Sample records for wall temperature measurements

  1. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  2. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor

    NASA Astrophysics Data System (ADS)

    Nau, Patrick; Yin, Zhiyao; Geigle, Klaus Peter; Meier, Wolfgang

    2017-12-01

    Wall temperatures were measured with thermographic phosphors on the quartz walls of a model combustor in ethylene/air swirl flames at 3 bar. Three operating conditions were investigated with different stoichiometries and with or without additional injection of oxidation air downstream of the primary combustion zone. YAG:Eu and YAG:Dy were used to cover a total temperature range of 1000-1800 K. Measurements were challenging due to the high thermal background from soot and window degradation at high temperatures. The heat flux through the windows was estimated from the temperature gradient between the in- and outside of the windows. Differences in temperature and heat flux density profiles for the investigated cases can be explained very well with the previously measured differences in flame temperatures and flame shapes. The heat loss relative to thermal load is quite similar for all investigated flames (15-16%). The results complement previous measurements in these flames to investigate soot formation and oxidation. It is expected, that the data set is a valuable input for numerical simulations of these flames.

  3. Recording Rapidly Changing Cylinder-wall Temperatures

    NASA Technical Reports Server (NTRS)

    Meier, Adolph

    1942-01-01

    The present report deals with the design and testing of a measuring plug suggested by H. Pfriem for recording quasi-stationary cylinder wall temperatures. The new device is a resistance thermometer, the temperature-susceptible part of which consists of a gold coating applied by evaporation under high vacuum and electrolytically strengthened. After overcoming initial difficulties, calibration of plugs up to and beyond 400 degrees C was possible. The measurements were made on high-speed internal combustion engines. The increasing effect of carbon deposit at the wall surface with increasing operating period is indicated by means of charts.

  4. Tube wall temperature monitoring technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granton, R.L.

    1985-07-01

    In 1977, Monsanto and Conoco undertook the construction of a new, modern technology ethylene plant at Chocolate Bayou, near Alvin, Texas. This plant included high severity cracking furnaces with potential tube wall temperatures considerably higher than any we had previously experienced. Furnace on-stream time between decokes, a factor in the economics of plant operation, was limited by tube wall temperature, thus requiring its accurate knowledge. Earlier work with other ethylene furnaces had also demonstrated our lack of knowledge concerning high temperature measurements in a furnace firebox environment. This had to change. An outside consultant was called upon to provide amore » threeday workshop on radiant tube temperature sensing. The workshop consisted of two days of formal training in the theory and practice of temperature measurement and one day of field training. This workshop was conducted at a site away from the plant. Approximately 20 engineers (manufacturing and technical groups) attended. The major topics covered by this workshop are as follows: radiant tube temperature sensing, radiation situation of radiant tubes, g.a. method: sample calculations, noncontact sensors: methods of specifying and purchasing, thermal imager strategies, calibration of noncontact sensors, avoiding problems with noncontact sensors, optical aids to radiant tube viewing, tube temperature management and its environmental implications, and contact temperature sensors.« less

  5. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    DOEpatents

    Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose

    2004-11-30

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  6. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    NASA Technical Reports Server (NTRS)

    Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)

    2004-01-01

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  7. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  8. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  9. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  10. Fuel retention under elevated wall temperature in KSTAR with a carbon wall

    NASA Astrophysics Data System (ADS)

    Cao, B.; Hong, S. H.

    2018-03-01

    The fuel retention during KSTAR discharges with elevated wall temperature (150 °C) has been studied by using the method of global particle balance. The results show that the elevated wall temperature could reduce the dynamic retention via implantation and absorption, especially for the short pulse shots with large injected fuel particles. There is no signature changing of long-term retention, which related to co-deposition, under elevated wall temperature. For soft-landing shots (normal shots), the exhausted fuel particles during discharges is larger with elevated wall temperature than without, but the exhausted particles after discharges within 90 s looks similar. The outgassing particles because of disruption could be exhausted within 15 s.

  11. Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow

    NASA Astrophysics Data System (ADS)

    Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team

    2017-11-01

    We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.

  12. Model wall and recovery temperature effects on experimental heat transfer data analysis

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Stone, D. R.

    1974-01-01

    Basic analytical procedures are used to illustrate, both qualitatively and quantitatively, the relative impact upon heat transfer data analysis of certain factors which may affect the accuracy of experimental heat transfer data. Inaccurate knowledge of adiabatic wall conditions results in a corresponding inaccuracy in the measured heat transfer coefficient. The magnitude of the resulting error is extreme for data obtained at wall temperatures approaching the adiabatic condition. High model wall temperatures and wall temperature gradients affect the level and distribution of heat transfer to an experimental model. The significance of each of these factors is examined and its impact upon heat transfer data analysis is assessed.

  13. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    PubMed

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  14. Comparison of primary zone combustor liner wall temperatures with calculated predictions

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.

    1973-01-01

    Calculated liner temperatures based on a steady-state radiative and convective heat balance at the liner wall were compared with experimental values. Calculated liner temperatures were approximately 8 percent higher than experimental values. A radiometer was used to experimentally determine values of flame temperature and flame emissivity. Film cooling effectiveness was calculated from an empirical turbulent mixing expression assuming a turbulent mixing level of 2 percent. Liner wall temperatures were measured in a rectangular combustor segment 6 by 12 in. and tested at pressures up to 26.7 atm and inlet temperatures up to 922 K.

  15. The effects of temperature on the lattice barrier for twin wall motion

    NASA Astrophysics Data System (ADS)

    Zreihan, Noam; Faran, Eilon; Shilo, Doron

    2015-07-01

    The sideways motion of twin walls in ferroic materials requires overcoming an intrinsic energy barrier that originates from the periodicity of the crystal structure. Here, we measure the temperature dependence of the lattice barrier in a ferromagnetic Ni-Mn-Ga crystal using the pulsed magnetic field method. Our results reveal a monotonic decrease in the lattice barrier with increasing temperature. Yet, the barrier does not vanish as the temperature approaches the temperature of the martensite to austenite transformation. These findings enable the formulation of an analytical expression that correlates the lattice barrier to the physical properties of the twin wall, such as its thickness and the associated transformation strain. The derived relation provides a good quantitative description of the data measured in Ni-Mn-Ga.

  16. Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Lutz, Otto

    1950-01-01

    A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.

  17. Temperature dependence of the domain wall magneto-Seebeck effect: avoiding artifacts of lead contributions

    NASA Astrophysics Data System (ADS)

    Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.

    2018-06-01

    We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.

  18. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  19. Ultrasonic Wall Thickness Monitoring at High Temperatures (>500 °C)

    NASA Astrophysics Data System (ADS)

    Cegla, F. B.; Allin, J.; Davies, J. O.; Collins, P.; Cawley, P.

    2011-06-01

    Corrosion and erosion shorten the life of components that are used in the petrochemical industry. In order to mitigate the safety and financial risks posed by the degradation mechanisms, plant operators monitor wall thicknesses at regular inspection intervals. In high temperature locations inspections have to be carried out at plant shut downs because conventional ultrasonic sensors cannot withstand the high operating temperatures. The authors have developed a waveguide based high temperature thickness gauge for monitoring of wall thicknesses in high temperature areas. The waveguide allows the use of conventional transduction systems (max temp. 60 °C) at one end and guides ultrasonic waves into the high temperature region where the inspection is to be carried out. Slender stainless steel waveguides allow a temperature drop of ˜500-600 °C per 200 mm length to be sustained simply by natural convection cooling. This paper describes the technical challenges that had to be overcome (dispersion and source/receiver characteristics) in order to implement this "acoustic cable". A range of experimental results of thickness measurements on components of different thickness, and furnace tests at different temperatures are presented. An accelerated corrosion test that demonstrates the effectiveness of the monitoring for corrosion is also presented.

  20. Comparison of Turbulent Heat-Transfer Results for Uniform Wall Heat Flux and Uniform Wall Temperature

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Sparrow, E. M.

    1960-01-01

    The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.

  1. On the assumption of vanishing temperature fluctuations at the wall for heat transfer modeling

    NASA Technical Reports Server (NTRS)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1993-01-01

    Boundary conditions for fluctuating wall temperature are required for near-wall heat transfer modeling. However, their correct specifications for arbitrary thermal boundary conditions are not clear. The conventional approach is to assume zero fluctuating wall temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill posed problem for fully-developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations is examined. The approach taken is to assume a Taylor expansion in the wall normal coordinate for the fluctuating temperature that is general enough to account for both zero and non-zero value at the wall. Turbulent conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and non-zero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is in general valid. The effects of non-zero fluctuating wall temperature are limited only to a very small region near the wall.

  2. Planar measurements of spray-induced wall cooling using phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  3. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  4. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.

    PubMed

    Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V

    2008-10-01

    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.

  5. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  6. FDNS code to predict wall heat fluxes or wall temperatures in rocket nozzles

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS to use a Reynolds Analogy-based method. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. Task 3 required computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750 R to about 1050 R by the film cooling. The average wall heat flux is reduced by a factor of three.

  7. Development of MEMS wireless wall temperature sensor for combustion studies

    NASA Astrophysics Data System (ADS)

    Lee, Minhyeok; Morimoto, Kenichi; Suzuki, Yuji

    2017-03-01

    In this paper, a MEMS-based wireless wall temperature sensor for application to combustion studies is proposed. The resonant frequency change of an LCR circuit on the sensor is used to detect the temperature change, and is transferred by inductive coupling between the sensor and the read-out coil. Sensitivity analysis has been made to examine the effect of the resistance/capacitance change of the sensor on the resonant frequency shifts. Based on the present analysis, the sensing principle with either TCR (temperature coefficient of resistance) or TCP (temperature coefficient of permittivity) can be determined for better temperature sensitivity. The sensor configuration is designed through an equivalent circuit model, and verified with a 3D electromagnetic simulation. A prototype sensor on a glass substrate is successfully fabricated through MEMS technologies. Performance of the sensor is evaluated in the steady thermal field with the temperature range from 25 °C to 175 °C. The profile of the resonant frequency change is well fitted with a quadratic curve derived from the model analysis. The temperature measurement accuracy of 1.6 °C at 25 °C and 0.87 °C at 175 °C has been obtained at the measurement distance of 0.71 mm. In addition, a similar measurement uncertainty can be achieved with a 52 ms measurement time interval.

  8. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  9. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  10. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  11. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia.

    PubMed

    Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang

    2018-05-30

    Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.

  12. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  13. Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall

    NASA Astrophysics Data System (ADS)

    Bahri, Carla; Mueller, Michael; Hultmark, Marcus

    2013-11-01

    The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.

  14. Positive ion temperature effect on the plasma-wall transition

    NASA Astrophysics Data System (ADS)

    Morales Crespo, R.

    2018-06-01

    This paper analyses the plasma-wall interaction of a plasma in contact with a conducting planar surface when the positive-ion temperature is not negligible compared with the electron one. The electric potential from the plasma to the wall is obtained by the appropriate formulation of the model as an initial-value problem as well as some features useful for experimental applications, such as the positive current-to-voltage characteristics, the saturation current density, the floating potential or an estimation of the sheath thickness. Finally, it is analysed how all these quantities depend on the ionization degree and the positive-ion temperature.

  15. Variable-transparency wall regulates temperatures of structures

    NASA Technical Reports Server (NTRS)

    Osullivan, W. J., Jr.

    1964-01-01

    An effective temperature regulating wall consists of one layer /e.g., one of the paraffins/ relatively opaque to thermal radiation in the solid state and transparent to it in the molten state and placed between two transparent layers. A mirror coating is applied to back layer.

  16. Measuring and mapping rock wall permafrost across Norway

    NASA Astrophysics Data System (ADS)

    Magnin, Florence; Etzelmuller, Bernd; Hilger, Paula; Westermann, Sebastian; Isaksen, Ketil; Hermans, Reginald

    2017-04-01

    The investigation of rock wall permafrost is of high relevance for geohazards assessment and for understanding cold-climate landscape evolution since its changes over time can cause slope instability and trigger rock falls. The destabilization of steep slopes is a serious threat to human activities and lives in Norway, especially because most of rock walls lie directly above houses, infrastructures and large water bodies with potential of high-energy displacement waves. Rock wall permafrost has been investigated since the early 2010s in alpine massifs of western Norway thanks to the CryoLINK project (2008-2011). The CryoWALL project (2015-2019) aims at extending this preliminary study to the nation-wide scale. It consists in systematic measurements of rock surface temperature (RST) in order model and to map the spatial distribution of rock wall permafrost. In between August 2015 and August 2016, 20 RST loggers (Geoprecision mini data loggers, accuracy ± 0.1°C, precision 0.01°C, sensors PT1000) were installed at 10 cm depth of 7 selected sites. These loggers are distributed along a latitudinal transect (from 60°50'N to 69°46'N), cover various elevations and sun-exposures, and are completed by 4 other loggers installed in Jotunheimen in 2009 and 2010. The RST time series are used for (a) characterizing the distribution of rock wall permafrost across Norway, (b) running steady-state and transient numerical models of rock wall permafrost at selected sites, and to (c) calibrate a general linear regression model that will be used to (d) predict the spatial distribution of rock wall permafrost at the national scale. In this communication we will introduce the RST measurement installations and sites, as well as the first RST records that encompass 6 years of continuous measurements in Jotunheimen, and 1 year of record for 13 other loggers. The preliminary analysis shows that RST differs by 3°C between N and S faces in Southern Norway, with mean annual RST as low as

  17. Validation of conducting wall models using magnetic measurements

    DOE PAGES

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca; ...

    2016-08-16

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  18. Validation of conducting wall models using magnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  19. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, Leander J.; Bergren, Donald A.

    1989-01-01

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  20. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, L.J.; Bergren, D.A.

    1987-10-06

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  1. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  2. Moderate temperature-dependent surface and volume resistivity and low-frequency dielectric constant measurements of pure and multi-walled carbon nanotube (MWCNT) doped polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael

    2017-08-01

    Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.

  3. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  4. Measuring gas temperature during spin-exchange optical pumping process

    NASA Astrophysics Data System (ADS)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  5. X3 expansion tube driver gas spectroscopy and temperature measurements

    NASA Astrophysics Data System (ADS)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2018-07-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  6. X3 expansion tube driver gas spectroscopy and temperature measurements

    NASA Astrophysics Data System (ADS)

    Parekh, V.; Gildfind, D.; Lewis, S.; James, C.

    2017-11-01

    The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of

  7. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    PubMed Central

    Chabriac, Pierre-Antoine; Fabbri, Antonin; Morel, Jean-Claude; Laurent, Jean-Paul; Blanc-Gonnet, Joachim

    2014-01-01

    Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR) principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior. PMID:28788603

  8. Heat Flux and Wall Temperature Estimates for the NASA Langley HIFiRE Direct Connect Rig

    NASA Technical Reports Server (NTRS)

    Cuda, Vincent, Jr.; Hass, Neal E.

    2010-01-01

    An objective of the Hypersonic International Flight Research Experimentation (HIFiRE) Program Flight 2 is to provide validation data for high enthalpy scramjet prediction tools through a single flight test and accompanying ground tests of the HIFiRE Direct Connect Rig (HDCR) tested in the NASA LaRC Arc Heated Scramjet Test Facility (AHSTF). The HDCR is a full-scale, copper heat sink structure designed to simulate the isolator entrance conditions and isolator, pilot, and combustor section of the HIFiRE flight test experiment flowpath and is fully instrumented to assess combustion performance over a range of operating conditions simulating flight from Mach 5.5 to 8.5 and for various fueling schemes. As part of the instrumentation package, temperature and heat flux sensors were provided along the flowpath surface and also imbedded in the structure. The purpose of this paper is to demonstrate that the surface heat flux and wall temperature of the Zirconia coated copper wall can be obtained with a water-cooled heat flux gage and a sub-surface temperature measurement. An algorithm was developed which used these two measurements to reconstruct the surface conditions along the flowpath. Determinations of the surface conditions of the Zirconia coating were conducted for a variety of conditions.

  9. Measurement of recovery temperature on an airfoil in the Langley 0.3-m transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Adcock, J. B.

    1981-01-01

    Experimental measurements of recovery temperature were made on an airfoil in the Langley 0.3-m Transonic Cryogenic Tunnel at Mach numbers of 0.60 and 0.84 over a Reynolds number per meter range from about 15,000,000 to about 335,000,000. The measured recovery temperatures were considerably below those associated with ideal-gas ambient temperature wind tunnels. This difference was accentuated as the stagnation pressure increased and the total temperature decreased. A boundary-layer code modified for use with cryogenic nitrogen adequately predicted the measured adiabatic wall temperature at all conditions. A quantitative, on-line assessment of the nonadiabatic condition of a model can be made during the operation of a cryogenic wind tunnel by using a correlation for the adiabatic wall temperature which is only a function of total temperature, total pressure, and local Mach number on the model.

  10. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  11. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  12. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  13. Wall shear measurement in sand-water mixture flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yucel, O.; Grad, W.H.

    1975-07-01

    The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less

  14. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  15. Effect of wall heat transfer on shock-tube test temperature at long times

    NASA Astrophysics Data System (ADS)

    Frazier, C.; Lamnaouer, M.; Divo, E.; Kassab, A.; Petersen, E.

