) alternating magnetic field (AMF). Specificity at cellular or molecular level and spatial locality in nanometer scale are its key advantages as compared to magnetic fluid hyperthermia. However, current experimental studies have weak theoretical basis. Several models of magneto-nanomechanical actuation of macromolecules and cells in non-heating uniform LF AMF are presented in the article. Single core-shell spherical, rod-like, and Janus MNPs, as well as dimers consisting of two f-MNPs with macromolecules immobilized on their surfaces are considered. AMF-induced rotational oscillations of MNPs can affect properties and functioning of macromolecules or cellular membranes attached to them via periodic deformations in nanometer scale. This could be widely used in therapy, in particular for targeted drug delivery, controlled drug release, and cancer cell killing. An aggregate composed of MNPs can affect associated macromolecules by force up to several hundreds of piconewton in the case of MNPs of tens of nanometers in diameter and LF AMF below 1 T. AMF parameters and MNP design requirements for effective in vitro and in vivo magneto-nanomechanical treatment are presented.
Peptidoglycan turnover and recycling in Gram-positive bacteria.
Reith, Jan; Mayer, Christoph
2011-10-01
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.
Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.
Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît
2011-01-01
Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.
O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R
2012-05-01
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.
Irshad, Muhammad; Murtza, Aimen; Zafar, Muddassar; Bhatti, Khizar Hayat; Rehman, Abdul; Anwar, Zahid
2017-11-01
Biological macromolecules are primarily composed of complex polysaccharides that strengthen microbial growth for the production of industrially relevant enzymes. The presence of polysaccharides in the form of the disrupted cell wall and cell materials are among major challenges in the fruit juice industry. The breakdown of such biological macromolecules including cellulose and pectin is vital for the juices processing. In this background, pectinolytic enzymes including polygalacturonase (PG), pectin lyase (PL), and pectin methylesterase (PME) were isolated from Aspergillus ornatus, statistically optimized and purified via ammonium sulfate fractionation (ASF), dialysis, and Sephadex G-100 gel permeation chromatography. After passing through Sephadex G-100 column, PG, PL, and PME were 2.60-fold, 3.30-fold, and 4.52-fold purified with specific activities of 475.2U/mg, 557.1U/mg, and 205.7U/mg. The active PG, PL, and PME, each separately, were surface immobilized using various concentrations of chitosan and dextran polyaldehyde as a macromolecular crosslinking agent. Prior to exploit for juice clarification purposes, various parameters including pH, thermal and Michaelis-Menten kinetic constants of purified and chitosan-immobilized fractions were investigated. A considerable improvement in the pH and thermal profiles was recorded after immobilization. However, the negligible difference between the K m and V max values of purified free and chitosan-immobilized fractions revealed that the conformational flexibility of pectinolytics was retained as such. A significant color and turbidity reductions were recorded after 60min treatment with CTS-PG, followed by CTS-PME, and CTS-PL. It can be concluded that the clarification of apples, mango, peach, and apricot juices was greatly affected by CTS-PG, CTS-PME, and CTS-PL treatments rendering them as potential candidatures for food industry applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Moczar, M; Robert, A M; Jacotot, B; Robert, L
2001-05-01
The effect of an alpha-blocking agent and of a beta-blocking agent on the biosynthesis of extracellular matrix macromolecules of the arterial wall was investigated. Rabbit aorta explants were cultured up to 48 hours with radioactive proline, lysine or glucosamine. In presence of these drugs, at concentration shown to be effective for the inhibition of platelet-endothelial cell interactions (10(-7) M), the incorporation of 14C proline in total macromolecular proline was higher than in macromolecular hydroxyproline suggesting a relatively higher rate of biosynthesis of non-collagenous proteins as compared to collagens. The alpha-blocking increased the incorporation of 14C proline in collagenous and non-collagenous proteins after 18 hours of incubation. beta-blocking also increased the incorporation of proline in macromolecular proline and hydroxyproline as compared to control cultures. Both increased the incorporation of 3H glucosamine in newly synthesised glycosaminoglycans. beta-blocking increased mainly the neosynthesis of heparan sulphate, alpha-blocking that of hyaluronan. The incorporation of 14C-lysine in crosslinked, insoluble elastin was not modified. These experiments confirm that alpha and beta-blocking agents can influence not only the tonus of aortic smooth muscle cells but also the relative rates of biosynthesis of extracellular matrix macromolecules. This effect should be taken in consideration for the evaluation of the long range effect of alpha and beta-blocking drugs on the vascular wall.
Charging and Release Mechanisms of Flexible Macromolecules in Droplets
NASA Astrophysics Data System (ADS)
Oh, Myong In; Consta, Styliani
2017-08-01
We study systematically the charging and release mechanisms of a flexible macromolecule, modeled by poly(ethylene glycol) (PEG), in a droplet by using molecular dynamics simulations. We compare how PEG is solvated and charged by sodium Na+ ions in a droplet of water (H2O), acetonitrile (MeCN), and their mixtures. Initially, we examine the location and the conformation of the macromolecule in a droplet bearing no net charge. It is revealed that the presence of charge carriers do not affect the location of PEG in aqueous and MeCN droplets compared with that in the neutral droplets, but the location of the macromolecule and the droplet size do affect the PEG conformation. PEG is charged on the surface of a sodiated aqueous droplet that is found close to the Rayleigh limit. Its charging is coupled to the extrusion mechanism, where PEG segments leave the droplet once they coordinate a Na+ ion or in a correlated motion with Na+ ions. In contrast, as PEG resides in the interior of a MeCN droplet, it is sodiated inside the droplet. The compact macro-ion transitions through partially unwound states to an extended conformation, a process occurring during the final stage of desolvation and in the presence of only a handful of MeCN molecules. For charged H2O/MeCN droplets, the sodiation of PEG is determined by the H2O component, reflecting its slower evaporation and preference over MeCN for solvating Na+ ions. We use the simulation data to construct an analytical model that suggests that the droplet surface electric field may play a role in the macro-ion-droplet interactions that lead to the extrusion of the macro-ion. This study provides the first evidence of the effect of the surface electric field by using atomistic simulations. [Figure not available: see fulltext.
Wang, Jun; Chang, Yaoguang; Wu, Fanxiu; Xu, Xiaoqi; Xue, Changhu
2018-04-15
Fucosylated chondroitin sulfate (fCS) is the major carbohydrate constituent of sea cucumber. However, the distribution of fCS in the sea cucumber body wall has not been fully described. We addressed this in the present study employing Apostichopus japonicus as the material, a sea cucumber species with significant commercial importance. It was found that fCS was covalently attached to collagen fibrils via O-glycosidic linkages. Transmission electron microscopy analysis revealed that fCS precipitate was present in gap regions of collagen fibrils as roughly globular or ellipsoidal dots. The fCS dots arranged circumferentially around the fibrils with an axial repeat period that matched the periodicity of the fibrils. Physicochemical analysis indicated that the presence of fCS significantly increased the negative charge of the fibrils. These findings provide novel insight into fCS distribution in the sea cucumber body wall and its supramolecular organization with other macromolecules. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin
2011-09-16
In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Alice Chinghsuan; Liu, Bernard Haochih
2018-02-01
The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.
Cellular and Molecular Biology of Airway Mucins
Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.
2017-01-01
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810
Porosity of porcine bladder acellular matrix: impact of ACM thickness.
Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman
2003-12-01
The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003
Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa
2015-11-21
Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion.
Pan, Hua-Ping; Wang, Ning; Tachikawa, Hiroyuki; Nakanishi, Hideki; Gao, Xiao-Dong
2017-11-01
The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of β-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, β-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Analysis of macromolecules, ligands and macromolecule-ligand complexes
Von Dreele, Robert B [Los Alamos, NM
2008-12-23
A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.
Molecular Simulation Evaluation of Macromolecular Transport through Nanofiltration Membranes
NASA Astrophysics Data System (ADS)
Almodovar Arbelo, Noelia; Boudouris, Bryan; Corti, David
A hybrid Monte Carlo and Molecular Dynamics simulation technique was implemented to elucidate the equilibrium behavior and transport properties of a model macromolecule as it navigated across a nanoporous polymer thin film (i.e., a nanofiltration membrane). The model linear homopolymer chosen was one that had interactions that were representative of poly(ethylene oxide) (PEO) due to the known interactions of PEO with solution molecules when a PEO chain is dissolved in an aqueous environment. The structural rearrangements of the PEO chain as it passes through the nanopore under an imposed chemical potential gradient was quantified as a function of solvent quality, polymer chain length, nanopore diameter and shape, and PEO-nanopore wall interactions. Thus, these computational studies provide a more detailed picture of the underlying physical mechanisms that drive macromolecular transport through nanopores, and, in particular, how dimensionally-large macromolecules (i.e., with large radii of gyration) enter and move through dimensionally-small pores (i.e., small radii nanopores). The insights gained from these studies will aid in the development of more cost-effective water purification systems in separation technologies for myriad industrial applications.
Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D
2017-11-01
Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular junctions, or transcellularly. Cells aligned to minimize the shear stress acting across their long axis. Paracellular transport correlated with the level of this minimized shear, but transcellular transport was reduced uniformly by flow regardless of the shear profile. Copyright © 2017 the American Physiological Society.
Workshop on High-Field NMR and Biological Applications
NASA Astrophysics Data System (ADS)
Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.
Self-assembly in densely grafted macromolecules with amphiphilic monomer units: diagram of states.
Lazutin, A A; Vasilevskaya, V V; Khokhlov, A R
2017-11-22
By means of computer modelling, the self-organization of dense planar brushes of macromolecules with amphiphilic monomer units was addressed and their state diagram was constructed. The diagram of states includes the following regions: disordered position of monomer units with respect to each other, strands composed of a few polymer chains and lamellae with different domain spacing. The transformation of lamellae structures with different domain spacing occurred within the intermediate region and could proceed through the formation of so-called parking garage structures. The parking garage structure joins the lamellae with large (on the top of the brushes) and small (close to the grafted surface) domain spacing, which appears like a system of inclined locally parallel layers connected with each other by bridges. The parking garage structures were observed for incompatible A and B groups in selective solvents, which result in aggregation of the side B groups and dense packing of amphiphilic macromolecules in the restricted volume of the planar brushes.
Burgener, Matthias; Putzeys, Tristan; Gashti, Mazeyar Parvinzadeh; Busch, Susanne; Aboulfadl, Hanane; Wübbenhorst, Michael; Kniep, Rüdiger; Hulliger, Jürg
2015-09-14
The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.
Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G
2018-05-23
The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.
2018-01-01
The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430
Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene.
San Millán, R; Elguezabal, N; Regúlez, P; Moragues, M D; Quindós, G; Pontón, J
2000-09-01
Attachment of Candida albicans to plastic materials of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In an earlier study, it was shown that adhesion of C. albicans to polystyrene, a model system to study the adhesion of C. albicans to plastic materials, can be partially inhibited with an mAb directed against cell wall polysaccharides of C. albicans. In the present study, the role of whole saliva in the adhesion of C. albicans to polystyrene has been investigated, and three mAbs directed against epitopes of cell wall mannoproteins have been used to mimic the inhibitory effect observed with salivary secretory IgA (sIgA) on the adhesion of C. albicans to polystyrene. In the absence of whole saliva, adherence of C. albicans 3153 increased with germination. However, the presence of whole saliva enhanced the adhesion to polystyrene of C. albicans 3153 yeast cells but decreased the adhesion of germinated cells. The enhancement of adhesion of yeast cells to polystyrene mediated by saliva was confirmed with an agerminative mutant of C. albicans 3153. The inhibition of the adhesion of C. albicans 3153 germ tubes to polystyrene was due to the salivary sIgA since sIgA-depleted saliva enhanced the adhesion of C. albicans 3153 to polystyrene. The inhibitory effect mediated by sIgA was not related to the inhibition of germination but to the blockage of adhesins expressed on the cell wall surface of the germ tubes. The three mAbs studied reduced the adhesion of C. albicans 3153 to polystyrene at levels equivalent to those for purified sIgA. The highest reduction in the adhesion was obtained with the IgA mAb N3B. The best results were obtained when the three mAbs were combined. The results suggest that whole saliva plays a different role in the adhesion of C. albicans to polystyrene depending on the morphological phase of C. albicans. These results may give new insights into the conflicting role of saliva in the adhesion of C. albicans to plastic materials of dental prostheses.
NASA Astrophysics Data System (ADS)
Smentkowski, V. S.; Duong, H. M.; Tamaki, R.; Keenan, M. R.; Ohlhausen, J. A. Tony; Kotula, P. G.
2006-11-01
Silsesquioxane, with an empirical formula of RSiO3/2, has the potential to combine the mechanical properties of plastics with the oxidative stability of ceramics in one material [D.W. Scott, J. Am. Chem. Soc. 68 (1946) 356; K.J. Shea, D.A. Loy, Acc. Chem. Res. 34 (2001) 707; K.-M. Kim, D.-K. Keum, Y. Chujo, Macromolecules 36 (2003) 867; M.J. Abad, L. Barral, D.P. Fasce, R.J.J. William, Macromolecules 36 (2003) 3128]. The high sensitivity, surface specificity, and ability to detect and image high mass additives make time-of-flight secondary ion mass spectrometry (ToF-SIMS) a powerful surface analytical instrument for the characterization of polymer composite surfaces in an analytical laboratory [J.C. Vickerman, D. Briggs (Eds.), ToF-SIMS Surface Analysis by Mass Spectrometry, Surface Spectra/IMPublications, UK, 2001; X. Vanden Eynde, P. Bertand, Surf. Interface Anal. 27 (1999) 157; P.M. Thompson, Anal. Chem. 63 (1991) 2447; S.J. Simko, S.R. Bryan, D.P. Griffis, R.W. Murray, R.W. Linton, Anal. Chem. 57 (1985) 1198; S. Affrossman, S.A. O'Neill, M. Stamm, Macromolecules 31 (1998) 6280]. In this paper, we compare ToF-SIMS spectra of control samples with spectra generated from polymer nano-composites based on octabenzyl-polyhedral oligomeric silsesquioxane (BnPOSS) as well as spectra (and images) generated from multivariate statistical analysis (MVSA) of the entire spectral image. We will demonstrate that ToF-SIMS is able to detect and image low concentrations of BnPOSS in polycarbonate. We emphasize the use of MVSA tools for converting the massive amount of data contained in a ToF-SIMS spectral image into a smaller number of useful chemical components (spectra and images) that fully describe the ToF-SIMS measurement.
Li, Han-Yin; Wang, Chen-Zhou; Chen, Xue; Cao, Xue-Fei; Sun, Shao-Ni; Sun, Run-Cang
2016-12-01
An integrated process based on ionic liquids ([Bmim]Cl and [Bmim]OAc) pretreatment and successive alkali post-treatments (0.5, 2.0, and 4.0% NaOH at 90°C for 2h) was performed to isolate lignins from Eucalyptus. The structural features and spatial distribution of lignin in the Eucalyptus cell wall were investigated thoroughly. Results revealed that the ionic liquids pretreatment promoted the isolation of alkaline lignin from the pretreated samples without obvious structural changes. Additionally, the integrated process resulted in syringyl-rich lignin macromolecules with more β-O-4' linkages and less phenolic hydroxyl groups. Confocal Raman microscopy analysis showed that the dissolution behavior of lignin was varied in the morphologically distinct regions during the successive alkali treatments, and lignin dissolved was mainly stemmed from the secondary wall regions. These results provided some useful information for understanding the mechanisms of delignification during the integrated process and enhancing the potential utilizations of lignin in future biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.
Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C
2014-01-21
Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.
Large volume continuous counterflow dialyzer has high efficiency
NASA Technical Reports Server (NTRS)
Mandeles, S.; Woods, E. C.
1967-01-01
Dialyzer separates macromolecules from small molecules in large volumes of solution. It takes advantage of the high area/volume ratio in commercially available 1/4-inch dialysis tubing and maintains a high concentration gradient at the dialyzing surface by counterflow.
NASA Astrophysics Data System (ADS)
Tarhan, Mehmet C.; Lafitte, Nicolas; Tauran, Yannick; Jalabert, Laurent; Kumemura, Momoko; Perret, Grégoire; Kim, Beomjoon; Coleman, Anthony W.; Fujita, Hiroyuki; Collard, Dominique
2016-06-01
Monitoring biological reactions using the mechanical response of macromolecules is an alternative approach to immunoassays for providing real-time information about the underlying molecular mechanisms. Although force spectroscopy techniques, e.g. AFM and optical tweezers, perform precise molecular measurements at the single molecule level, sophisticated operation prevent their intensive use for systematic biosensing. Exploiting the biomechanical assay concept, we used micro-electro mechanical systems (MEMS) to develop a rapid platform for monitoring bio/chemical interactions of bio macromolecules, e.g. DNA, using their mechanical properties. The MEMS device provided real-time monitoring of reaction dynamics without any surface or molecular modifications. A microfluidic device with a side opening was fabricated for the optimal performance of the MEMS device to operate at the air-liquid interface for performing bioassays in liquid while actuating/sensing in air. The minimal immersion of the MEMS device in the channel provided long-term measurement stability (>10 h). Importantly, the method allowed monitoring effects of multiple solutions on the same macromolecule bundle (demonstrated with DNA bundles) without compromising the reproducibility. We monitored two different types of effects on the mechanical responses of DNA bundles (stiffness and viscous losses) exposed to pH changes (2.1 to 4.8) and different Ag+ concentrations (1 μM to 0.1 M).
Ben-Dov, Nadav; Korenstein, Rafi
2012-01-01
The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake. PMID:22558127
Controlled method of reducing electrophoretic mobility of various substances
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1989-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and the like is provided. The method comprises interacting the particles or cells with a polymer-linked affinity compound composed of: a hydrophilic neutral polymer such as polyethylene glycol, and an affinity component consisting of a hydrophobic compound such as a fatty acid ester, an immunocompound such as an antibody or active fragment thereof or simular macromolecule, or other ligands. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and the mobility reduction obtainable is up to 100 percent for particular particles and cells. The present invention is advantageous in that analytical electrophoretic separation can not be achieved for macromolecules, particles, and cells whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions. The present method is also advantageous in that it can be used in a variety of standard laboratory electrophoresis equipment.
Kundu, Achintya; Verma, Pramod Kumar; Cho, Minhaeng
2018-02-15
Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized poly(ethylene glycol) dimethyl ether (PEGDME). Our experimental results show that protecting osmolytes bind strongly with water molecules and dehydrate polymer surface, which results in promoting intramolecular interactions of the polymer. By contrast, urea behaves like water molecules without significantly disrupting water H-bonding network and favors extended and random-coil segments of the polymer chain by directly participating in solvation of the polymer. Our findings highlight the importance of direct interaction between urea and macromolecule, while protecting osmolytes indirectly affect the macromolecule through enhancing the water-osmolyte interaction in a crowded environment, which is the case that is often encountered in real biological systems.
Fluid Physics and Macromolecular Crystal Growth in Microgravity
NASA Technical Reports Server (NTRS)
Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.
2000-01-01
The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to optimize crystallization hardware so that destructive flows are minimized both on the ground and in microgravity.
X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes.
Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo
2015-02-01
The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding. Copyright © 2015 Elsevier GmbH. All rights reserved.
Long charged macromolecule in an entropic trap with rough surfaces.
Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun
2012-11-01
The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.
Flow-induced conformational changes in gelatin structure and colloidal stabilization.
Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K
2008-09-02
Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glagolev, Mikhail K.; Vasilevskaya, Valentina V., E-mail: vvvas@polly.phys.msu.ru; Khokhlov, Alexei R.
Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a singlemore » direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.« less
Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.
Salmon, Andrew H J; Satchell, Simon C
2012-03-01
Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S
2018-05-29
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
Ďurkovič, Jaroslav; Kačík, František; Olčák, Dušan; Kučerová, Veronika; Krajňáková, Jana
2014-01-01
Background and Aims Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, ‘Groeneveld’ (a susceptible clone) and ‘Dodoens’ (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED. Methods Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition. Key Results Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The 13C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin. Conclusions In susceptible ‘Groeneveld’ plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in ‘Dodoens’, but only guaiacyl-rich lignin in ‘Dodoens’ plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant ‘Dodoens’ plants in a multivariate analysis of wood traits. PMID:24854167
Durkovič, Jaroslav; Kačík, František; Olčák, Dušan; Kučerová, Veronika; Krajňáková, Jana
2014-07-01
Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, 'Groeneveld' (a susceptible clone) and 'Dodoens' (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED. Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition. Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The (13)C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin. In susceptible 'Groeneveld' plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in 'Dodoens', but only guaiacyl-rich lignin in 'Dodoens' plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant 'Dodoens' plants in a multivariate analysis of wood traits. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems
NASA Astrophysics Data System (ADS)
Kovalenko, Andriy
2014-08-01
Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology enables rational design of CNC-based bionanocomposite materials and systems. Furthermore, the 3D-RISM-KH based multiscale modeling addresses the effect of hemicellulose and lignin composition on nanoscale forces that control cell wall strength towards overcoming plant biomass recalcitrance. It reveals molecular forces maintaining the cell wall structure and provides directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. We envision integrated biomass valorization based on extracting and decomposing the non-cellulosic components to low molecular weight chemicals and utilizing the cellulose microfibrils to make CNC. This is an important alternative to approaches of full conversion of lignocellulose to biofuels that face challenges arising from the deleterious impact of cellulose crystallinity on enzymatic processing.
Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A
2016-09-01
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.
Direct visualization of the arterial wall water permeability barrier using CARS microscopy
Lucotte, Bertrand M.; Powell, Chloe; Knutson, Jay R.; Combs, Christian A.; Malide, Daniela; Yu, Zu-Xi; Knepper, Mark; Patel, Keval D.; Pielach, Anna; Johnson, Errin; Borysova, Lyudmyla; Balaban, Robert S.
2017-01-01
The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies. PMID:28373558
Highly Regioregular Polythiophenes for Magneto-Optical Applications
2010-07-01
Macromolecules, 2007, 40, 8142-8150 Lieven De Cremer et.al., Macromolecules, 2008, 41, 568-578 Lieven De Cremer et.al., Macromolecules, 2008, 41, 591-598 Marnix...Vangheluwe et.al., Macromolecules, 2008, 41, 1041-1044 David Cornelis et.al., Chem. Mater. 2008, 20, 2133-2143 Palash Gangopadhyay et.al., J. Phys
Chooi, K Y; Comerford, A; Sherwin, S J; Weinberg, P D
2016-06-01
The hydraulic resistances of the intima and media determine water flux and the advection of macromolecules into and across the arterial wall. Despite several experimental and computational studies, these transport processes and their dependence on transmural pressure remain incompletely understood. Here, we use a combination of experimental and computational methods to ascertain how the hydraulic permeability of the rat abdominal aorta depends on these two layers and how it is affected by structural rearrangement of the media under pressure. Ex vivo experiments determined the conductance of the whole wall, the thickness of the media and the geometry of medial smooth muscle cells (SMCs) and extracellular matrix (ECM). Numerical methods were used to compute water flux through the media. Intimal values were obtained by subtraction. A mechanism was identified that modulates pressure-induced changes in medial transport properties: compaction of the ECM leading to spatial reorganization of SMCs. This is summarized in an empirical constitutive law for permeability and volumetric strain. It led to the physiologically interesting observation that, as a consequence of the changes in medial microstructure, the relative contributions of the intima and media to the hydraulic resistance of the wall depend on the applied pressure; medial resistance dominated at pressures above approximately 93 mmHg in this vessel. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Kavanagh, John P.; Rao, P. Nagaraj
2007-04-01
The stone farm is a system for measuring macroscopic stone growth of 12 calcium stones simultaneously. It is based on mixed suspension, mixed product removal continuous crystallization principles and the stones are grown continuously for about 500 hours or more. The growth of the stones follows a surface area dependent pattern and the growth rate constants are very similar irrespective of whether the stating materials are fragments of human stone or pieces of marble chip. Increasing citrate from 2mM to 6mM caused a significant growth inhibition which persisted in the presence of urinary macromolecules. Phytate was a very effective inhibitor (about 50% at sub-μM concentrations) but the effective concentration was increased by an order of magnitude in the presence of urinary macromolecules. The effective concentration for inhibition in a crystallization assay was a further two orders of magnitude higher. Urinary macromolecules or almost whole urine were also strongly inhibitory although neither human serum albumin nor bovine mucin had any great effect. The relationship between the size distribution of crystals in suspension and the stone enlargement rate suggests that the primary enlargement mechanism for these in vitro stones is through aggregation. The stone farm is a powerful tool with which to study crystallization inhibitors in a new light. Some differences between inhibition of crystallization and inhibition of stone growth have emerged and we have obtained quantitative evidence on the mechanism of stone enlargement in vitro. Our findings suggest that the interface between crystals in suspension and the stone surface is the key to controlling stone enlargement.