    2011-02-01

    When performing chemical kinetics experiments behind reflected shock waves at conditions of lower temperature (<1,000 K), longer test times on the order of 10-20 ms may be required. The integrity of the test temperature during such experiments may be in question, because heat loss to the tube walls may play a larger role than is generally seen in shock-tube kinetics experiments that are over within a millisecond or two. A series of detailed calculations was performed to estimate the effect of longer test times on the temperature uniformity of the post-shock test gas. Assuming the main mode of heat transfer is conduction between the high-temperature gas and the colder shock-tube walls, a comprehensive set of calculations covering a range of conditions including test temperatures between 800 and 1,800 K, pressures between 1 and 50 atm, driven-tube inner diameters between 3 and 16.2 cm, and test gases of N2 and Ar was performed. Based on the results, heat loss to the tube walls does not significantly reduce the area-averaged temperature behind the reflected shock wave for test conditions that are likely to be used in shock-tube studies for test times up to 20 ms (and higher), provided the shock-tube inner diameter is sufficiently large (>8cm). Smaller diameters on the order of 3 cm or less can experience significant temperature loss near the reflected-shock region. Although the area-averaged gas temperature decreases due to the heat loss, the main core region remains spatially uniform so that the zone of temperature change is limited to only the thermal layer adjacent to the walls. Although the heat conduction model assumes the gas and wall to behave as solid bodies, resulting in a core gas temperature that remains constant at the initial temperature, a two-zone gas model that accounts for density loss from the core to the colder thermal layer indicates that the core temperature and gas pressure both decrease slightly with time. A full CFD solution of the shock

  16. Laminar natural convection from a vertical plate with a step change in wall temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Yovanovich, M.M.

    1991-05-01

    The study of natural convection heat transfer from a vertical flat plate in a quiescent medium has attracted a great deal of interest from many investigators in the past few decades. The plate with various thermal conditions that allow similarity transformations as well as those that are continuous and well defined have been examined. However, practical problems often involve wall conditions that are arbitrary and unknown a priori. To understand and solve problems involving general nonsimilar conditions at the wall, it is useful to investigate problems subjected to a step change in wall temperature. The problems impose a mathematical singularitymore » and severe nonsimilar conditions at the wall. In this paper, a new analytical model that can deal with a discontinuous wall temperature variation is presented. The method results in a set of approximate solutions for temperature and velocity distributions. The validity and accuracy of the model is demonstrated by comparisons with the results of the aforementioned investigators. The agreement is excellent and the results obtained with the solution of this work are remarkably close to existing numerical data of Hayday et al. and the perturbation series solution of Kao.« less

  17. Effect of wall to total temperature ratio variation on heat transfer to the leeside of a space shuttle configuration at M equals 10.3

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.

    1974-01-01

    An experimental study has been conducted of the influence of wall to total temperature ratio on the heat transfer to the leeside of a 040A space shuttle configuration. The heat transfer tests were made at a Mach number of 10 and a Reynolds number of one million per foot for angles of attack from 0 deg to 30 deg. Range of wall to total temperature ratio was from 0.16 to 0.43. Where the heat transfer was relatively high and the laminar boundary layer attached, the local heat transfer decreased by about 20 percent as the wall to total temperature ratio was increased from the minimum to the maximum test value. On regions of separated flow and vortex reattachment, very low heating rates were measured at some conditions and indicate significant changes are occurring in the leeside flow field. No single trend of heat transfer variation with wall to total temperature ratio could be observed.

  18. Effect of Wall Temperature on Roughness Induced Attachment-Line Transition

    NASA Technical Reports Server (NTRS)

    Dietz, Anthony; Coleman, Colin; Laub, Jim; Poll, D. I. A.; Nixon, David (Technical Monitor)

    1999-01-01

    An experiment on a cooled swept cylinder in a low-disturbance Mach 1.6 wind tunnel is described. The flow attachment line is disturbed by trip wires of varying size and the laminar/turbulent state of the downstream boundary layer is determined with a hot wire. The results demonstrate that although cooling the wall increases the stability of the boundary layer, it promotes roughness induced transition. Analysis of the data suggests that the attachment- line Reynolds number can account for the effect of wall cooling if the viscosity is evaluated at a particular reference temperature.

  19. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Duffy, R. E.

    1984-01-01

    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  20. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, H.; Pettit, B.

    2015-06-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution that provides insulation to the interior of the wall assembly with the use of a double stud wall. The guide describes two approaches to retrofitting the existing the walls: one involving replacement of the existing cladding, and the other that leaves the existing cladding in place. It discusses the design principles related to the use of various insulation types, and provides strategies and procedures for implementing the double stud wall retrofit. It also evaluates important moisture-related and indoor air quality measures that need to be implemented to achieve amore » durable, high performance wall.« less

  1. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  2. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  3. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity & temperature profiles

    NASA Astrophysics Data System (ADS)

    Pooja, Pathania, Y.; Ahluwalia, P. K.

    2015-05-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  4. The measured temperature and pressure of EDC37 detonation products

    NASA Astrophysics Data System (ADS)

    Ferguson, J. W.; Richley, J. C.; Sutton, B. D.; Price, E.; Ota, T. A.

    2017-01-01

    We present the experimentally determined temperature and pressure of the detonation products of EDC37; a HMX based conventional high explosive. These measurements were performed on a series of cylinder tests. The temperature measurements were undertaken at the end of the cylinder with optical fibres observing the bare explosive through a LiF window. The temperature of the products was measured for approximately 2 µs using single colour pyrometry, multicolour pyrometry and also using time integrated optical emission spectroscopy with the results from all three methods being broadly consistent. The peak temperature was found to be ≈ 3600 K dropping to ≈ 2400 K at the end of the measurement window. The spectroscopy was time integrated and showed that the emission spectra can be approximated using a grey body curve between 520 - 800 nm with no emission or absorption lines being observed. The pressure was obtained using an analytical method which requires the velocity of the expanding cylinder wall and the velocity of detonation. The pressure drops from an initial CJ value of ≈ 38 GPa to ≈ 4 GPa after 2 µs.

  5. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  6. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  7. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    NASA Technical Reports Server (NTRS)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  8. Analysis of close-contact melting with inner wall temperature variation in a horizontal cylindrical capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, T.S.; Hoshi, Akira

    1997-12-31

    Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. In recent years, close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). However, there is no theoreticalmore » solution considering the inner wall temperature variation within cylindrical or spherical capsules. In this report close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations are presented, which facilitates designing of the practical capsule bed LHTES systems. The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition, the effects of variable inner wall temperature on molten mass fraction were investigated.« less

  9. Instantons for vacuum decay at finite temperature in the thin wall limit

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume

    1994-05-01

    In N+1 dimensions, false vacuum decay at zero temperature is dominated by the O(N+1)-symmetric instanton, a sphere of radius R0, whereas at temperatures T>>R-10, the decay is dominated by a ``cylindrical'' (static) O(N)-symmetric instanton. We study the transition between these two regimes in the thin wall approximation. Taking an O(N)-symmetric ansatz for the instantons, we show that for N=2 and N=3 new periodic solutions exist in a finite temperature range in the neighborhood of T~R-10. However, these solutions have a higher action than the spherical or the cylindrical one. This suggests that there is a sudden change (a first order transition) in the derivative of the nucleation rate at a certain temperature T*, when the static instanton starts dominating. For N=1, on the other hand, the new solutions are dominant and they smoothly interpolate between the zero temperature instanton and the high temperature one, so the transition is of second order. The determinantal prefactors corresponding to the ``cylindrical'' instantons are discussed, and it is pointed out that the entropic contributions from massless excitations corresponding to deformations of the domain wall give rise to an exponential enhancement of the nucleation rate for T>>R-10.

  10. Measurement of the Coolant Channel Temperatures and Pressures of a Cooled Radial-Inflow Turbine

    NASA Technical Reports Server (NTRS)

    Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet

    1994-01-01

    Instrumentation has been installed on the surface of a cooled radial-inflow turbine. Thermocouples and miniature integrated sensor pressure transducers were installed to measure steady state coolant temperatures, blade wall temperatures, and coolant pressures. These measurements will eventually be used to determine the heat transfer characteristics of the rotor. This paper will describe the procedures used to install and calibrate the instrumentation and the testing methods followed. A limited amount of data will compare the measured values to the predicted values.

  11. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, R.; Adamson, P.; Burov, A.

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  12. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianping Jing; Zhengqi Li; Guangkui Liu

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less

  13. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  14. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less

  15. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, H.; Pettit, B.

    2015-06-22

    This Measure Guideline describes a deep energy enclosure retrofit solution that provides insulation to the interior of the wall assembly with the use of a double-stud wall. The guide describes two approaches to retrofitting the existing walls—one that involves replacing the existing cladding and the other that leaves the cladding in place. This guideline also covers the design principles related to the use of various insulation types and provides strategies and procedures for implementing the double-stud wall retrofit. It also includes an evaluation of important moisture-related and indoor air quality measures that need to be implemented to achieve a durablemore » high-performance wall.« less

  16. The effects of temperature on the surface resistivity of polyvinyl alcohol (PVA) thin films doped with silver nanoparticles and multi-walled carbon-nanotubes for optoelectronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Polius, Jemilia R.

    This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.

  17. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.

    PubMed

    Pugliese, P; Conde, M M; Rovere, M; Gallo, P

    2017-11-16

    A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.

  18. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-01

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  19. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    NASA Astrophysics Data System (ADS)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  20. Total temperature probes for high-temperature hypersonic boundary-layer measurements

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Bauserman, Willard A., Jr.

    1993-01-01

    The design and test results of two types of total temperature probes that were used for hypersonic boundary-layer measurements are presented. The intent of each design was to minimize the total error and to maintain minimal size for measurements in boundary layers 1.0 in. thick and less. A single platinum-20-percent-rhodium shield was used in both designs to minimize radiation heat transfer losses during exposure to the high-temperature test stream. The shield of the smaller design was flattened at the flow entrance to an interior height of 0.02 in., compared with 0.03 in. for the larger design. The resulting vent-to-inlet area ratios were 60 and 50 percent. A stainless steel structural support sleeve that was used in the larger design was excluded from the smaller design, which resulted in an outer diameter of 0.059 in., to allow closer placement of the probes to each other and to the wall. These small design changes to improve resolution did not affect probe performance. Tests were conducted at boundary-layer-edge Mach numbers of 5.0 and 6.2. The nominal free-stream total temperatures were 2600 degrees and 3200 degrees R. The probes demonstrated extremely good reliability. The best performance in terms of recovery factor occurred when the wire-based Nusselt number was at least 0.04. Recommendations for future probe designs are included.

  1. In vivo wall shear measurements within the developing zebrafish heart.

    PubMed

    Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas

    2013-01-01

    Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  2. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2016-09-01

    Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    NASA Astrophysics Data System (ADS)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  4. Temperature measurement

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003400.htm Temperature measurement To use the sharing features on this page, please enable JavaScript. The measurement of body temperature can help detect illness. It can also monitor ...

  5. Comparison between spin-orbit torques measured by domain-wall motions and harmonic measurements

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Sung; Nam, Yune-Seok; Kim, Dae-Yun; Park, Yong-Keun; Park, Min-Ho; Choe, Sug-Bong

    2018-05-01

    Here we report the comparison of the spin torque efficiencies measured by three different experimental schemes for Pt/Co/X stacks with material X (= Pt, Ta, Ti, Al, Au, Pd, and Ru. 7 materials). The first two spin torque efficiencies ɛDW (1 ) and ɛDW (2 ) are quantified by the measurement of spin-torque-induced effective field for domain-wall depinning and creeping motions, respectively. The last one—longitudinal spin torque efficiency ɛL—is measured by harmonic signal measurement of the magnetization rotation with uniform magnetization configuration. The results confirm that, for all measured Pt/Co/X stacks, ɛDW (1 ) and ɛDW (2 ) are exactly consistent to each other and these two efficiencies are roughly proportional to ɛL with proportionality constant π/2, which comes from the integration over the domain-wall configuration.

  6. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls.

    PubMed

    Alizadeh, A; Zhang, L; Wang, M

    2014-10-01

    Mixing becomes challenging in microchannels because of the low Reynolds number. This study aims to present a mixing enhancement method for electro-osmotic flows in microchannels using vortices caused by temperature-patterned walls. Since the fluid is non-isothermal, the conventional form of Nernst-Planck equation is modified by adding a new migration term which is dependent on both temperature and internal electric potential gradient. This term results in the so-called thermo-electrochemical migration phenomenon. The coupled Navier-Stokes, Poisson, modified Nernst-Planck, energy and advection-diffusion equations are iteratively solved by multiple lattice Boltzmann methods to obtain the velocity, internal electric potential, ion distribution, temperature and species concentration fields, respectively. To enhance the mixing, three schemes of temperature-patterned walls have been considered with symmetrical or asymmetrical arrangements of blocks with surface charge and temperature. Modeling results show that the asymmetric arrangement scheme is the most efficient scheme and enhances the mixing of species by 39% when the Reynolds number is on the order of 10(-3). Current results may help improve the design of micro-mixers at low Reynolds number. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  8. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  9. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-03-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  10. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  11. Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori

    2008-05-01

    The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.

  12. Measuring Temperature Reading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There are two requirements for taking a measurement of something. The first is a tool for taking a measurement. The second is scale for making sense of the numbers of the measurement. For example, a ruler is often used to measure short lengths. It is the tool for measurement. On the ruler are one or more number scales with equally spaced numbers. These numbers can be compared with numbers from any other ruler that is accurately set to the same scale. Measuring length is far simpler than measuring temperature. While there is evidence of tools for measuring length at various times in human history, tools and scales for measuring temperature do not appear until more recent human history. Early thermometers, called thermoscopes, first appear in the 1500's. They were crude instruments that were not at all accurate. Most did not even have a number scale associated with them. This made them useless for most practical purposes. Gabriel Fahrenheit created the first accurate thermometer in 1714, and the Fahrenheit temperature scale followed it in 1724. The thermometer s accuracy was based on its use of mercury, a silver colored substance that remains liquid over a wide range of temperatures but expands or contracts in a standard, predictable way with changes in temperature. To set the scale, Fahrenheit created the coldest temperature that he could. He mixed equal parts of ice, water, and salt, and then used this as the zero point, 0 degrees, of his scale. He intended to make 30 degrees the freezing point of water and 90 degrees the temperature of the human body, but he had to later revise these temperatures to be 32 degrees and 96 degrees. In the final version of the scale, the temperature of the human body became 98.6 degrees. 19th century thermoscope

  13. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    NASA Astrophysics Data System (ADS)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  14. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  15. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  16. Error in Dasibi flight measurements of atmospheric ozone due to instrument wall-loss

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Hagemeyer, J. R.; Reed, E. I.

    1981-01-01

    Theory suggests that in laminar flow the percent loss of a trace constituent to the walls of a measuring instrument varies as P to the -2/3, where P is the total gas pressure. Preliminary laboratory ozone wall-loss measurements confirm this P to the -2/3 dependence. Accurate assessment of wall-loss is thus of particular importance for those balloon-borne instruments utilizing laminar flow at ambient pressure, since the ambient pressure decreases by a factor of 350 during ascent to 40 km. Measurements and extrapolations made for a Dasibi ozone monitor modified for balloon flight indicate that the wall-loss error at 40 km was between 6 and 30 percent and that the wall-loss error in the derived total ozone column-content for the region from the surface to 40 km altitude was between 2 and 10 percent. At 1000 mb, turbulence caused an order of magnitude increase in the Dasibi wall-loss.

  17. Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.

  18. Near-wall modelling of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1990-01-01

    Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.

  19. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  20. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    NASA Astrophysics Data System (ADS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  1. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, R.; Ihmann, K.; Ihmann, J.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecularmore » beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.« less

  2. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skliar, Mikhail

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmentalmore » temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully

  3. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  4. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    NASA Technical Reports Server (NTRS)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  5. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  6. Partial Insulation of Aerated Concrete Wall in its Thermal Bridge Regions

    NASA Astrophysics Data System (ADS)

    Li, Baochang; Guo, Lirong; Li, Yubao; Zhang, Tiantian; Tan, Yufei

    2018-01-01

    As a self-insulating building material which can meet the 65 percent energy-efficiency requirements in cold region of China, aerated concrete blocks often go moldy, frost heaving, or cause plaster layer hollowing at thermal bridge parts in the extremely cold regions due to the restrictions of environmental climate and construction technique. In this paper, partial insulation measures of the thermal-bridge position of these parts of aerated concrete walls are designed to weaken or even eliminate thermal bridge effect and improve the temperature of thermal-bridge position. A heat transfer calculation model for L-shaped wall and T-shaped wall is developed. Based on the simulation result, the influence of the thickness on the temperature field is analyzed. Consequently, the condensation inside self-thermal-insulating wall and frost heaving caused by condensation and low temperature will be reduced, avoiding damage to the wall body from condensation..

  7. A wall interference assessment/correction interface measurement system for the NASA/ARC 12-ft PWT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Development of complex air vehicle configurations is placing increasing demands on wind tunnel testing capabilities. A major area of concern is wall induced interference. Recent developments in wall interference technology provide a means for assessing and correcting for the wall induced interference using information contained in the distribution of flow variables measured at, or near, the wall. The restoration of the NASA-ARC 12-ft pressure wind tunnel (PWT) provides an opportunity to incorporate a measurement system with which wall interference assessment/correction (WIAC) technology can be applied. In this first phase of the development of a WIAC system for the PWT, the design criteria for the placement and the geometry of wall static pressure orifices were determined with a three step approach. First, the operational environment of the PWT was analyzed as to the requirements for the WIAC system. Second, appropriate wall interference theories were evaluated against the requirements determined from the operational environment. Third, the flow about representative models in the PWT was calculated and, specifically, the pressure signatures at the location of the test section wall were obtained. The number of discrete pressure measurements and their locations were determined by curve fitting the pressure distribution through the discrete measurements and evaluating the resulting error.

  8. Specific features of low-frequency vibrational dynamics and low-temperature heat capacity of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Avramenko, M. V.; Roshal, S. B.

    2016-05-01

    A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.

  9. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  10. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musunuru, S.; Pettit, B.

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  11. Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Dor, J. B.; Breil, J. F.

    1980-01-01

    Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts.

  12. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musunuru, S.; Pettit, B.

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  13. Measuring Building Insulation

    NASA Astrophysics Data System (ADS)

    Parks, Beth

    2013-03-01

    Currently, the only way for homeowners to learn about the effectiveness of their home insulation is to hire an energy auditor. This difficulty deters homeowners from taking action to improve energy efficiency. In principle, measuring the temperature difference between a wall surface and the interior of a home is sufficient to determine the wall insulation, but in practice, temperature cycles from the heating system make a single measurement unreliable. I will describe a simple and inexpensive thermocouple-based device to measure this temperature difference and report results obtained by monitoring this temperature difference over multiple heating cycles in a range of buildings. Patent application 12/555371

  14. nPIV velocity measurement of nanofluids in the near-wall region of a microchannel.

    PubMed

    Anoop, Kanjirakat; Sadr, Reza

    2012-05-31

    Colloidal suspensions of nano-sized particles in a base fluid, nanofluids, have recently gained popularity as cooling fluids mainly due to their enhanced heat transfer capabilities. However, there is controversy in the literature on the reported properties of nanofluids and their applicability, especially since there is no fundamental understanding that explains these enhancements. A better understanding of these fluids and how they interact with a solid boundary may be achieved by a detailed near-wall fluid flow study at nanoscale. This work presents for the first time the near-wall velocity measurements for nanofluids using nanoparticle image velocimetry. This novel technique uses evanescent illumination in the solid-fluid interface to measure near-wall velocity field with an out-of-plane resolution on the order of O(100 nm). Nanofluids of different concentrations were prepared by dispersing silicon dioxide particles (10 to 20 nm) in water as the base fluid. Initially, viscosity measurements were conducted for the prepared nanofluids. The near-wall velocity data were then measured and compared with that of the base fluid at the same flow condition. It was observed that even though nanofluid viscosity had increased with particle loading, the near-wall velocity values were similar to that of the base fluid for a given flow rate. Together, these measurements vindicate the homogenous and Newtonian characteristics of the nanofluids in the near-wall region. Despite the low particle concentrations investigated, the present work also discusses the complexity involved in utilizing the methodology and possible errors arising during experimentation so as to implement this measurement tool more effectively in the future.

  15. Analysis of condensation on a horizontal cylinder with unknown wall temperature and comparison with the Nusselt model of film condensation

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1996-01-01

    Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.

  16. Characterization of the Test Section Walls at the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Lunsford, Charles B.; Graves, Sharon S.

    2003-01-01

    The test section walls of the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel are known to move under thermal and pressure loads. Videogrammetry was used to measure wall motion during the summer of 2002. In addition, a laser distancemeter was used to measure the relative distance between the test section walls at a single point. Distancemeter and videogrammetry results were consistent. Data were analyzed as a function of temperature and pressure to determine their effects on wall motion. Data were collected between 50 and 100 F, 0 and 0.315 Mach, and dynamic pressures of 0 and 120 psf. The overall motion of each wall was found to be less than 0.25 in. and less than facility personnel anticipated. The results show how motion depends on the temperature and pressure inside the test section as well is the position of the boundary layer vane. The repeatability of the measurements was +/-0.06 in. This report describes the methods used to record the motion of the test section walls and the results of the data analysis. Future facility plans include the development of a suitable wall restraint system and the determination of the effects of the wall motion on tunnel calibration.

  17. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  18. Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall

    NASA Astrophysics Data System (ADS)

    Jabbar, Hussam; Naguib, Ahmed

    2017-11-01

    Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).

  19. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  20. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  1. A temperature correlation for the radiation resistance of a thick-walled circular duct exhausting a hot gas

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Cline, J. G.; Jones, J. D.

    1984-01-01

    It is often useful to know the radiation impedance of an unflanged but thick-walled circular duct exhausting a hot gas into relatively cold surroundings. The reactive component is shown to be insensitive to temperature, but the resistive component is shown to be temperature dependent. A temperature correlation is developed permitting prediction of the radiation resistance from a knowledge of the temperature difference between the ambient air and the gas flowing from the duct, and a physical basis for this correlation is presented.

  2. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  3. Temperature correction in conductivity measurements

    USGS Publications Warehouse

    Smith, Stanford H.

    1962-01-01

    Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.

  4. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  5. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  6. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiel, S.; Loarer, T.; Pocheau, C.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~more » 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.« less

  7. Near Wall measurement in Turbulent Flow over Rough Wall using microscopic HPIV

    NASA Astrophysics Data System (ADS)

    Talapatra, Siddharth; Hong, Jiarong; Katz, Joseph

    2009-11-01

    Using holographic PIV, 3D velocity measurements are being performed in a turbulent rough wall channel flow. Our objective is to examine the contribution of coherent structures to the flow dynamics, momentum and energy fluxes in the roughness sublayer. The 0.45mm high, pyramid-shaped roughness is uniformly distributed on the top and bottom surfaces of a 5X20cm rectangular channel flow, where the Reτ is 3400. To facilitate recording of holograms through a rough plate, the working fluid is a concentrated solution of NaI in water, whose optical refractive index is matched with that of the acrylic rough plates. The test section is illuminated by a collimated laser beam from the top, and the sample volume extends from the bottom wall up to 7 roughness heights. After passing through the sample volume, the in-line hologram is magnified and recorded on a 4864X3248 pixels camera at a resolution of 0.74μm/pixel. The flow is locally seeded with 2μm particles. Reconstruction, spatial filtering and particle tracking provide the 3D velocity field. This approach has been successfully implemented recently, as preliminary data demonstrate.

  8. Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm

    NASA Astrophysics Data System (ADS)

    Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.

    2018-06-01

    A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.

  9. Noncontact Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Editor)

    1988-01-01

    Noncontact temperature measurement has been identified as one of the eight advanced technology development (ATD) areas to support the effort of the Microgravity Science and Applications Division in developing six Space Station flight experiment facilities. This two-day workshop was an opportunity for all six disciplines to present their requirements on noncontact temperature measurement and to discuss state-of-the-art developments. Multi-color pyrometry, laser pyrometry and radiometric imaging techniques are addressed.

  10. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating.

    PubMed

    Zhao, Jisong

    2018-05-17

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.

  11. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating

    PubMed Central

    Zhao, Jisong

    2018-01-01

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822

  12. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  13. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul P.; Claussen, Heiko; Ragunathan, Karthik

    A method for determining waveguide temperature for at least one waveguide of a transceiver utilized for generating a temperature map. The transceiver generates an acoustic signal that travels through a measurement space in a hot gas flow path defined by a wall such as in a combustor. The method includes calculating a total time of flight for the acoustic signal and subtracting a waveguide travel time from the total time of flight to obtain a measurement space travel time. A temperature map is calculated based on the measurement space travel time. An estimated wall temperature is obtained from the temperaturemore » map. An estimated waveguide temperature is then calculated based on the estimated wall temperature wherein the estimated waveguide temperature is determined without the use of a temperature sensing device.« less

  14. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  15. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  16. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  17. Dual-wavelengths photoacoustic temperature measurement

    NASA Astrophysics Data System (ADS)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  18. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature.

    PubMed

    Huang, Yang; Bando, Yoshio; Tang, Chengchun; Zhi, Chunyi; Terao, Takeshi; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri

    2009-02-25

    Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick. A mechanism combining the vapor-liquid-solid (VLS) and template self-sacrificing processes is proposed to explain the formation of these novel one-dimensional microstructures, in which the Li(2)O-B(2)O(3) eutectic reaction plays an important role. Cathodoluminescence studies show that even at room temperature the thin-walled BN microtubes can possess an intense band-edge emission at approximately 216.5 nm, which is distinct compared with other BN nanostructures. The study suggests that the thin-walled BN microtubes should be promising for constructing compact deep UV devices and find potential applications in microreactors and microfluidic and drug delivery systems.

  19. Behavior of temperature-dependent dc-photoconductivity in hot-wall deposited CaAl2Se4 layers

    NASA Astrophysics Data System (ADS)

    Jeong, J. W.; Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2017-10-01

    The dc-photoconductive characteristic on the hot-wall grown CaAl2Se4 (CAS) layers was explored as a function of temperature. From the photocurrent (PC) measurement, three PC peaks A, B, and C corresponded to the intrinsic transitions, which represent the band-to-band transitions from the valence-band states of Γ2(A), Γ3 + Γ4(B), and Γ3 + Γ4(C) to the conduction-band state of Γ1, respectively. Based on these PC results, the optical band-gap energy was well matched by E g ( T) = E g (0) - 4.94 × 10-3 T 2/( T + 552), where E g (0) is found to be 3.8239, 3.8716, and 3.8801 eV for three peaks A, B, and C, respectively. Thus, the effect of the crystal field and spin-orbit splitting (These values were extracted out to be 47.7 and 8.5 meV, respectively.) was observed and calculated by means of the PC spectroscopy. However, PC intensity gradually decreased with decreasing temperature unlike an ordinary behavior. In the log J ph vs 1/ T plot, two dominant traplevels were observed to be 20.81 meV at temperatures of 300 - 70 K and 1.18 meV at temperatures below 70 K. Consequently, we extract out that these trapping centers caused by native defects in CAS confine the PC intensity as temperature decreases.

  20. Laser Pyrometer For Spot Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  1. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.

    PubMed

    Meixner, Eva; Michelson, Georg

    2015-11-01

    To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level

  2. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  3. The validation of a swimming turn wall-contact-time measurement system: a touchpad application reliability study.

    PubMed

    Brackley, Victoria; Ball, Kevin; Tor, Elaine

    2018-05-12

    The effectiveness of the swimming turn is highly influential to overall performance in competitive swimming. The push-off or wall contact, within the turn phase, is directly involved in determining the speed the swimmer leaves the wall. Therefore, it is paramount to develop reliable methods to measure the wall-contact-time during the turn phase for training and research purposes. The aim of this study was to determine the concurrent validity and reliability of the Pool Pad App to measure wall-contact-time during the freestyle and backstroke tumble turn. The wall-contact-times of nine elite and sub-elite participants were recorded during their regular training sessions. Concurrent validity statistics included the standardised typical error estimate, linear analysis and effect sizes while the intraclass correlating coefficient (ICC) was used for the reliability statistics. The standardised typical error estimate resulted in a moderate Cohen's d effect size with an R 2 value of 0.80 and the ICC between the Pool Pad and 2D video footage was 0.89. Despite these measurement differences, the results from this concurrent validity and reliability analyses demonstrated that the Pool Pad is suitable for measuring wall-contact-time during the freestyle and backstroke tumble turn within a training environment.

  4. Method of measuring material properties of rock in the wall of a borehole

    DOEpatents

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  5. Method of measuring material properties of rock in the wall of a borehole

    DOEpatents

    Overmier, D.K.

    1984-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  6. Theory and Simulation of A Novel Viscosity Measurement Method for High Temperature Semiconductor

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rose; Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The properties of molten semiconductors are good indicators for material structure transformation and hysteresis under temperature variations. Viscosity, as one of the most important properties, is difficult to measure because of high temperature, high pressure, and vapor toxicity of melts. Recently, a novel method was developed by applying a rotating magnetic field to the melt sealed in a suspended quartz ampoule, and measuring the transient torque exerted by rotating melt flow on the ampoule wall. The method was designed to measure viscosity in short time period, which is essential for evaluating temperature hysteresis. This paper compares the theoretical prediction of melt flow and ampoule oscillation with the experimental data. A theoretical model was established and the coupled fluid flow and ampoule torsional vibration equations were solved numerically. The simulation results showed a good agreement with experimental data. The results also showed that both electrical conductivity and viscosity could be calculated by fitting the theoretical results to the experimental data. The transient velocity of the melt caused by the rotating magnetic field was found reach equilibrium in about half a minute, and the viscosity of melt could be calculated from the altitude of oscillation. This would allow the measurement of viscosity in a minute or so, in contrast to the existing oscillation cup method, which requires about an hour for one measurement.

  7. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph; Baker, Peter

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  8. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  9. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  10. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  11. Noncontact true temperature measurement, 2

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1988-01-01

    A laser pyrometer was developed for acquiring the true temperature of a levitated sample. The reflectivity is measured by first expanding the laser beam to cover the entire cross-sectional surface of the diffuse target. The reflectivity calibration of this system is determined from the surface emissivity of a target with a blackbody cavity. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of the blackbody cavity (emissivity = 1.0) at a known, arbitrary temperature. Since the photosensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. The latest results available from this on-going research indicate that true temperatures thus obtained are in very good quantitative agreement with thermocouple measured temperatures.

  12. Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kazoe, Yutaka; Sato, Yohei

    A nanoscale laser induced fluorescence imaging was proposed by using fluorescent dye and the evanescent wave with total internal reflection of a laser beam. The present study focused on the two-dimensional measurement of zeta-potential at the microchannel wall, which is an electrostatic potential at the wall surface and a dominant parameter of electroosmotic flow. The evanescent wave, which decays exponentially from the wall, was used as an excitation light of the fluorescent dye. The fluorescent intensity detected by a CCD camera is closely related to the zeta-potential. Two kinds of fluorescent dye solution at different ionic concentrations were injected into a T-shaped microchannel, and formed a mixing flow field in the junction area. The two-dimensional distribution of zeta-potential at the microchannel wall in the pressure-driven flow field was measured. The obtained zeta-potential distribution has a transverse gradient toward the mixing flow field and was changed by the difference in the averaged velocity of pressure-driven flow. To understand the ion motion in the mixing flow field, the three-dimensional flow structure was analyzed by the velocity measurement using micron-resolution particle image velocimetry and the numerical simulation. It is concluded that the two-dimensional distribution of zeta-potential at the microchannel wall was dependent on the ion motion in the flow field, which was governed by the convection and molecular diffusion.

  13. Effect of Temperature on the Desorption of Lithium from Molybdenum(110) Surfaces: Implications for Fusion Reactor First Wall Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Roszell, John; Scoullos, Emanuel V.

    2016-03-30

    Determining the strength of Li binding to Mo is critical to assessing the survivability of Li as a potential first wall material in fusion reactors. Here, we present the results of a joint experimental and theoretical investigation into how Li desorbs from Mo(110) surfaces, based on what can be deduced from temperature-programmed desorption measurements and density functional theory (DFT). Li desorption peaks measured at temperatures ranging from 711 K (1 monolayer, ML) to 1030 K (0.04 ML), with corresponding desorption onsets from 489 to 878 K, follow a trend similar to predicted Gibbs free energies for Li adsorption. Bader chargemore » analysis of DFT densities reveals that repulsive forces between neighboring positively charged Li atoms increase with coverage and thus reduce the bond strength between Mo and Li, thereby lowering the desorption temperature as the coverage increases. In addition, DFT predicts that Li desorbs at higher temperatures from a surface with vacancies than from a perfect surface, offering an explanation for the anomalously high desorption temperatures for the last Li to desorb from Mo(110). Analysis of simulated local densities of states indicates that the stronger binding to the defective surface is correlated with enhanced interaction between Li and Mo, involving the Li 2s electrons and not only the Mo 4d electrons as in the case of the pristine surface, but also the Mo 5s electrons in the case with surface vacancies. We suggest that steps and kinks present on the Mo(110) surface behave similarly and contribute to the high desorption temperatures. These findings imply that roughened Mo surfaces may strengthen Li film adhesion at higher temperatures.« less

  14. Measurements of Gas-Wall Partitioning of Oxidized Species in Environmental Smog Chambers and Teflon Sampling Lines

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.

    2015-12-01

    Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ­ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.

  15. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    NASA Astrophysics Data System (ADS)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  16. Thermospheric temperature measurement technique.

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Fowler, P.

    1972-01-01

    A method for measurement of temperature in the earth's lower thermosphere from a high-velocity probes is described. An undisturbed atmospheric sample is admitted to the instrument by means of a free molecular flow inlet system of skimmers which avoids surface collisions of the molecules prior to detection. Measurement of the time-of-flight distribution of an initially well-localized group of nitrogen metastable molecular states produced in an open, crossed electron-molecular beam source, yields information on the atmospheric temperature. It is shown that for high vehicle velocities, the time-of-flight distribution of the metastable flux is a sensitive indicator of atmospheric temperature. The temperature measurement precision should be greater than 94% at the 99% confidence level over the range of altitudes from 120-170 km. These precision and altitude range estimates are based on the statistical consideration of the counting rates achieved with a multichannel analyzer using realistic values for system parameters.

  17. Heat transfer characteristics of building walls using phase change material

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  18. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  19. Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.

    PubMed

    Paës, Gabriel; Habrant, Anouck; Ossemond, Jordane; Chabbert, Brigitte

    2017-01-01

    The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.

  20. Application of small panel damping measurements to larger walls

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  1. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.