Macromolecules Inquiry: Transformation of a Standard Biochemistry Lab
ERIC Educational Resources Information Center
Unsworth, Elizabeth
2014-01-01
Identification of macromolecules in food is a standard introductory high school biology lab. The intent of this article is to describe the conversion of this standard cookbook lab into an inquiry investigation. Instead of verifying the macromolecules found in food, students use their knowledge of the macromolecules in food to determine the…
Robust Plasma Polymerized-Titania/Silica Janus Microparticles
2010-04-29
vladimir@mse.gatech.edu. (1) De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645. (2) Perro , A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. J. Mater...Rubner,M. F.; Cohen, R. E.Macromolecules 2005, 38, 7876. (12) Perro ,A.;Meunier, F.; Schmitt, V.;Ravaine, S.Colloid. Surface.A. 2009, 332, 57. (13
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2014-11-01
The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.
Xia, Xianping; Wang, Yun; Cai, Shuizhou; Xie, Changsheng; Zhu, Changhong
2009-01-01
Copper/low-density polyethylene (Cu/LDPE) nanocomposite intrauterine device (IUD) is an implanted medicinal device that must be sterilized before use. Sterilization processes act either chemically or physically, leading to a lethal change in the structure or function of organic macromolecules in microorganisms. Given the nature of their action, sterilization might also attack the macromolecules of polymers by the same mechanisms, resulting in changes in surface functional groups and in the internal structure of the polymer. If sterilization leads to changes in surface functional groups and in the internal structure of the LDPE matrix, which will influence the mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs, potential clinical application will be limited. Therefore, it is necessary to study the influence of ethylene oxide sterilization on the potential clinical application of novel Cu/LDPE nanocomposite IUDs. The influence of ethylene oxide sterilization on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs was studied using differential scanning calorimetry, attenuated total reflection Fourier transform infrared spectroscopy, tensile testing and absorbance measurement. Ethylene oxide sterilization did not have any influence on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite intrauterine devices. Ethylene oxide sterilization will not affect the potential application of novel Cu/LDPE nanocomposite IUDs.
Zhang, Baofeng; Kilburg, Denise; Eastman, Peter; Pande, Vijay S; Gallicchio, Emilio
2017-04-15
We present an algorithm to efficiently compute accurate volumes and surface areas of macromolecules on graphical processing unit (GPU) devices using an analytic model which represents atomic volumes by continuous Gaussian densities. The volume of the molecule is expressed by means of the inclusion-exclusion formula, which is based on the summation of overlap integrals among multiple atomic densities. The surface area of the molecule is obtained by differentiation of the molecular volume with respect to atomic radii. The many-body nature of the model makes a port to GPU devices challenging. To our knowledge, this is the first reported full implementation of this model on GPU hardware. To accomplish this, we have used recursive strategies to construct the tree of overlaps and to accumulate volumes and their gradients on the tree data structures so as to minimize memory contention. The algorithm is used in the formulation of a surface area-based non-polar implicit solvent model implemented as an open source plug-in (named GaussVol) for the popular OpenMM library for molecular mechanics modeling. GaussVol is 50 to 100 times faster than our best optimized implementation for the CPUs, achieving speeds in excess of 100 ns/day with 1 fs time-step for protein-sized systems on commodity GPUs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nanotribology of charged polymer brushes
NASA Astrophysics Data System (ADS)
Klein, Jacob
Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.
NASA Astrophysics Data System (ADS)
Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára
2007-06-01
Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A.
Woosley, Bryan D; Kim, Young Hwan; Kumar Kolli, V S; Wells, Lance; King, Dan; Poe, Ryan; Orlando, Ron; Bergmann, Carl
2006-10-16
The enzyme endo-polygalacturonase A, or PGA, is produced by the fungus, Aspergillus niger, and appears to play a critical role during invasion of plant cell walls. The enzyme has been homologously overexpressed in order to provide sufficient quantities of purified enzyme for structural and biological studies. We have characterized this enzyme in terms of its post-translational modifications (PTMs) and found it to be both N- and O-glycosylated. Additionally, we have characterized the glycosyl moieties using MALDI-TOF and LC-ESI mass spectrometry. The characterization of all PTMs on PGA, along with molecular modeling, allows us to reveal potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.
Nandakumar, Natarajan; Jayaprakash, Ramachandran; Balasubramanian, Maruthaiveeran Periyasamy
2012-01-01
Therapeutic substances may reduce the risk of developing cancer by modulating the factors responsible for carcinogenesis. To evaluate these hypotheses, the present study was designed to investigate the modulatory effect of bioflavonoid "Hesperidin" against DMBA induced experimental breast cancer with reference to renal cell surface glycoproteins, nucleic acids, protein content, lipid profile and lysosomal enzymes. The female sprague-dawley rats were orally administered with single dose of 7, 12-DMBA to induce breast cancer and were treated with hesperidin [30 mg/kg/body weight] for a consecutive 45 days. The results revealed that there was a significant elevation in the levels of glycoproteins, nucleic acids, lysosomal enzymes and also significant alterations in macromolecules in renal tissues of cancer bearing animals. Interestingly, the altered levels of these parameters were remarkably reverted back to near normal in hesperidin treatment. The histopathological analysis of liver and kidney tissues were well supported the biochemical alterations and inevitably proves the protective role of hesperidin. It is proposed that, the effect of hesperidin during DMBA induced breast cancer could be due to the intervention strategies of hesperidin in the protein, nucleic acid biosynthesis, membrane stabilizing potentials on lysosomal compartment and inhibitory effect on cell surface glycoproteins and bio-fuel such as lipids.
Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.
Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge
2013-09-03
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S
2011-05-01
The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.
1999-01-01
The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
INFLUENCE OF MACROMOLECULES ON CHEMICAL TRANSPORT
Macromolecules in the pore fluid influence the mobility of hydrophobic compounds through soils. his study evaluated the significance of macromolecules in facilitating chemical transport under laboratory conditions. Partition coefficients between 14C-labeled hexachlorobenzene and ...
Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate.
Lebedeva, Natalia V; Nese, Alper; Sun, Frank C; Matyjaszewski, Krzysztof; Sheiko, Sergei S
2012-06-12
Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-βx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and β(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.
Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio
2010-02-01
Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))
Glycan Engineering for Cell and Developmental Biology.
Griffin, Matthew E; Hsieh-Wilson, Linda C
2016-01-21
Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.
2014-12-01
Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.
de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A
2017-08-01
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
Wall shear stress measurement in blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, R.; Raj, R.; Boldman, D. R.
1987-01-01
The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.
Systems to facilitate reducing flashback/flame holding in combustion systems
Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Zuo, Baifang [Simpsonville, SC
2012-02-21
A method for assembling a premixing injector is provided. The method includes providing a centerbody including a center axis and a radially outer surface, and providing an inlet flow conditioner. The inlet flow conditioner includes a radially outer wall, a radially inner wall, and an end wall coupled substantially perpendicularly between the outer wall and the inner wall. Each of the outer wall and the end wall include a plurality of openings defined therein. The outer wall, the inner wall, and the end wall define a first passage therebetween. The method also includes coupling the inlet flow conditioner to the centerbody such that the inlet flow conditioner substantially circumscribes the centerbody, such that the inner wall is substantially parallel to the centerbody outer surface, and such that a second passage is defined between the centerbody outer surface and the inner wall.
Turbine airfoil with outer wall thickness indicators
Marra, John J; James, Allister W; Merrill, Gary B
2013-08-06
A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.
Derewenda, Zygmunt S; Godzik, Adam
2017-01-01
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.
Post-cast EDM method for reducing the thickness of a turbine nozzle wall
Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin
2002-01-01
A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.
Lai, Ghee Chuan; Cho, Hongbaek; Bernhardt, Thomas G
2017-07-01
Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes to expand the cell wall matrix.
Contact Kinetics in Fractal Macromolecules.
Dolgushev, Maxim; Guérin, Thomas; Blumen, Alexander; Bénichou, Olivier; Voituriez, Raphaël
2015-11-13
We consider the kinetics of first contact between two monomers of the same macromolecule. Relying on a fractal description of the macromolecule, we develop an analytical method to compute the mean first contact time for various molecular sizes. In our theoretical description, the non-Markovian feature of monomer motion, arising from the interactions with the other monomers, is captured by accounting for the nonequilibrium conformations of the macromolecule at the very instant of first contact. This analysis reveals a simple scaling relation for the mean first contact time between two monomers, which involves only their equilibrium distance and the spectral dimension of the macromolecule, independently of its microscopic details. Our theoretical predictions are in excellent agreement with numerical stochastic simulations.
Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents;more » membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.« less
Bioactive and Porous Metal Coatings for Improved Tissue Regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, A. A.
Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it wasmore » then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.« less
NASA Astrophysics Data System (ADS)
Harutyunyan, R. S.
2013-08-01
Molecular interactions in a surfactant-polyacrylamide-water system are investigated. It is established that the interactions affect such physicochemical parameters of the system as viscosity, density, surface tension, conductivity, and critical micelle concentration. It is shown that in a polyacrylamide-water system, raising the polyacrylamide concentration to 0.02% causes conformational changes in its macromolecule.
Surfactant effects on the dynamics of an intravascular bubble
NASA Astrophysics Data System (ADS)
Zhang, Jie; Eckmann, David; Ayyaswamy, P. S.
2004-11-01
The effects of a surfactant on the dynamics of gas bubble behavior in the arteriolar vasculature are numerically investigated. The equations for momentum in the bulk fluid (blood) and the bubble, and the convection-diffusion equations for mass transport both in the bulk fluid and on the gas-liquid interface are numerically solved using a front tracking method. Both soluble and insoluble surfactants are considered. The adsorption/desorption dynamics of the soluble surfactant is accurately resolved. For a nearly occluded bubble, a faster rate of depletion of the surfactant from the region adjacent to the wall of the vessel is observed. In several cases studied here, the bulk medium is treated as non-Newtonian (power law, Casson), although the majority of cases treat blood as Newtonian. Results show that the adsorbed surfactant serves to prevent blood proteins and other macromolecules from occupying the interface. This prevents clotting or adhesion of the bubble to the vessel wall. The results obtained have significance in the study of intravascular gas embolism. Supported by NIH R01 HL67986
Flow Kills Conductivity of Single Wall Carbon Nanotubes (SWNT) Composites
NASA Astrophysics Data System (ADS)
Bhatt, Sanjiv; Macosko, Christopher
2006-03-01
Most composites of polymer and single wall carbon nanotubes (SWNT) reported in the literature are made by solvent casting or simple compression molding. Commercial utility of these composites requires use of precision injection molding. We have observed a unique behavior wherein the SWNT composites made by injection molding or by extrusion are insulators but upon heating become electrically conductive. This behavior appears to be the result of a relaxation phenomenon in the SWNT composite. During flow into an injection mold or through an extrusion die the well-dispersed SWNT in the polymer matrix tend to align such that they are not in contact with each other and are farther than the minimum required distance, 5 nm (1), to achieve electrical percolation through electron hopping. Upon heating the SWNT relax and either touch each other or are at a distance less than or equal to 5 nm from each other to create a percolating. [1] Du, F., Scogna, R, C., Zhou, W., Brand, Stijn, Fischer, J. E., and Winey, K. I., Macromolecules 2004, 37, 9048-9055.
LDRD final report on microencapsulated immunoreagents for development of one-step ELISA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, C.C.; Singh, A.K.
1997-08-01
Microencapsulation of biological macromolecules was investigated as a method for incorporating the necessary immunoreagents into an improved enzyme-linked immunosorbant assay (ELISA) package that would self-develop. This self-contained ELISA package would eliminate the need for a trained technician to perform multiple additions of immunoreagent to the assay. Microencapsulation by insolution drying was selected from the many available microencapsulation methods, and two satisfactory procedures for microencapsulation of proteins were established. The stability and potential for rapid release of protein from these microencapsulates was then evaluated. The results suggest that the chosen method for protein entrapment produces microcapsules with a considerable amount ofmore » protein in the walls making these particular microcapsules unsuitable for their intended use.« less
MACROMOLECULES FACILITATE THE TRANSPORT OF TRACE ORGANICS
Macromolecules in the pore fluid of a soil may influence the mobility of hydrophobic compounds by their partitioning to the macromolecule, which moves with, or even faster than, the water. The mobility is described mathematically by a chemical transport model. The significance of...
2017-11-13
condition is applied to the inviscid and viscous fluxes on the wall to satisfy the surface physical condition, but a non -zero surface tangential...velocity profiles and turbulence quantities predicted by the current wall-model implementation agree well with available experimental data and...implementations. The volume and surface integrals based on the non -zero surface velocity in a cell adjacent to the wall show a good agreement with those
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one-equation turbulence model is an effective approach for turbulence modeling in the near solid wall surface region of flow over a concave wall.
Film cooling air pocket in a closed loop cooled airfoil
Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian
2002-01-01
Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.
Observation of chain stretching in Langmuir diblock copolymer monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Factor, B.J.; Lee, L.; Kent, M.S.
1993-10-01
We report observations of chain stretching in diblock copolymer monolayers on the surface of a selective solvent. Using neutron reflectivity, we have studied the concentration profile of the submerged block over a large range of surface density [sigma] (chains per area) for two different molecular weights. The observed increase in the layer thickness is weaker than the [sigma][sup 1/3] prediction of mean-field and scaling theories for the limiting behavior, but is in agreement with recent numerical self-consistent-field calculations by Whitmore and Noolandi [Macromolecules 23, 3321 (1990)].
Navarre, William Wiley; Schneewind, Olaf
1999-01-01
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836
Component with inspection-facilitating features
Marra, John J; Zombo, Paul J
2014-02-11
A turbine airfoil can be formed with features to facilitate measurement of its wall thickness. An outer wall of the airfoil can include an outer surface and an inner surface. The outer surface of the airfoil can have an outer inspection target surface, and the inner surface of the airfoil can have an inner inspection target surface. The inner and outer target surfaces can define substantially flat regions in surfaces that are otherwise highly contoured. The inner and outer inspection target surfaces can be substantially aligned with each other. The inner and outer target surfaces can be substantially parallel to each other. As a result of these arrangements, a highly accurate measurement of wall thickness can be obtained. In one embodiment, the outer inspection target surface can be defined by an innermost surface of a groove formed in the outer surface of the outer wall of the airfoil.
Cao, Kai; Ward, Jonathan; Amos, Ryan C; Jeong, Moon Gon; Kim, Kyoung Taek; Gauthier, Mario; Foucher, Daniel; Wang, Xiaosong
2014-09-11
Theoretical calculations illustrate that organometallic macromolecules with piano stool coordination repeating units (Fe-acyl complex) adopt linear chain configuration with a P-Fe-C backbone surrounded by aromatic groups. The macromolecules show molecular weight-dependent and temperature stimulated solution behaviour in DMSO.
Noise reduction methods for nucleic acid and macromolecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander
Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.
NASA Astrophysics Data System (ADS)
Cudalbu, C.; Mlynárik, V.; Xin, L.; Gruetter, Rolf
2009-10-01
Reliable quantification of the macromolecule signals in short echo-time 1H MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. 1H spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
New Directions in Biotechnology
NASA Technical Reports Server (NTRS)
2003-01-01
The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.
Moussavi-Baygi, R; Mofrad, M R K
2016-07-29
Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores.
Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi
2011-01-25
A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.
Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs.
Park, Jin Woo; Kim, Sun Jin; Kwag, Dong Sup; Kim, Sol; Park, Jeyoung; Youn, Yu Seok; Bae, You Han; Lee, Eun Seong
2015-01-01
In recent years, advances in biotechnology and protein engineering have enabled the production of large quantities of proteins and peptides as important therapeutic agents. Various researchers have used biocompatible functional polymers to prepare oral dosage forms of proteins and peptides for chronic use and for easier administration to enhance patient compliance. However, there is a need to enhance their safety and effectiveness further. Most macromolecules undergo severe denaturation at low pH and enzymatic degradation in the gastrointestinal tract. The macromolecules' large molecular size and low lipophilicity cause low permeation through the intestinal membrane. The major strategies that have been used to overcome these challenges (in oral drug carrier systems) can be classified as follows: enteric coating or encapsulation with pH-sensitive polymers or mucoadhesive polymers, co-administration of protease inhibitors, incorporation of absorption enhancers, modification of the physicochemical properties of the macromolecules, and site-specific delivery to the colon. This review attempts to summarize the various advanced oral delivery carriers, including nanoparticles, lipid carriers, such as liposomes, nano-aggregates using amphiphilic polymers, complex coacervation of oppositely charged polyelectrolytes, and inorganic porous particles. The particles were formulated and/or surface modified with functional polysaccharides or synthetic polymers to improve oral bioavailability of proteins and peptides. We also discuss formulation strategies to overcome barriers, therapeutic efficacies in vivo, and potential benefits and issues for successful oral dosage forms of the proteins and peptides.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Ostolska, Iwona; Szewczuk-Karpisz, Katarzyna; Chibowski, Stanisław; Terpiłowski, Konrad; Gun'ko, Vladimir Moiseevich; Zarko, Vladimir Iljich
2015-01-01
A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.
Roy, Shovonlal
2018-06-01
Energy value of phytoplankton regulates the growth of higher trophic species, affecting the tropic balance and sustainability of marine food webs. Therefore, developing our capability to estimate and monitor, on a global scale, the concentrations of macromolecules that determine phytoplankton energy value, would be invaluable. Reported here are the first estimates of carbohydrate, protein, lipid, and overall energy value of phytoplankton in the world oceans, using ocean-colour data from satellites. The estimates are based on a novel bio-optical method that utilises satellite-derived bio-optical fingerprints of living phytoplankton combined with allometric relationships between phytoplankton cells and cellular macromolecular contents. The annually averaged phytoplankton energy value, per cubic metre of sub-surface ocean, varied from less than 0.1 kJ in subtropical gyres, to 0.5-1.0 kJ in parts of the equatorial, northern and southern latitudes, and rising to >10 kJ in certain coastal and optically complex waters. The annually averaged global stocks of carbohydrate, protein and lipid were 0.044, 0.17 and 0.108 gigatonnes, respectively, with monthly stocks highest in September and lowest in June, over 1997-2013. The fractional contributions of phytoplankton size classes e.g., picoplankton, nanoplankton and microplankton to surface concentrations and global stocks of macromolecules varied considerably across marine biomes classified as Longhurst provinces. Among these provinces, the highest annually averaged surface concentrations of carbohydrate, protein, and lipid were in North-East Atlantic Coastal Shelves, whereas, the lowest concentration of carbohydrate or lipid were in North Atlantic Tropical Gyral, and that of protein was in North Pacific Subtropical Gyre West. The regional accuracy of the estimates and their sensitivity to satellite inputs are quantified from the bio-optical model, which show promise for possible operational monitoring of phytoplankton energy value from satellite ocean colour. Adequate in situ measurements of macromolecules and improved retrievals of inherent optical properties from high-resolution satellite images, would be required to validate these estimates at local sites, and to further improve their accuracy in the world oceans.
13. THE SAME NORTH TRAINING WALL TOP SURFACE, LOOKING EAST ...
13. THE SAME NORTH TRAINING WALL TOP SURFACE, LOOKING EAST FROM ATOP ADJACENT RIPRAP. THE TRAINING WALL IS TO THE RIGHT OF THE JUMBLED, LIGHT TONED RIPRAP. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
Derewenda, Zygmunt S.; Godzik, Adam
2017-01-01
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e. crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular ‘sticky patch’ model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer ‘sticky patches’ which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the ‘sticky patch’ model. We discuss state-of-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design of variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis. PMID:28573570
Characterization of Nylon 6 by 15N Solid State NMR
1989-05-31
M.; Ritchey, W.; de Boer, E. Macromolecules, 1979, 12, 924. 2. Garroway , A. N.; Ritchey, W. M.; Moniz, W. B.; Macromolecules, 1982, It, 1051. 3...E. Macromolecules, 1982, 15, 1406. 23. Veeman, W. S.; Menger, E. M. Bull. Magn. Reson., 1980,2,77. 24. VanderHart, D. L.; Garroway , A. N. J. Chem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Leigh; Guebert, Alexandra; Smith, Wendy
Purpose: We investigate DIBH breast radiotherapy using the Real-time Position Management (RPM) system with the marker-block placed on the target breast or chest wall. Methods: We measured surface dose for three different RPM marker-blocks using EBT3 Gafchromic film at 0° and 30° incidence. A registration study was performed to determine the breast surface position that best correlates with overall internal chest wall position. Surface and chest wall contours from MV images of the medial tangent field were extracted for 15 patients. Surface contours were divided into three potential marker-block positions on the breast: Superior, Middle, and Inferior. Translational registration wasmore » used to align the partial contours to the first-fraction contour. Each resultant transformation matrix was applied to the chest wall contour, and the minimum distance between the reference chest wall contour and the transformed chest wall contour was evaluated for each pixel. Results: The measured surface dose for the 2-dot, 6-dot, and 4-dot marker-blocks at 0° incidence were 74%, 71%, and 77% of dose to dmax respectively. At 30° beam incidence this increased to 76%, 72%, and 81%. The best external surface position was patient and fraction dependent, with no consistent best choice. Conclusions: The increase in surface dose directly under the RPM block is approximately equivalent to 3 mm of bolus. No marker-block position on the breast surface was found to be more representative of overall chest wall motion; therefore block positional stability and reproducibility can be used to determine optimal placement on the breast or chest wall.« less
Macromolecule diffusion and confinement in prokaryotic cells.
Mika, Jacek T; Poolman, Bert
2011-02-01
We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Reclamation of potable water from mixed gas streams
Judkins, Roddie R.; Bischoff, Brian L.; Debusk, Melanie Moses; Narula, Chaitanya
2016-07-19
An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.
Reclamation of potable water from mixed gas streams
Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya
2013-08-20
An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.
Expansible apparatus for removing the surface layer from a concrete object
Allen, Charles H.
1979-01-01
A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.
PlaMoM: a comprehensive database compiles plant mobile macromolecules
Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R.; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong
2017-01-01
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. PMID:27924044
An experimental study of near wall flow parameters in the blade end-wall corner region
NASA Technical Reports Server (NTRS)
Bhargava, Rakesh K.; Raj, Rishi S.
1989-01-01
The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly in the close vicinity of the corner line. The maximum value of the wall shear stress and its location from the corner line, on both the surfaces forming the corner region, were observed to change along the corner. These observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the stretching and attenuation of the horseshoe vortex. The wall shear stress vectors in the blade end-wall corner region were observed to be more skewed on the end-wall surface as compared to that on the blade surface. The differences in the wall shear stress directions obtained with the Preston tube and flow visualization method were within the range in which the Preston tube was found to be insensitive to the yaw angle.
Polyacid macromolecule primers
Sugama, Toshifumi
1989-01-01
Hydrophylic polyacids, such as macromolecules of polyitaconic acid and polyacrylic acid, where such macromolecules have molecular weights >50,000 as primers between a polymeric top coating, such as polyurethane, and an oxidized aluminum or aluminum alloy. A near monolayer of primer is used in polymeric adhesive/oxidized aluminum adhered joint systems in 0.05% primer concentration to give superior results in standard peel tests.
Lam, Fan; Li, Yudu; Clifford, Bryan; Liang, Zhi-Pei
2018-05-01
To develop a practical method for mapping macromolecule distribution in the brain using ultrashort-TE MRSI data. An FID-based chemical shift imaging acquisition without metabolite-nulling pulses was used to acquire ultrashort-TE MRSI data that capture the macromolecule signals with high signal-to-noise-ratio (SNR) efficiency. To remove the metabolite signals from the ultrashort-TE data, single voxel spectroscopy data were obtained to determine a set of high-quality metabolite reference spectra. These spectra were then incorporated into a generalized series (GS) model to represent general metabolite spatiospectral distributions. A time-segmented algorithm was developed to back-extrapolate the GS model-based metabolite distribution from truncated FIDs and remove it from the MRSI data. Numerical simulations and in vivo experiments have been performed to evaluate the proposed method. Simulation results demonstrate accurate metabolite signal extrapolation by the proposed method given a high-quality reference. For in vivo experiments, the proposed method is able to produce spatiospectral distributions of macromolecules in the brain with high SNR from data acquired in about 10 minutes. We further demonstrate that the high-dimensional macromolecule spatiospectral distribution resides in a low-dimensional subspace. This finding provides a new opportunity to use subspace models for quantification and accelerated macromolecule mapping. Robustness of the proposed method is also demonstrated using multiple data sets from the same and different subjects. The proposed method is able to obtain macromolecule distributions in the brain from ultrashort-TE acquisitions. It can also be used for acquiring training data to determine a low-dimensional subspace to represent the macromolecule signals for subspace-based MRSI. Magn Reson Med 79:2460-2469, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Preferential Surface Adsorption in Miscible Blends of Polystyrene and Poly(vinyl methyl ether).