    PubMed

    Kazachkin, Dmitry; Nishimura, Yoshifumi; Irle, Stephan; Morokuma, Keiji; Vidic, Radisav D; Borguet, Eric

    2008-08-05

    The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge

  2. Measurement of wall shear stress in chick embryonic heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Zhenhe; Dou, Shidan; Zhao, Yuqian; Wang, Yi; Suo, Yanyan; Wang, Fengwen

    2015-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) is one of the components which have been proved to influence the morphogenesis during early stages of cardiac development. To study the mechanism, WSS measurement is a step with significant importance. WSS is caused by blood flow imposed on the inner surface of the heart wall and it can be determined by calculating velocity gradients of blood flow in a direction perpendicular to the wall. However, the WSS of the early stage embryonic heart is difficult to measure since the embryonic heart is tiny and beating fast. Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial and temporal resolution, which is uniquely suitable for the study of early stage embryonic heart development. In this paper, we introduce a method to measure the WSS of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT). 4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. After phase synchronization, OFT boundary segmentation, and OFT center line calculation, Doppler angle of the blood flow in the OFT can be achieved (This method has been described in previous publications). Combining with the Doppler OCT results, we calculate absolute blood flow velocity distribution in the OFT. The boundary of the OFT was segmented at each cross-sectional structural image, then geometrical center of the OFT can be calculated. Thus, the gradients of blood flow in radial direction can be calculated. This velocity gradient near the wall is termed wall shear rate and the WSS value is proportional to the wall shear rate. Based on this method, the WSS at different heart beating phase are compare. The result demonstrates that OCT is capable of early stage chicken embryonic heart WSS study.

  3. Mixed convection of magnetohydrodynamic nanofluids inside microtubes at constant wall temperature

    NASA Astrophysics Data System (ADS)

    Moshizi, S. A.; Zamani, M.; Hosseini, S. J.; Malvandi, A.

    2017-05-01

    Laminar fully developed mixed convection of magnetohydrodynamic nanofluids inside microtubes at a constant wall temperature (CWT) under the effects of a variable directional magnetic field is investigated numerically. Nanoparticles are assumed to have slip velocities relative to the base fluid owing to thermophoretic diffusion (temperature gradient driven force) and Brownian diffusion (concentration gradient driven force). The no-slip boundary condition is avoided at the fluid-solid mixture to assess the non-equilibrium region at the fluid-solid interface. A scale analysis is performed to estimate the relative significance of the pertaining parameters that should be included in the governing equations. After the effects of pertinent parameters on the pressure loss and heat transfer enhancement were considered, the figure of merit (FoM) is employed to evaluate and optimize the thermal performance of heat exchange equipment. The results indicate the optimum thermal performance is obtained when the thermophoresis overwhelms the Brownian diffusion, which is for larger nanoparticles. This enhancement boosts when the buoyancy force increases. In addition, increasing the magnetic field strength and slippage at the fluid-solid interface enhances the thermal performance.

  4. Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements

    NASA Astrophysics Data System (ADS)

    O'Donnell Meininger, T.; Selker, J. S.

    2015-02-01

    Error in distributed temperature sensing (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, streambed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.

  5. On the roles of solid wall in the thermal analysis of micro heat pipes

    NASA Astrophysics Data System (ADS)

    Hung, Yew Mun

    , analysis on thermal performance and physical phenomena of an overloaded micro heat pipes incorporating the effects of axial conduction in the solid wall is carried out. The thermal effects of the solid material are investigated and it is observed that the behaviour of the solid wall temperature distribution varies drastically as the applied heat load exceeds the heat transport capacity. The abrupt change in the temperature profile of an overloaded micro heat pipe is of considerable practical significance in which the occurrence of dryout can be identified by physically measuring the solid wall temperatures along the axial direction. Thirdly, by taking into account the axial conduction in the solid wall, the effect of gravity on the thermal performance of an inclined micro heat pipe is explored. Attributed to the occurrence of dryout, an abrupt temperature rise is observed at the evaporator end when the micro heat pipe is negatively inclined. Therefore, the orientation of a micro heat pipe can be determined by physically measuring the solid wall temperature. Lastly, by coupling the heat transfer model of phase-change phenomena at the liquid-vapour interface, the model with axial conduction in the solid wall of the micro heat pipe is extended to predict the axial liquid and vapour temperature distributions of the working fluid, which is useful for the verification of certain assumptions made in the derivation of the mathematical model besides for analyzing the heat transfer characteristics of the evaporation process.

  6. Molecular Dynamics Simulations of the Thermal Conductivity of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, M.; Srivastava, Deepak; Govindan,T. R. (Technical Monitor)

    2000-01-01

    Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.

  7. Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Dennis, Cindi; McMichael, Robert

    2010-03-01

    The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);

  8. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  9. Integrated Emissivity And Temperature Measurement

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  10. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  11. Flight Measurement of Wall-Pressure Fluctuations and Boundary-Layer Turbulence

    NASA Technical Reports Server (NTRS)

    Mull, Harold R.; Algranti, Joseph S.

    1960-01-01

    The results are presented for a flight test program using a fighter type jet aircraft flying at pressure altitudes of 10,000, 20,000, and 30,000 feet at Mach numbers from 0.3 to 0.8. Specially designed apparatus was used to measure and record the output of microphones and hot-wire anemometers mounted on the forward-fuselage section and wing of the airplane. Mean-velocity profiles in the boundary layers were obtained from total-pressure measurements. The ratio of the root-mean-square fluctuating wall pressure to the free-stream dynamic pressure is presented as a function of Reynolds number and Mach number. The longitudinal component of the turbulent-velocity fluctuations was measured, and the turbulence-intensity profiles are presented for the wing and forward-fuselage section. In general, the results are in agreement with wind-tunnel measurements which have been-reported in the literature. For example, the variation the square root of p(sup 2)/q times the square root of p(sup 2) is the root mean square of the wall-pressure fluctuation, and q is the free-stream dynamic pressure) with Reynolds number was found to be essentially constant for the forward-fuselage-section boundary layer, while variations at the wing station were probably unduly affected by the microphone diameter (5/8 in.), which was large compared with the boundary-layer thickness.

  12. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    NASA Astrophysics Data System (ADS)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  13. Measurements of gas temperature in a radiatively heated particle laden turbulent duct flow

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Banko, Andrew; Villafane, Laura; Elkins, Chris; Eaton, John

    2017-11-01

    Predicting the absorption of radiation through a turbulent, particle laden flow is relevant in atmospheric sciences, turbulent combustion, and in the design of a particle solar receivers. In order to better understand the coupling between the particle phase, the turbulent fluid phase, and the incident radiation, the effects of radiation absorption by disperse inertial particles in a turbulent duct flow was studied experimentally. A fully-developed turbulent duct flow at Reynolds numbers of O(104) , laden with particles at mass loading ratios of 0.1-0.8, was subject to infrared radiation at varying incident powers. The particle Stokes number based on the Kolmogorov length scale was approximately 12, resulting in a preferentially concentrated particle phase. Measurements of the mean and fluctuating components of the gas phase temperature were made along the wall bisector. Results from mean temperature traverses of the gas phase show that a one-dimensional model can account for much of the mean gas temperature rise. Temperature fluctuations due to preferential concentration are significant and can reach approximately 50% of the mean temperature rise. This work was funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1.

  14. Temperature measuring device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  15. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  16. A near-wall four-equation turbulence model for compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1992-01-01

    A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.

  17. Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.

    PubMed

    Kumar, S Santosh; Hong, Jiarong

    2018-05-14

    We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.

  18. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph; Baker, Peter

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various designmore » elements.« less

  19. A protection system for the JET ITER-like wall based on imaging diagnostics.

    PubMed

    Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  20. A protection system for the JET ITER-like wall based on imaging diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Arnoux, G.; Devaux, S.; Alves, D.; Balboa, I.; Balorin, C.; Balshaw, N.; Beldishevski, M.; Carvalho, P.; Clever, M.; Cramp, S.; de Pablos, J.-L.; de la Cal, E.; Falie, D.; Garcia-Sanchez, P.; Felton, R.; Gervaise, V.; Goodyear, A.; Horton, A.; Jachmich, S.; Huber, A.; Jouve, M.; Kinna, D.; Kruezi, U.; Manzanares, A.; Martin, V.; McCullen, P.; Moncada, V.; Obrejan, K.; Patel, K.; Lomas, P. J.; Neto, A.; Rimini, F.; Ruset, C.; Schweer, B.; Sergienko, G.; Sieglin, B.; Soleto, A.; Stamp, M.; Stephen, A.; Thomas, P. D.; Valcárcel, D. F.; Williams, J.; Wilson, J.; Zastrow, K.-D.; JET-EFDA Contributors

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  1. Kinetic description of finite-wall catalysis for monatomic molecular recombination

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-11-01

    In our previous study on hypothetical diatomic molecular dissociation and monatomic molecular recombination, A2 + M ↔ A + A + M [Yano et al., Phys. Fluids 21, 127101 (2009)], the interaction between the wall and A2* intermediates was not formulated. In this paper, we consider the effect of finite-wall catalysis on recombination of a monatomic molecule A via the interaction between the wall and A2*. According to the proposed Boltzmann model equation, the catalytic recombination rate depends on two quantities; the vibrational temperature and the translational temperature of A2* intermediates that are emitted from the wall. In particular, the translational temperature of A2* is related to its lifetime. In this paper, we investigate the change in the catalytic recombination rate of A upon changing the vibrational temperature of A2* intermediates that are emitted from the wall. As an object of analysis, the rarefied hypersonic flow around a cylinder with a finite wall-catalysis is considered using the proposed Boltzmann model equation. Numerical results confirm that a decrease in the vibrational temperature of A2* intermediates that are emitted from the wall results in an increase in recombination of A near the wall.

  2. Diagnostic developments for velocity and temperature measurements in uni-element rocket environments

    NASA Astrophysics Data System (ADS)

    Philippart, Kenneth D.

    1995-08-01

    Velocity and temperature measurements were taken within a uni-element rocket combustion chamber for hydrogen-oxygen propellants using laser Doppler velocimetry, thermocouples, and a thermocouple-based temperature rake developed for this effort. Velocity and turbulence profiles were obtained for firings with a gaseous oxygen (GO2)/gaseous hydrogen (GH2) coaxial shear injector at axial locations of 1.6 mm (0.063 in.), 6.4 mm (0.25 in.), 12.7 mm (0.5 in.), 25.4 mm (1 in.) and 50.8 mm (2 in.). Aluminum oxide particles of various sizes seeded the flow in an attempt to explain the discrepancies. While cold-flow simulations were promising, hot-fire results for the various particles were virtually identical and still lower than earlier data. The hot-firings were self-consistent and question the reproducibility of the previous data. Velocity measurements were made closer to the injector than the preceding work. Asymmetries were noted in all profiles. The shear layer displayed high turbulence levels. The central flow near the injector resembled turbulent pipe flow. Recirculation zones existed at the chamber walls and became smaller as the flow evolved downstream. The combusting flow region expanded with increasing axial distance. A thermocouple-instrumented coaxial injector was fired with GO2/GH2 propellants. The injector exit plane boundary conditions were determined. The feasibility of a thermocouple-based temperature rake was established. Tests at three axial positions for air/GM2 firings revealed asymmetric profiles. Temperatures increased with increasing axial distance.

  3. The effects of chemical kinetics and wall temperature on performance of porous media burners

    NASA Astrophysics Data System (ADS)

    mohammadi, Iman; Hossainpour, Siamak

    2013-06-01

    This paper reports a two-dimensional numerical prediction of premixed methane-air combustion in inert porous media burner by using of four multi-step mechanisms: GRI-3.0 mechanism, GRI-2.11 mechanism and the skeletal and 17 Species mechanisms. The effects of these models on temperature, chemical species and pollutant emissions are studied. A two-dimensional axisymmetric model for premixed methane-air combustion in porous media burner has developed. The finite volume method has used to solve the governing equations of methane-air combustion in inert porous media burner. The results indicate that the present four models have the same accuracy in predicting temperature profiles and the difference between these profiles is not more than 2 %. In addition, the Gri-3.0 mechanism shows the best prediction of NO emission in comparison with experimental data. The 17 Species mechanism shows good agreement in prediction of temperature and pollutant emissions with GRI-3.0, GRI-2.11 and the skeletal mechanisms. Also the effects of wall temperature on the gas temperature and mass fraction of species such as NO and CH4 are studied.

  4. Dual-Pump CARS Temperature and Species Concentration Measurements in a Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    O'Byrne, S.; Danehy, P. M.; Tedder, S. A.; Cutler, A. D.

    2007-01-01

    The dual-pump coherent anti-Stokes Raman scattering (CARS) method was used to measure temperature and the mole fractions of N2 and O2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. In this facility, H2 and oxygen-enriched air burn to increase the enthalpy of the simulated air test gas. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward-facing step and another constant-area section. At the end of this straight section, H2 fuel is injected at Mach 2 and at a 30 angle with respect to the freestream. One wall of the duct then expands at a 3 angle for over 1 meter. The ensuing combustion is probed optically through ports in the side of the combustor. Dual-pump CARS measurements were performed at the facility nozzle exit and at four planes downstream of fuel injection. Maps are presented of the mean temperature, as well as N2 and O2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are also presented.

  5. Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Miorini, Rinaldo; Zhang, Cao; Katz, Joseph

    2013-11-01

    Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, λ = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.

  6. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  7. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Astrophysics Data System (ADS)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  8. Accuracy Evaluation in the Measurement of a Small Change in the Thickness of Arterial Walls and the Measurement of Elasticity of the Human Carotid Artery

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Kanai, Hiroshi; Hoshimiya, Nozomu; Chubachi, Noriyoshi; Koiwa, Yoshiro

    1998-05-01

    For the diagnosis of the early stages of atherosclerosis, it isimportant to evaluate the local acoustic characteristics of thearterial wall. For this purpose, it is necessary to increase thespatial resolution in the axial direction to several millimeters,which corresponds to the size of the macular lesion on the surface ofthe wall. We have proposed a method for measuring small velocitysignals on the intima and adventitia of the arterial wall from theskin surface using pulsive ultrasonic waves. The small change inthickness of the arterial wall is obtained by integrating thedifference between the two velocity signals on the intima andadventitia. The elastic property of the arterial wall is noninvasivelyevaluated from the change in thickness and the arterial innerpressure. In this paper, we evaluate the accuracy of the proposedmethod for measuring the small displacement. Moreover, we applied thismethod to evaluate the elastic property of the arterial wall of 50patients and 8 healthy subjects.

  9. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  10. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part I, product temperature measurement.

    PubMed

    Tang, Xiaolin; Nail, Steven L; Pikal, Michael J

    2006-02-10

    This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperature, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45 degrees C).

  11. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: Part I, product temperature measurement.

    PubMed

    Tang, Xiaolin; Nail, Steven L; Pikal, Michael J

    2006-03-01

    This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (-45°C).

  12. Measuring Poisson Ratios at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  13. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow

    PubMed Central

    Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-01-01

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off. PMID:29065498

  14. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow.

    PubMed

    Ma, Chengyu; Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-10-22

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.

  15. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

    PubMed

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.

  16. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  17. The Kelvin and Temperature Measurements

    PubMed Central

    Mangum, B. W.; Furukawa, G. T.; Kreider, K. G.; Meyer, C. W.; Ripple, D. C.; Strouse, G. F.; Tew, W. L.; Moldover, M. R.; Johnson, B. Carol; Yoon, H. W.; Gibson, C. E.; Saunders, R. D.

    2001-01-01

    The International Temperature Scale of 1990 (ITS-90) is defined from 0.65 K upwards to the highest temperature measurable by spectral radiation thermometry, the radiation thermometry being based on the Planck radiation law. When it was developed, the ITS-90 represented thermodynamic temperatures as closely as possible. Part I of this paper describes the realization of contact thermometry up to 1234.93 K, the temperature range in which the ITS-90 is defined in terms of calibration of thermometers at 15 fixed points and vapor pressure/temperature relations which are phase equilibrium states of pure substances. The realization is accomplished by using fixed-point devices, containing samples of the highest available purity, and suitable temperature-controlled environments. All components are constructed to achieve the defining equilibrium states of the samples for the calibration of thermometers. The high quality of the temperature realization and measurements is well documented. Various research efforts are described, including research to improve the uncertainty in thermodynamic temperatures by measuring the velocity of sound in gas up to 800 K, research in applying noise thermometry techniques, and research on thermocouples. Thermometer calibration services and high-purity samples and devices suitable for “on-site” thermometer calibration that are available to the thermometry community are described. Part II of the paper describes the realization of temperature above 1234.93 K for which the ITS-90 is defined in terms of the calibration of spectroradiometers using reference blackbody sources that are at the temperature of the equilibrium liquid-solid phase transition of pure silver, gold, or copper. The realization of temperature from absolute spectral or total radiometry over the temperature range from about 60 K to 3000 K is also described. The dissemination of the temperature scale using radiation thermometry from NIST to the customer is achieved by

  18. Surface Temperature Measurement Using Hematite Coating

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J. (Inventor)

    2015-01-01

    Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

  19. Pressure measurements in a rapidly sheared turbulent wall layer

    NASA Astrophysics Data System (ADS)

    Diwan, Sourabh; Morrison, Jonathan

    2014-11-01

    The aim of the present work is to improve understanding of the role of pressure fluctuations in the generation of coherent structures in wall-bounded turbulent flows, with particular regard to the rapid and slow source terms. The work is in part motivated by the recent numerical simulations of Sharma et al. (Phy. Fluids, 23, 2011), which showed the importance of pressure fluctuations (and their spatial gradients) in the dynamics of large-scale turbulent motions. Our experimental design consists of first generating a shearless boundary layer in a wind tunnel by passing a grid-generated turbulent flow over a moving floor whose speed is matched to the freestream velocity, and then shearing it rapidly by passing it over a stationary floor further downstream. Close to the leading edge of the stationary floor, the resulting flow is expected to satisfy the approximations of the Rapid Distortion Theory and therefore would be an ideal candidate for studying linear processes in wall turbulence. We carry out pressure measurements on the wall as well as within the flow - the former using surface mounted pressure transducers and the latter using a static pressure probe similar in design to that used by Tsuji et al. (J. Fluid. Mech. 585, 2007). We also present a comparison between the rapidly sheared flow and a more conventional boundary layer subjected to a turbulent free stream. We acknowledge the financial support from EPSRC (Grant No. EP/I037938).

  20. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor

    NASA Astrophysics Data System (ADS)

    Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason

    2014-10-01

    Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).

  1. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro.

    PubMed

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-11-01

    To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P=0.1606) or among the 3 densities of intravascular contrast material (MBIR, P=0.8185; Detail kernel, P=0.0802). Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Cryogenic wind tunnels: Problems of continuous operation at low temperatures

    NASA Technical Reports Server (NTRS)

    Faulmann, D.

    1986-01-01

    The design of a cryogenic wind tunnel which operates continuously, and is capable of attaining transonic speeds at generating pressures of about 3 bars is described. Its stainless steel construction with inside insulation allows for very rapid temperature variations promoted by rapid changes in the liquid nitrogen flow. A comparative study of temperature measuring probes shows a good reliability of thin sheet thermocouples. To measure fluctuations, only a cold wire makes it possible to record frequencies of about 300 Hz. The use of an integral computer method makes it possible to determine the impact of the wall temperature ratio to the adiabatic wall temperature for the various parameters characterizing the boundary layer. These cases are processed with positive and negative pressure gradients.

  3. Automated measurement of cattle surface temperature and its correlation with rectal temperature

    PubMed Central

    Ren, Kang; Chen, XiaoLi; Lu, YongQiang; Wang, Dong

    2017-01-01

    The body temperature of cattle varies regularly with both the reproductive cycle and disease status. Establishing an automatic method for monitoring body temperature may facilitate better management of reproduction and disease control in cattle. Here, we developed an Automatic Measurement System for Cattle’s Surface Temperature (AMSCST) to measure the temperature of metatarsus by attaching a special shell designed to fit the anatomy of cattle’s hind leg. Using AMSCST, the surface temperature (ST) on the metatarsus of the hind leg was successively measured during 24 hours a day with an interval of one hour in three tested seasons. Based on ST and rectal temperature (RT) detected by AMSCST and mercury thermometer, respectively, a linear mixed model was established, regarding both the time point and seasonal factors as the fixed effects. Unary linear correlation and Bland-Altman analysis results indicated that the temperatures measured by AMSCST were closely correlated to those measured by mercury thermometer (R2 = 0.998), suggesting that the AMSCST is an accurate and reliable way to detect cattle’s body temperature. Statistical analysis showed that the differences of STs among the three seasons, or among the different time points were significant (P<0.05), and the differences of RTs among the different time points were similarly significant (P<0.05). The prediction accuracy of the mixed model was verified by 10-fold cross validation. The average difference between measured RT and predicted RT was about 0.10 ± 0.10°C with the association coefficient of 0.644, indicating the feasibility of this model in measuring cattle body temperature. Therefore, an automated technology for accurately measuring cattle body temperature was accomplished by inventing an optimal device and establishing the AMSCST system. PMID:28426682

  4. High temperature surface effects of He + implantation in ICF fusion first wall materials

    NASA Astrophysics Data System (ADS)

    Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.

    2009-06-01

    The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.

  5. Modular first wall concept for steady state operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruptionmore » or neutral beams until excessive erosion or damage of the armour takes place.« less

  6. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge

    NASA Astrophysics Data System (ADS)

    Sugai, Toshiki; Omote, Hideki; Bandow, Shunji; Tanaka, Nobuo; Shinohara, Hisanori

    2000-04-01

    Fullerenes and single-wall carbon nanotubes (SWNTs) have been produced for the first time by the high-temperature pulsed arc-discharge technique, which has developed in this laboratory. Fullerenes are identified quantitatively by high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal a significant amount of production of bundles of SWNTs in soot. The pulse arc production of fullerenes and SWNTs favors the high-temperature (⩾1000 °C), long pulses (⩾1 ms) and a heavy rare gas such as Ar or Kr as a buffer gas. We have found that fullerenes and SWNTs have complementary relationships in their early stage of production. The details of the pulsed arc discharge have been obtained by observing the transition from the pulsed arc discharge to the steady arc discharge while increasing the pulse width.

  7. Wall-to-lumen ratio of intracranial arteries measured by indocyanine green angiography

    PubMed Central

    Nakagawa, Daichi; Shojima, Masaaki; Yoshino, Masanori; Kin, Taichi; Imai, Hideaki; Nomura, Seiji; Saito, Toki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2016-01-01

    Background: The wall-to-lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is still difficult to measure the thin-walled normal intracranial arteries, and the reports on the WLR of normal intracranial artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is used to observe intracranial vessels during microsurgery. Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography. Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and the vessels were inspected at high magnification using an operating microscope equipped with near-infrared illumination system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel outer diameter − vessel luminal diameter). Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to be high in small arteries. Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR reported in the previous reports based on human autopsy. PMID:27695538

  8. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2001-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  9. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2000-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  10. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  11. Evaluation of the prototype dual-axis wall attitude measurement sensor

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1994-01-01

    A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.

  12. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    PubMed

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from

  13. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    PubMed

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P < 0.05. Additionally, high-speed visualizations, laser-vibrometer measurements and numerical simulations of the file oscillation were conducted. File-to-wall contact occurred in all cases during 20% of the activation time. Contact time was significantly shorter at high power (P < 0.001), when the file was positioned away from working length (P < 0.001), in the larger root canal (P < 0.001) and from coronal towards apical third of the root canal (P < 0.002), in most of the cases studied. Previous training did not show a consistent significant effect. File oscillation was affected by contact during 94% of the activation time. During wall contact, the file bounced back and forth against the wall at audible frequencies (ca. 5 kHz), but still performed the original 30 kHz oscillations. Travelling waves were identified on the file. The file oscillation was not dampened completely due to the contact and hydrodynamic cavitation was detected. Considerable file-to-wall contact occur-red during irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Effect of cathode cooling efficiency and oxygen plasma gas pressure on the hafnium cathode wall temperature

    NASA Astrophysics Data System (ADS)

    Ashtekar, Koustubh; Diehl, Gregory; Hamer, John

    2012-10-01

    The hafnium cathode is widely used in DC plasma arc cutting (PAC) under an oxygen gas environment to cut iron and iron alloys. The hafnium erosion is always a concern which is controlled by the surface temperature. In this study, the effect of cathode cooling efficiency and oxygen gas pressure on the hafnium surface temperature are quantified. The two layer cathode sheath model is applied on the refractive hafnium surface while oxygen species (O2, O, O+, O++, e-) are considered within the thermal dis-equilibrium regime. The system of non-linear equations comprising of current density balance, heat flux balance at both the cathode surface and the sheath-ionization layer is coupled with the plasma gas composition solver. Using cooling heat flux, gas pressure and current density as inputs; the cathode wall temperature, electron temperature, and sheath voltage drop are calculated. Additionally, contribution of emitted electron current (Je) and ions current (Ji) to the total current flux are estimated. Higher gas pressure usually reduces Ji and increases Je that reduces the surface temperature by thermionic cooling.

  15. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping

  16. Measuring nanowire thermal conductivity at high temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m-1 K-1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  17. Measurement of the refractive index of microquantity liquid filled in a capillary and a capillary wall without destruction.

    PubMed

    Li, Qiang; Pu, Xiaoyun

    2013-07-20

    A method for measuring the refractive index (RI) of a small volume of liquid and a capillary wall is presented in this paper. A transparent capillary filled with liquid is used as a cylindrical positive lens; subsequently, the focal length of the lens is derived through the base of paraxial approximation, which is recorded as a function of the RIs of the liquid and capillary wall. With the RI of a capillary wall known, the RI of the liquid can be obtained by measuring the focal length of the lens, which is characterized by a microquantity liquid, spatial resolution, and easy operation. The RI of the capillary wall can be calculated without ruining the capillary if the capillary is filled with a standard liquid (RI is known), the deviation of which is less than 0.003 RIU. The factors affecting accuracy of the measurement, for instance, the depth of a field (DOF) in a reading microscope system and the outer and inner diameters of a capillary are analyzed, while illustrating that the effective DOF plays an essential role in accurate measurement.

  18. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-attenuation Values in a Cost-benefit Analysis of a Green Wall Affecting Courtyards

    PubMed Central

    Veisten, Knut; Smyrnova, Yuliya; Klæboe, Ronny; Hornikx, Maarten; Mosslemi, Marjan; Kang, Jian

    2012-01-01

    Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall. PMID:23202816

  19. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    This study was carried out to develop improved methods for measuring in-vivo stress relaxation of growing tissues and to compare relaxation in the stems of four different species. When water uptake by growing tissue is prevented, in-vivo stress relaxation occurs because continued wall loosening reduces wall stress and cell turgor pressure. With this procedure one may measure the yield threshold for growth (Y), the turgor pressure in excess of the yield threshold (P-Y), and the physiological wall extensibility (phi). Three relaxation techniques proved useful: "turgor-relaxation", "balance-pressure" and "pressure-block". In the turgor-relaxation method, water is withheld from growing tissue and the reduction in turgor is measured directly with the pressure probe. This technique gives absolute values for P and Y, but requires tissue excision. In the balance-pressure technique, the excised growing region is sealed in a pressure chamber, and the subsequent reduction in water potential is measured as the applied pressure needed to return xylem sap to the cut surface. This method is simple, but only measures (P-Y), not the individual values of P and Y. In the pressure-block technique, the growing tissue is sealed into a pressure chamber, growth is monitored continuously, and just sufficient pressure is applied to the chamber to block growth. The method gives high-resolution kinetics of relaxation and does not require tissue excision, but only measures (P-Y). The three methods gave similar results when applied to the growing stems of pea (Pisum sativum L.), cucumber (Cucumis sativus L.), soybean (Glycine max (L.) Merr.) and zucchini (Curcubita pepo L.) seedlings. Values for (P-Y) averaged between 1.4 and 2.7 bar, depending on species. Yield thresholds averaged between 1.3 and 3.0 bar. Compared with the other methods, relaxation by pressure-block was faster and exhibited dynamic changes in wall-yielding properties. The two pressure-chamber methods were also used to measure

  20. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  1. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  2. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    NASA Astrophysics Data System (ADS)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  3. Measurement of three-dimensional normal vectors, principal curvatures, and wall thickness of the heart using cine-MRI

    NASA Astrophysics Data System (ADS)

    Coghlan, Leslie; Singleton, H. R.; Dell'Italia, L. J.; Linderholm, C. E.; Pohost, G. M.

    1995-05-01

    We have developed a method for measuring the detailed in vivo three dimensional geometry of the left and right ventricles using cine-magnetic resonance imaging. From data in the form of digitized short axis outlines, the normal vectors, principal curvatures and directions, and wall thickness were computed. The method was evaluated on simulated ellipsoids and on human MRI data. Measurements of normal vectors and of wall thickness were very accurate in simulated data and appeared appropriate in patient data. On simulated data, measurements of the principal curvature k1 (corresponding approximately to the short axis direction of the left ventricle) and of principal directions were quite accurate, but measurements of the other principal curvature (k2) were less accurate. The reasons behind this are considered. We expect improvements in the accuracy with thinner slices and improved representation of the surface data. Gradient echo images were acquired from 8 dogs with a 1.5T system (Philips Gyroscan) at baseline and four months after closed chest experimentally produced mitral regurgitation (MR). The product (k1 + k2) X wall thickness averaged over all slices at end-diastole was significantly lower after surgery (n equals 8, p < 0.005). These geometry changes were consistent with the expected increase in wall stress after MR.

  4. Spectroscopic temperature measurements in interior ballistic environments

    NASA Astrophysics Data System (ADS)

    Klingenberg, G.; Mach, H.

    1984-11-01

    Spectroscopic temperature measurements during the interior ballistic cycle of a 20 mm test fixture gun and inside the muzzle flash of a 7.62 mm rifle are described. The investigation yields information on temperature distribution in the burning propellant charge of the 20 mm test fixture and on radial temperature profiles in the 7.62 mm muzzle flash region. A technique to obtain temperature during the ignition and combustion within the 20 mm propellant charge is presented. Additional in-bore measurements by quartz windows mounted into bores along the barrel and emission-absorption measurements inside the muzzle flash of the 20 mm test fixture yield a complete temperature profile for the gun system. Spectroscopic infrared measurements inside the muzzle flash of a 7.62 mm rifle complete the investigation.

  5. The influence of annealing on domain wall propagation in bistable amorphous microwire with unidirectional effect

    NASA Astrophysics Data System (ADS)

    Onufer, Jozef; Ziman, Ján; Duranka, Peter; Kladivová, Mária

    2018-07-01

    The effect of gradual annealing on the domain wall mobility (velocity), nucleation, critical depinning and propagation fields in amorphous FeSiB microwires has been studied. A new experimental set-up, presented in this paper, allows measurement of average domain wall velocity for four different conditions and detection of the presence of unidirectional effect in wall propagation without manipulation of the microwire. The proposed interpretation is that a domain wall is considered as a relatively long object which can change its axial dimension due to inhomogeneity of damping forces acting on the wall during its propagation. It is demonstrated that unidirectional effect in domain wall propagation can be strongly reduced by annealing the wire at temperatures higher than 350 °C.

  6. Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Kuhl, David D.; Walker, Eric L.

    2004-01-01

    This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.

  7. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  8. Summary of SLAC's SEY Measurement On Flat Accelerator Wall Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pimpec, F.; /PSI, Villigen /SLAC

    The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

  9. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  10. 121. Man with temperature probe aimed at armature measuring temperature ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  11. Ellipsometric measurement of liquid film thickness

    NASA Technical Reports Server (NTRS)

    Chang, Ki Joon; Frazier, D. O.

    1989-01-01

    The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls.

  12. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  13. Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.

    2017-10-01

    Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.

  14. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  15. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, Jr., Charles L.; Ericson, M. Nance

    1999-01-01

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  16. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  17. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  18. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  19. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  20. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  1. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  2. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  3. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  4. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  5. 7 CFR 28.301 - Measurement: humidity; temperature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70 °F. ...

  6. Reliability issues in human brain temperature measurement

    PubMed Central

    2009-01-01

    Introduction The influence of brain temperature on clinical outcome after severe brain trauma is currently poorly understood. When brain temperature is measured directly, different values between the inside and outside of the head can occur. It is not yet clear if these differences are 'real' or due to measurement error. Methods The aim of this study was to assess the performance and measurement uncertainty of body and brain temperature sensors currently in use in neurocritical care. Two organic fixed-point, ultra stable temperature sources were used as the temperature references. Two different types of brain sensor (brain type 1 and brain type 2) and one body type sensor were tested under rigorous laboratory conditions and at the bedside. Measurement uncertainty was calculated using internationally recognised methods. Results Average differences between the 26°C reference temperature source and the clinical temperature sensors were +0.11°C (brain type 1), +0.24°C (brain type 2) and -0.15°C (body type), respectively. For the 36°C temperature reference source, average differences between the reference source and clinical thermometers were -0.02°C, +0.09°C and -0.03°C for brain type 1, brain type 2 and body type sensor, respectively. Repeat calibrations the following day confirmed that these results were within the calculated uncertainties. The results of the immersion tests revealed that the reading of the body type sensor was sensitive to position, with differences in temperature of -0.5°C to -1.4°C observed on withdrawing the thermometer from the base of the isothermal environment by 4 cm and 8 cm, respectively. Taking into account all the factors tested during the calibration experiments, the measurement uncertainty of the clinical sensors against the (nominal) 26°C and 36°C temperature reference sources for the brain type 1, brain type 2 and body type sensors were ± 0.18°C, ± 0.10°C and ± 0.12°C respectively. Conclusions The results show that

  7. Retrofitted green roofs and walls and improvements in thermal comfort

    NASA Astrophysics Data System (ADS)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  8. Pilot study on objective measurement of abdominal wall strength in patients with ventral incisional hernia.

    PubMed

    Parker, Michael; Goldberg, Ross F; Dinkins, Maryane M; Asbun, Horacio J; Daniel Smith, C; Preissler, Susanne; Bowers, Steven P

    2011-11-01

    Outcomes after ventral incisional hernia (VIH) repair are measured by recurrence rate and subjective measures. No objective metrics evaluate functional outcomes after abdominal wall reconstruction. This study aimed to develop testing of abdominal wall strength (AWS) that could be validated as a useful metric. Data were prospectively collected during 9 months from 35 patients. A total of 10 patients were evaluated before and after VIH repair, for a total of 45 encounters. The patients were tested simultaneously or in succession by two of three examiners. Data were collected for three tests: double leg lowering (DLL), trunk raising (TR), and supine reaching (SR). Raw data were compared and tested for validity, and continuous data were transformed to categorical data. Agreement was measured using the intraclass correlation coefficient (ICC) for DLL and using kappa for the ordinal measures. Simultaneous testing yielded the following interobserver reliability: DLL (0.96 and 0.87), TR (1.00 and 0.95), and SR (0.76). Reproducibility was assessed by consecutive tests, with correlation as follows: DLL (0.81), TR (0.81), and RCH (0.21). Due to poor interobserver reliability for the SR test compared with the DLL and TR tests, the SR test was excluded from calculation of an overall score. Based on raw data distribution from the DLL and TR tests, the DLL data were categorized into 10º increments, allowing construction of a 10-point score. The median AWS score was 5 (interquartile range [IQR], 4-7), and there was agreement within 1 point for 42 of the 45 encounters (93%). The findings from this study demonstrate that the 10-point AWS score may measure AWS in an accurate and reproducible fashion, with potential for objective description of abdominal wall function of VIH patients. This score may help to identify patients suited for abdominal wall reconstruction while measuring progress after VIH repair. Further longitudinal outcomes studies are needed.