1988-02-02
D. J. Phys. Chem. 1973, 74, 356. , c’’ 26~’::~ ~ ~ q,.,rf~.. w KRINMNIMVWU94M ~ ~ W-.TO"Kśtv X"- uV 23 25. Ober, R.; Paz, L.: Taupin , C.; Pincus, P...Boileau, S. Macromolecules 1983, 16 50. 26. DiMeglio, J.M.; Ober, R.; Paz, L.; Taupin , C.; Pincus, P.; Boileau, S. J. Physique 1983,4!, 1035. 27
Formation of polymeric toroidal-spiral particles.
Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying
2012-01-10
Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.
The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive
Gilliland, Gary L.; Tung, Michael; Ladner, Jane
1996-01-01
The NIST/NASA/CARB Biological Macromolecule Crystallization Database (BMCD), NIST Standard Reference Database 21, contains crystal data and crystallization conditions for biological macromolecules. The database entries include data abstracted from published crystallographic reports. Each entry consists of information describing the biological macromolecule crystallized and crystal data and the crystallization conditions for each crystal form. The BMCD serves as the NASA Protein Crystal Growth Archive in that it contains protocols and results of crystallization experiments undertaken in microgravity (space). These database entries report the results, whether successful or not, from NASA-sponsored protein crystal growth experiments in microgravity and from microgravity crystallization studies sponsored by other international organizations. The BMCD was designed as a tool to assist x-ray crystallographers in the development of protocols to crystallize biological macromolecules, those that have previously been crystallized, and those that have not been crystallized. PMID:11542472
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
Standard surface grinder for precision machining of thin-wall tubing
NASA Technical Reports Server (NTRS)
Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.
1967-01-01
Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.
Preparation of polymeric Janus particles by directional UV-induced reactions.
Liu, Lianying; Ren, Mingwei; Yang, Wantai
2009-09-15
Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.
Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate
Lebedeva, Natalia V.; Nese, Alper; Sun, Frank C.; Matyjaszewski, Krzysztof; Sheiko, Sergei S.
2012-01-01
Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C─C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (kBT) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V0(1 - e-βx)2 - fx, we determined the depth and width of the potential to be V0 = 141 ± 19 kJ/mol and β-1 = 0.18 ± 0.03 Å, respectively. Whereas the V0 value is in reasonable agreement with the activation energy Ea = 80–220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C─C bond De = 350 kJ/mol. Moreover, the force constant Kx = 2β2V0 = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C─C bond Kl = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains. PMID:22645366
The Electric Potential of a Macromolecule in a Solvent: A Fundamental Approach
NASA Astrophysics Data System (ADS)
Juffer, André H.; Botta, Eugen F. F.; van Keulen, Bert A. M.; van der Ploeg, Auke; Berendsen, Herman J. C.
1991-11-01
A general numerical method is presented to compute the electric potential for a macromolecule of arbitrary shape in a solvent with nonzero ionic strength. The model is based on a continuum description of the dielectric and screening properties of the system, which consists of a bounded internal region with discrete charges and an infinite external region. The potential obeys the Poisson equation in the internal region and the linearized Poisson-Boltzmann equation in the external region, coupled through appropriate boundary conditions. It is shown how this three-dimensional problem can be presented as a pair of coupled integral equations for the potential and the normal component of the electric field at the dielectric interface. These equations can be solved by a straightforward application of boundary element techniques. The solution involves the decomposition of a matrix that depends only on the geometry of the surface and not on the positions of the charges. With this approach the number of unknowns is reduced by an order of magnitude with respect to the usual finite difference methods. Special attention is given to the numerical inaccuracies resulting from charges which are located close to the interface; an adapted formulation is given for that case. The method is tested both for a spherical geometry, for which an exact solution is available, and for a realistic problem, for which a finite difference solution and experimental verification is available. The latter concerns the shift in acid strength (pK-values) of histidines in the copper-containing protein azurin on oxidation of the copper, for various values of the ionic strength. A general method is given to triangulate a macromolecular surface. The possibility is discussed to use the method presented here for a correct treatment of long-range electrostatic interactions in simulations of solvated macromolecules, which form an essential part of correct potentials of mean force.
Imaging of biological macromolecules on mica in humid air by scanning electrochemical microscopy
Fan, Fu-Ren F.; Bard, Allen J.
1999-01-01
Imaging of DNA, keyhole limpet hemocyanin, mouse monoclonal IgG, and glucose oxidase on a mica substrate has been accomplished by scanning electrochemical microscopy with a tungsten tip. The technique requires the use of a high relative humidity to form a thin film of water on the mica surface that allows electrochemical reactions to take place at the tip and produce a faradaic current (≈1 pA) that can be used to control tip position. The effect of relative humidity and surface pretreatment with buffer solutions on the ionic conductivity of a mica surface was investigated to find appropriate conditions for imaging. Resolution of the order of 1 nm was obtained. PMID:10588687
An implicit boundary integral method for computing electric potential of macromolecules in solvent
NASA Astrophysics Data System (ADS)
Zhong, Yimin; Ren, Kui; Tsai, Richard
2018-04-01
A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.
Directed aggregation of carbon nanotube on curved surfaces by polymer induced depletion attraction
NASA Astrophysics Data System (ADS)
Lee, Hsin-Chieh; Jiang, Hong-Ren
2017-12-01
In this study, we show that by chemically grafting macromolecule, polyethylene glycol (PEG), onto CNTs, PEG-CNTs become dispersible in an aqueous solution with tunable depletion interactions with each other. The aggregation of the PEG-CNTs can be controlled by adding PEG polymers into the solution. PEG-CNTs not only aggregate with each other but also tend to aggregate on curved surfaces. Due to this property, we show that PEG-CNTs can be directed to aggregate on particles and patterned surfaces. Depletion interaction induced aggregation of PEG-CNTs may provide a method to place PEG-CNTs on a specific position for different applications ranging from biomedical to industrial usages.
Turbine component having surface cooling channels and method of forming same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Carlos Miguel; Trimmer, Andrew Lee; Kottilingam, Srikanth Chandrudu
2017-09-05
A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.
Polyacid macromolecule primers
Sugama, Toshifumi.
1989-12-26
Hydrophilic polyacids are described, such as macromolecules of polyitaconic acid and polyacrylic acid, where such macromolecules have molecular weights >50,000 as primers between a polymeric top coating, such as polyurethane, and an oxidized aluminum or aluminum alloy. A near monolayer of primer is used in polymeric adhesive/oxidized aluminum adhered joint systems in 0.05% primer concentration to give superior results in standard peel tests. 2 figs.
Radiolysis of lignin: Prospective mechanism of high-temperature decomposition
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.
2017-12-01
The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.
Novel fluorescent core-shell nanocontainers for cell membrane transport.
Yin, Meizhen; Kuhlmann, Christoph R W; Sorokina, Ksenia; Li, Chen; Mihov, George; Pietrowski, Eweline; Koynov, Kaloian; Klapper, Markus; Luhmann, Heiko J; Müllen, Klaus; Weil, Tanja
2008-05-01
The synthesis and characterization of novel core-shell macromolecules consisting of a fluorescent perylene-3,4,9,10-tetracarboxdiimide chromophore in the center surrounded by a hydrophobic polyphenylene shell as a first and a flexible hydrophilic polymer shell as a second layer was presented. Following this strategy, several macromolecules bearing varying polymer chain lengths, different polymer shell densities, and increasing numbers of positive and negative charges were achieved. Because all of these macromolecules reveal a good water solubility, their ability to cross cellular membranes was investigated. In this way, a qualitative relationship between the molecular architecture of these macromolecules and the biological response was established.
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine
Seto, Jong; Ma, Yurong; Davis, Sean A.; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-01-01
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials. PMID:22343283
Immunoassays for pesticide monitoring
NASA Astrophysics Data System (ADS)
Wengatz, Ingrid; Szurdoki, Ferenc; Swamy, Anand R.; Evans, Lawrence, III; Patonay, Gabor; Stimmann, Eric; Delwiche, Michael; Stoutamire, Donald; Gee, Shirley J.; Hammock, Bruce D.
1995-05-01
This study compares two formats of rapid assays for the detection of pesticides (bromacil and pyrethroid based metabolites): enzyme linked immunosorbent assay (ELISA) and immunoassay with near-infrared (NIR) fluorescence detection. NIR dye immunoassay (NIRDIA) measurements were carried out by using two different instruments, both having a silicon photodiode as the detector and a laser diode for excitation. ELISA and NIRDIA were performed in a tracer format, where the specific antibody is bound to the surface of a microtiter plate well and the tracer with enzyme or fluorescent dye label competes with the analyte for the antibody binding site. It was demonstrated that the NIRDIA is at least as sensitive as the ELISA. Both assays detect pesticides in the (mu) g/L (ppb) range. Hapten- macromolecule-NIR dye-conjugates have been synthesized with various biopolymers (e.g., proteins) as carriers. The use of carrier macromolecules enables convenient purification of the cyanine dye derivatives. The mild conjugation method of the dye is based on isothiocyanate chemistry.
Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.
Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim
2014-07-08
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.
Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells
NASA Technical Reports Server (NTRS)
Vanalstine, James M. (Inventor)
1992-01-01
A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions.
Structure-property relationships of a biological mesocrystal in the adult sea urchin spine.
Seto, Jong; Ma, Yurong; Davis, Sean A; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut
2012-03-06
Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.
14. A CLOSER VIEW OF THE NORTH WALL TOP SURFACE ...
14. A CLOSER VIEW OF THE NORTH WALL TOP SURFACE MASONRY, LOOKING EAST FROM A POINT NEAR THE PREVIOUS VIEW. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
Wang, Jian; Evangelou, Bill P.; Nielsen, Mark T.
1992-01-01
Surface chemical characteristics of root cell walls extracted from two tobacco genotypes exhibiting differential tolerance to Mn toxicity were studied using potentiometric pH titration and Fourier transform infrared spectroscopy. The Mn-sensitive genotype KY 14 showed a stronger interaction of its cell wall surface with metal ions than did the Mn-tolerant genotype Tobacco Introduction (T.I.) 1112. This observation may be attributed to the relatively higher ratio of COO− to COOH in KY 14 cell walls than that found in the cell walls of T.I. 1112 in the pH range of 4 to 10. For both genotypes, the strength of binding between metal ions and cell wall surface was in the order of Cu > Ca > Mn > Mg > Na. However, a slightly higher preference of Ca over Mn was observed with the T.I. 1112 cell wall. This may explain the high accumulation of Mn in the leaves of Mn-tolerant genotype T.I. 1112 rather than the high accumulation of Mn in roots, as occurred in Mn-sensitive KY 14. It is concluded that surface chemical characteristics of cell walls may play an important role in plant metal ion uptake and tolerance. PMID:16652989
Effects of thickness, insulation, and surface color on the net heat loss through an adobe wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, R.W.
1980-01-01
A finite difference computer program was written and run to study the net thermal losses through a large variety of adobe walls. Fifty-four different combinations of surface color, wall thickness, and insulation position and R value were modeled over a typical two week winter period for locations similar to Albuquerque, New Mexico. A transient analysis of the heat loss from the room to the interior wall surface was compared to both conventional U value and steady-state calculations.
Punyaratabandhu, Numpong; Kongoup, Pimkhwan; Dechadilok, Panadda; Katavetin, Pisut; Triampo, Wannapong
2017-12-01
Viewed in renal physiology as a refined filtration device, the glomerulus filters large volumes of blood plasma while keeping proteins within blood circulation. Effects of macromolecule size and macromolecule hydrodynamic interaction with the nanostructure of the cellular layers of the glomerular capillary wall on the glomerular size selectivity are investigated through a mathematical simulation based on an ultrastructural model. The epithelial slit, a planar arrangement of fibers connecting the epithelial podocytes, is represented as a row of parallel cylinders with nonuniform spacing between adjacent fibers. The mean and standard deviation of gap half-width between its fibers are based on values recently reported from electron microscopy. The glomerular basement membrane (GBM) is represented as a fibrous medium containing fibers of two different sizes: the size of type IV collagens and that of glycosaminoglycans (GAGs). The endothelial cell layer is modeled as a layer full of fenestrae that are much larger than solute size and filled with GAGs. The calculated total sieving coefficient agrees well with the sieving coefficients of ficolls obtained from in vivo urinalysis in humans, whereas the computed glomerular hydraulic permeability also falls within the range estimated from human glomerular filtration rate (GFR). Our result indicates that the endothelial cell layer and GBM significantly contribute to solute and fluid restriction of the glomerular barrier, whereas, based on the structure of the epithelial slit obtained from electron microscopy, the contribution of the epithelial slit could be smaller than previously believed.
PlaMoM: a comprehensive database compiles plant mobile macromolecules.
Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong
2017-01-04
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein-protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nanoporous Membranes with Chemically-Tailored Pore Walls from Triblock Terpolymer Templates
NASA Astrophysics Data System (ADS)
Mulvenna, Ryan; Weidman, Jacob; Pople, John; Boudouris, Bryan; Phillip, William
2014-03-01
Membranes generated from self-assembled block polymers have shown promise as highly permeable and selective filters; however, current syntheses of such materials lack diverse pore wall chemical functionality. Here, we report the facile synthesis of polyisoprene- b-polystyrene- b-poly(N , N -dimethylacrylamide) (PI-PS-PDMA) using a controlled reversible addition-fragmentation chain transfer (RAFT) polymerization mechanism to yield a macromolecule with an easily-tunable molecular weight and a narrow molecular weight distribution. The PI-PS-PDMA is then cast into an anisotropic membrane using the self-assembly and non-solvent induced phase separation process (SNIPS) protocol. These membranes can be used in size-selective separations for particles as small as 8 nm in diameter. Furthermore, the PDMA block can be converted to poly(acrylic acid) (PAA) readily in the solid state, and this PI-PS-PAA terpolymer membrane can separate particles as low as 2 nm in diameter while still retaining a relatively high flux. This is the smallest reported separation for a block polymer-based membrane to date. Additionally, the PAA-lined pores serve as a conversion platform to be tuned to any other pore chemistry, which allows the membrane to be of great utility in optimizing chemistry-specific separations.
Guarded Flat Plate Cryogenic Test Apparatus and Calorimeter
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Johnson, Wesley L. (Inventor)
2017-01-01
A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.
Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.
2018-01-01
The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268
Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakharov, A. S., E-mail: sakharov-as@mail.ru; Ivanov, V. A.; Konyzhev, M. E.
2016-06-15
An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor onmore » a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.« less
Moussavi-Baygi, R.; Mofrad, M. R. K.
2016-01-01
Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores. PMID:27470900
Al-Azawi, Khalida F; Al-Baghdadi, Shaimaa B; Mohamed, Ayad Z; Al-Amiery, Ahmed A; Abed, Talib K; Mohammed, Salam A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2016-01-01
The acid corrosion inhibition process of mild steel in 1 M HCl by 4-[(2-amino-1, 3, 4-thiadiazol-5-yl)methoxy]coumarin (ATC), has been investigated using weight loss technique and scanning electron microscopy (SEM). ATC was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared and nuclear magnetic resonance spectroscopy). The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. The adsorption equilibrium constant (K) and standard free energy of adsorption (ΔGads) were calculated. Quantum chemical parameters such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in both the EHOMO and μ values but with a decrease in the ELUMO value. Our research show that the synthesized macromolecule represents an excellent inhibitor for materials in acidic solutions. The efficiency of this macromolecule had maximum inhibition efficiency up to 96 % at 0.5 mM and diminishes with a higher temperature degree, which is revealing of chemical adsorption. An inhibitor molecule were absorbed by metal surface and follow Langmuir isotherms low and establishes an efficient macromolecule inhibitor having excellent inhibitive properties due to entity of S (sulfur) atom, N (nitrogen) atom and O (oxygen) atom.
1978-01-01
A series of specific macromolecules (tetanus toxin, cholera toxin, nerve growth factor [NGF], and several lectins) have been shown to be transported retrogradely with high selectivity from terminals to cell bodies in various types of neurons. Under identical experimental conditions (low protein concentrations injected), most other macromolecules, e.g. horseradish peroxidase (HRP), albumin, ferritin, are not transported in detectable amounts. In the present EM study, we demonstrate selective binding of tetanus toxin to the surface membrane of nerve terminals, followed by uptake and subsequent retorgrade axonal transport. Tetanus toxin or albumin was adsorbed to colloidal gold particles (diam 200 A). The complex was shown to be stable and well suited as an EM tracer. 1-4 h after injection into the anterior eye chamber of adult rats, tetanus toxin-gold particles were found to be selectively associated with membranes of nerve terminals and preterminal axons. Inside terminals and axons, the tracer was localized mainly in smooth endoplasmic reticulum (SER)-like membrane compartments. In contrast, association of albumin-gold complexes with nervous structures was never observed, in spite of extensive uptake into fibroblasts. Electron microscope and biochemical experiments showed selective retrograde transport of tetanus toxin-gold complexes to the superior cervical ganglion. Specific binding to membrane components at nerve terminals and subsequent internalization and retrograde transport may represent an important pathway for macromolecules carrying information from target organs to the perikarya of their innervating neurons. PMID:659508
Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.
Chen, Cherry C; Borden, Mark A
2010-08-17
Using microbubbles as model systems, we examined molecular diffusion and binding to colloidal surfaces in bimodal poly(ethylene glycol) (PEG) brush layers. A microbubble is a gaseous colloidal particle with a diameter of less than 10 mum, of which the surface comprises amphiphilic phospholipids self-assembled to form a lipid monolayer shell. Due to the compressible gas core, microbubbles provide a sensitive acoustic response and are currently used as ultrasound contrast agents. Similar to the design of long circulating liposomes, PEG chains are typically incorporated into the shell of microbubbles to form a steric barrier against coalescence and adsorption of macromolecules to the microbubble surface. We introduced a buried-ligand architecture (BLA) design where the microbubble surface was coated with a bimodal PEG brush. After microbubbles were generated, fluorescent ligands with different molecular weights were conjugated to the tethered functional groups on the shorter PEG chains, while the longer PEG chains served as a shield to protect these ligands from exposure to the surrounding environment. BLA microbubbles reduced the binding of macromolecules (>10 kDa) to the tethers due to the steric hindrance of the PEG overbrush while allowing the uninhibited attachment of small molecules (<1 kDa). Roughly 40% less fluorescein-conjugated streptavidin (SA-FITC) bound to BLA microbubbles compared to exposed-ligand architecture (ELA) microbubbles. The binding of SA-FITC to BLA microbubbles suggested a possible phase separation between the lipid species on the surface leading to populations of revealed and concealed ligands. Ligand conjugation kinetics was independent of microbubble size, regardless of ligand size or microbubble architecture. We observed, for the first time, streptavidin-induced surface structure formation for ELA microbubbles and proposed that this phenomenon may be correlated to flow cytometry scattering measurements. We therefore demonstrated the feasibility of postlabeling for small-molecule ligands to BLA microbubbles to generate stealth targeted ultrasound contrast agents.
Gao, Baojiao; Li, Yanbin; Zhang, Zhenguo
2010-08-01
By adopting the novel surface molecular imprinting technique put forward by us not long ago, a creatinine molecule-imprinted material with high performance was prepared. The functional macromolecule polymethacrylic acid (PMAA) was first grafted on the surfaces of micron-sized silica gel particles in the manner of "grafting from" using 3-methacryloxypropyltrimethoxysilane (MPS) as intermedia, resulting in the grafted particles PMAA/SiO(2). Subsequently, the molecular imprinting was carried out towards the grafted macromolecule PMAA using creatinine as template and with ethylene glycol diglycidyl ether (EGGE) as crosslinker by right of the intermolecular hydrogen bonding and electrostatic interaction between the grafted PMAA and creatinine molecules. Finally, the creatinine-imprinted material MIP-PMAA/SiO(2) was obtained. The binding character of MIP-PMAA/SiO(2) for creatinine was investigated in depth with both batch and column methods and using N-hydroxysuccinimide and creatine as two contrast substances, whose chemical structures are similar to creatinine to a certain degree. The experimental results show that the surface-imprinted material MIP-PMAA/SiO(2) has excellent binding affinity and high recognition selectivity for creatinine. Before imprinting, PMAA/SiO(2) particles nearly has not recognition selectivity for creatinine, and the selectivity coefficients of PMAA/SiO(2) for creatinine relative to N-hydroxysuccinimide and creatine are only 1.23 and 1.30, respectively. However, after imprinting, the selectivity coefficients of MIP-PMAA/SiO(2) for creatinine in respect to N-hydroxysuccinimide and creatine are remarkably enhanced to 11.64 and 12.87, respectively, displaying the excellent recognition selectivity and binding affinity towards creatinine molecules. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alas, Melis Ozge; Genc, Rukan
2017-05-01
In this study, comparative evaluation of fluorescent carbon nanodots (C-Dots) prepared using carob molasses was reported by screening various biocompatible macromolecules as passivating agent (PA). Incorporation of PAs with different molecular weight, polarity, and chemical structure was examined, and compared with the polyethylene glycol (PEG, Mn = 10 kN) passivated and pristine C-Dots. Not only the fluorescence properties but also many other features including size, crystal structure, colloidal conductivity, resistance to photobleaching, quantum yield, and UV-modulated surface interaction of them with the reactive oxygen species (ROS) as well as ROS production were investigated. Photoluminescence (PL) capacity of C-Dots was found to be associated with the number of surface alkyl groups and polymeric hydrogen bounding present on the C-Dot surface (increased number is associated with decreased PL) while surface conductivity of C-Dots in water was proportional to the PL intensity. More importantly, C-Dots with relatively poorer fluorescent were investigated in various organic solvents (hexane, methanol, acetone, ethanol, dimethylformamide (DMF), and DMSO). As happens with the fluorescent dyes, their PL intensities were significantly enhanced (even for pristine C-Dots) depending on the solvent characteristics. All of the C-Dots synthesized were further evaluated by means of UV-induced generation of ROS and inhibition of ROS by using H2O2 as model. In contrary to other carbonaceous nanomaterials, they did not show any ROS generation, on the contrary, they showed ROS scavenging activity that can be modulated by UV-irradiation ( λ exc = 365 nm). PEG and alginate passivated C-Dots inhibited H2O2 activity at LC50 values below 10 mg/mL.
Beard, D A; Schlick, T
2001-01-01
Much progress has been achieved on quantitative assessment of electrostatic interactions on the all-atom level by molecular mechanics and dynamics, as well as on the macroscopic level by models of continuum solvation. Bridging of the two representations-an area of active research-is necessary for studying integrated functions of large systems of biological importance. Following perspectives of both discrete (N-body) interaction and continuum solvation, we present a new algorithm, DiSCO (Discrete Surface Charge Optimization), for economically describing the electrostatic field predicted by Poisson-Boltzmann theory using a discrete set of Debye-Hückel charges distributed on a virtual surface enclosing the macromolecule. The procedure in DiSCO relies on the linear behavior of the Poisson-Boltzmann equation in the far zone; thus contributions from a number of molecules may be superimposed, and the electrostatic potential, or equivalently the electrostatic field, may be quickly and efficiently approximated by the summation of contributions from the set of charges. The desired accuracy of this approximation is achieved by minimizing the difference between the Poisson-Boltzmann electrostatic field and that produced by the linearized Debye-Hückel approximation using our truncated Newton optimization package. DiSCO is applied here to describe the salt-dependent electrostatic environment of the nucleosome core particle in terms of several hundred surface charges. This representation forms the basis for modeling-by dynamic simulations (or Monte Carlo)-the folding of chromatin. DiSCO can be applied more generally to many macromolecular systems whose size and complexity warrant a model resolution between the all-atom and macroscopic levels. Copyright 2000 John Wiley & Sons, Inc.
Microbial Fouling and Its Effect on Power Generation.
1982-09-01
Bryers, J. D. (1980) " Dynamics of Early Biof’dm Formation in a Turbulent Flow System." Ph.D. dissertation, Rice University. Trulear, M. G. (1980...studies to date have avoided addressing fundamental questions concerning fouling in fluid flow and heat transfer systems and their effect on fluid...34clean" surface exposed to turbulent flow of a tuid con- taining dispersed microorganisms, nutrient, and organic macromolecules. Adsorption of an organic
Coated substrate apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Zhenan; Diao, Ying; Mannsfeld, Stefan Christian Bernhardt
A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.