  9. MISSE 1 and 2 Tray Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  10. Application of vaginal temperature measurement in bitches.

    PubMed

    Maeder, B; Arlt, S; Burfeind, O; Heuwieser, W

    2012-12-01

    Finding innovative, non-invasive methods for continuously measuring body temperature minimizing human interference is important for accurate data collection. The objective of this study was to assess feasibility and accuracy of continuous body temperature measurements with loggers placed in the vaginal cavity of bitches. First, an in vitro experiment was performed to compare values obtained by temperature loggers (n = 26) to a calibrated liquid-in-glass thermometer. The mean differences between the two methods were low. Next, an in vivo experiment was performed using five healthy bitches, and values obtained by the vaginal loggers were compared to measurements collected rectally with digital thermometers. The results show that rectal and vaginal temperatures were correlated. The mean differences between rectal and vaginal temperatures were negligible. We conclude that the utilized temperature loggers provide accurate and reliable data. © 2012 Blackwell Verlag GmbH.

  11. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  12. An experimental study of near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, Rakesh K.; Raj, Rishi S.

    1989-01-01

    The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly

  13. Numerical prediction of wall temperatures for near-critical para-hydrogen in turbulent upflow inside vertical tubes

    NASA Technical Reports Server (NTRS)

    Bellmore, C. P.; Reid, R. L.

    1980-01-01

    Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.

  14. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    PubMed

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  15. Device for the alternative option of temperature measurement

    NASA Astrophysics Data System (ADS)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Cubik, Jakub; Cvejn, Daniel; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) has good optical properties, and its composition offers the possibility of use in many applications (industry, security device, medicine applications and etc.). We focused on the alternative option of temperature measurement in this article. Our approach is based on measuring changes of chromaticity correlated temperature corresponding to changes in temperature. Described device uses an optical fiber with a defined layer of PDMS and luminophore and we assume that it can find use also in the field of security. The article describes the process of making the prototype of the device and its verification based on laboratory results. The measured temperature depends mainly on the type of optical fiber and the measured temperature range is determined by the thermal resistance of used optical fiber. Using a calibration measurement can determine the value of temperature with an accuracy of +/- 2,5 %.

  16. Non-contact temperature measurement requirements

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Witherow, W. K.

    1989-01-01

    The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed.

  17. Thermal measurement of root surface temperatures during application of intracanal laser energy in vitro

    NASA Astrophysics Data System (ADS)

    Goodis, Harold E.; White, Joel M.; Neev, Joseph

    1993-07-01

    The use of laser energy to clean, shape, and sterilize a root canal system space involves the generation of heat due to the thermal effect of the laser on the organic tissue contents and dentin walls of that space. If heat generation is above physiologic levels, irreparable damage may occur to the periodontal ligament and surrounding bone. This study measured temperature rise on the outer root surfaces of extracted teeth during intracanal laser exposure. Thirty single rooted, recently extracted teeth free of caries and restorations were accessed pulps extirpated and divided into three groups. Each root canal system was treated with a 1.06 micrometers pulsed Nd:YAG laser with quartz contact probes. Temperatures were recorded for all surfaces (mesial distal, buccal, lingual, apical) with infrared thermography utilizing a detector response time of 1 (mu) sec, sensitivity range (infrared) of 8 to 12 micrometers and a scan rate of 30 frames/sec.

  18. Operational methods of thermodynamics. Volume 1 - Temperature measurement

    NASA Astrophysics Data System (ADS)

    Eder, F. X.

    The principles of thermometry are examined, taking into account the concept of temperature, the Kelvin scale, the statistical theory of heat, negative absolute temperatures, the thermodynamic temperature scale, the thermodynamic temperature scale below 1 K, noise thermometry, temperature scales based on black-body radiation, acoustical thermometry, and the International Practical Temperature Scale 1968. Aspects of practical temperature measurement are discussed, giving attention to thermometers based on the expansion of a gas or a liquid, instruments utilizing the relative thermal expansion of two different metals, devices measuring the vapor pressure of a liquid, thermocouples, resistance thermometers, radiation pyrometers of various types, instruments utilizing the temperature dependence of a number of material characteristics, devices for temperature control, thermometer calibration, and aspects of thermometer installation and inertia. A description is presented of the approaches employed for the measurement of low temperatures.

  19. Measurement of the temperature distribution inside the power cable using distributed temperature system

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  20. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    NASA Astrophysics Data System (ADS)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  1. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  2. Temperature measurement with industrial color camera devices

    NASA Astrophysics Data System (ADS)

    Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen

    1999-05-01

    This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.

  3. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  4. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  5. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  6. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor

    NASA Technical Reports Server (NTRS)

    Segal, Corin; Mcdaniel, James C.; Whitehurst, Robert B.; Krauss, Roland H.

    1991-01-01

    A study of transverse hydrogen injection behind a rearward facing step in a Mach 2 airflow was conducted to determine the combustion efficiency and the combustor/inlet interactions at the low temperature lean-mixture operational end of a scramjet combustor model. The fuel was injected at sonic conditions into the electrically heated airstream, which was maintained at 850 K or below. The static pressure delivered at the entrance of the combustor ranged between 0.25 to 0.5 atm. Injector configurations included single and staged injectors placed at 3 or 3-and-7 step-heights downstream of the step, respectively, with injector diameters of 1, 1.5, and 2 mm. Ignition was achieved by initially unstarting the test section. The constant area combustor and the low initial temperatures caused thermal choking and upstream interaction to occur at very low equivalence ratios. Typically, most of the fuel was burned in the recirculation region behind the step and around the jets. The effects of initial conditions (temperature and pressure), fuel-to-air dynamic pressure ratio, and boundaries (thermal vs adiabatic) are presented.

  7. MEASURING AND MODELING DISINFECTION WALL DEMAND IN METALLIC PIPES

    EPA Science Inventory

    A field test procedure was developed and implemented in Detroit to estimate chlorine loss due to wall demand in older 6" (152 mm) and 8" (203 mm) diameter, unlined cast iron pipes. The test results produced extremely high wall reaction rate coefficients that increased significan...

  8. Temperature differential detection device

    DOEpatents

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  9. Temperature differential detection device

    DOEpatents

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  10. Temperature measurement reliability and validity with thermocouple extension leads or changing lead temperature.

    PubMed

    Jutte, Lisa S; Long, Blaine C; Knight, Kenneth L

    2010-01-01

    Thermocouples' leads are often too short, necessitating the use of an extension lead. To determine if temperature measures were influenced by extension-lead use or lead temperature changes. Descriptive laboratory study. Laboratory. Experiment 1: 10 IT-21 thermocouples and 5 extension leads. Experiment 2: 5 IT-21 and PT-6 thermocouples. In experiment 1, temperature data were collected on 10 IT-21 thermocouples in a stable water bath with and without extension leads. In experiment 2, temperature data were collected on 5 IT-21 and PT-6 thermocouples in a stable water bath before, during, and after ice-pack application to extension leads. In experiment 1, extension leads did not influence IT-21 validity (P  =  .45) or reliability (P  =  .10). In experiment 2, postapplication IT-21 temperatures were greater than preapplication and application measures (P < .05). Extension leads had no influence on temperature measures. Ice application to leads may increase measurement error.

  11. Dynamic gas temperature measurement system

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.

  12. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    NASA Astrophysics Data System (ADS)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  13. Outdoor surface temperature measurement: ground truth or lie?

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  14. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  16. Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Kon, Akihiko; Mizutani, Koichi; Wakatsuki, Naoto

    2010-04-01

    We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.

  17. Temperature Measurements Taken by Phoenix Spacecraft

    NASA Image and Video Library

    2008-09-30

    This chart plots the minimum daily atmospheric temperature measured by NASA Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased.

  18. Microfabricated alkali vapor cell with anti-relaxation wall coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straessle, R.; Pétremand, Y.; Briand, D.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less

  19. Arterial Wall Perfusion Measured with Photon Counting Spectral X-ray CT.

    PubMed

    Jorgensen, Steven M; Korinek, Mark J; Vercnocke, Andrew J; Anderson, Jill L; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H; Ritman, Erik L

    2016-08-28

    Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 × 0.16 × 1 mm 3 . Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.

  20. Arterial wall perfusion measured with photon counting spectral x-ray CT

    NASA Astrophysics Data System (ADS)

    Jorgensen, Steven M.; Korinek, Mark J.; Vercnocke, Andrew J.; Anderson, Jill L.; Halaweish, Ahmed; Leng, Shuai; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 x 0.16 x 1 mm3. Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.

  1. Body temperature measurements in pigs during general anaesthesia.

    PubMed

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs. © The Author(s) 2015.

  2. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  3. High-temperature stability of the hydrate shell of a Na+ cation in a flat nanopore with hydrophobic walls

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2017-11-01

    The effect of elevated temperature has on the hydrate shell of a singly charged sodium cation inside a flat nanopore with smooth walls is studied using the Monte Carlo method. The free energy and the entropy of vapor molecule attachment are calculated by means of a bicanonical statistical ensemble using a detailed model of interactions. The nanopore has a stabilizing effect on the hydrate shell with respect to fluctuations and a destabilizing effect with respect to complete evaporation. At the boiling point of water, behavior is observed that is qualitatively similar to behavior at room temperature, but with a substantial shift in the vapor pressure and shell size.

  4. Temperature and heat flux measurements: Challenges for high temperature aerospace application

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.

    1992-01-01

    The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner.

  5. Modeling the effect of reflection from metallic walls on spectroscopic measurements.

    PubMed

    Zastrow, K-D; Keatings, S R; Marot, L; O'Mullane, M G; de Temmerman, G

    2008-10-01

    A modification of JET is presently being prepared to bring operational experience with ITER-like first wall (Be) and divertor (W) materials, geometry and plasma parameters. Reflectivity measurements of JET sample tiles have been performed and the data are used within a simplified model of the JET and ITER vessels to predict additional contributions to quantitative spectroscopic measurements. The most general method to characterize reflectivity is the bidirectional reflection distribution function (BRDF). For extended sources however, such as bremsstrahlung and edge emission of fuel and intrinsic impurities, the results obtained in the modeling are almost as accurate if the total reflectivity with ideal Lambertian angular dependence is used. This is in contrast to the experience in other communities, such as optical design, lighting design, or rendering who deal mostly with pointlike light sources. This result is so far based on a very limited set of measurements and will be reassessed when more detailed BRDF measurements of JET tiles have been made. If it is true it offers the possibility of in situ monitoring of the reflectivity of selected parts of the wall during exposure to plasma operation, while remeasurement of the BRDF is performed during interventions. For a closed vessel structure such as ITER, it is important to consider multiple reflections. This makes it more important to represent the whole of the vessel reasonably accurately in the model, which on the other hand is easier to achieve than for the more complex internal structure of JET. In both cases the dominant contribution is from the first reflection, and a detailed model of the areas intersected by lines of sight of diagnostic interest is required.

  6. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  11. Temperature Measurement and Numerical Prediction in Machining Inconel 718

    PubMed Central

    Tapetado, Alberto; Vázquez, Carmen; Miguélez, Henar

    2017-01-01

    Thermal issues are critical when machining Ni-based superalloy components designed for high temperature applications. The low thermal conductivity and extreme strain hardening of this family of materials results in elevated temperatures around the cutting area. This elevated temperature could lead to machining-induced damage such as phase changes and residual stresses, resulting in reduced service life of the component. Measurement of temperature during machining is crucial in order to control the cutting process, avoiding workpiece damage. On the other hand, the development of predictive tools based on numerical models helps in the definition of machining processes and the obtainment of difficult to measure parameters such as the penetration of the heated layer. However, the validation of numerical models strongly depends on the accurate measurement of physical parameters such as temperature, ensuring the calibration of the model. This paper focuses on the measurement and prediction of temperature during the machining of Ni-based superalloys. The temperature sensor was based on a fiber-optic two-color pyrometer developed for localized temperature measurements in turning of Inconel 718. The sensor is capable of measuring temperature in the range of 250 to 1200 °C. Temperature evolution is recorded in a lathe at different feed rates and cutting speeds. Measurements were used to calibrate a simplified numerical model for prediction of temperature fields during turning. PMID:28665312

  12. Temperature Measurement and Numerical Prediction in Machining Inconel 718.

    PubMed

    Díaz-Álvarez, José; Tapetado, Alberto; Vázquez, Carmen; Miguélez, Henar

    2017-06-30

    Thermal issues are critical when machining Ni-based superalloy components designed for high temperature applications. The low thermal conductivity and extreme strain hardening of this family of materials results in elevated temperatures around the cutting area. This elevated temperature could lead to machining-induced damage such as phase changes and residual stresses, resulting in reduced service life of the component. Measurement of temperature during machining is crucial in order to control the cutting process, avoiding workpiece damage. On the other hand, the development of predictive tools based on numerical models helps in the definition of machining processes and the obtainment of difficult to measure parameters such as the penetration of the heated layer. However, the validation of numerical models strongly depends on the accurate measurement of physical parameters such as temperature, ensuring the calibration of the model. This paper focuses on the measurement and prediction of temperature during the machining of Ni-based superalloys. The temperature sensor was based on a fiber-optic two-color pyrometer developed for localized temperature measurements in turning of Inconel 718. The sensor is capable of measuring temperature in the range of 250 to 1200 °C. Temperature evolution is recorded in a lathe at different feed rates and cutting speeds. Measurements were used to calibrate a simplified numerical model for prediction of temperature fields during turning.

  13. Micro-scale temperature measurement method using fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Tatsumi, K.; Hsu, C.-H.; Suzuki, A.; Nakabe, K.

    2016-09-01

    A novel method that can measure the fluid temperature in microscopic scale by measuring the fluorescence polarization is described in this paper. The measurement technique is not influenced by the quenching effects which appears in conventional LIF methods and is believed to show a higher reliability in temperature measurements. Experiment was performed using a microchannel flow and fluorescent molecule probes, and the effects of the fluid temperature, fluid viscosity, measurement time, and pH of the solution on the measured fluorescence polarization degree are discussed to understand the basic characteristics of the present method. The results showed that fluorescence polarization is considerably less sensible to these quenching factors. A good correlation with the fluid temperature, on the other hand, was obtained and agreed well with the theoretical values confirming the feasibility of the method.

  14. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  15. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.

    PubMed

    Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji

    2014-12-12

    Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.

  16. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  17. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factorsmore » (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were

  18. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Wang, Lixin; Yang, Xuezhi; Wang, Qi; Zeng, Yuxuan; Ding, Lei; Jiang, Wei

    2017-01-01

    The aggregation and deposition of carbon nanotubes (CNTs) determines their transport and fate in natural waters. Therefore, the aggregation kinetics of humic-acid treated multi-walled carbon nanotubes (HA-MWCNTs) was investigated by time-resolved dynamic light scattering in NaCl and CaCl 2 electrolyte solutions. Increased ionic strength induced HA-MWCNT aggregation due to the less negative zeta potential and the reduced electrostatic repulsion. The critical coagulation concentration (CCC) values of HA-MWCNTs were 80mmol/L in NaCl and 1.3mmol/L in CaCl 2 electrolyte, showing that Ca 2+ causes more serious aggregation than Na + . The aggregation behavior of HA-MWCNTs was consistent with Derjaguin-Landau-Verwey-Overbeek theory. The deposition kinetics of HA-MWCNTs was measured by the optical absorbance at 800nm. The critical deposition concentrations for HA-MWCNT in NaCl and CaCl 2 solutions were close to the CCC values, therefore the rate of deposition cannot be increased by changing the ionic strength in the diffusion-limited aggregation regime. The deposition process was correlated to the aggregation since larger aggregates increased gravitational deposition and decreased random Brownian diffusion. HA-MWCNTs hydrodynamic diameters were evaluated at 5, 15 and 25°C. Higher temperature caused faster aggregation due to the reduced electrostatic repulsion and increased random Brownian motion and collision frequency. HA-MWCNTs aggregate faster at higher temperature in either NaCl or CaCl 2 electrolyte due to the decreased electrostatic repulsion and increased random Brownian motion. Our results suggest that CNT aggregation and deposition are two correlated processes governed by the electrolyte, and CNT transport is favored at low ionic strength and low temperature. Copyright © 2016. Published by Elsevier B.V.

  19. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  20. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  1. Device for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  2. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  3. Core Temperature Measurement During Submaximal Exercise: Esophageal, Rectal, and Intestinal Temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Williams, W. Jon; Schneider, Suzanne M.

    2000-01-01

    The purpose of this study was to determine if intestinal temperature (Tin) might be in acceptable alternative to esophageal (Tes) and rectal temperature (Trec) to assess thermoregulation during supine exercise. We hypothesized that Tin would have values similar to Tes and a response time similar to Trec, but the rate of temperature change across time would not be different between measurement sites. Seven subjects completed a continuous supine protocol of 20 min of rest, 20 min of cycle exercise at 40% peak oxygen consumption (VO2pk), 20 min of cycle exercise at 65% V02pk, and 20 min of recovery. Tes, Trec, and Tin were recorded each min throughout the test. Temperatures were not different after 20 min of rest, but Trec was less than the Tes and Tin at the end of the 40% and 65% VO2pk stages. After 20 min of recovery, Tes was less than either Trec or Tin, which were not different from each other. Time to threshold for increased temperature from rest was greater for Trec than Tes but not different from Tin. Time to reach peak temperature was greater for Tin and Trec than Tes. Similarly, time to a decrease in temperature after exercise was greater for Trec than Tes, but not different from Tin. The rate of temperature change from threshold to the end of the 40% VO2pk stage was not different between measurement sites. However, the rate of change during recovery was more negative for Tes than Tin and Trec, which were different from each other. Measurement of Tin may he an acceptable alternative to Tes and Trec with an understanding of its limitations.

  4. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  5. Electrical transport via variable range hopping in an individual multi-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami

    2008-11-01

    E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.

  6. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  7. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  8. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  9. Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1986-01-01

    Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration.

  10. A theoretical model of the application of RF energy to the airway wall and its experimental validation.

    PubMed

    Jarrard, Jerry; Wizeman, Bill; Brown, Robert H; Mitzner, Wayne

    2010-11-27

    Bronchial thermoplasty is a novel technique designed to reduce an airway's ability to contract by reducing the amount of airway smooth muscle through controlled heating of the airway wall. This method has been examined in animal models and as a treatment for asthma in human subjects. At the present time, there has been little research published about how radiofrequency (RF) energy and heat is transferred to the airways of the lung during bronchial thermoplasty procedures. In this manuscript we describe a computational, theoretical model of the delivery of RF energy to the airway wall. An electro-thermal finite-element-analysis model was designed to simulate the delivery of temperature controlled RF energy to airway walls of the in vivo lung. The model includes predictions of heat generation due to RF joule heating and transfer of heat within an airway wall due to thermal conduction. To implement the model, we use known physical characteristics and dimensions of the airway and lung tissues. The model predictions were tested with measurements of temperature, impedance, energy, and power in an experimental canine model. Model predictions of electrode temperature, voltage, and current, along with tissue impedance and delivered energy were compared to experiment measurements and were within ± 5% of experimental averages taken over 157 sample activations.The experimental results show remarkable agreement with the model predictions, and thus validate the use of this model to predict the heat generation and transfer within the airway wall following bronchial thermoplasty. The model also demonstrated the importance of evaporation as a loss term that affected both electrical measurements and heat distribution. The model predictions showed excellent agreement with the empirical results, and thus support using the model to develop the next generation of devices for bronchial thermoplasty. Our results suggest that comparing model results to RF generator electrical measurements

  11. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  12. Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature.

    PubMed

    Bijur, Polly E; Shah, Purvi D; Esses, David

    2016-12-01

    The objective was to compare agreement between three non-invasive measures of temperature and rectal temperatures and to estimate the sensitivity and specificity of these measures to detect a rectal temperature of 38°C or higher. We conducted a study of the diagnostic accuracy of oral, tympanic membrane (TM) and temporal artery (TA) thermometry to measure fever in an urban emergency department (ED). Data were collected from adult patients who received rectal temperature measurement. Bland-Altman analysis was performed; sensitivity, specificity and 95% CIs were calculated. 987 patients were enrolled. 36% of the TM and TA readings differed by 0.5°C or more from rectal temperatures, 50% of oral temperatures. TM measures were most precise-the SD of the difference from rectal was 0.4°C TM, and 0.6°C for oral and TA (p<0.001). The sensitivities of a 38°C cutpoint on oral, TM and TA measures to detect a rectal temperature of 38°C or higher were: 37.0%, 68.3% and 71.1%, respectively (oral vs TM and TA p<0.001). The corresponding specificities were 99.4%, 98.2% and 92.3% (oral, TM and TA) with oral specificity significantly higher than the other two methods (p<0.01). TM and TA cutpoints of 37.5°C provided greater than 90% sensitivity to detect fever with specificity of 90% and 72%, respectively. None of the non-invasive methods met benchmarks for diagnostic accuracy using the criterion of 38°C to detect rectal temperature of 38°C. A TM cutpoint of 37.5°C provides maximum diagnostic accuracy of the three non-invasive measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Calculation of wall effects of flow on a perforated wall with a code of surface singularities

    NASA Astrophysics Data System (ADS)

    Piat, J. F.

    1994-07-01

    Simplifying assumptions are inherent in the analytic method previously used for the determination of wall interferences on a model in a wind tunnel. To eliminate these assumptions, a new code based on the vortex lattice method was developed. It is suitable for processing any shape of test sections with limited areas of porous wall, the characteristic of which can be nonlinear. Calculation of wall effects in S3MA wind tunnel, whose test section is rectangular 0.78 m x 0.56 m, and fitted with two or four perforated walls, have been performed. Wall porosity factors have been adjusted to obtain the best fit between measured and computed pressure distributions on the test section walls. The code was checked by measuring nearly equal drag coefficients for a model tested in S3MA wind tunnel (after wall corrections) and in S2MA wind tunnel whose test section is seven times larger (negligible wall corrections).

  14. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  16. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  17. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  19. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  20. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    NASA Astrophysics Data System (ADS)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  1. Design and Implementation of High Precision Temperature Measurement Unit

    NASA Astrophysics Data System (ADS)

    Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng

    2018-03-01

    Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.

  2. Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.

    PubMed

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-25

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  3. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor.

    PubMed

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2009-01-01

    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  4. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  5. Thermal Dispersion Within a Porous Medium Near a Solid Wall

    NASA Technical Reports Server (NTRS)

    Simon, T.; McFadden, G.; Ibrahim, M.

    2006-01-01

    The regenerator is a key component to Stirling cycle machine efficiency. Typical regenerators are of sintered fine wires or layers of fine-wire screens. Such porous materials are contained within solid-waH casings. Thermal energy exchange between the regenerator and the casing is important to cycle performance for the matrix and casing would not have the same axial temperature profile in an actual machine. Exchange from one to the other may allow shunting of thermal energy, reducing cycle efficiency. In this paper, temperature profiles within the near-wall region of the matrix are measured and thermal energy transport, termed thermal dispersion, is inferred. The data show how the wall affects thermal transport. Transport normal to the mean flow direction is by conduction within the solid and fluid and by advective transport within the matrix. In the near-wall region, both may be interrupted from their normal in-core pattern. Solid conduction paths are broken and scales of advective transport are damped. An equation is presented which describes this change for a wire screen mesh. The near-wall layer typically acts as an insulating layer. This should be considered in design or analysis. Effective thermal conductivity within the core is uniform. In-core transverse thermal effective conductivity values are compared to direct and indirect measurements reported elsewhere and to 3D numerical simulation results, computed previously and reported elsewhere. The 3-D CFD model is composed of six cylinders in cross flow, staggered in arrangement to match the dimensions and porosity of the matrix used in the experiments. The commercial code FLUENT is used to obtain the flow and thermal fields. The thermal dispersion and effective thermal conductivities for the matrix are computed from the results.

  6. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.

    PubMed

    Bazan, I; Ramos, A; Balay, G; Negreira, C

    2018-07-01

    The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., < 7 μm in carotid arteries). The novelty of our proposal is the new technique used to estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being

  7. Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature

    NASA Astrophysics Data System (ADS)

    Hojjat, M.; Etemad, S. Gh.; Bagheri, R.; Thibault, J.

    2011-02-01

    Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity.

  8. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.

    PubMed

    Cogswell, Petrice M; Siero, Jeroen C W; Lants, Sarah K; Waddle, Spencer; Davis, L Taylor; Gilbert, Guillaume; Hendrikse, Jeroen; Donahue, Manus J

    2018-03-31

    Flow suppression techniques have been developed for intracranial (IC) vessel wall imaging (VWI) and optimized using simulations; however, simulation results may not translate in vivo. To evaluate experimentally how IC vessel wall and lumen measurements change in identical subjects when evaluated using the most commonly available blood and cerebrospinal fluid (CSF) flow suppression modules and VWI sequences. Prospective. Healthy adults (n = 13; age = 37 ± 15 years) were enrolled. A 3.0T 3D T 1 /proton density (PD)-weighted turbo-spin-echo (TSE) acquisition with post-readout anti-driven equilibrium module, with and without Delay-Alternating-with-Nutation-for-Tailored-Excitation (DANTE) was applied. DANTE flip angle (8-12°) and TSE refocusing angle (sweep = 40-120° or 50-120°) were varied. Basilar artery and internal carotid artery (ICA) wall thicknesses, CSF signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio (SR) were assessed. Measurements were made by two readers (radiology resident and board-certified neuroradiologist). A Wilcoxon signed-rank test was applied with corrected two-sided P < 0.05 required for significance (critical P = 0.008, 0.005, and 0.05 for SNR/CNR, SR, and wall thickness, respectively). A TSE pulse sweep = 40-120° and sweep = 50-120° provided similar (P = 0.55) CSF suppression. Addition of the DANTE preparation reduced CSF SNR from 17.4 to 6.7, thereby providing significant (P < 0.008) improvement in CSF suppression. The DANTE preparation also resulted in a significant (P < 0.008) reduction in vessel wall SNR, but variable vessel wall to CSF CNR improvement (P = 0.87). There was a trend for a difference in blood SNR with vs. without DANTE (P = 0.05). The outer vessel wall diameter and wall thickness values were lower (P < 0.05) with (basilar artery 4.45 mm, 0.81 mm, respectively) vs. without (basilar artery 4.88 mm, 0.97 mm, respectively) DANTE 8

  9. Preliminary results of thermal conductivity and elastic wave velocity measurements of various rock samples collected from outcrops in hanging wall of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Lin, W.; Tadai, O.; Shigematsu, N.; Nishikawa, O.; Mori, H.; Townend, J.; Capova, L.; Saito, S.; Kinoshita, M.

    2015-12-01

    The Alpine Fault is a mature active fault zone likely to rupture in the near future and DFDP aims to measure physical and chemical conditions within the fault. DFDP-2B borehole was drilled into hanging wall of the Alpine Fault. Downhole temperature measurements carried out in DFDP-2B borehole showed that the geothermal gradient in the hanging wall of the fault is very high, likely reaching to 130-150 °C/km (Sutherland et al., 2015 AGU Fall Meeting). To explain this abnormal feature, the determination of thermal properties of all the rock types in the hanging wall of the Alpine Fault is essential. To measure thermal properties and elastic wave velocities, we collected six typical rock block samples from outcrops in Stony creek and Gaunt creek. These include ultramylonite, mylonite, muscovite schist, garnet amphibolite, protomylonite and schist, which are representative of the hanging wall of the Alpine Fault. Their wet bulk densities are 2.7 - 2.8 g/cm3, and porosities are 1.4 - 3.0%. We prepared a pair of 4 cm cube specimens of each rock type with one flat plane parallel to the foliation. First, we measured thermal conductivity by the transient plane heat source (hot disc) method in a bulk mode, i.e. to deal with the rock as an isotropic material. However, several samples have clearly visible foliation and are likely to be anisotropic. Thus, the data measured in bulk mode provided an average value of the rocks in the range of approximately 2.4 - 3.2 W/mK. The next step will be to measure thermal conductivity in an anisotropic mode. We also measured P wave velocity (Vp) using the same samples, but in two directions, i.e. parallel and perpendicular to the foliation, respectively. Our preliminary results suggested that Vp is anisotropic in all the six rocks. Generally, Vp parallel to foliation is higher than that in the perpendicular direction. Vp in the parallel direction ranged in 5.5 - 6.0 km/s, whereas in the perpendicular direction it was 4.4 - 5.5 km/s. We

  10. Topological domain walls in helimagnets

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  11. Non-contact temperature measurement of a falling drop

    NASA Technical Reports Server (NTRS)

    Hofmeister, William; Bayuzick, R. J.; Robinson, M. B.

    1989-01-01

    The 105 meter drop tube at NASA-Marshall has been used in a number of experiments to determine the effects of containerless, microgravity processing on the undercooling and solidification behavior of metals and alloys. These experiments have been limited, however, because direct temperature measurement of the falling drops has not been available. Undercooling and nucleation temperatures are calculated from thermophysical properties based on droplet cooling models. In most cases these properties are not well known, particularly in the undercooled state. This results in a large amount of uncertainty in the determination of nucleation temperatures. If temperature measurement can be accomplished then the thermal history of the drops could be well documented. This would lead to a better understanding of the thermophysical and thermal radiative properties of undercooled melts. An effort to measure the temperature of a falling drop is under way. The technique uses two color pyrometry and high speed data acquisition. The approach is presented along with some preliminary data from drop tube experiments. The results from droplet cooling models is compared with noncontact temperature measurements.

  12. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  13. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Muyskens, Mark

    1997-07-01

    Our application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor. The sensor can be used with a variety of data-acquisition systems. Applications range from general chemistry to physical chemistry, particularly where computer interfaced, digital temperature measurement is desired. Included is a detailed description of our current design with suggestions for improvement and a performance evaluation of the precision in differential measurement and the time constant for responding to temperature change.

  14. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    PubMed

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  15. Measurement of Interfacial Profiles of Wavy Film Flow on Inclined Wall

    NASA Astrophysics Data System (ADS)

    Rosli, N.; Amagai, K.

    2016-02-01

    Falling liquid films on inclined wall present in many industrial processes such as in food processing, seawater desalination and electronic devices manufacturing industries. In order to ensure an optimal efficiency of the operation in these industries, a fundamental study on the interfacial flow profiles of the liquid film is of great importance. However, it is generally difficult to experimentally predict the interfacial profiles of liquid film flow on inclined wall due to the instable wavy flow that usually formed on the liquid film surface. In this paper, the liquid film surface velocity was measured by using a non-intrusive technique called as photochromic dye marking method. This technique utilizes the color change of liquid containing the photochromic dye when exposed to the UV light source. The movement of liquid film surface marked by the UV light was analyzed together with the wave passing over the liquid. As a result, the liquid film surface was found to slightly shrink its gradual movement when approached by the wave before gradually move again after the intersection with the wave.

  16. Flow and Temperature Distribution Evaluation on Sodium Heated Large-sized Straight Double-wall-tube Steam Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki

    2006-07-01

    The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less

  17. Shock temperature measurement of transparent materials under shock compression

    NASA Astrophysics Data System (ADS)

    Hu, Jinbiao

    1999-06-01

    Under shock compression, some materials have very small absorptance. So it's emissivity is very small too. For this kinds of materials, although they stand in high temperature state under shock compression, the temperature can not be detected easily by using optical radiation technique because of the low emissivity. In this paper, an optical radiation temperature measurement technique of measuring temperature of very low emissive material under shock compression was proposed. For making sure this technique, temperature of crystal NaCl at shock pressure 41 GPa was measured. The result agrees with the results of Kormer et al and Ahrens et al very well. This shows that this technique is reliable and can be used to measuring low emissive shock temperature.

  18. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  19. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  20. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  1. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  2. Measuring temperature rise during orthopaedic surgical procedures.

    PubMed

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  4. Measurement of grain wall contact forces in a granular bed using frequency-scanning interferometry

    NASA Astrophysics Data System (ADS)

    Osman, M. S.; Huntley, J. M.; Wildman, R. D.

    2005-07-01

    Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.

  5. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  6. Numerical investigation of supersonic turbulent boundary layers with high wall temperature

    NASA Technical Reports Server (NTRS)

    Guo, Y.; Adams, N. A.

    1994-01-01

    A direct numerical approach has been developed to simulate supersonic turbulent boundary layers. The mean flow quantities are obtained by solving the parabolized Reynolds-averaged Navier-Stokes equations (globally). Fluctuating quantities are computed locally with a temporal direct numerical simulation approach, in which nonparallel effects of boundary layers are partially modeled. Preliminary numerical results obtained at the free-stream Mach numbers 3, 4.5, and 6 with hot-wall conditions are presented. Approximately 5 million grid points are used in all three cases. The numerical results indicate that compressibility effects on turbulent kinetic energy, in terms of dilatational dissipation and pressure-dilatation correlation, are small. Due to the hot-wall conditions the results show significant low Reynolds number effects and large streamwise streaks. Further simulations with a bigger computational box or a cold-wall condition are desirable.

  7. A toolbox to measure changes in the cell wall glycopolymer composition during differentiation of Streptomyces coelicolor A3(2).

    PubMed

    Sigle, Steffen; Steblau, Nadja; Wohlleben, Wolfgang; Muth, Günther

    2016-09-01

    Cell wall glycopolymers (CWG) represent an important component of the Gram-positive cell envelope with many biological functions. The mycelial soil bacterium Streptomyces coelicolor A3(2) incorporates two distinct CWGs, polydiglycosylphosphate (PDP) and teichulosonic acid, into the cell wall of its vegetative mycelium but only little is known about their role in the complex life cycle of this microorganism. In this study we established assays to measure the total amount of CWGs in mycelial cell walls and spore walls, to quantify the individual CWGs and to determine the length of PDP. By applying these assays, we discovered that the relative amount of CWGs, especially of PDP, is reduced in spores compared to vegetative mycelium. Furthermore we found that PDP extracted from mycelial cell walls consisted of at least 19 repeating units, whereas spore walls contained substantially longer PDP polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The measurement of the transmission loss of single leaf walls and panels by an impulse method

    NASA Astrophysics Data System (ADS)

    Balilah, Y. A.; Gibbs, B. M.