Crystallization of Macromolecules
Friedmann, David; Messick, Troy; Marmorstein, Ronen
2014-01-01
X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, A.E.; King, R.W.
1982-01-15
Objectives of this project are to evaluate benefits associated with control of the surface energetic properties of materials used in heat exchangers; and to identify preferred ranges of these surface conditions that minimize deposits of biological fouling known to deteriorate heat exchange efficiencies in seawater, brackish water, and freshwater systems. The technical approach employed uses special diagnostic plates in novel flow cells where fluid flow conditions can be well-controlled, modifying the surface chemistry and surface energy of the plates with very thin coatings and examining the earliest events of biofouling caused by macromolecules and microbial organisms. For the present phasemore » of the project (Year 2), attention will be focussed on biofouling in a freshwater/brackish water system.« less
Method of fabricating a prestressed cast iron vessel
Lampe, Robert F.
1982-01-01
A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.
Explosives screening on a vehicle surface
Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.
2005-02-01
A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1993-06-01
Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.« less
[Hydroxyproline: Rich glycoproteins of the plant and cell wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1993-01-01
Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.« less
Microbial specificity of metallic surfaces exposed to ambient seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaidi, B.R.; Bard, R.F.; Tosteson, T.R.
1984-09-01
High-molecular-weight materials associated with the extracellular matrix and film found on titanium and aluminum surfaces after exposure to flowing coastal seawater were isolated. This material was purified by hydroxylapatite chromatography and subsequently employed to produce antibodies in the toad, Bufo marinus. The antibodies were immobilized on a solid support and employed to isolate adhesion-enhancing, high-molecular-weight materials from the laboratory culture media of bacterial strains recovered from the respective metallic surfaces during the course of their exposure to seawater. The adhesion-enhancing materials produced by the surface-associated bacterial strains were immunologically related to the extracellular biofouling matrix material found on the surfacesmore » from which these bacteria were isolated. The surface selectivity of these bacterial strains appeared to be based on the specificity of the interaction between adhesion-enhancing macromolecules produced by these bacteria and the surfaces in question. 30 references, 6 tables.« less
Molecular Imprinting of Macromolecules for Sensor Applications
Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil
2017-01-01
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082
Iontophoretic transport of charged macromolecules across human sclera.
Chopra, Poonam; Hao, Jinsong; Li, S Kevin
2010-03-30
The mechanisms of transscleral iontophoresis have been investigated previously with small molecules in rabbit sclera. The objective of the present study was to examine transscleral iontophoretic transport of charged macromolecules across excised human sclera. Passive and 2mA iontophoretic transport experiments were conducted in side-by-side diffusion cells with human sclera. The effects of iontophoresis upon transscleral transport of model permeants bovine serum albumin (BSA) and polystyrene sulfonic acid (PSS) as well as a model drug bevacizumab (BEV) were determined. Passive and iontophoretic transport experiments of tetraethylammonium (TEA) and salicylic acid (SA) and passive transport experiments of the macromolecules served as the controls. The results of iontophoresis enhanced transport of TEA and SA across human sclera were consistent with those in a previous rabbit sclera study. For the iontophoretic transport of macromolecules BSA and BEV, higher iontophoretic fluxes were observed in anodal iontophoresis as compared to passive and cathodal iontophoresis. This suggests the importance of electroosmosis. For the polyelectrolyte PSS, higher iontophoretic flux was observed in cathodal iontophoresis compared to anodal iontophoresis. Both electroosmosis and electrophoresis affected iontophoretic fluxes of the macromolecules; the relative contributions of electroosmosis and electrophoresis were a function of molecular size and charge of the macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Molecular Imprinting of Macromolecules for Sensor Applications.
Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil
2017-04-19
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Johnson, Thomas Edward [Greer, SC; Stevenson, Christian Xavier [Inman, SC; York, William David [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC
2012-04-17
A fuel injection nozzle comprises a body member having an upstream wall opposing a downstream wall, a baffle member having an upstream surface and a downstream surface, a first chamber, a second chamber, a fuel inlet communicative with the first chamber operative to emit a first gas into the first chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a second gas, a second inlet communicative with the tube outer surface and the tube inner surface operative to translate the first gas into the mixing tube, a mixing portion operative to mix the first gas and the second gas, and an outlet communicative with an aperture in the downstream wall operative to emit the mixed first and second gasses.
Immersion freezing of birch pollen washing water
NASA Astrophysics Data System (ADS)
Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.
2013-11-01
Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at -19 and -17 °C, respectively. The fraction of frozen droplets increased for both samples down to -24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between -17 and -24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.
NASA Technical Reports Server (NTRS)
Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti
1988-01-01
To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convective for different flow regimes was measured and compared with theoretical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that for a strong convection flow with an insulating wall as the boundary the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.
Yokota, Masayuki; Adachi, Toru
2011-07-20
Phase-shifting digital holography is applied to the measurement of the surface profile of the inner surface of a pipe for the detection of a hole in its wall. For surface contouring of the inner wall, a two-wavelength method involving an injection-current-induced wavelength change of a laser diode is used. To illuminate and obtain information on the inner surface, a cone-shaped mirror is set inside the pipe and moved along in a longitudinal direction. The distribution of a calculated optical path length in an experimental alignment is used to compensate for the distortion due to the misalignment of the mirror in the pipe. Using the proposed method, two pieces of metal sheet pasted on the inner wall of the pipe and a hole in the wall are detected. This shows that the three-dimensional profile of a metal plate on the inner wall of a pipe can be measured using simple image processing. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S.
2011-12-01
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of `superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.
Study on the CFD simulation of refrigerated container
NASA Astrophysics Data System (ADS)
Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin
2017-10-01
The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.
2016-04-12
AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To) 15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene
Dielectric 1/f noise of proton glass on a hydrated protein surface
NASA Astrophysics Data System (ADS)
Careri, Giorgio; Consolini, Giuseppe
2000-09-01
From nonexponentiality of dielectric relaxation detected in hydrated lysozyme powder we evaluate the power spectrum x2ω of the fluctuating dipole moment x¯2 of one macromolecule, due to the glass of protons migrating on the protein surface. Near room temperature, the contribution to the total dipole moment by the integrated strength of the 1/fα noise in the frequency range from 104 to 106 Hz, is well consistent with early Kirkwood's predictions in solution and more recent computations. The biochemical significance of the nonequilibrium region near the Vogel-Fulcher temperature T0~268 K calls for further investigations.
Capturing strain localization behind a geosynthetic-reinforced soil wall
NASA Astrophysics Data System (ADS)
Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.
2003-04-01
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.
NASA Astrophysics Data System (ADS)
Kim, T.; Blois, G.; Best, J.; Christensen, K. T.
2017-12-01
Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.
Additive erosion reduction influences in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1981-05-01
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
50 CFR 14.161 - Primary enclosures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the total surface area of each ventilated wall. When openings are located on all four walls of the enclosure, the openings shall comprise at least 8 percent of the total surface area of each wall. At least... specifies maximum densities minimum space for transporting rodents that fall within the specified weight...
50 CFR 14.161 - Primary enclosures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the total surface area of each ventilated wall. When openings are located on all four walls of the enclosure, the openings shall comprise at least 8 percent of the total surface area of each wall. At least... specifies maximum densities minimum space for transporting rodents that fall within the specified weight...
50 CFR 14.161 - Primary enclosures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the total surface area of each ventilated wall. When openings are located on all four walls of the enclosure, the openings shall comprise at least 8 percent of the total surface area of each wall. At least... specifies maximum densities minimum space for transporting rodents that fall within the specified weight...
Affinity Electrophoresis Using Ligands Attached To Polymers
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.
1990-01-01
In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.
Organic semiconductor growth and morphology considerations for organic thin-film transistors.
Virkar, Ajay A; Mannsfeld, Stefan; Bao, Zhenan; Stingelin, Natalie
2010-09-08
Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono-layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al).([¹]) The second part of the Review focuses on polymeric semiconductors. The dependence of physico-chemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described.
NASA Astrophysics Data System (ADS)
Fujiwara, Ai; Hinokitani, Toshihiro; Goto, Kenichi; Arai, Tsunenori
2004-07-01
To develop the noninvasive transdermal drug delivery system, pulsed lasers (argon-fluoride excimer laser (ArF laser) and erbium:yittrium aluminum garnet laser (Er:YAG laser)) were used to partially ablate the stratum corneum (SC), the upper layer of the skin. Because of the barrier function of the SC to drug permeation, the number of drugs especially macromolecules used in transdermal drug delivery system without skin irritation has been limited. Ultrastructural changes on the SC surface of ablated Yucatan micropig skin in vitro were observed with Environmental Scanning Electron Microscope. The result indicated that the structural changes varied according to each laser sources and irradiation conditions (laser fluences and numbers of pulses). Many granular structures of about 2 μm in diameter were observed in the ablated sites on ArF laser with lower fluence exposure (30 mJ/cm2, 200 pulses), and plane structures in the sites with higher fluence exposure (80 mJ/cm2, 80 pulses). In contrast, the ablation of Er:YAG laser created some pores of about 20 μm across on the surface of the SC. Under the irradiation condition of partial ablation, the skin permeability of macromolecule compound was enhanced. This partial SC ablation by pulsed laser could be possible candidate of the noninvasive transdermal drug delivery system with good physiological conditions of skin.
NASA Astrophysics Data System (ADS)
Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong
2018-01-01
Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.
NASA Astrophysics Data System (ADS)
Sarkar, Sumona
Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous system tissue function.
Klebanoff (K-) modes in boundary layers (BLs) over compliant surfaces
NASA Astrophysics Data System (ADS)
Ali, Reza; Carpenter, Peter
2002-11-01
We investigate the effect of wall compliance on K-modes. These are associated with streaks observed in the transitional BL, generated by spanwise modulation of the streamwise velocity, and are thought to be the mechanism for bypass transition. They have been widely studied over flat-plate, rigid surfaces but not compliant surfaces. A novel velocity-vorticity formulation is adopted for the numerical simulations, and a freestream spanwise body force is used to generate the streaks. We find compliant walls are less receptive than rigid walls, i.e. freestream turbulence generates weaker disturbances over compliant walls. This effect intensifies with increasing compliance. Where a compliant panel is embedded into a rigid surface, the leading and trailing edges of the panel can introduce a stabilising or destabilising disturbance on the streaks depending on the Reynolds number. It is therefore possible to optimise the wall to suppress streaks and hence bypass. K-modes can also act as a theoretical model for the near-wall structures that generate the high skin-friction drag in turbulent BLs. In this scenario, increasing compliance increases the spanwise spacing and weakens the streak. This explains experimental observations that wall compliance reduces skin-friction drag and turbulence levels in turbulent BLs.
NASA Astrophysics Data System (ADS)
Wu, Xue-Ru; Lieske, John C.; Evan, Andrew P.; Sommer, Andre J.; Liaw, Lucy; Mo, Lan
2008-09-01
Urinary protein macromolecules have long been thought to play a role in influencing the various phases of urolithiasis including nucleation, growth, aggregation of mineral crystals and their subsequent adhesion to the renal epithelial cells. However, compelling evidence regarding their precise role was lacking, due partly to the fact that most prior studies were done in vitro and results were highly variable depending on the experimental conditions. The advent of genetic engineering technology has made it possible to study urinary protein macromolecules within an in vivo biological system. Indeed, recent studies have begun to shed light on the net effects of loss of one or more macromolecules on the earliest steps of urolithiasis. This paper focuses on the in vivo consequences of inactivating Tamm-Horsfall protein and/or osteopontin, two major urinary glycoproteins, using the knockout approach. The renal phenotypes of both single and double knockout mice under spontaneous or hyperoxaluric conditions will be described. The functional significance of the urinary macromolecules as critical defense factors against renal calcification will also be discussed.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
Film cooling for a closed loop cooled airfoil
Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael
2003-01-01
Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.
Steam exit flow design for aft cavities of an airfoil
Storey, James Michael; Tesh, Stephen William
2002-01-01
Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.
Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille
2016-06-14
Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.
Partially nanofibrous architecture of 3D tissue engineering scaffolds.
Wei, Guobao; Ma, Peter X
2009-11-01
An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications.
Textural break foundation wall construction modules
Phillips, Steven J.
1990-01-01
Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.
Method and apparatus for detecting irregularities on or in the wall of a vessel
Bowling, Michael Keith
2000-09-12
A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.
NASA Astrophysics Data System (ADS)
Finster, K.; Hansen, A.; Liengaard, L.; Kristoffersen, T.; Mikkelsen, K.; Merrison, J.; Lomstein, B.
Ten freeze-dried and homogenized samples of a 2300 years old Spitsbergen permafrost soil containing a complex microbial community were aseptically transferred to inert glass tubes and subjected to a 30 days Martian simulation experiment. During this period the samples received an UV dose equivalent to 80 Martian Sol. Data loggers in 4 out the ten samples monitored the temperature 0-2 mm below the surface of the sample. After removal from the simulation chamber, the samples were sliced in 1.5 to 6 mm thick horizons (H1, 0-1.5 mm; H2, 1.5-3 mm; H3, 3-6 mm; H4, 6-9 mm; H5, 9-15 mm; H6, 15-21 mm; H7, 21-27 mm and H8, 27-33 mm), resulting in 10 subsamples from each soil horizon. The subsamples from each horizon were pooled and used for the following investigations: 1. Determination of the bacterial number after staining with SYBR-gold, 2. Determination of the number of dead and living bacteria using the BacLight kit, 3. Determination of the total amount of extractable DNA, 4. Determination of the number of culturable aerobic and anaerobic bacteria, 5. Determination of the concentration of the total hydrolysable amino acids and D and L enantiomers, 6. Determination of the muramic acid contentration. The results of the experiments will be presented and discussed in our communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortoleva, Peter J.
Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.
Crystallization of soft matter under confinement at interfaces and in wedges
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Malijevský, Alexandr
2016-06-01
The surface freezing and surface melting transitions that are exhibited by a model two-dimensional soft matter system are studied. The behaviour when confined within a wedge is also considered. The system consists of particles interacting via a soft purely repulsive pair potential. Density functional theory (DFT) is used to calculate density profiles and thermodynamic quantities. The external potential due to the confining walls is modelled via a hard wall with an additional repulsive Yukawa potential. The surface phase behaviour depends on the range and strength of this repulsion: when the repulsion is weak, the wall promotes freezing at the surface of the wall. The thickness of this frozen layer grows logarithmically as the bulk liquid-solid phase coexistence is approached. Our mean-field DFT predicts that this crystalline layer at the wall must be nucleated (i.e. there is a free energy barrier) and its formation is necessarily a first-order transition, referred to as ‘prefreezing’, by analogy with the prewetting transition. However, in contrast to the latter, prefreezing cannot terminate in a critical point, since the phase transition involves a change in symmetry. If the wall-fluid interaction is sufficiently long ranged and the repulsion is strong enough, surface melting can occur instead. Then the interface between the wall and the bulk crystalline solid is wetted by the liquid phase as the chemical potential is decreased towards the value at liquid-solid coexistence. It is observed that the finite thickness fluid film at the wall has a broken translational symmetry due to its proximity to the bulk crystal, and so the nucleation of the wetting film can be either first order or continuous. Our mean-field theory predicts that for certain wall potentials there is a premelting critical point analogous to the surface critical point for the prewetting transition. When the fluid is confined within a linear wedge, this can strongly promote freezing when the opening angle of the wedge is commensurate with the crystal lattice.
Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide
Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim
2014-01-01
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
NASA Technical Reports Server (NTRS)
Brown, James L.; Naughton, Jonathan W.
1999-01-01
A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.
Thermal repellent properties of surface coating using silica
NASA Astrophysics Data System (ADS)
Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.
2017-11-01
Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.
Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports
Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram
2014-01-01
Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871
NASA Astrophysics Data System (ADS)
Paribok, I. V.; Solomyanskii, A. E.; Zhavnerko, G. K.
2016-02-01
Patterns of the adsorption of bovine serum albumin on carboxymethyl dextran and carboxymethyl cellulose films are studied by means of microcontact printing, atomic force microscopy, and quartz crystal microbalance. It is shown that both the charge of polysaccharide macromolecules and the technique for deposition of their films onto the surface (via adsorption from a solution or covalent cross-linking) are factors that determine the degree of nonspecific adsorption of the protein on such films.
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
Microwave background distortions from domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1990-01-01
Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.
NASA Astrophysics Data System (ADS)
Moudgil, Lovika; Singh, Baljinder; Kaura, Aman; Singh, Gurinder; Tripathi, S. K.; Saini, G. S. S.
2017-05-01
Proteins are the most abundant organic molecules in living system having diverse structures and various functions than the other classes of macromolecules. We have done Molecular Dynamics (MD) simulation of the Cytochrome,C (Cyt,c) protein found in plants, animals and many unicellular animals in the presence of gold nanoparticles (Au NPs). MD results helped to recognize the amino acids that play important role to make the interaction possible between protein and gold surface. In the present study we have examined the structural change of protein in the presence of gold surface and its adsorption on the surface through MD simulations with the help of Gold-Protein (GolP) force field. Results were further analyzed to understand the protein interaction up to molecular level.
Gallyamov, Marat O; Qin, Shuhui; Matyjaszewski, Krzysztof; Khokhlov, Alexei; Möller, Martin
2009-07-21
Using SFM we have observed a peculiar twisting motion of diblock macromolecules pre-collapsed in ethanol vapour during their subsequent spreading in water vapour. The intrinsic asymmetry of the diblock macromolecules has been considered to be the reason for such twisting. Further, friction-deposited PTFE nano-stripes have been employed as nano-trails with the purpose of inducing lateral directed motion of the asymmetric diblock macromolecules under cyclic impact from the changing vapour surroundings. Indeed, some of the macromolecules have demonstrated a certain tendency to orient along the PTFE stripes, and some of the oriented ones have moved occasionally in a directed manner along the trail. However, it has been difficult to reliably record such directed motion at the single molecule level due to some mobility of the PTFE nano-trails themselves in the changing vapour environment. In vapours, the PTFE stripes have demonstrated a distinct tendency towards conjunction. This tendency has manifested itself in efficient expelling of groups of the mobile brush-like molecules from the areas between two PTFE stripes joining in a zip-fastener manner. This different kind of vapour-induced cooperative macromolecular motion has been reliably observed as being directed. The PTFE nano-frame experiences some deformation when constraining the spreading macromolecules. We have estimated the possible force causing such deformation of the PTFE fence. The force has been found to be a few pN as calculated by a partial contribution from every single molecule of the constrained group.
Frölich, Sonja; Wallach, Michael
2016-06-29
The enteric disease coccidiosis, caused by the unicellular parasite Eimeria, is a major and reoccurring problem for the poultry industry. While the molecular machinery driving host cell invasion and oocyst wall formation has been well documented in Eimeria, relatively little is known about the host cell modifications which lead to acquisition of nutrients and parasite growth. In order to understand the mechanism(s) by which nutrients are acquired by developing intracellular gametocytes and oocysts, we have performed uptake experiments using polystyrene nanoparticles (NPs) of 40 nm and 100 nm in size, as model NPs typical of organic macromolecules. Cytochalasin D and nocodazole were used to inhibit, respectively, the polymerization of the actin and microtubules. The results indicated that NPs entered the parasite at all stages of macrogametocyte development and early oocyst maturation via an active energy dependent process. Interestingly, the smaller NPs were found throughout the parasite cytoplasm, while the larger NPs were mainly localised to the lumen of large type 1 wall forming body organelles. NP uptake was reduced after microfilament disruption and treatment with nocodazole. These observations suggest that E. maxima parasites utilize at least 2 or more uptake pathways to internalize exogenous material during the sexual stages of development.
On the theory of compliant wall drag reduction in turbulent boundary layers
NASA Technical Reports Server (NTRS)
Ash, R. L.
1974-01-01
A theoretical model has been developed which can explain how the motion of a compliant wall reduces turbulent skin friction drag. Available experimental evidence at low speeds has been used to infer that a compliant surface selectively removes energy from the upper frequency range of the energy containing eddies and through resulting surface motions can produce locally negative Reynolds stresses at the wall. The theory establishes a preliminary amplitude and frequency criterion as the basis for designing effective drag reducing compliant surfaces.
Hopper apparatuses for processing a bulk solid, and related systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, Tyler Lott; Ryan, John Chadron Benjamin; Matthews, Austin Colter
A hopper apparatus comprises a movable wall comprising opposing walls movably connected to a support assembly and oriented at acute angles relative to a central vertical axis of the support assembly, and movement control devices configured and positioned to move the opposing walls along the support assembly to control dimensions of a discharge outlet at least partially defined by converging ends of the opposing walls; a liner assembly comprising liner structures at least partially overlying inner surfaces of the opposing walls and configured to remain at least partially stationary relative to the opposing walls during movement of the opposing walls;more » and pressure sensors between the inner surfaces of opposing walls and portions of the liner structures thereover. A bulk solids processing system and a method of processing a bulk solid are also described.« less
In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes
NASA Astrophysics Data System (ADS)
Sangyuenyongpipat, S.; Yu, L. D.; Brown, I. G.; Seprom, C.; Vilaithong, T.
2007-04-01
A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar+ ions at energy 25 keV and fluence1-2 × 1015 ions/cm2, revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work.
Confined space facilitates G-quadruplex formation
NASA Astrophysics Data System (ADS)
Shrestha, Prakash; Jonchhe, Sagun; Emura, Tomoko; Hidaka, Kumi; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin
2017-07-01
Molecular simulations suggest that the stability of a folded macromolecule increases in a confined space due to entropic effects. However, due to the interactions between the confined molecular structure and the walls of the container, clear-cut experimental evidence for this prediction is lacking. Here, using DNA origami nanocages, we show the pure effect of confined space on the property of individual human telomeric DNA G-quadruplexes. We induce targeted mechanical unfolding of the G-quadruplex while leaving the nanocage unperturbed. We find that the mechanical and thermodynamic stabilities of the G-quadruplex inside the nanocage increase with decreasing cage size. Compared to the case of diluted or molecularly crowded buffer solutions, the G-quadruplex inside the nanocage is significantly more stable, showing a 100 times faster folding rate. Our findings suggest the possibility of co-replicational or co-transcriptional folding of G-quadruplex inside the polymerase machinery in cells.
Liu, Hong; Lee, Mark J.; Snarr, Brendan D.; Chen, Dan; Xu, Wenjie; Kravtsov, Ilia; Hoareau, Christopher M. Q.; Vanier, Ghyslaine; Urb, Mirjam; Campoli, Paolo; Al Abdallah, Qusai; Lehoux, Melanie; Chabot, Josée C.; Ouimet, Marie-Claude; Baptista, Stefanie D.; Fritz, Jörg H.; Nierman, William C.; Latgé, Jean Paul; Mitchell, Aaron P.; Filler, Scott G.; Fontaine, Thierry; Sheppard, Donald C.
2013-01-01
Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis. PMID:23990787
Crystallographic snapshot of cellulose synthesis and membrane translocation.
Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen
2013-01-10
Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
Study of Unsteady Flows with Concave Wall Effect
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2003-01-01
This paper presents computational fluid dynamic studies of the inlet turbulence and wall curvature effects on the flow steadiness at near wall surface locations in boundary layer flows. The time-stepping RANS numerical solver of the NASA Glenn-HT RANS code and a one-equation turbulence model, with a uniform inlet turbulence modeling level of the order of 10 percent of molecular viscosity, were used to perform the numerical computations. The approach was first calibrated for its predictabilities of friction factor, velocity, and temperature at near surface locations within a transitional boundary layer over concave wall. The approach was then used to predict the velocity and friction factor variations in a boundary layer recovering from concave curvature. As time iteration proceeded in the computations, the computed friction factors converged to their values from existing experiments. The computed friction factors, velocity, and static temperatures at near wall surface locations oscillated periodically in terms of time iteration steps and physical locations along the span-wise direction. At the upstream stations, the relationship among the normal and tangential velocities showed vortices effects on the velocity variations. Coherent vortices effect on the velocity components broke down at downstream stations. The computations also predicted the vortices effects on the velocity variations within a boundary layer flow developed along a concave wall surface with a downstream recovery flat wall surface. It was concluded that the computational approach might have the potential to analyze the flow steadiness in a turbine blade flow.
Tan, Hwei-Ting; Corbin, Kendall R.; Fincher, Geoffrey B.
2016-01-01
Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called ‘agnostic’ technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries. PMID:28018390
Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.
Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola
2017-02-01
Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dermal and transdermal delivery of pharmaceutically relevant macromolecules.
Münch, S; Wohlrab, J; Neubert, R H H
2017-10-01
The skin offers an attractive way for dermal and transdermal drug delivery that is why the drug still needs certain qualities to transcend the outermost layer of the skin, the stratum corneum. The requirements are: drugs with a maximum molecular weight of 1kDa, high lipophilicity and a certain polarity. This would restrict the use of a transdermal delivery of macromolecules, which would make the drug more effective in therapeutic administration. Various studies have shown that macromolecules without support do not penetrate the human skin. This effect can be achieved using physical and chemical methods, as well as biological peptides. The most popular physical method is the use of microneedles to create micropores in the skin and release the active agent in different sections. But also, other methods have been tested. Microjets, lasers, electroporation, sonophoresis and iontophoresis are also promising methods to successfully deliver dermal and transdermal macromolecules. Additionally, there are different penetration enhancer groups and biological peptides, which are also considered to be interesting approaches of enabling macromolecules to travel along the skin. All these methods will be described and evaluated in this review article. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying Nucleic Acid Ensembles with X-ray Scattering Interferometry.
Shi, Xuesong; Bonilla, Steve; Herschlag, Daniel; Harbury, Pehr
2015-01-01
The conformational ensemble of a macromolecule is the complete description of the macromolecule's solution structures and can reveal important aspects of macromolecular folding, recognition, and function. However, most experimental approaches determine an average or predominant structure, or follow transitions between states that each can only be described by an average structure. Ensembles have been extremely difficult to experimentally characterize. We present the unique advantages and capabilities of a new biophysical technique, X-ray scattering interferometry (XSI), for probing and quantifying structural ensembles. XSI measures the interference of scattered waves from two heavy metal probes attached site specifically to a macromolecule. A Fourier transform of the interference pattern gives the fractional abundance of different probe separations directly representing the multiple conformation states populated by the macromolecule. These probe-probe distance distributions can then be used to define the structural ensemble of the macromolecule. XSI provides accurate, calibrated distance in a model-independent fashion with angstrom scale sensitivity in distances. XSI data can be compared in a straightforward manner to atomic coordinates determined experimentally or predicted by molecular dynamics simulations. We describe the conceptual framework for XSI and provide a detailed protocol for carrying out an XSI experiment. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barabash, Yu. M.; Lyamets, A. K.
2016-12-01
The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.
Construction and test of flexible walls for the throat of the ILR high-speed wind tunnel
NASA Technical Reports Server (NTRS)
Igeta, Y.
1983-01-01
Aerodynamic tests in wind tunnels are jeopardized by the lateral limitations of the throat. This influence expands with increasing size of the model in proportion to the cross-section of the throat. Wall interference of this type can be avoided by giving the wall the form of a stream surface that would be identical to the one observed during free flight. To solve this problem, flexible walls that can adapt to every contour of surface flow are needed.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.
2013-01-01
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.
On Topological Indices of Certain Dendrimer Structures
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei
2017-05-01
A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.
15. MASONRY DETAIL NO. 1, NORTH TRAINING WALL, LOOKING DOWN ...
15. MASONRY DETAIL NO. 1, NORTH TRAINING WALL, LOOKING DOWN UPON THE WALL SURFACE FROM THE ADJACENT RIPRAP. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
Crowe, Jacob D; Zarger, Rachael A; Hodge, David B
2017-10-04
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.
A new bead-spring model for simulation of semi-flexible macromolecules
NASA Astrophysics Data System (ADS)
Saadat, Amir; Khomami, Bamin
2016-11-01
A bead-spring model for semi-flexible macromolecules is developed to overcome the deficiencies of the current coarse-grained bead-spring models. Specifically, model improvements are achieved through incorporation of a bending potential. The new model is designed to accurately describe the correlation along the backbone of the chain, segmental length, and force-extension behavior of the macromolecule even at the limit of 1 Kuhn step per spring. The relaxation time of different Rouse modes is used to demonstrate the capabilities of the new model in predicting chain dynamics.
Predicting Nonspecific Ion Binding Using DelPhi
Petukh, Marharyta; Zhenirovskyy, Maxim; Li, Chuan; Li, Lin; Wang, Lin; Alexov, Emil
2012-01-01
Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to detect experimentally. PMID:22735539
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Samokhvalov, N. Yu.; Tikhonov, A. S.
2012-09-01
Results from a numerical study of three versions of the end-wall generatrix of the interblade channel used in the second-stage nozzle vanes of a prospective engine's turbine are presented. Recommendations for designing nonaxisymmetric end-wall surfaces are suggested based on the obtained data.
New materials based on polylactide modified with silver and carbon ions
NASA Astrophysics Data System (ADS)
Kurzina, I. A.; Pukhova, I. V.; Botvin, V. V.; Davydova, D. V.; Filimoshkin, A. G.; Savkin, K. P.; Oskomov, K. V.; Oks, E. M.
2015-11-01
An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1.1014, 1.1015 and 1.1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced.
1979-01-01
Detailed studies of steady-state ion fluxes in murine lymphocytes were used to examine for possible ionic changes generated by surface Ig, the antigen receptor of B lymphocytes. When bound by ligands, surface Ig triggered the mobilization and release of 45Ca2+ from the cell interior by a transmembrane process requiring crosslinking of the bound receptors. This ionic event was unique for two reasons: (a) it did not occur when other common lymphocyte surface macromolecules were bound with rabbit anti-lymphocyte antibodies; and (b) it was not accompanied by a general perturbation of lymphocyte ionic properties such as a change in 42K+ fluxes nor did it depend on the presence of extracellular ions. Capping of surface Ig shares the same time sequence, dose response, requirement for crosslinking, and lack of dependence on extracellular ions. These correlations suggest that mobilization of intracellular Ca2+ may represent an early ionic signal for the contractile activation of lymphocytes that generates capping of surface Ig. PMID:315942
Surface Functionalization of Exosomes Using Click Chemistry
2015-01-01
A method for conjugation of ligands to the surface of exosomes was developed using click chemistry. Copper-catalyzed azide alkyne cycloaddition (click chemistry) is ideal for biocojugation of small molecules and macromolecules to the surface of exosomes, due to fast reaction times, high specificity, and compatibility in aqueous buffers. Exosomes cross-linked with alkyne groups using carbodiimide chemistry were conjugated to a model azide, azide-fluor 545. Conjugation had no effect on the size of exosomes, nor was there any change in the extent of exosome adherence/internalization with recipient cells, suggesting the reaction conditions were mild on exosome structure and function. We further investigated the extent of exosomal protein modification with alkyne groups. Using liposomes with surface alkyne groups of a similar size and concentration to exosomes, we estimated that approximately 1.5 alkyne groups were present for every 150 kDa of exosomal protein. PMID:25220352
NASA Astrophysics Data System (ADS)
Wang, Hanwei; Yao, Qiufang; Wang, Chao; Fan, Bitao; Sun, Qingfeng; Jin, Chunde; Xiong, Ye; Chen, Yipeng
2016-10-01
In this work, lamellar MnFe2O4 was successfully planted on a wood surface through the association of hydrogen bonds via the one-pot hydrothermal method. Simultaneously, the fluoroalkylsilane (FAS-17) on the surface of the MnFe2O4 layer formed long-chain or network macromolecules through a poly-condensation process and provided a lower surface energy on the wood surface. The MnFe2O4/wood composite (FMW) presented superior superparamagnetism, superhydrophobicity and electromagnetic wave absorption performance. The results indicated a saturation magnetization of the FMW with excellent superparamagnetism of 28.24 emu·g-1. The minimum value of reflection loss of the FMW reached -8.29 dB at 16.39 GHz with a thickness of 3 mm. Even after mechanical impact and exposure to corrosive liquids, the FMW still maintained a superior superhydrophobicity performance.
Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.
Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M
2018-05-08
Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.
Manipulation of near-wall turbulence by surface slip and permeability
NASA Astrophysics Data System (ADS)
Gómez-de-Segura, G.; Fairhall, C. T.; MacDonald, M.; Chung, D.; García-Mayoral, R.
2018-04-01
We study the effect on near-wall turbulence of tangential slip and wall-normal transpiration, typically produced by textured surfaces and other surface manipulations. For this, we conduct direct numerical simulations (DNSs) with different virtual origins for the different velocity components. The different origins result in a relative wall-normal displacement of the near-wall, quasi-streamwise vortices with respect to the mean flow, which in turn produces a change in drag. The objective of this work is to extend the existing understanding on how these virtual origins affect the flow. In the literature, the virtual origins for the tangential velocities are typically characterised by slip boundary conditions, while the wall-normal velocity is assumed to be zero at the boundary plane. Here we explore different techniques to define and implement the three virtual origins, with special emphasis on the wall-normal one. We investigate impedance conditions relating the wall-normal velocity to the pressure, and linear relations between the velocity components and their wall-normal gradients, as is typically done to impose slip conditions. These models are first tested to represent a smooth wall below the boundary plane, with all virtual origins equal, and later for different tangential and wall-normal origins. Our results confirm that the change in drag is determined by the offset between the origins perceived by mean flow and the quasi-streamwise vortices or, more generally, the near-wall turbulent cycle. The origin for the latter, however, is not set by the spanwise virtual origin alone, as previously proposed, but by a combination of the spanwise and wall-normal origins, and mainly determined by the shallowest of the two. These observations allow us to extend the existing expression to predict the change in drag, accounting for the wall-normal effect when the transpiration is not negligible.
van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan
2017-05-12
The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain.
Perfect mixing of immiscible macromolecules at fluid interfaces
NASA Astrophysics Data System (ADS)
Sheiko, Sergei; Matyjaszewski, Krzysztof; Tsukruk, Vladimir; Carrillo, Jan-Michael; Rubinstein, Michael; Dobrynin, Andrey; Zhou, Jing
2014-03-01
Macromolecules typically phase separate unless their shapes and chemical compositions are tailored to explicitly drive mixing. But now our research has shown that physical constraints can drive spontaneous mixing of chemically different species. We have obtained long-range 2D arrays of perfectly mixed macromolecules having a variety of molecular architectures and chemistries, including linear chains, block-copolymer stars, and bottlebrush copolymers with hydrophobic, hydrophilic, and lipophobic chemical compositions. This is achieved by entropy-driven enhancement of steric repulsion between macromolecules anchored on a substrate. By monitoring the kinetics of mixing, we have proved that molecular intercalation is an equilibrium state. The array spacing is controlled by the length of the brush side chains. This entropic templating strategy opens new ways for generating patterns on sub-100 nm length scales with potential application in lithography, directed self-assembly, and biomedical assays. Financial support from the National Science Foundation DMR-0906985, DMR-1004576, DMR-1122483, and DMR-0907515.
Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG
Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.
2015-01-01
We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573
Turbine blade with contoured chamfered squealer tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang
2014-12-30
A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axiallymore » extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.« less
Modeling of surface temperature effects on mixed material migration in NSTX-U
NASA Astrophysics Data System (ADS)
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
2016-10-01
NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.
Exploratory visualization of astronomical data on ultra-high-resolution wall displays
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé
2016-07-01
Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.
Fox, Timothy; Schilp, Reinhard
2012-09-25
A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.
Legland, David; Guillon, Fabienne; Kiêu, Kiên; Bouchet, Brigitte; Devaux, Marie-Françoise
2010-01-01
Background and Aims The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit. Methods An integrated method is presented to describe the cellular structure of the whole fruit from partial three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum). Key Results The cellular structure was described using the total volume of the pericarp, the surface area of the cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density. The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall surface density with distance to the epidermis. Conclusions The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density under the epidermis. PMID:19952012
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm
NASA Astrophysics Data System (ADS)
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
A direct biocombinatorial strategy toward next generation, mussel-glue inspired saltwater adhesives.
Wilke, Patrick; Helfricht, Nicolas; Mark, Andreas; Papastavrou, Georg; Faivre, Damien; Börner, Hans G
2014-09-10
Biological materials exhibit remarkable, purpose-adapted properties that provide a source of inspiration for designing new materials to meet the requirements of future applications. For instance, marine mussels are able to attach to a broad spectrum of hard surfaces under hostile conditions. Controlling wet-adhesion of synthetic macromolecules by analogue processes promises to strongly impact materials sciences by offering advanced coatings, adhesives, and glues. The de novo design of macromolecules to mimic complex aspects of mussel adhesion still constitutes a challenge. Phage display allows material scientists to design specifically interacting molecules with tailored affinity to material surfaces. Here, we report on the integration of enzymatic processing steps into phage display biopanning to expand the biocombinatorial procedure and enable the direct selection of enzymatically activable peptide adhesion domains. Adsorption isotherms and single molecule force spectroscopy show that those de novo peptides mimic complex aspects of bioadhesion, such as enzymatic activation (by tyrosinase), the switchability from weak to strong binders, and adsorption under hostile saltwater conditions. Furthermore, peptide-poly(ethylene oxide) conjugates are synthesized to generate protective coatings, which possess anti-fouling properties and suppress irreversible interactions with blood-plasma protein cocktails. The extended phage display procedure provides a generic way to non-natural peptide adhesion domains, which not only mimic nature but also improve biological sequence sections extractable from mussel-glue proteins. The de novo peptides manage to combine several tasks in a minimal 12-mer sequence and thus pave the way to overcome major challenges of technical wet glues.
Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.
Parker, J C; Miniati, M; Pitt, R; Taylor, A E
1987-01-01
A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.
Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.
ERIC Educational Resources Information Center
Hess, V. L.; Szabo, Attila
1979-01-01
A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)
Dispersoid separation method and apparatus
Winsche, Warren E.
1980-01-01
Improved separation of heavier material from a dispersoid of gas and heavier material entrained therein is taught by the method of this invention which advantageously uses apparatus embodied in an inertial separator having rotary partition means comprising wall members dividing a housing into a plurality of axially-extending through passages arranged in parallel. Simultaneously with the helical transit of a moving stream of the dispersoid through the parallel arrangement of axially-extending through passages at a constant angular velocity, the heavier material is driven radially to the collecting surfaces of the rotational wall members where it is collected while the wall members are rotating at the same angular velocity as the moving stream. The plurality of wall members not only provides an increased area of collecting surfaces but the positioning of each of the wall members according to the teaching of this invention also results in a shortened time-of-flight to the collecting surfaces.
Reynolds number invariance of the structure inclination angle in wall turbulence.
Marusic, Ivan; Heuer, Weston D C
2007-09-14
Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
Development of wall climbing robot
NASA Astrophysics Data System (ADS)
Kojima, Hisao; Toyama, Ryousei; Kobayashi, Kengo
1992-03-01
A configuration design is presented for a wall-climbing robot with high payload which is capable of moving on diversified surfaces of walls including the wall surface to ceilings in every direction. A developed quadruped wall climbing robot, NINJYA-1, is introduced. NINJYA-1 is composed of legs based on a 3D parallel link mechanism and a VM (Valve-regulated Multiple) sucker which will be able to suck even if there are grooves and a small difference in level. A wall climbing robot which supports rescue operation at a high building using a VM sucker is also introduced. Finally, a wall climbing robot named Disk Rover with a disk-type magnetic wheel is shown. The wheel shape is calculated by FEM. The disk-type magnetic wheel has a force three times more powerful than the one heretofore in use.
Chest wall segmentation in automated 3D breast ultrasound scans.
Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico
2013-12-01
In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.
The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.
Dumais, Jacques; Long, Sharon R; Shaw, Sidney L
2004-10-01
Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.
NASA Astrophysics Data System (ADS)
Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng
2017-10-01
Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.
Kroeger, Marie E; Sorenson, Blaire A; Thomas, J Santoro; Stojković, Emina A; Tsonchev, Stefan; Nicholson, Kenneth T
2014-10-24
Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials.
Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
Angelico, Ruggero; Ceglie, Andrea; He, Ji-Zheng; Liu, Yu-Rong; Palumbo, Giuseppe; Colombo, Claudio
2014-03-01
Humic acids (HA) have a colloidal character whose size and negative charge are strictly dependent on surface functional groups. They are able to complex large amount of poorly ordered iron (hydr)oxides in soil as a function of pH and other environmental conditions. Accordingly, with the present study we intend to assess the colloidal properties of Fe(II) coprecipitated with humic acids (HA) and their effect on Fe hydroxide crystallinity under abiotic oxidation and order of addition of both Fe(II) and HA. TEM, XRD and DRS experiments showed that Fe-HA consisted of Ferrihydrite with important structural variations. DLS data of Fe-HA at acidic pH showed a bimodal size distribution, while at very low pH a slow aggregation process was observed. Electrophoretic zeta-potential measurements revealed a negative surface charge for Fe-HA macromolecules, providing a strong electrostatic barrier against aggregation. Under alkaline conditions HA chains swelled, which resulted in an enhanced stabilization of the colloid particles. The increasing of zeta potential and size of the Fe-HA macromolecules, reflects a linear dependence of both with pH. The increase in the size and negative charge of the Fe-HA precipitate seems to be more affected by the ionization of the phenolic acid groups, than by the carboxylic acid groups. The main cause of negative charge generation of Fe/HA is due to increased dissociation of phenolic groups in more expanded structure. The increased net negative surface potential induced by coprecipitation with Ferrihydrite and the correspondent changes in configuration of the HA could trigger the inter-particle aggregation with the formation of new negative surface. The Fe-HA coprecipitation can reduce electrosteric repulsive forces, which in turn may inhibit the aggregation process at different pH. Therefore, coprecipitation of Ferrihydrite would be expected to play an important role in the carbon stabilization and persistence not only in organic soils, but also in waters containing dissolved organic matter. Copyright © 2013 Elsevier Ltd. All rights reserved.
Miniature modular microwave end-to-end receiver
NASA Technical Reports Server (NTRS)
Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)
1993-01-01
An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.
NASA Astrophysics Data System (ADS)
Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan
2018-04-01
Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.
NASA Astrophysics Data System (ADS)
Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir
2018-03-01
Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.
Nonlinear fracture mechanics-based analysis of thin wall cylinders
NASA Technical Reports Server (NTRS)
Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.
1994-01-01
This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.
Wall thickness measuring method and apparatus
Salzer, L.J.; Bergren, D.A.
1987-10-06
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
NASA Astrophysics Data System (ADS)
Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi
2016-11-01
Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.
Wall thickness measuring method and apparatus
Salzer, Leander J.; Bergren, Donald A.
1989-01-01
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Antigenic differences in the surfaces of hyphae and rhizoids in allomyces.
Fultz, S A; Sussman, A S
1966-05-06
Immunofluorescent techniques have demonstrated a difference in surface components of hyphae and rhizoids of Allomyces macrogynus. An antigenic component detected on the rhizoidal surface may be present, but masked, in the hyphal-wall matrix material. The system also allows visualization of the hyphal wall during aging, when changes from a smooth to a fissured surface are noted, and differences in adsorptive properties occur.
Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A
2016-09-15
Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.
An experimental investigation of turbulent boundary layers along curved surfaces
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1972-01-01
A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.
Development for equipment of the milk macromolecules content detection
NASA Astrophysics Data System (ADS)
Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen
Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.
NASA Astrophysics Data System (ADS)
Yashchuk, Valeriy M.; Kudrya, Vladislav Yu
2017-03-01
This paper summarizes the results of studies of the spectral properties—optical absorption, fluorescence and phosphorescence—of DNA and RNA macromolecules and synthetic poly-, oligo- and mono-nucleotides, which have been carried out in our laboratory. The system of first excited singlet and triplet energy levels for DNA and RNA is evaluated using low-temperature (4.2 K-77 K) luminescent measurements. The traps of the singlet and triplet electronic excitations in these compounds are identified. An important self-protection mechanism against photo-damage of DNA and RNA by UV photons or penetrative radiation based on the capture of triplet electronic-energy excitations by the most photostable centers—in DNA, the complex formed by neighboring adenosine (A) and thymidine (T) links; in RNA, the adenosine links—is described. It is confirmed that despite similarities in the chemical and partly energy structures DNA is more stable than RNA. The spectral manifestation of the telomeres (the important functional system) in DNA macromolecules is examined. The results obtained on telomere fragments provide the possibility of finding the configuration peculiarities of the triplet excitations traps in DNA macromolecules. The resulting spreading length of the migrating singlet (l s) and triplet (l t) excitations for DNA and RNA macromolecules are evaluated.
Catalyst cartridge for carbon dioxide reduction unit
NASA Technical Reports Server (NTRS)
Holmes, R. F. (Inventor)
1973-01-01
A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.
Mehand, Massinissa Si; Srinivasan, Bala; De Crescenzo, Gregory
2015-01-01
Surface plasmon resonance-based biosensors have been successfully applied to the study of the interactions between macromolecules and small molecular weight compounds. In an effort to increase the throughput of these SPR-based experiments, we have already proposed to inject multiple compounds simultaneously over the same surface. When specifically applied to small molecular weight compounds, such a strategy would however require prior knowledge of the refractive index increment of each compound in order to correctly interpret the recorded signal. An additional experiment is typically required to obtain this information. In this manuscript, we show that through the introduction of an additional global parameter corresponding to the ratio of the saturating signals associated with each molecule, the kinetic parameters could be identified with similar confidence intervals without any other experimentation. PMID:26515024
Terahertz analysis of stratified wall plaster at buildings of cultural importance across Europe
NASA Astrophysics Data System (ADS)
Walker, Gillian C.; Jackson, J. Bianca; Giovannacci, David; Bowen, John W.; Delandes, Bruno; Labaune, Julien; Mourou, Gerard; Menu, Michel; Detalle, Vincent
2013-05-01
Terahertz (THz) radiation is being developed as a tool for the analysis of cultural heritage, and due to recent advances in technology is now available commercially in systems which can be deployed for field analysis. The radiation is capable of penetrating up to one centimetre of wall plaster and is delivered in ultrafast pulses which are reflected from layers within this region. The technique is non-contact, non-invasive and non-destructive. While sub-surface radar is able to penetrate over a metre of wall plaster, producing details of internal structures, infrared and ultraviolet techniques produce information about the surface layers of wall plaster. THz radiation is able to provide information about the interim region of up to approximately one centimetre into the wall surface. Data from Chartres Cathedral, France, Riga Dome Cathedral, Latvia, and Chartreuse du Val de Bénédiction, France is presented each with different research questions. The presence of sub-surface paint layers was expected from documentary evidence, dating to the 13th Century, at Chartres Cathedral. In contrast, at the Riga Dome Cathedral surface painting had been obscured as recently as 1941 during the Russian occupation of Latvia using white lead-based paint. In the 13th Century, wall paintings at the Chapel of the Frescos, Chartreuse du Val de Benediction in Villeneuve les Avignon were constructed using sinopia under-painting on plaster covering uneven stonework.. This paper compares and contrasts the ability of THz radiation to provide information about sub-surface features in churches and Cathedrals across Europe by analysing depth based profiles gained from the reflected signal.
Vapor Wall Deposition in Chambers: Theoretical Considerations
NASA Astrophysics Data System (ADS)
McVay, R.; Cappa, C. D.; Seinfeld, J.
2014-12-01
In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.
Progress Towards an LES Wall Model Including Unresolved Roughness
NASA Astrophysics Data System (ADS)
Craft, Kyle; Redman, Andrew; Aikens, Kurt
2015-11-01
Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Flash Rust & Waterjetting Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
DORSH, P.M..
Certain areas of the primary wall in the AY-101 tank annulus are being cleaned with a remotely operated waterjet. There is some concern on how it will effect the surface of the tank wall after cleaning and how to prevent rust and corrosion from developing on the wall in the future. This study addresses the cause and effects of flash rust, which typically develops on steel surfaces after the waterjetting process.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.
Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves
NASA Astrophysics Data System (ADS)
Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Free Surface Relaxations of Star-Shaped Polymer Films
Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley; ...
2017-11-28
Here, the surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tmore » $$bulk\\atop{g}$$. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8 arms and molecular weights per arm M arm < M e (M e is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk T$$bulk\\atop{g}$$. Finally, evidence of the slow surface dynamics, compared to the bulk, for temperatures well above T g and at length and time scales not associated with the glass transition has not previously been reported for polymers.« less
Imaging energy landscapes with concentrated diffusing colloidal probes
NASA Astrophysics Data System (ADS)
Bahukudumbi, Pradipkumar; Bevan, Michael A.
2007-06-01
The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).
NASA Technical Reports Server (NTRS)
Donoughe, Patrick L; Livingood, John N B
1955-01-01
Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.
Hot gas filter and system assembly
Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael
1999-01-01
A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.
Hot gas filter and system assembly
Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.
1999-08-31
A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.
Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.
Arroyo-Begovich, A; Cárabez-Trejo, A
1982-04-01
Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.
Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .
The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...
Local wall heat flux/temperature meter for convective flow and method of utilizing same
Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose
2004-11-30
According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.
Local wall heat flux/temperature meter for convective flow and method of utilizing same
NASA Technical Reports Server (NTRS)
Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)
2004-01-01
According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.
Two stage serial impingement cooling for isogrid structures
Lee, Ching-Pang; Morrison, Jay A.
2014-09-09
A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.
Probing membrane protein structure using water polarization transfer solid-state NMR.
Williams, Jonathan K; Hong, Mei
2014-10-01
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.
Krebs, Georg; Becker, Thomas; Gastl, Martina
2017-09-01
Cereal-based beverages contain a complex mixture of various polymeric macromolecules including polysaccharides, peptides, and polyphenols. The molar mass of polymers and their degradation products affect different technological and especially sensory parameters of beverages. Asymmetrical flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS) and refractive index detection (dRI) or UV detection (UV) is a technique for structure and molar mass distribution analysis of macromolecules commonly used for pure compound solutions. The objective of this study was to develop a systematic approach for identifying the polymer classes in an AF4//MALS/dRI/UV fractogram of the complex matrix in beer, a yeast-fermented cereal-based beverage. Assignment of fractogram fractions to polymer substance classes was achieved by targeted precipitations, enzymatic hydrolysis, and alignments with purified polymer standards. Corresponding effects on dRI and UV signals were evaluated according to the detector's sensitivities. Using these techniques, the AF4 fractogram of beer was classified into different fractions: (1) the low molar mass fraction was assigned to proteinaceous molecules with different degrees of glycosylation, (2) the middle molar mass fraction was attributed to protein-polyphenol complexes with a coelution of non-starch polysaccharides, and (3) the high molar mass fraction was identified as a mixture of the cell wall polysaccharides (i.e., β-glucan and arabinoxylan) with a low content of polysaccharide-protein association. In addition, dextrins derived from incomplete starch hydrolysis were identified in all fractions and over the complete molar mass range. The ability to assess the components of an AF4 fractogram is beneficial for the targeted design and evaluation of polymers in fermented cereal-based beverages and for controlling and monitoring quality parameters.
MOLECULAR BIOLOGY OF PHARMACOLOGIC VITREOLYSIS
Sebag, J
2005-01-01
Purpose Pharmacologic vitreolysis is a promising new therapy to improve vitreoretinal surgery and, ultimately, prevent disease by mitigating the contribution of vitreous to retinopathy. The mechanism of action of the agents being developed for pharmacologic vitreolysis remains unclear. The experiments in this thesis test the hypothesis that pharmacologic vitreolysis agents break down vitreous macromolecules into smaller particles. Methods Microplasmin, hyaluronidase, and collagenase were tested in solutions of hyaluronan (n = 15) and collagen (n = 15), explants of bovine vitreous (n = 15), dissected porcine vitreous (n = 9), and intact porcine eyes (n = 18). There were also 21 controls, totaling 93 specimens. Vitreous macromolecule sizes were determined with dynamic light scattering (DLS), performed at intervals from 10 minutes to 24 hours following injections. Results Studies of DLS reproducibility showed a coefficient of variance of less than 3.3% in all but one specimen. Microplasmin decreased porcine vitreous macromolecule size in a dose-dependent manner (correlation coefficient r = 0.93), with an 85% reduction after a 30-minute exposure to the maximum dose. Hyaluronidase decreased vitreous macromolecule size in hyaluronan solutions by 50% at high (1,000 IU/mL, P < .001) doses and in bovine vitreous by 20%. Collagenase decreased macromolecule size in collagen solutions by 20% at both low (1 mg/mL, P < .001) and high (10 mg/mL, P < .001) doses, but not at all in bovine vitreous. Conclusions Pharmacologic vitreolysis can induce a significant decrease in vitreous macromolecule sizes, depending upon the pharmacologic agents and the experimental model. Broad-spectrum agents were more effective than substrate-specific enzymes. Defining the molecular biology of pharmacologic vitreolysis has implications for surgical developments and may impact upon the design of clinical trials to induce prophylactic posterior vitreous detachment. PMID:17057814
NASA Technical Reports Server (NTRS)
Karpova, E. A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.
Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2011-06-14
A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.
Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow
NASA Astrophysics Data System (ADS)
Costantini, Roberta; Mollicone, Jean-Paul; Battista, Francesco
2018-02-01
The drag reduction induced by superhydrophobic surfaces is investigated in a turbulent pipe flow. Wetted superhydrophobic surfaces are shown to trap gas bubbles in their asperities. This stops the liquid from coming in direct contact with the wall in that location, allowing the flow to slip over the air bubbles. We consider a well-defined texture with streamwise grooves at the walls in which the gas is expected to be entrapped. This configuration is modeled with alternating no-slip and shear-free boundary conditions at the wall. With respect to the classical turbulent pipe flow, a substantial drag reduction is observed which strongly depends on the grooves' dimension and on the solid fraction, i.e., the ratio between the solid wall surface and the total surface of the pipe's circumference. The drag reduction is due to the mean slip velocity at the wall which increases the flow rate at a fixed pressure drop. The enforced boundary conditions also produce peculiar turbulent structures which on the contrary decrease the flow rate. The two concurrent effects provide an overall flow rate increase as demonstrated by means of the mean axial momentum balance. This equation provides the balance between the mean pressure gradient, the Reynolds stress, the mean flow rate, and the mean slip velocity contributions.
Simulations of vertical disruptions with VDE code: Hiro and Evans currents
NASA Astrophysics Data System (ADS)
Li, Xujing; Di Hu Team; Leonid Zakharov Team; Galkin Team
2014-10-01
The recently created numerical code VDE for simulations of vertical instability in tokamaks is presented. The numerical scheme uses the Tokamak MHD model, where the plasma inertia is replaced by the friction force, and an adaptive grid numerical scheme. The code reproduces well the surface currents generated at the plasma boundary by the instability. Five regimes of the vertical instability are presented: (1) Vertical instability in a given plasma shaping field without a wall; (2) The same with a wall and magnetic flux ΔΨ|plX< ΔΨ|Xwall(where X corresponds to the X-point of a separatrix); (3) The same with a wall and magnetic flux ΔΨ|plX> ΔΨ|Xwall; (4) Vertical instability without a wall with a tile surface at the plasma path; (5) The same in the presence of a wall and a tile surface. The generation of negative Hiro currents along the tile surface, predicted earlier by the theory and measured on EAST in 2012, is well-reproduced by simulations. In addition, the instability generates the force-free Evans currents at the free plasma surface. The new pattern of reconnection of the plasma with the vacuum magnetic field is discovered. This work is supported by US DoE Contract No. DE-AC02-09-CH11466.
Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology
2011-01-01
Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175
Rationale for two phase polymer system microgravity separation experiments
NASA Technical Reports Server (NTRS)
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
DNS and modeling of the interaction between turbulent premixed flames and walls
NASA Technical Reports Server (NTRS)
Poinsot, T. J.; Haworth, D. C.
1992-01-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas
2018-04-23
How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong
2011-02-01
Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.
2012-09-15
Chlorine atom recombination coefficients were measured on silicon oxy-chloride surfaces deposited in a chlorine inductively coupled plasma (ICP) with varying oxygen concentrations, using the spinning wall technique. A small cylinder embedded in the walls of the plasma reactor chamber was rapidly rotated, repetitively exposing its surface to the plasma chamber and a differentially pumped analysis chamber housing a quadruple mass spectrometer for line-of-sight desorbing species detection, or an Auger electron spectrometer for in situ surface analysis. The spinning wall frequency was varied from 800 to 30 000 rpm resulting in a detection time, t (the time a point on themore » surface takes to rotate from plasma chamber to the position facing the mass or Auger spectrometer), of {approx}1-40 ms. Desorbing Cl{sub 2}, due to Langmuir-Hinshelwood (LH) Cl atom recombination on the reactor wall surfaces, was detected by the mass spectrometer and also by a pressure rise in one of the differentially pumped chambers. LH Cl recombination coefficients were calculated by extrapolating time-resolved desorption decay curves to t = 0. A silicon-covered electrode immersed in the plasma was either powered at 13 MHz, creating a dc bias of -119 V, or allowed to electrically float with no bias power. After long exposure to a Cl{sub 2} ICP without substrate bias, slow etching of the Si wafer coats the chamber and spinning wall surfaces with an Si-chloride layer with a relatively small amount of oxygen (due to a slow erosion of the quartz discharge tube) with a stoichiometry of Si:O:Cl = 1:0.38:0.38. On this low-oxygen-coverage surface, any Cl{sub 2} desorption after LH recombination of Cl was below the detection limit. Adding 5% O{sub 2} to the Cl{sub 2} feed gas stopped etching of the Si wafer (with no rf bias) and increased the oxygen content of the wall deposits, while decreasing the Cl content (Si:O:Cl = 1:1.09:0.08). Cl{sub 2} desorption was detectable for Cl recombination on the spinning wall surface coated with this layer, and a recombination probability of {gamma}{sub Cl} = 0.03 was obtained. After this surface was conditioned with a pure oxygen plasma for {approx}60 min, {gamma}{sub Cl} increased to 0.044 and the surface layer was slightly enriched in oxygen fraction (Si:O:Cl = 1:1.09:0.04). This behavior is attributed to a mechanism whereby Cl LH recombination occurs mainly on chlorinated oxygen sites on the silicon oxy-chloride surface, because of the weak Cl-O bond compared to the Cl-Si bond.« less
Role of macromolecules in the safety of use of body wash cosmetics.
Bujak, Tomasz; Wasilewski, Tomasz; Nizioł-Łukaszewska, Zofia
2015-11-01
One of the most challenging problems related to the use of surfactants in body wash cosmetics is their potential to cause skin irritations. Surfactants can bind with proteins, remove lipids from the epidermal surface, contribute to the disorganization of liquid crystal structures in the intercellular lipids, and interact with living skin cells. These processes can lead to skin irritations and allergic reactions, and impair the epidermal barrier function. The present study is an attempt to assess the effect of polymers and hydrolysed proteins present in the formulations of model body wash cosmetics on product properties. Special attention was given to the safety of use of this product type. The study examined three macromolecules: polyvinylpyrrolidone (PVP), hydrolysed wheat protein (HWP) and polyvinylpyrrolidone/hydrolysed wheat protein crosspolymer (PVP/HWP). The addition of the substances under study was found to improve the foaming properties of body wash cosmetics, increase their stability during storage, and contribute significantly to an improvement in the safety of product use by reducing the irritant potential. The strongest ability to reduce the skin irritation potential was determined for the formula enriched with the PVP/HWP crosspolymer. Copyright © 2015 Elsevier B.V. All rights reserved.
Dhangdhariya, Jaykishan H; Dubey, Sonam; Trivedi, Hiral B; Pancha, Imran; Bhatt, Jwalant K; Dave, Bharti P; Mishra, Sandhya
2015-05-01
Oceans have significant potential to empower mankind and thus marine organisms are believed to be an enormous source for useful biomolecules. Polyhydroxyalkanoates (PHAs) are biological macromolecules that can be applied in nearly all fields. In the present study, Bacillus megaterium strain JK4h has been exploited for maximum PHB production using novel Dry Sea Mix (DSM) via Central Composite Design (CCD) of Response Surface Methodology (RSM) approach. The isolate was found to be producing 56.77% Cell Dry Weight (CDW) of PHAs within 24h, with optimized combinations of peptone, yeast extract and glucose. The PHB yield had been increased 2.61 fold compared to un-optimized experiments. The obtained PHA/PHB had been chemically characterized through Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicate the successful optimization for maximum production of biological macromolecule and it was found to be highly pure polyhydroxybutyrate (PHB). Thus, DSM can be served as a novel and cost effective medium for PHA production offering the use of marine resources as a "green" sustainable alternative. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-healing and thermoreversible rubber from supramolecular assembly.
Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik
2008-02-21
Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.
ERIC Educational Resources Information Center
Trimm, Harold H.; And Others
1984-01-01
Describes a birefringence apparatus that can be assembled for less than $100 and can be used to measure both the dimensions and dipole moments of many macromolecules. Details are given of the construction and manipulation of the apparatus. (JN)
ERIC Educational Resources Information Center
Horta, Arturo
1985-01-01
Describes a senior-level course that: (1) focuses on the structure and reactions of macromolecules; (2) treats industrial polymers in a unified way; and (3) uses analysis of conformation and conformational statistics as a unifying approach. Also discusses course topics, including polysaccharides, proteins, nucleic acids, and others. (JN)
Solid State Nuclear Magnetic Resonance Studies of the Murchison Organic Macromolecule
NASA Technical Reports Server (NTRS)
Cody, G. D., III; Alexander, C. M. OD.; Tera, F.
2001-01-01
We have used high speed H-1 (DEPTH) and C-13 (VACP MAS-slow spinning) solid state NMR to determine the contributions of protonated vs non-protonated carbon in the Murchison Macromolecule. Additional information is contained in the original extended abstract.
van Lessen, Max; Shibata-Germanos, Shannon; van Impel, Andreas; Hawkins, Thomas A; Rihel, Jason; Schulte-Merker, Stefan
2017-01-01
The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain. DOI: http://dx.doi.org/10.7554/eLife.25932.001 PMID:28498105
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-01-01
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. PMID:27901024
Identifiability, reducibility, and adaptability in allosteric macromolecules.
Bohner, Gergő; Venkataraman, Gaurav
2017-05-01
The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed "allostery," is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca 2+ -activated K + (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH. © 2017 Bohner and Venkataraman.
Identifiability, reducibility, and adaptability in allosteric macromolecules
Bohner, Gergő
2017-01-01
The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed “allostery,” is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca2+-activated K+ (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH. PMID:28416647
Interphase vs confinement in starch-clay bionanocomposites.
Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis
2015-03-06
Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-11-30
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.
Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T
2014-10-01
Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Incorporation of microplastics from litter into burrows of Lumbricus terrestris.
Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette
2017-01-01
Pollution caused by plastic debris is an urgent environmental problem. Here, we assessed the effects of microplastics in the soil surface litter on the formation and characterization of burrows built by the anecic earthworm Lumbricus terrestris in soil and quantified the amount of microplastics that was transported and deposited in L. terrestris burrows. Worms were exposed to soil surface litter treatments containing microplastics (Low Density Polyethylene) for 2 weeks at concentrations of 0%, 7%, 28%, 45% and 60%. The latter representing environmentally realistic concentrations found in hot spot soil locations. There were significantly more burrows found when soil was exposed to the surface treatment composed of 7% microplastics than in all other treatments. The highest amount of organic matter in the walls of the burrows was observed after using the treatments containing 28 and 45% microplastics. The highest microplastic bioturbation efficiency ratio (total microplastics (mg) in burrow walls/initial total surface litter microplastics (mg)) was found using the concentration of 7% microplastics, where L. terrestris introduced 73.5% of the surface microplastics into the burrow walls. The highest burrow wall microplastic content per unit weight of soil (11.8 ± 4.8 g kg- 1 ) was found using a concentration of 60% microplastics. L. terrestris was responsible for size-selective downward transport when exposed to concentrations of 7, 28 and 45% microplastics in the surface litter, as the fraction ≤50 μm microplastics in burrow walls increased by 65% compared to this fraction in the original surface litter plastic. We conclude that the high biogenic incorporation rate of the small-fraction microplastics from surface litter into burrow walls causes a risk of leaching through preferential flow into groundwater bodies. Furthermore, this leaching may have implications for the subsequent availability of microplastics to terrestrial organisms or for the transport of plastic-associated organic contaminants in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wall conditioning and particle control in Extrap T2
NASA Astrophysics Data System (ADS)
Bergsåker, H.; Larsson, D.; Brunsell, P.; Möller, A.; Tramontin, L.
1997-02-01
The Extrap T2 reversed field pinch experiment is operated with the former OHTE vacuum vessel, of dimensions R = 1.24 m and a = 0.18 m and with a complete graphite liner. It is shown that a rudimentary density control can be achieved by means of frequent helium glow discharge conditioning of the wall. The standard He-GDC is well characterized and reproducible. The trapping and release of hydrogen and impurities at the wall surfaces have been studied by mass spectrometry and surface analysis. The shot to shot particle exchange between wall and plasma can be approximately accounted for.
NASA Astrophysics Data System (ADS)
Bera, Subrata; Bhattacharyya, S.
2017-12-01
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.
NASA Astrophysics Data System (ADS)
Bera, Subrata; Bhattacharyya, S.
2018-04-01
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.
Zhang, Qing; Beard, Daniel A; Schlick, Tamar
2003-12-01
Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK minimizer) is efficient and does not depend on the initial assigned values, and that the residual is acceptable when the distance to the model surface is close to, or larger than, the Debye length. We illustrate applications of DiSCO's model-building procedure to chromatin folding and supercoiled DNA bound to Hin and Fis proteins. DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale models are appropriate, to yield a resolution between the all-atom representative and the polymer level. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 2063-2074, 2003
Single molecule optical measurements of orientation and rotations of biological macromolecules.
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-11-22
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
Roberts, Jr., Charles E.; Chadwell, Christopher J.
2004-09-21
The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.
Diode-pumped laser with improved pumping system
Chang, Jim J.
2004-03-09
A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.
Olson, S A; Bay, B K; Pollak, A N; Sharkey, N A; Lee, T
1996-01-01
The indications for open reduction and internal fixation of posterior wall acetabular fractures associated with a clinically stable hip joint are unclear. In previous work a large posterior wall defect (27% articular surface area) resulted in significant alteration of load transmission across the hip; specifically, there was a transition from evenly distributed loading along the acetabular articular surface to loading concentrated mainly in the superior portion of the articular surface during simulated single leg stance. However, the majority of posterior wall fractures involve a smaller amount of the articular surface. Posterior wall acetabular fractures not associated with instability of the hip are commonly treated nonoperatively. This practice does not account for the size of the posterior wall fracture. To study the biomechanical consequences of variably sized articular defects, a laboratory experiment was conducted evaluating three progressively larger posterior wall defects of the acetabulum during simulated single leg stance using superlow Fuji prescale film (Itochu International, New York): (a) 1/3 articular surface width through a 50 degrees arc along the posterior wall of the acetabulum, (b) 2/3, and (c) 3/3 articular width defects through the same 50 degrees arc along the posterior wall of the acetabulum. In the intact acetabulum, 48% of the total articular contact was located in the superior acetabulum. Twenty-eight percent of articular contact was in the anterior wall region of the acetabulum and 24% in the posterior wall region. After the 1/3 width posterior wall defect, 64% of the articular contact was located in the superior acetabulum (p = 0.0011). The 2/3 width posterior wall defect resulted in 71% of articular contact area being located in the superior acetabulum (p = 0.0006). After the 3/3 width posterior wall defect, 77% of articular contact was located in the superior acetabulum, significantly greater than the intact condition (p < 0.0001) and 1/3 width defect (p = 0.0222). The total absolute contact areas for all defect conditions were significantly less than the intact conditions. The results of this study reconfirm the observation that posterior wall fractures of the acetabulum significantly alter the articular contact characteristics in the hip during single leg stance. The relationship between defect size and changes in joint contact showed that the smallest defect resulted in the greatest alteration in joint contact areas, whereas larger defects resulted in minor increments of change in contact area. This finding is of concern because the clinical practice of managing acetabular fractures nonoperatively if the hip joint is stable is based on the supposition that the joint retains enough integrity to function without undue risk of late posttraumatic osteoarthritis. A better understanding of the natural history of stable posterior wall acetabular fractures is needed to ascertain whether some of these fractures merit operative repair.
Multistage adsorption of diffusing macromolecules and viruses
NASA Astrophysics Data System (ADS)
Chou, Tom; D'Orsogna, Maria R.
2007-09-01
We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.
Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L
2017-05-07
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
NASA Astrophysics Data System (ADS)
Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.
2017-05-01
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
Effect of shape and size of lung and chest wall on stresses in the lung
NASA Technical Reports Server (NTRS)
Vawter, D. L.; Matthews, F. L.; West, J. B.
1975-01-01
To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).
Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor)
2015-01-01
An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.
Heat transfer about a vertical permeable membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaviany, M.
1988-05-01
The natural convection heat transfer about both sides of vertical walls without any seepage has been studied and the effects of the wall thickness and thermal conductivity on the local and average heat transfer rates have been determined. Viskanta and Lankford have concluded that in predicting the heat transfer rate through the wall, for low-thermal-conductivity walls the a priori unknown wall surface temperatures can be walls the a priori unknown wall surface temperatures can be estimated as the arithmetic average of the reservoir temperatures without loss of accuracy (for most practical situations). Sparrow and Prakash treated the surface temperature asmore » variable but used the local temperature along with the available isothermal boundary-layer analysis for determination of the local heat transfer rate and found this to be reasonable at relatively low Grashof numbers. In this study the heat trasnfer rate between two reservoirs of different temperature connected in part through a permeable membrane is analyzed. Rather than solving the complete problem numerically for the three domains (fluid-wall-fluid), the available results on the effects of suction and blowing on the natural convection boundary layer are used in an analysis of the membranes with low thermal conductivity and small seepage velocities, which are characteristic of membranes considered. This will lead to rather simple expressions for the determination of the heat transfer rate.« less
Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L.; Wu, Hui; Kitten, Todd
2009-01-01
Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified—a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (∼2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention. PMID:19703977
Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L; Wu, Hui; Kitten, Todd
2009-11-01
Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified-a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (approximately 2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention.
Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji
2016-11-23
The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.
Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hake, Sarah; Chuck, George
2015-10-29
The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1more » and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.« less
Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm
NASA Astrophysics Data System (ADS)
Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.
2018-06-01
A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.
NASA Astrophysics Data System (ADS)
Dou, X. Y.; Zhou, Z. P.; Tan, P. H.; Song, L.; Liu, L. F.; Zhao, X. W.; Luo, S. D.; Yan, X. Q.; Liu, D. F.; Wang, J. X.; Gao, Y.; Zhang, Z. X.; Yuan, H. J.; Zhou, W. Y.; Xie, S. S.
2005-05-01
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO 3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results.
Wall-crossing in coupled 2d-4d systems
NASA Astrophysics Data System (ADS)
Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew
2012-12-01
We introduce a new wall-crossing formula which combines and generalizes the Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d systems respectively. This 2d-4d wall-crossing formula governs the wall-crossing of BPS states in an {N}=2 supersymmetric 4d gauge theory coupled to a supersymmetric surface defect. When the theory and defect are compactified on a circle, we get a 3d theory with a supersymmetric line operator, corresponding to a hyperholomorphic connection on a vector bundle over a hyperkähler space. The 2d-4d wall-crossing formula can be interpreted as a smoothness condition for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can be determined for 4d theories of class {S} , that is, for those theories obtained by compactifying the six-dimensional (0, 2) theory with a partial topological twist on a punctured Riemann surface C. For such theories there are canonical surface defects. We illustrate with several examples in the case of A 1 theories of class {S} . Finally, we indicate how our results can be used to produce solutions to the A 1 Hitchin equations on the Riemann surface C.
Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi
2009-01-01
The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.
Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf
2012-01-01
Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422
Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf
2010-10-01
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.
Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2014-04-01
The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.
Protective interior wall and attaching means for a fusion reactor vacuum vessel
Phelps, R.D.; Upham, G.A.; Anderson, P.M.
1985-03-01
The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.
A film-based wall shear stress sensor for wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Amili, Omid; Soria, Julio
2011-07-01
In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2016-05-03
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
Secondary electron emission yield from high aspect ratio carbon velvet surfaces
Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny
2017-11-01
The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less
Secondary electron emission yield from high aspect ratio carbon velvet surfaces
NASA Astrophysics Data System (ADS)
Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny
2017-11-01
The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.
Gas turbine row #1 steam cooled vane
Cunha, Frank J.
2000-01-01
A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.
Laaniste, Asko; Kruve, Anneli; Leito, Ivo
2013-08-01
Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Constrained ceramic-filled polymer armor
Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.
1990-01-01
An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.
Surface Structure of Yeast Protoplasts
Streiblová, Eva
1968-01-01
The fine structure of the yeast cell wall during protoplast formation was studied by means of phase-contrast microscopy and the freeze-etching technique. The freeze-etching results indicated that at least in some cases the entire wall substance was not removed from the surface of the protoplasts. After a treatment of 30 min to 3 hr with 2% snail enzymes, an innermost thin wall layer as well as remnants of the fibrillar middle layer sometimes could be demonstrated. Images PMID:4867751
Generalized surface tension bounds in vacuum decay
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
NASA Astrophysics Data System (ADS)
Tinck, S.; Boullart, W.; Bogaerts, A.
2011-08-01
In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.
Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2012-01-01
Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.
Cavallaro, Giuseppe; Lazzara, Giuseppe; Lisuzzo, Lorenzo; Milioto, Stefana; Parisi, Filippo
2018-08-10
Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of the PNIPAAM/halloysite based material. In particular, diclofenac release was slowed down above the LCST for PNIPAAM-co-MA/halloysite. Opposite trends occurred for halloysite functionalized with PNIPAAM at the outer surface. This work represents a further step toward the opportunity to extend and control the delivery conditions of active species, which represent a key point in technological applications.
NASA Astrophysics Data System (ADS)
Sujith, Athiyanathil; Itoh, Tamitake; Abe, Hiroko; Anas, Abdul Aziz; Yoshida, Kenichi; Biju, Vasudevanpillai; Ishikawa, Mitsuru
2008-03-01
We labeled the living yeast cell surface (Saccharomyces cerevisiae strain W303-1A) by silver nanoparticles which can form nanoaggregates and found to show surface enhanced Raman scattering (SERS) activity. Blinking of SERS and its polarization dependence reveal that SERS signals are from amplified electromagnetic field at nanometric Ag nanoparticles gaps with single or a few molecules sensitivity. We tentatively assigned SERS spectra from a yeast cell wall to mannoproteins. Nanoaggregate-by-nanoaggregate variations and temporal fluctuations of SERS spectra are discussed in terms of inhomogeneous mannoprotein distribution on a cell wall and possible ways of Ag nanoaggregate adsorption, respectively.
DSMC Simulations of High Mach Number Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma =(Uw /√{ kbTw / m }) in the range 0.01
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Laskarakis, A.; Gravalidis, C.; Logothetidis, S.
2004-02-01
The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the CO, C-C and CC groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME.
Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan
2014-10-01
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates. Copyright © 2014 Elsevier B.V. All rights reserved.
Apparatus and filtering systems relating to combustors in combustion turbine engines
Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC
2012-07-24
A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.
van Amstel, Sarel R
2017-07-01
Corkscrew claw (CSC) is a conformational abnormality of the digit and affecting mostly but not exclusively the claws of the back leg, first reported during the 1950s in Dutch black and white cattle. The affected claws are longer and narrower than the claw and have an inward and upward spiral rotation of the toe. Similarly, the bearing surface of the wall is displaced inward. The animal starts to bear weight on the abaxial wall surface, particularly the caudal segment, and the sole may become completely non-weight bearing. The axial wall is displaced dorsomedially and a fold develops in the wall. Copyright © 2017 Elsevier Inc. All rights reserved.
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Formation of Micro-Scale Gas Pockets From Underwater Wall Orifices
NASA Astrophysics Data System (ADS)
Pereira, Francisco A.; Gharib, Morteza
2012-11-01
Our experiments examine the formation of micro-scale gas pockets from orifices on walls with hydrophilic and hydrophobic wetting properties. Bubble injection is operated in a liquid at rest at constant flow rate and in a quasi-static regime, and the mechanism of bubble growth is investigated through high speed recordings. The growth dynamics is studied in terms of orifice size, surface wetting properties and buoyancy sign. The bubble formation is characterized by an explosive growth, with a pressure wave that causes the bubble to take highly transient shapes in its very initial stages, before stabilizing as a sphere and growing at a relatively slow rate. In case of positive buoyancy, the bubble elongates with the formation of a neck before detaching from the wall. When buoyancy acts towards the wall, the bubble attaches to the wall and expands laterally with a moving contact line. In presence of hydrophobic surfaces, the bubble attaches immediately to the wall irrespective of buoyancy direction and takes a hemispherical shape, expanding radially along the surface. A force balance is outlined to explain the different figures. The work was performed by FAP while on leave from CNR-INSEAN, and is supported by the Office of Naval Research (ONR).
Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.
Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B
2005-06-01
This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.
Perez-Rodriguez, Jose Luis; Robador, Maria Dolores; Centeno, Miguel Angel; Siguenza, Belinda; Duran, Adrian
2014-01-01
This work describes a comparative study between in situ applications of portable Raman spectroscopy and direct laboratory measurements using micro-Raman spectroscopy on the surface of small samples and of cross sections. The study was performed using wall paintings from different sites of the Alcazar of Seville. Little information was obtained using a portable Raman spectrometer due to the presence of an acrylic polymer, calcium oxalate, calcite and gypsum that was formed or deposited on the surface. The pigments responsible for different colours, except cinnabar, were not detected by the micro-Raman spectroscopy study of the surface of small samples taken from the wall paintings due to the presence of surface contaminants. The pigments and plaster were characterised using cross sections. The black colour consisted of carbon black. The red layers were formed by cinnabar and white lead or by iron oxides. The green and white colours were composed of green emerald or atacamite and calcite, respectively. Pb3O4 has also been characterised. The white layers (plaster) located under the colour layers consisted of calcite, quartz and feldspars. The fresco technique was used to create the wall paintings. A wall painting located on a gypsum layer was also studied. The Naples yellow in this wall painting was not characterised due to the presence of glue and oils. This study showed the advantage of studying cross sections to completely characterise the pigments and plaster in the studied wall paintings. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki; Kanai, Hiroshi; Hoshimiya, Nozomu; Chubachi, Noriyoshi; Koiwa, Yoshiro
1998-05-01
For the diagnosis of the early stages of atherosclerosis, it isimportant to evaluate the local acoustic characteristics of thearterial wall. For this purpose, it is necessary to increase thespatial resolution in the axial direction to several millimeters,which corresponds to the size of the macular lesion on the surface ofthe wall. We have proposed a method for measuring small velocitysignals on the intima and adventitia of the arterial wall from theskin surface using pulsive ultrasonic waves. The small change inthickness of the arterial wall is obtained by integrating thedifference between the two velocity signals on the intima andadventitia. The elastic property of the arterial wall is noninvasivelyevaluated from the change in thickness and the arterial innerpressure. In this paper, we evaluate the accuracy of the proposedmethod for measuring the small displacement. Moreover, we applied thismethod to evaluate the elastic property of the arterial wall of 50patients and 8 healthy subjects.
NASA Astrophysics Data System (ADS)
Wagger, David Leonard
1992-01-01
The drag reduction phenomenon was experimentally studied in two pipes, of diameters 1.46 and 1.02 cm, using seven polyelectrolytic HPAM additives, with molecular weights from 1 to 20 times 10^6 g/mole and degree of backbone hydrolysis from 8 to 60%, at concentrations from 1 to 1000 wppm, in saline solutions containing from 0.3 to 0.00001 N NaCl. Both laminar and turbulent flow behavior were greatly influenced by salinity-induced changes in the initial conformation of the HPAM additives. Initially collapsed, random-coiling conformations exhibited Newtonian laminar flow and Type-A turbulent drag reduction, while initially extended conformations exhibited shear-thinning in laminar flow and Type-B turbulent drag reduction. The gross-flow physics of Type-B drag reduction were delineated. A characteristic "ladder" structure prevailed, with polymeric regime segments that were roughly parallel to, but shifted upward from, the Prandtl-Karman line. In the polymeric regime, both Type-A fan and Type -B ladder structures were essentially independent of pipe diameter, and were scaled by the wall shear stress. The wall shear stress also scaled degradation during drag reduction. New onset and slope increment correlations were presented for Type-A drag reduction by HPAM additives. In Type-B drag reduction, flow enhancement was found proportional to additive concentration, and the intrinsic slip, Sigma = S^'/(c/M _{rm w}), varied roughly as the third power of backbone chain links N_ {rm bb}. New intrinsic slip and retro-onset correlations were presented for Type-B drag reduction by HPAM additives. Analysis of Type-B literature revealed a wide range of additive efficacies, with specific slips S^'/c from 0.0001 to 4. For the most effective additives, HPAM and asbestos fibers, the additive-pervaded volume fraction per unit flow enhancement, X_{rm v} /S^' ~ 3000, implied that these additives align during drag reduction. The slip ratio R_{rm sc}, which is the relative flow enhancement induced in Type-A and Type-B drag reduction at constant additive concentration, was found to be a universal function of the normalized turbulent flow strength (Re_ {rm s}sqrtf/Re_ {rm s}sqrtf*). The extension of initially collapsed, random-coiling, HPAM macromolecules by the turbulent flow field thus seems independent of additive parameters and absolute wall shear stress levels. Gross flow additive equivalence was detected at iso-slip points, where different polymer solutions induced equal flow enhancements. At numerous such points, the collapsed to extended slip ratio at constant concentration, R_{rm sc}, was essentially equal to the extended to collapsed concentration ratio at constant slip, R _{rm cs}. Thus, for fixed total additive concentration, the R_{ rm sc} observed at any Re_ {rm s}sqrtf simply represents the fraction of originally collapsed macromolecules that have become extended in the flow, and thence effective in drag reduction. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin
2013-01-01
Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334
Single molecule optical measurements of orientation and rotations of biological macromolecules
Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E
2016-01-01
The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, we review the relevant types of probes and labeling techniques, and we highlight the advantages and disadvantages of these technologies for addressing specific inquiries. PMID:28192292
A primer in macromolecular linguistics.
Searls, David B
2013-03-01
Polymeric macromolecules, when viewed abstractly as strings of symbols, can be treated in terms of formal language theory, providing a mathematical foundation for characterizing such strings both as collections and in terms of their individual structures. In addition this approach offers a framework for analysis of macromolecules by tools and conventions widely used in computational linguistics. This article introduces the ways that linguistics can be and has been applied to molecular biology, covering the relevant formal language theory at a relatively nontechnical level. Analogies between macromolecules and human natural language are used to provide intuitive insights into the relevance of grammars, parsing, and analysis of language complexity to biology. Copyright © 2012 Wiley Periodicals, Inc.
Microphase separation of comb copolymers with two different lengths of side chains
NASA Astrophysics Data System (ADS)
Aliev, M. A.; Kuzminyh, N. Yu.
2009-10-01
The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.
Jain, Aastha; Chugh, Archana
2016-09-01
Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics. © 2016 Federation of European Biochemical Societies.
High and low thermal conductivity of amorphous macromolecules
NASA Astrophysics Data System (ADS)
Xie, Xu; Yang, Kexin; Li, Dongyao; Tsai, Tsung-Han; Shin, Jungwoo; Braun, Paul V.; Cahill, David G.
2017-01-01
We measure the thermal conductivity, heat capacity and sound velocity of thin films of five polymers, nine polymer salts, and four caged molecules to advance the fundamental understanding of the lower and upper limits to heat conduction in amorphous macromolecules. The thermal conductivities vary by more than one order of magnitude, from 0.06 W m-1K-1 for [6,6]-phenyl-C71-butyric acid methyl ester to 0.67 W m-1K-1 for poly(vinylphosphonic acid calcium salt). Minimum thermal conductivity calculated from the measured sound velocity and effective atomic density is in good agreement with the thermal conductivity of macromolecules with various molecular structures and intermolecular bonding strength.
Toxic properties of specific radiation determinant molecules, derived from radiated species
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey
Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a variety of animals. Lymphatic fluid was collected from the thoracic ducts of bovine species exposed to lethal doses of gamma radiation, and the SRDs were separated by size exclusion gel filtration and high-performance liquid chromatography. We compared the toxicity of isolated radiation toxins in a variety of animals. The clinical characteristics of ARS induced by intravenous or intra-muscular injections of radiation toxins were observed. Results: In radiation-na¨ animals (rats, rabbits, and sheep), toxicity was defined ıve by observing the timing and rate of lethality following injections with extracted radiation toxins (SRDs). Preparations of SRD-1 were injected intra-muscularly in doses of 5 or 10 mg/kg body weight. We observed the development of cerebrovascular ARS with 100% lethality at 10-30 minutes after injection. Analysis of the toxicity of different forms of radiation toxins showed that cerebrovascular neurotoxins possess the highest toxicity compared with other forms of radiation toxins. The other SRD's were also injected into radiation-naive animals and observed for subsequent toxicity/lethality, with the other SRDs producing less virulent forms of ARS. However, both the SRD-2- and SRD-3-injected animals also suffered lethality between 2 and 30 days post-injection. Conclusions: We have observed that radiation toxins are transported from the cells and tissues of irradiated organisms to the interstitial blood and lymphatic fluids, and that this migration of radiation toxins occurs hours after irradiation. Upon analysis of the results of our research and literature sources, we postulate that radiation toxins arise from the radiation-induced chemical modification of macromolecules resident in cell membranes and other cellular structures. Furthermore, we postulate that these altered macromolecules are not processed by antigen processing cells, but instead bind to class II MHC molecules and TCR-beta chains. This causes nonspecific activation of T cells, pro-inflammatory agents such as cytokines and isozymes of phospholipase A2 and phospholipase C, and platelet-activating factor. Longer-term effects induced by the altered macromolecules include the activation of cytotoxic T cells, which induces cytolysis in radiation-damaged cells. Activated CD8+ T cells produce tumor necrosis factor-B and additional cytokines. By these mechanisms, we postulate that radiation toxins generate the pathophysiological reactions associated with acute radiation syndromes.
Rotating shielded crane system
Commander, John C.
1988-01-01
A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley
Here, the surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tmore » $$bulk\\atop{g}$$. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8 arms and molecular weights per arm M arm < M e (M e is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk T$$bulk\\atop{g}$$. Finally, evidence of the slow surface dynamics, compared to the bulk, for temperatures well above T g and at length and time scales not associated with the glass transition has not previously been reported for polymers.« less
Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.
2017-01-01
Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504
Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth
NASA Technical Reports Server (NTRS)
Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.
2004-01-01
Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.
Li, Shuzhao; Xiao, Miaomiao; Zheng, Anna; Xiao, Huining
2011-09-12
Immobilizing poly(butyl acrylate) (PBA) on cellulose microfibrils (CMFs) by atom transfer radical polymerization (ATRP) of butyl acrylate (BA) on the surface of 2-bromoisobutyryl-functionalized CMF generated highly hydrophobic microfibrils (CMF-PBA) with a hard core and a soft-shell structure. TGA and static water contact angle results suggested that the surfaces of the modified CMF samples were not completely covered by PBA chains until the molecular weight of grafts became sufficiently long. The GPC results indicated that the grafts with low molecular weight showed controlled/"living" characteristics of the surface-initiated ATRP; however, there existed more side reactions with the increase in molecular weights. Biocomposites consisting of polypropylene (PP) and CMF-PBA samples exhibited significantly improved compatibility, interface adhesion, and mechanical properties with the increase in PBA graft length. The findings confirmed that the longer grafts facilitated the better entanglement of PBA grafts with PP macromolecules and thus further improved the mechanical properties.
Polymer adsorption-driven self-assembly of nanostructures.
Chakraborty, A K; Golumbfskie, A J
2001-01-01
Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.
Surface density of accumulated electrons on walls in contact with a plasma
NASA Technical Reports Server (NTRS)
De, B. R.
1975-01-01
It is shown that the surface density of accumulated electrons on a wall in contact with a plasma can be expressed as a simple function of the Debye shielding distance in the plasma. The result may have applications to problems involving objects immersed in a space plasma.
NASA Astrophysics Data System (ADS)
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George
2018-04-01
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George
2018-04-28
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
Constrained ceramic-filled polymer armor
Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.
1990-11-13
An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.
Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao
2017-08-16
Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.
Miyake, Masateru; Minami, Takanori; Yamazaki, Hiroyuki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime
2017-05-01
Therapeutic peptides and protein are being used in several indications; however, their poor permeability still remains to be solved. This study focused on the pulmonary route of macromolecules. First, the effects of arachidonic acid (AA) as an absorption enhancer on drug serum concentration, after intratracheal administration, were investigated in rats. Second, the safety of AA was assessed in rats in an acute toxicity study for 7days. AA enhanced the exposure of both interferon-α (IFN-α) and fluorescein isothiocyanate 4000 (FD-4). In addition, the histopathological analysis indicated that AA caused alveolitis and bronchitis in rats. In combination with Taurine (Tau), these lung injuries were prevented through the histopathological analysis. The combined use of Tau with AA did not show any changes in the pharmacokinetics of FD-4. From these results, we suggest the combined use of AA with Tau as a novel formulation on the pulmonary route of macromolecule drugs. This formulation could improve the bioavailability of macromolecule drugs without any serious local damage to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.
Cross-tie walls and magnetic singularities on the surface of permalloy films (abstract)
NASA Astrophysics Data System (ADS)
Lee, Y.; Kueny, A.; Koymen, A. R.
1997-04-01
An understanding of the surface magnetic microstructure of thin polycrystalline permalloy films is important for the development of improved magnetoresistive sensors. Scanning electron microscopy with polarization analysis (SEMPA) was used to image the surface magnetic domain structure of permalloy films in ultrahigh vacuum. The SEMPA system uses a compact Mott electron spin polarimeter with a Th foil (operating at 25 keV) that has been attached to the back of a hemispherical energy analyzer. Two orthogonal in-plane components of the electron spin polarization were measured to obtain magnetic domain images with excellent contrast. 350 Å Ni83Fe17 films, deposited by Honeywell-Micro Switch using dc magnetron sputtering, were studied. The samples were demagnetized along the easy axis by an ac magnetic field with decreasing amplitude. Using SEMPA, zigzag domain walls separating two large approximately head-on domains were observed. Cross-tie walls were observed with a periodic vortex structure along the straight edges of the zigzag domain walls. The cross-tie walls occur at the points where the magnetization is reversed by 180° across the straight edges of the wall. At high magnification, the elliptical and hyperbolic singularities at the cross-tie walls were clearly observed. In addition, the Néel part and the Bloch part of the cross-tie were distinguished This is a detailed study of cross-tie walls on sputter deposited thin permalloy films using SEMPA and our results are in good agreement with theoretical calculations.
Ion transport in a pH-regulated nanopore.
Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
2013-08-06
Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.
A novel solution for LED wall lamp design and simulation
NASA Astrophysics Data System (ADS)
Ge, Rui; Hong, Weibin; Li, Kuangqi; Liang, Pengxiang; Zhao, Fuli
2014-11-01
The model of the wall washer lamp and the practical illumination application have been established with a new design of the lens to meet the uniform illumination demand for wall washer lamp based on the Lambertian light sources. Our secondary optical design of freeform surface lens to LED wall washer lamp based on the conservation law of energy and Snell's law can improve the lighting effects as a uniform illumination. With the relationship between the surface of the lens and the surface of the target, a great number of discrete points of the freeform profile curve were obtained through the iterative method. After importing the data into our modeling program, the optical entity was obtained. Finally, to verify the feasibility of the algorithm, the model was simulated by specialized software, with both the LED Lambertian point source and LED panel source model.
Effect of surface deposits on electromagnetic waves propagating in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1990-01-01
A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Towards the specification of consecutive steps in macromolecular lignin assembly.
Nose, M; Bernards, M A; Furlan, M; Zajicek, J; Eberhardt, T L; Lewis, N G
1995-05-01
When Pinus taeda cell suspension cultures are exposed to 8% sucrose solution, the cells undergo significant intracellular disruption, irregular wall thickening/lignification with concomitant formation of an 'extracellular lignin precipitate. However, addition of potassium iodide (KI), an H202 scavenger, inhibits this lignification response, while the ability to synthesize the monolignols, p-coumaryl and coniferyl alcohols, is retained. Lignin synthesis (i.e. polymerization) is thus temporarily correlated with H202 generation, strongly implying a regulatory role for the latter. Time course analyses of extracellular metabolites leading up to polymer formation reveal that coniferyl alcohol, but not p-coumaryl alcohol, undergoes substantial coupling reactions to give various lignans. Of these, the metabolites, dihydrodehydrodiconiferyl alcohol, shonanin (divanillyl tetrahydrofuran) and its apparent aryl tetralin derivative, cannot be explained simply on the basis of phenolic coupling. It is proposed that these moieties are the precursors of so-called reduced substructures in the lignin macromolecule. This adds a new perspective to the lignin assembly mechanism.
NASA Astrophysics Data System (ADS)
Merritt, T.; Leblanc, M.; McMillan, J.; Westwood, J.; Khodaparast, G. A.
2014-03-01
Successful incorporation of a specific macromolecule into a single cell would be ideal for characterizing trafficking dynamics through plasmodesmata or for studying intracellular localizations. Here, we demonstrate NIR femtosecond laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into living cells of Arabidopsis thaliana seedling stems. Based on the reactions of fluorescing vacuoles of transgenic cells and artificial cell walls comprised of nanocellulose, laser intensity and exposure time were adjusted to avoid deleterious effects. Using these plant-tailored laser parameters, cells were injected with the fluorophores and long-term dye retention was observed, all while preserving vital cell functions. This method is ideal for studies concerning cell-to-cell interactions and potentially paves the way for introducing transgenes to specific cells. This work was supported by NSF award IOS-0843372 to JHW, with additional support from and U.S. Department of Agriculture Hatch Project no. 135997, and by the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech.
Towards the specification of consecutive steps in macromolecular lignin assembly
NASA Technical Reports Server (NTRS)
Nose, M.; Bernards, M. A.; Furlan, M.; Zajicek, J.; Eberhardt, T. L.; Lewis, N. G.
1995-01-01
When Pinus taeda cell suspension cultures are exposed to 8% sucrose solution, the cells undergo significant intracellular disruption, irregular wall thickening/lignification with concomitant formation of an 'extracellular lignin precipitate. However, addition of potassium iodide (KI), an H202 scavenger, inhibits this lignification response, while the ability to synthesize the monolignols, p-coumaryl and coniferyl alcohols, is retained. Lignin synthesis (i.e. polymerization) is thus temporarily correlated with H202 generation, strongly implying a regulatory role for the latter. Time course analyses of extracellular metabolites leading up to polymer formation reveal that coniferyl alcohol, but not p-coumaryl alcohol, undergoes substantial coupling reactions to give various lignans. Of these, the metabolites, dihydrodehydrodiconiferyl alcohol, shonanin (divanillyl tetrahydrofuran) and its apparent aryl tetralin derivative, cannot be explained simply on the basis of phenolic coupling. It is proposed that these moieties are the precursors of so-called reduced substructures in the lignin macromolecule. This adds a new perspective to the lignin assembly mechanism.
Pleural liquid and its exchanges.
Agostoni, Emilio; Zocchi, Luciano
2007-12-15
After an account on morphological features of visceral and parietal pleura, mechanical coupling between lung and chest wall is outlined. Volume of pleural liquid is considered along with its thickness in various regions, and its composition. Pleural liquid pressure (P(liq)) and pressure exerted by lung recoil in various species and postures are then compared, and the vertical gradient of P(liq) considered. Implications of lower P(liq) in the lung zone than in the costo-phrenic sinus at iso-height are pointed out. Mesothelial permeability to H(2)O, Cl(-), Na(+), mannitol, sucrose, inulin, albumin, and various size dextrans is provided, along with paracellular "pore" radius of mesothelium. Pleural liquid is produced by filtration from parietal pleura capillaries according to Starling forces. It is removed by absorption in visceral pleura capillaries according to Starling forces (at least in some species), lymphatic drainage through stomata of parietal mesothelium (essential to remove cells, particles, and large macromolecules), solute-coupled liquid absorption, and transcytosis through mesothelium.
Comprehensive glycan analysis of recombinant Aspergillus niger endo-polygalacturonase C.
Woosley, Bryan; Xie, Min; Wells, Lance; Orlando, Ron; Garrison, Derek; King, Daniel; Bergmann, Carl
2006-07-01
The enzyme PGC is produced by the fungus Aspergillus niger during invasion of plant cell walls. The enzyme has been homologously overexpressed to provide sufficient quantities of purified enzyme for biological studies. We have characterized this enzyme in terms of its posttranslational modifications (PTMs) and found it to be both N- and O-glycosylated. The glycosyl moieties have also been characterized. This has involved a combination of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), liquid chromatography (LC)-ion trap, and LC-electrospray ionization (ESI) mass spectrometries in conjunction with trypsin degradation and beta-elimination, followed by Michael addition with dithiothreitol (BEMAD). This is the first demonstration of the ability of BEMAD to map glycosylation sites other than O-GlcNAc sites. The complete characterization of all PTMs on PGC allows us to model them on the peptide backbone, revealing potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.
Route of steroid-activated macromolecules through nuclear pores imaged with atomic force microscopy.
Oberleithner, H; Schäfer, C; Shahin, V; Albermann, L
2003-02-01
In eukaryotic cells, two concentric membranes, the nuclear envelope (NE), separate the nucleus from the cytoplasm. The NE is punctured by nuclear pore complexes (NPCs; molecular mass 120 MDa) that serve as regulated pathways for macromolecules entering and leaving the nuclear compartment. Transport across NPCs occurs through central channels. Such import and export of macromolecules through individual NPCs can be elicited in the Xenopus laevis oocyte by injecting the mineralocorticoid aldosterone and can be visualized with atomic force microscopy. The electrical NE resistance in intact cell nuclei can be measured in parallel. Resistance increases when macromolecules are engaged with the NPC. This article describe six observations made from these experiments and the conclusions that can be drawn from them. (i) A homogeneous population of macromolecules (approx. 100 kDa) attaches to the cytoplasmic face of the NPC 2 min after aldosterone injection. They are most likely to be aldosterone receptors. After a few minutes, they have disappeared. (ii) Large plugs (approx. molecular mass 1 MDa) appear in the central channels 20 min after hormone injection. They are most likely to be ribonucleoproteins exiting the nucleus. (iii) Electrical resistance measurements in isolated nuclei reveal transient electrical NE resistance peaks: an early (2 min) peak and a late (20 min) peak. Electrical peaks reflect macromolecule interaction with the NPC. (iv) Spironolactone blocks both the early and late peaks. This indicates that classic aldosterone receptors are involved in the pregenomic (early) and post-genomic (late) responses. (v) Actinomycin D and, independently, RNase A block the late electrical peak, confirming that plugs are genomic in nature. (vi) Intracellular calcium chelation blocks both early and late electrical peaks. Thus, the release of calcium from internal stores, which is known to be the first intracellular signal in response to aldosterone, is a prerequisite for the late genomic response.
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
2017-03-09
The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed frommore » a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4 × 10 20 m -3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. Lastly, these results are generalized to other fusion-relevant materials with different ranges of SBEs.« less
Marine Surface Condenser Design Using Vertical Tubes Which Are Enhanced.
1981-06-01
hydraulic diameter. 2. Tube Wall. Heat transfer resistance through the tube wall is dependent upon tube material , wall thickness, and a scaling...B. Heat Transfer Coefficient for a Tube Wall For materials such as pure copper which have extremely high values for thermal conductivity, the...mandate the use of materials with relatively low thermal con- ductivities. The thermal resistance of the tube wall is the reciprocal of the heat
Surface roughness effects on turbulent Couette flow
NASA Astrophysics Data System (ADS)
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Expression of Pneumocystis jirovecii Major Surface Glycoprotein in Saccharomyces cerevisiae
Kutty, Geetha; England, Katherine J.; Kovacs, Joseph A.
2013-01-01
The major surface glycoprotein (Msg), which is the most abundant protein expressed on the cell surface of Pneumocystis organisms, plays an important role in the attachment of this organism to epithelial cells and macrophages. In the present study, we expressed Pneumocystis jirovecii Msg in Saccharomyces cerevisiae, a phylogenetically related organism. Full-length P. jirovecii Msg was expressed with a DNA construct that used codons optimized for expression in yeast. Unlike in Pneumocystis organisms, recombinant Msg localized to the plasma membrane of yeast rather than to the cell wall. Msg expression was targeted to the yeast cell wall by replacing its signal peptide, serine-threonine–rich region, and glycophosphatidylinositol anchor signal region with the signal peptide of cell wall protein α-agglutinin of S. cerevisiae, the serine-threonine–rich region of epithelial adhesin (Epa1) of Candida glabrata, and the carboxyl region of the cell wall protein (Cwp2) of S. cerevisiae, respectively. Immunofluorescence analysis and treatment with β-1,3 glucanase demonstrated that the expressed Msg fusion protein localized to the yeast cell wall. Surface expression of Msg protein resulted in increased adherence of yeast to A549 alveolar epithelial cells. Heterologous expression of Msg in yeast will facilitate studies of the biologic properties of Pneumocystis Msg. PMID:23532098
Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Wang, Jin; Agarwal, Karuna; Katz, Joseph
2017-11-01
On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
NASA Astrophysics Data System (ADS)
Doi, Toshiyuki
2018-04-01
Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.
Implementation of a diffusion convection surface evolution model in WallDYN
NASA Astrophysics Data System (ADS)
Schmid, K.
2013-07-01
In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.
Weathering of radiocaesium contamination on urban streets, walls and roofs.
Andersson, K G; Roed, J; Fogh, C L
2002-01-01
Recent investigations in Russia have emphasised the significance of dose contributions from contamination on urban streets and roof pavings, and, typically to a lesser extent, walls in the urban environment. The crucial factor determining the magnitude of these contributions is the retention of the contamination by the different types of urban surface. Since the Chernobyl accident, a series of long-term field studies has been carried out on urban streets, walls and roofs, to examine the weathering processes of 137Cs on the various surface types. The derived time-functions are applied to estimate resultant long-term doses to inhabitants of an urban centre. The paper highlights the effect on caesium retention of surface material characteristics.
Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production.
Gerken, Henri G; Donohoe, Bryon; Knoshaug, Eric P
2013-01-01
Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. We characterized enzymes that can digest the cell wall and weaken this defense for the purpose of protoplasting or lipid extraction. A growth inhibition screen demonstrated that chitinase, lysozyme, pectinase, sulfatase, β-glucuronidase, and laminarinase had the broadest effect across the various Chlorella strains tested and also inhibited Nannochloropsis and Nannochloris strains. Chlorella is typically most sensitive to chitinases and lysozymes, both enzymes that degrade polymers containing N-acetylglucosamine. Using a fluorescent DNA stain, we developed rapid methodology to quantify changes in permeability in response to enzyme digestion and found that treatment with lysozyme in conjunction with other enzymes has a drastic effect on cell permeability. Transmission electron microscopy of enzymatically treated Chlorella vulgaris indicates that lysozyme degrades the outer surface of the cell wall and removes hair-like fibers protruding from the surface, which differs from the activity of chitinase. This action on the outer surface of the cell causes visible protuberances on the cell surface and presumably leads to the increased settling rate when cells are treated with lysozyme. We demonstrate radical ultrastructural changes to the cell wall in response to treatment with various enzyme combinations which, in some cases, causes a greater than twofold increase in the thickness of the cell wall. The enzymes characterized in this study should prove useful in the engineering and extraction of oils from microalgae.
Oberfeld, Daniel; Hecht, Heiko
2011-06-01
We compare expert opinion with perceptual judgment regarding the influence of color on the perceived height and width of interior rooms. We hypothesize that contrary to popular belief, ceiling and wall lightness have additive effects on perceived height, whereas the lightness contrast between these surfaces is less important. We assessed the intuitions of architectural experts as to which surface colors maximize apparent height and compared these intuitions with psychophysical height and width estimates for rooms differing in ceiling, floor, and wall lightness. Experiment 1 was a survey of architectural experts and nonexperts. Experiments 2 and 3 presented virtual rooms varying in physical height, physical width, and surface lightness. In Experiment 1, both experts and nonexperts erroneously assumed that the lightness contrast between ceiling and walls influences perceived height Experiment 2 showed that the lightness contrast does not determine apparent height but that ceiling and wall lightness have additive effects. Experiment 3 demonstrated a decrease in perceived width with physical height, whereas the perceived height was not related to physical width. Apparent width was unaffected by ceiling lightness. Light ceiling and light walls make a room appear higher, whereas floor color has a weaker effect. We also found evidence for an asymmetric interaction between height and width. The question of how to color walls and ceiling to maximize the apparent size of a room can be answered empirically. Aesthetic considerations may interfere with the correct assessment of the effects of color in experts.
Bamba, Takahiro; Inokuma, Kentaro; Hasunuma, Tomohisa; Kondo, Akihiko
2018-03-01
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MS E ). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree
2017-09-01
Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.
USDA-ARS?s Scientific Manuscript database
The structure and composition of the oocyst wall are primary factors determining the survival of Cryptosporidium parvum oocysts outside the host. An external polymer matrix (glycocalyx) may mediate interactions with environmental surfaces and, thus, affect the transport of oocysts in water, soil, an...
18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR9, ...
18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR-9, WITH THE MORE RECENT CONCRETE BLOCK CONTROL ROOM AT THE LEFT AND ASSOCIATED CONCRETE PAVING IN THE FOREGROUND. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA
Borowska-Wykret, Dorota; Rypien, Aleksandra; Dulski, Mateusz; Grelowski, Michal; Wrzalik, Roman; Kwiatkowska, Dorota
2017-06-01
The capitulum of Helichrysum bracteatum is surrounded by scarious involucral bracts that perform hygroscopic movements leading to bract bending toward or away from the capitulum, depending on cell wall water status. The present investigation aimed at explaining the mechanism of these movements. Surface strain and bract shape changes accompanying the movements were quantified using the replica method. Dissection experiments were used to assess the contribution of different tissues in bract deformation. Cell wall structure and composition were examined with the aid of light and electron microscopy as well as confocal Raman spectroscopy. At the bract hinge (organ actuator) longitudinal strains at opposite surfaces differ profoundly. This results in changes of hinge curvature that drive passive displacement of distal bract portions. The distal portions in turn undergo nearly uniform strain on both surfaces and also minute shape changes. The hinge is built of sclerenchyma-like abaxial tissue, parenchyma and adaxial epidermis with thickened outer walls. Cell wall composition is rather uniform but tissue fraction occupied by cell walls, cell wall thickness, compactness and cellulose microfibril orientation change gradually from abaxial to adaxial hinge surface. Dissection experiments show that the presence of part of the hinge tissues is enough for movements. Differential strain at the hinge is due to adaxial-abaxial gradient in structural traits of hinge tissues and cell walls. Thus, the bract hinge of H. bracteatum is a structure comprising gradually changing tissues, from highly resisting to highly active, rather than a bi-layered structure with distinct active and resistance parts, often ascribed for hygroscopically moving organs. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.
2012-01-01
The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories
Wartel, Morgane; Czerwinski, Fabian; Le Gall, Anne-Valérie; Mauriello, Emilia M. F.; Bergam, Ptissam; Brun, Yves V.; Shaevitz, Joshua; Mignot, Tâm
2013-01-01
Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. PMID:24339744
Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.
Ciasca, G; Papi, M; Businaro, L; Campi, G; Ortolani, M; Palmieri, V; Cedola, A; De Ninno, A; Gerardino, A; Maulucci, G; De Spirito, M
2016-02-04
By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening.
ERIC Educational Resources Information Center
Halsall, H. B.; Wermeling, J. R.
1982-01-01
Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…
Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization
ERIC Educational Resources Information Center
Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.
2008-01-01
We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked…
Force spectroscopy of biomolecular folding and binding: theory meets experiment
NASA Astrophysics Data System (ADS)
Dudko, Olga
2015-03-01
Conformational transitions in biological macromolecules usually serve as the mechanism that brings biomolecules into their working shape and enables their biological function. Single-molecule force spectroscopy probes conformational transitions by applying force to individual macromolecules and recording their response, or ``mechanical fingerprints,'' in the form of force-extension curves. However, how can we decode these fingerprints so that they reveal the kinetic barriers and the associated timescales of a biological process? I will present an analytical theory of the mechanical fingerprints of macromolecules. The theory is suitable for decoding such fingerprints to extract the barriers and timescales. The application of the theory will be illustrated through recent studies on protein-DNA interactions and the receptor-ligand complexes involved in blood clot formation.
Effect of surface deposits on electromagnetic propagation in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1991-01-01
A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
NASA Astrophysics Data System (ADS)
Polius, Jemilia R.
This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.
Flame front propagation in a channel with porous walls
NASA Astrophysics Data System (ADS)
Golovastov, S. V.; Bivol, G. Yu
2016-11-01
Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
NASA Astrophysics Data System (ADS)
Meyer, Allan W.; Smith, Sheldon M.; Koerber, Christopher T.
2000-06-01
The far-infrared reflectance and scattering properties of telescope surfaces, surrounding cavity walls, and surfaces within focal-plane instruments can be significant contributors to background noise. Radiation from sources well off-axis, such as the earth, moon or aircraft engines may be multiply scattered by the cavity walls and/or surface facets of a complex telescope structure. The Non-Specular Reflectometer at NASA Ames Research Center was reactivated and upgraded, and used to measure reflectance and Bi- directional Reflectance Distribution Functions for samples of planned telescope system structural materials and associated surface treatments.
Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces.
Heinz, Hendrik
2010-05-01
The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer-scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface-solute-solvent system, the solute-solvent system, the solvent system, and the surface-solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. Copyright 2009 Wiley Periodicals, Inc.
Reusable tamper-indicating security seal
Ryan, Michael J.
1983-01-01
The invention teaches means for detecting unauthorized tampering or substitutions of a device, and has particular utility when applied on a "seal" device used to secure a location or thing. The seal has a transparent body wall, and a first indicia, viz., a label identification is formed on the inside surface of this wall. Second and third indicia are formed on the outside surface of the transparent wall, and each of these indicia is transparent to allow the parallax angled viewing of the first indicia through these indicia. The second indicia is in the form of a broadly uniform pattern, viz, many small spaced dots; while the third indicia is in the form of easily memorized objects, such as human faces, made on a substrate by means of halftone printing. The substrate is lapped over the outside surface of the transparent wall. A thin cocoon of a transparent material, generally of the same material as the substrate such as plastic, is formed over the seal body and specifically over the transparent wall and the second and third indicia formed thereon. This cocoon is seamless and has walls of nonuniform thickness. Both the genuineness of the seal and whether anyone has attempted to compromise the seal can thus be visually determined upon inspection.
Lamb-type waves generated by a cylindrical bubble oscillating between two planar elastic walls
Mekki-Berrada, F.; Thibault, P.; Marmottant, P.
2016-01-01
The volume oscillation of a cylindrical bubble in a microfluidic channel with planar elastic walls is studied. Analytical solutions are found for the bulk scattered wave propagating in the fluid gap and the surface waves of Lamb-type propagating at the fluid–solid interfaces. This type of surface wave has not yet been described theoretically. A dispersion equation for the Lamb-type waves is derived, which allows one to evaluate the wave speed for different values of the channel height h. It is shown that for h<λt, where λt is the wavelength of the transverse wave in the walls, the speed of the Lamb-type waves decreases with decreasing h, while for h on the order of or greater than λt, their speed tends to the Scholte wave speed. The solutions for the wave fields in the elastic walls and in the fluid are derived using the Hankel transforms. Numerical simulations are carried out to study the effect of the surface waves on the dynamics of a bubble confined between two elastic walls. It is shown that its resonance frequency can be up to 50% higher than the resonance frequency of a similar bubble confined between two rigid walls. PMID:27274695
Role of rough surface topography on gas slip flow in microchannels.
Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng
2012-07-01
We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.
Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew
2018-06-01
The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.
Shmanai, Vadim V; Nikolayeva, Tamara A; Vinokurova, Ludmila G; Litoshka, Anatoli A
2001-01-01
Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(meth)acrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides. PMID:11545680
Ontogenetic changes in helminth membrane function.
Arme, C
1988-01-01
During their life-cycle many parasites experience a wide range of environments including free living and those provided by a variety of intermediate and final hosts. The nutritional requirements of parasites are met by physiological processes adapted to exploit the physicochemical characteristics provided by different hosts. In helminth parasites these adaptations are frequently expressed on the tegumentary surface. As an example of adaptations within the Trematoda, the control of monosaccharide transport in Proterometra sp. is described. Environmental sodium, although not directly involved in the uptake process, nevertheless regulates the expression of transport capabilities. In the Cestoda, the uptake of monosaccharides and amino acids is described for Hymenolepis diminuta. The metacestode of this tapeworm inhabits the blood system of an arthropod, and the adult the gut of a mammal. There are quantitative and qualitative differences in the amino acids and monosaccharides in these two environments and these are reflected in the transport mechanisms exhibited by the two forms of the life-cycle. In Echinococcus granulosus the transfer of amino acids, sugars and macromolecules across the membranes of hydatid cysts and protoscoleces is described. The major difference between these two stages in the life-cycle relates to the ability of hydatid cysts to absorb macromolecules, whereas protoscoleces are impermeable to these compounds. The potential for future work is emphasized.
Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu
Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less
Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G
2015-03-01
The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.
Azuara, Cyril; Lindahl, Erik; Koehl, Patrice; Orland, Henri; Delarue, Marc
2006-07-01
We describe a new way to calculate the electrostatic properties of macromolecules which eliminates the assumption of a constant dielectric value in the solvent region, resulting in a Generalized Poisson-Boltzmann-Langevin equation (GPBLE). We have implemented a web server (http://lorentz.immstr.pasteur.fr/pdb_hydro.php) that both numerically solves this equation and uses the resulting water density profiles to place water molecules at preferred sites of hydration. Surface atoms with high or low hydration preference can be easily displayed using a simple PyMol script, allowing for the tentative prediction of the dimerization interface in homodimeric proteins, or lipid binding regions in membrane proteins. The web site includes options that permit mutations in the sequence as well as reconstruction of missing side chain and/or main chain atoms. These tools are accessible independently from the electrostatics calculation, and can be used for other modeling purposes. We expect this web server to be useful to structural biologists, as the knowledge of solvent density should prove useful to get better fits at low resolution for X-ray diffraction data and to computational biologists, for whom these profiles could improve the calculation of interaction energies in water between ligands and receptors in docking simulations.
Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2015-09-22
The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.
THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?
Cheung, Alice Y; Wu, Hen-Ming
2011-12-01
The plant cell wall provides form and integrity to the cell as well as a dynamic interface between a cell and its environment. Therefore mechanisms capable of policing changes in the cell wall, signaling cellular responses including those that would feedback regulate cell wall properties are expected to play important roles in facilitating growth and ensuring survival. Discoveries in the last few years that the Arabidopsis THESEUS 1 receptor-like kinase (RLK) may function as a sensor for cell wall defects to regulate growth and that its relatives FERONIA and ANXURs regulate pollen tube integrity imply strongly that they play key roles in cell wall-related processes. Furthermore, FERONIA acts as a cell surface regulator for RAC/ROP GTPases and activates production of reactive oxygen species which are, respectively, important molecular switches and mediators for diverse processes. These findings position the THESEUS 1/FERONIA family RLKs as surface regulators and potential cell wall sensors capable of broadly and profoundly impacting cellular pathways in response to diverse signals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Natural convection in a cubical cavity with a coaxial heated cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less
Basnet, Mohan; Ghoshal, Subhasis; Tufenkji, Nathalie
2013-01-01
Palladium-doped nanosized zerovalent iron (Pd-NZVI) particles can contribute to the transformation of chlorinated solvents and various other contaminants into innocuous products. To make Pd-NZVI an effective in situ subsurface remediation agent, these particles need to migrate through a targeted contaminated area. However, previous studies have reported very limited mobility of these particles in the groundwater environment and attributed it to rapid aggregation and subsequent pore plugging. In this study, we systematically investigated the influence of selected natural and nontoxic organic macromolecules (carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein) on the aggregation and transport behavior of bare and coated Pd-NZVI. Aggregation behavior was investigated using dynamic light scattering by monitoring the evolution of hydrodynamic diameter as a function of time, whereas transport behavior was investigated by conducting water-saturated sand-packed column experiments. While bare Pd-NZVI is prone to rapid aggregation, we observed good colloidal stability and concurrent enhanced transport of Pd-NZVI coated with carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein. Each surface modifier performed well at lower ionic strength (IS) (10 mM NaHCO3), and one of the rhamnolipid surface modifiers (JBR215) significantly enhanced transport of 150 mg/L Pd-NZVI at concentrations as low as 10 mg/L total organic carbon. However, an increase in the solution IS induced significant Pd-NZVI aggregation with a simultaneous decrease in the transport potential in accordance with the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of colloidal stability. Nonetheless, at the highest IS (300 mM NaHCO3) investigated, the mobility of rhamnolipid-coated Pd-NZVI is significantly higher than that of Pd-NZVI coated with the other surface modifiers, suggesting that biosurfactants may be the most suitable surface modifiers in field application. Overall, this study emphasizes how stabilization of Pd-NZVI with natural macromolecules such as rhamnolipids can improve the transport potential of these reactive nanoparticles in subsurface remediation applications at concentrations significantly lower than those of other commonly used polymers.
Behavior of braced excavation in sand under a seismic condition: experimental and numerical studies
NASA Astrophysics Data System (ADS)
Konai, Sanku; Sengupta, Aniruddha; Deb, Kousik
2018-04-01
The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper. A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth, acceleration amplitude and wall stiffness. Numerical analyses using FLAC 2D were also performed considering one level of bracing. The strut forces, lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results. The study showed that in a post-seismic condition, when other factors were constant, lateral displacement, bending moment, strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration. The study also showed that as wall stiffness decreased, the lateral displacement of the wall and ground surface displacement increased, but the bending moment of the wall and strut forces decreased. The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude, but did not change significantly with wall stiffness. Strut force was the least affected parameter when compared with others under a seismic condition.
Single cell adhesion assay using computer controlled micropipette.
Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-01-01
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes.
Single Cell Adhesion Assay Using Computer Controlled Micropipette
Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-01-01
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes. PMID:25343359
DOT National Transportation Integrated Search
2014-06-01
Effective techniques for a nondestructive evaluation of mechanically stabilized earth (MSE) walls during normal operation : or immediately after an earthquake event are yet to be developed. MSE walls often have a rough surface finishing for the : pur...
Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C; Skirtach, Andre G; Braeckmans, Kevin
2014-06-24
There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell membrane, nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the surrounding cell medium can then diffuse through the pores directly into the cytoplasm. Here we present a systematic evaluation of both photoporation mechanisms in terms of cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of macromolecules under conditions of VNBs is much more efficient than direct photothermal disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, by tuning the laser energy, the pore size could be changed, allowing control of the amount and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser pulse is required, we conclude that VNBs are an interesting photoporation mechanism that may prove very useful for efficient high-throughput macromolecular delivery in live cells.
Bujalowski, Wlodzimierz; Jezewska, Maria J.
2011-01-01
Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223
Symposium on Numerical and Physical Aspects of Aerodynamic Flows
1992-01-15
ReT/R. -1 wide range of Mach numbers including pressure gradient, a = - (a*) (10) surface roughness. surface heating and cooling . and surface 9 I + ReT...and specific heat at constant pressure, respectively. Favre equation is then obtained by contracting the Reynolds-stress decomposition is applied to...their near- wall behavior. In other words, if highly cooled -wall flows are to be predicted correctly, heat fluxes should be modeled e = 2ak + 4bky
Haji, Khamis A; Thawer, Narjis G; Khatib, Bakari O; Mcha, Juma H; Rashid, Abdallah; Ali, Abdullah S; Jones, Christopher; Bagi, Judit; Magesa, Stephen M; Ramsan, Mahdi M; Garimo, Issa; Greer, George; Reithinger, Richard; Ngondi, Jeremiah M
2015-12-09
Indoor residual spraying (IRS) of households with insecticide is a principal malaria vector control intervention in Zanzibar. In 2006, IRS using the pyrethroid lambda-cyhalothrine was introduced in Zanzibar. Following detection of pyrethroid resistance in 2010, an insecticide resistance management plan was proposed, and IRS using bendiocarb was started in 2011. In 2014, bendiocarb was replaced by pirimiphos methyl. This study investigated the residual efficacy of pirimiphos methyl (Actellic 300CS) sprayed on common surfaces of human dwellings in Zanzibar. The residual activity of Actellic 300CS was determined over 9 months through bioassay tests that measured the mortality of female Anopheles mosquitoes, exposed to sprayed surfaces under a WHO cone. The wall surfaces included; mud wall, oil or water painted walls, lime washed wall, un-plastered cement block wall and stone blocks. Insecticide susceptibility testing was done to investigate the resistance status of local malaria vectors against Actellic 300CS using WHO protocols; Anopheline species were identified using PCR methods. Baseline tests conducted one-day post-IRS revealed 100% mortality on all sprayed surfaces. The residual efficacy of Actellic 300CS was maintained on all sprayed surfaces up to 8 months post-IRS. However, the bioassay test conducted 9 months post-IRS showed the 24 h mortality rate to be ≤80% for lime wash, mud wall, water paint and stone block surfaces. Only oil paint surface retained the recommended residual efficacy beyond 9 months post-IRS, with mortality maintained at ≥97 %. Results of susceptibility tests showed that malaria vectors in Zanzibar were fully (100%) susceptible to Actellic 300CS. The predominant mosquito vector species was An. arabiensis (76.0%) in Pemba and An. gambiae (83.5%) in Unguja. The microencapsulated formulation of pirimiphos methyl (Actellic 300CS) is a highly effective and appropriate insecticide for IRS use in Zanzibar as it showed a relatively prolonged residual activity compared to other products used for the same purpose. The insecticide extends the residual effect of IRS thereby making it possible to effectively protect communities with a single annual spray round reducing overall costs. The insecticide proved to be a useful alternative in insecticide resistance management plans.