    1988-06-01

    The standard methods of measurement and rating of sound insulation of panels and walls are generally time-consuming and require expensive and often bulky equipment. In addition, the methods establish only that there has been failure to comply with insulation requirements without indicating the mode of failure. An impulse technique is proposed for the measurement of walls and partitions in situ. The method requires the digital capture of a short duration signal generated by a loudspeaker, and the isolation of the direct component from other reflected and scattered components by time-of-flight methods and windowing. The signal, when transferred from the time to frequency domain by means of fast Fourier transforms, can yield the sound insulation of a partition expressed as a transfer function. Experimental problems in the use of this technique, including those resulting from sphericity of the incident wave front and concentric bending excitation of the partition, are identified and methods proposed for their elimination. Most of the results presented are of single leaf panels subjected to sound at normal incidence, although some measurements were undertaken at oblique incidence. The range of surface densities considered was 7-500 kg/m 2, the highest value corresponding to a brick and plaster wall of thickness 285 mm. Measurement is compared with theoretical prediction, at one-third octave intervals in a frequency range of 100-5000 Hz, or as a continuous function of frequency with a typical resolution of 12·5 Hz. The dynamic range of the measurement equipment sets an upper limit to the measurable transmission loss. For the equipment eventually employed this was represented by a random incidence value of 50 dB.

  9. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  10. Correcting horsepower measurements to a standard temperature

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report discusses the relation between the temperature of the air at the entrance to the carburetor and the power developed by the engine. Its scope is limited to a consideration of the range of temperatures likely to result from changes of season, locality, or altitude, since its primary aim is the finding of a satisfactory basis for correcting power measurements to a standard temperature. The tests upon which this report is based were made upon aviation engines in the Altitude Laboratory of the Bureau of Standards. From the results of over 1,600 tests it is concluded that if calculations be based on the assumption that the indicated horsepower of an engine varies inversely as the square root of the absolute temperature of the carburetor air the values obtained will check closely experimental measurements. The extent to which this relationship would be expected from theoretical considerations is discussed and some suggestions are given relative to the use of this relationship in correcting horsepower measurements. (author)

  11. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.

    PubMed

    Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi

    2004-10-01

    Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.

  12. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  13. Method and apparatus for detecting irregularities on or in the wall of a vessel

    DOEpatents

    Bowling, Michael Keith

    2000-09-12

    A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.

  14. Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    NASA Technical Reports Server (NTRS)

    Hebbar, K. S.; Melnik, W. L.

    1976-01-01

    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.

  15. Multi-spectral pyrometer for gas turbine blade temperature measurement

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  16. Empirical Temperature Measurement in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  17. Spatial Distribution Measurement of Heart Wall Vibrations Generated by Remote Perturbation of Inner Pressure

    NASA Astrophysics Data System (ADS)

    Kanai, Hiroshi; Hasegawa, Hideyuki; Imamura, Kohsuke

    2006-05-01

    It is essential for the diagnosis of heart diseases to noninvasively measure instantaneous myocardial movability and transition properties during one cardiac cycle. This study proposes a novel method of noninvasively perturbing left ventricle (LV) internal pressure by remotely actuating the brachium artery with sinusoidal vibration for the diagnosis of myocardial movability. By attaching an actuator to the brachium artery and driving it with a sinusoidal wave of f0 Hz, the internal pressure of the artery is perturbed. The perturbation propagates along the artery to the LV of the heart and the sinusoidal perturbation of the LV internal pressure is induced. Using an ultrasound-based phased tracking method, the resultant minute motion of the heart wall can be noninvasively measured. Because the vibration mode of the heart wall depends on actuation frequency, by phantom experiments using a spherical shell made of silicone rubber, to which a silicone rubber tube is connected, the vibration mode was identified from the measurement of the spatial distribution of the motions by scanning with an ultrasonic beam. From an in vivo experiment, the principle of remote actuation was confirmed.

  18. Self-calibrated active pyrometer for furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  19. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  20. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, Hariharan; Klocke, Steve; Puttagunta, Srikanth

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  1. Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films.

    PubMed

    Guyonnet, Jill; Gaponenko, Iaroslav; Gariglio, Stefano; Paruch, Patrycja

    2011-12-01

    Domain wall conduction in insulating Pb(Zr(0.2) Ti(0.8))O(3) thin films is demonstrated. The observed electrical conduction currents can be clearly differentiated from displacement currents associated with ferroelectric polarization switching. The domain wall conduction, nonlinear and highly asymmetric due to the specific local probe measurement geometry, shows thermal activation at high temperatures, and high stability over time. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  3. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  4. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    PubMed

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  5. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  6. Method and apparatus for optical temperature measurements

    DOEpatents

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  7. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  8. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  9. Diffusion capacity and CT measures of emphysema and airway wall thickness - relation to arterial oxygen tension in COPD patients.

    PubMed

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Lind Eagan, Tomas Mikal; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.

  10. Modeling near-wall turbulent flows

    NASA Astrophysics Data System (ADS)

    Marusic, Ivan; Mathis, Romain; Hutchins, Nicholas

    2010-11-01

    The near-wall region of turbulent boundary layers is a crucial region for turbulence production, but it is also a region that becomes increasing difficult to access and make measurements in as the Reynolds number becomes very high. Consequently, it is desirable to model the turbulence in this region. Recent studies have shown that the classical description, with inner (wall) scaling alone, is insufficient to explain the behaviour of the streamwise turbulence intensities with increasing Reynolds number. Here we will review our recent near-wall model (Marusic et al., Science 329, 2010), where the near-wall turbulence is predicted given information from only the large-scale signature at a single measurement point in the logarithmic layer, considerably far from the wall. The model is consistent with the Townsend attached eddy hypothesis in that the large-scale structures associated with the log-region are felt all the way down to the wall, but also includes a non-linear amplitude modulation effect of the large structures on the near-wall turbulence. Detailed predicted spectra across the entire near- wall region will be presented, together with other higher order statistics over a large range of Reynolds numbers varying from laboratory to atmospheric flows.

  11. Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction

    NASA Astrophysics Data System (ADS)

    Paruch, Patrycja

    2013-03-01

    Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.

  12. CARS Temperature Measurements in Turbulent and Supersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Antcliff, R. R.; Smith, M. W.; Cutler, A. D.; Diskin, G. S.; Northam, G. B.

    1991-01-01

    This paper documents the development of the National Aeronautics and Space Administration s (NASA) Langley Research Center ( LaRC) Coherent Antistokes Raman Spectroscopy (CARS) systems for measurements of temperature in a turbulent subsonic or supersonic reacting hydrogen-air environment. Spectra data provides temperature data when compared to a precalculated library of nitrogen CARS spectra. Library validity was confirmed by comparing CARS temperatures derived through the library with three different techniques for determination of the temperature in hydrogen-air combustion and an electrically heated furnace. The CARS system has been used to survey temperature profiles in the simulated flow of a supersonic combustion ramjet (scramjet) model. Measurement results will be discussed.

  13. Ways to measure body temperature in the field.

    PubMed

    Langer, Franz; Fietz, Joanna

    2014-05-01

    Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40°C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns. LifeChips are able to measure temperature within the smallest range from 25 to 40°C with an accuracy of 0.07±0.12°C. IPTT-300 transponders measured temperature between 10 and 40°C, but accuracy decreased considerably at values below 30°C, with maximal deviations of nearly 7°C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25°C) and stable over the whole temperature range tested (0-40°C). In all three devices, the repeatability of measurements was high. LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions. Copyright © 2014

  14. Color temperature measurement in laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Benuzzi, A.; Batani, D.; Beretta, D.; Bossi, S.; Faral, B.; Koenig, M.; Krishnan, J.; Löautwer, Th.; Mahdieh, M.

    1997-06-01

    A simultaneous measurement of color temperature and shock velocity in laser-driven shocks is presented. The color temperature was measured from the target rear side emissivity, and the shock velocity by using stepped targets. A very good planarity of the shock was ensured by the phase zone plate smoothing technique. A simple model of the shock luminosity has been developed in order to estimate the shock temperature from the experimental rear side emissivity. Results have been compared to temperatures obtained from the shock velocity for a material of a known equation of state.

  15. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  16. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  17. Temperature measurements of shocked silica aerogel foam

    DOE PAGES

    Falk, K.; McCoy, C. A.; Fryer, C. L.; ...

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  18. Temperature measurements of shocked silica aerogel foam.

    PubMed

    Falk, K; McCoy, C A; Fryer, C L; Greeff, C W; Hungerford, A L; Montgomery, D S; Schmidt, D W; Sheppard, D G; Williams, J R; Boehly, T R; Benage, J F

    2014-09-01

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO_{2}) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1-15 eV and shock velocities between 10 and 40 km/s corresponding to shock pressures of 0.3-2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. Simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.

  19. Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations

    NASA Astrophysics Data System (ADS)

    Katsoulas, N.; Antoniadis, D.; Tsirogiannis, I. L.; Labraki, E.; Bartzanas, T.; Kittas, C.

    2017-05-01

    The objectives of this effort was to study the effect of vertical (green wall) and horizontal (pergola) green structures on the microclimate conditions of the building surroundings and estimate the thermal perception and heat stress conditions near the two structures. The experimental data were used to validate the results simulated by the recent version (V4.0 preview III) of ENVI-met software which was used to simulate the effect of different design parameters of a pergola and a green façade on microclimate and heat stress conditions. Further aim is to use these results for better design of green structures. The microclimate measurements were carried out in real scale structures (hydroponic pergola and hydroponic green wall) at the Kostakii Campus of the Technological Education Institute of Epirus (Arta, Greece). The validation results showed a very good agreement between measured and simulated values of air temperature, with Tair,sim = 0.98 Tair,meas in the Empty atrium and Tair,sim = 0.99 Tair,meas in the Atrium with pergola, with a determination coefficient R 2 of 0.98 and 0.93, respectively. The model was used to predict the effects of green structures on air temperature (Tair), relative humidity (RH), and mean radiant temperature (Tmrt). The output values of these parameters were used as input data in the RayMan pro (V 2.1) model for estimating the physiologically equivalent temperature (PET) of different case scenarios. The average daytime value of simulated air temperature in the atrium for the case without and with pergola during three different days was 29.2 and 28.9 °C while the corresponding measured values were 29.7 and 29.2 °C. The results showed that compared to the case with no pergola in the atrium, covering 100% the atrium area with a planted pergola reduced at the hottest part of the day Tmrt and PET values by 29.4 and 17.9 °C, respectively. Although the values of air temperature (measured and simulated) were not greatly affected by the

  20. Body Temperature Measurements for Metabolic Phenotyping in Mice

    PubMed Central

    Meyer, Carola W.; Ootsuka, Youichirou; Romanovsky, Andrej A.

    2017-01-01

    Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses. PMID:28824441

  1. A transported probability density function/photon Monte Carlo method for high-temperature oxy-natural gas combustion with spectral gas and wall radiation

    NASA Astrophysics Data System (ADS)

    Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.

    2013-04-01

    A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.

  2. An efficient technique for determining apparent temperature distributions from antenna temperature measurements

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Fung, A. K.

    1973-01-01

    A method by which the apparent microwave temperature characteristic of a flat scene is estimated from dual polarized measurements is derived and interpreted. Approximate linear relationships between antenna and apparent temperatures are established by weighting emission components in spherical bands under the assumption that the surface is isotropic. The weighting factors are formed by integrating the antenna pattern functions over these bands. The vector aspect of the formulation is retained to account for the difference between the definition of the antenna polarizations and the polarizations of the emitted fields. The method is largely applicable to the measurement of smooth temperature distributions by an antenna having good spatial resolution of the distributions and is considered efficient for inverting large volumes of measurements. Sample cases are presented and the implications of these cases on remote radiometer observations are discussed. It is shown that cross-coupling occurs between the polarizations of the emitted fields and the polarizations of the antenna. For this reason and because practical antennas have cross-polarized patterns associated with them, it is necessary to conduct measurements at both horizontal and vertical polarizations to realize the inversion. It is also made evident that thorough inversions require that the apparent temperatures be sampled at a sufficient number of points between nadir and zenith.

  3. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    DTIC Science & Technology

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  4. Proceedings of the Second Noncontact Temperature Measurement Workshop

    NASA Technical Reports Server (NTRS)

    Hale, Robert R. (Editor)

    1989-01-01

    The state of the art in noncontact temperature measurement (NCTM) technology was reviewed and the NCTM requirements of microgravity materials processing community identified. The workshop included technical presentations and discussions which ranged from research on advanced concepts for temperature measurement to laboratory research and development regarding measurement principles and state-of-the-art engineering practices for NCTM methodology in commercial and industrial applications. Technical presentations were made concerning: NCTM needs as perceived by several NASA centers, recent ground-based NCT, research and development of industry, NASA, academia, and selected national laboratories, work-in-progress communication, and technical issues of the implementation of temperature measurement in the space environment to facilitate future U.S. materials science investigations.

  5. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (=71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in.(=1.9 cm) thick and 2.5 in. (=6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger.

  6. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  7. Bioinspired Assemblies of Plant Cell Walls for Measuring Protein-Carbohydrate Interactions by FRAP.

    PubMed

    Paës, Gabriel

    2017-01-01

    The interactions of proteins involved in plant cell wall hydrolysis, such as enzymes and CBMs, significantly determine their role and efficiency. In order to go beyond the characterization of interactions with simple ligands, bioinspired assemblies combined with the measurement of diffusion and interaction by FRAP offer a relevant alternative for highlighting the importance of different parameters related to the protein affinity and to the assembly.

  8. Excess velocity of magnetic domain walls close to the depinning field

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Fernández Aguirre, Iván; Albornoz, Lucas J.; Kolton, Alejandro B.; Rojas-Sánchez, Juan Carlos; Collin, Sophie; George, Jean Marie; Diaz Pardo, Rebeca; Jeudy, Vincent; Bustingorry, Sebastian; Curiale, Javier

    2017-12-01

    Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field Hd, the depinning temperature Td, and the characteristic velocity scale v0 for each sample.

  9. Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus.

    PubMed

    Monnet, Eric; Pelsue, Davyd; MacPhail, Catriona

    2006-02-01

    To validate laser doppler flowmetry (LDF) for measurement of blood flow in the stomach wall of dogs with gastric dilatation-volvulus (GDV). Six purpose-bred dogs and 24 dogs with naturally occurring GDV. Experimental and clinical. Capillary blood flow in the body of the stomach and pyloric antrum was measured with LDF (tissue perfusion unit (TPU) before and after induction of portal hypertension (PH) and after PH plus gastric ischemia (GI; PH + GI) and compared with flow measured by colored microsphere technique. Capillary flow was measured by LDF in the stomach wall of dogs with GDV. PH and PH+GI induced a significant reduction in blood flow in the body of the stomach (P = .019). A significant positive correlation was present between percent changes in capillary blood flow measured by LDF and colored microspheres after induction of PH + GI in the body of the stomach (r = 0.94, P = .014) and in the pyloric antrum (r = 0.95, P = .049). Capillary blood flow measured in the body of the stomach of 6 dogs that required partial gastrectomy (5.00+/-3.30 TPU) was significantly lower than in dogs that did not (28.00+/-14.40 TPU, P = .013). LDF can detect variations in blood flow in the stomach wall of dogs. LDF may have application for evaluation of stomach wall viability during surgery in dogs with GDV.

  10. [Temperature Measurement with Bluetooth under Android Platform].

    PubMed

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.

  11. EPR-based distance measurements at ambient temperature.

    PubMed

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  13. Structure of wall-bounded flows at transcritical conditions

    NASA Astrophysics Data System (ADS)

    Ma, Peter C.; Yang, Xiang I. A.; Ihme, Matthias

    2018-03-01

    At transcritical conditions, the transition of a fluid from a liquidlike state to a gaslike state occurs continuously, which is associated with significant changes in fluid properties. Therefore, boiling in its conventional sense does not exist and the phase transition at transcritical conditions is known as "pseudoboiling." In this work, direct numerical simulations (DNS) of a channel flow at transcritical conditions are conducted in which the bottom and top walls are kept at temperatures below and above the pseudoboiling temperature, respectively. Over this temperature range, the density changes by a factor of 18 between both walls. Using the DNS data, the usefulness of the semilocal scaling and the Townsend attached-eddy hypothesis are examined in the context of flows at transcritical conditions—both models have received much empirical support from previous studies. It is found that while the semilocal scaling works reasonably well near the bottom cooled wall, where the fluid density changes only moderately, the same scaling has only limited success near the top wall. In addition, it is shown that the streamwise velocity structure function follows a logarithmic scaling and the streamwise energy spectrum exhibits an inverse wave-number scaling, thus providing support to the attached-eddy model at transcritical conditions.

  14. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  15. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  16. Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.

    PubMed

    Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan

    2016-10-01

    We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4  RIU (refractive index unit).

  17. Photoinduced Spontaneous Free-Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes

    DOE PAGES

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; ...

    2015-11-04

    The strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. We found that the conditions of the microwave conductivity measurement allow us tomore » avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. At low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.« less

  18. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  19. Multi-channel temperature measurement system for automotive battery stack

    NASA Astrophysics Data System (ADS)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  20. Hot spot temperature measurements in DT layered implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Ma, T.; Macphee, A.; Callahan, D.; Chen, H.; Cerjan, C.; Clark, D.; Edgell, D.; Hurricane, O.; Izumi, N.; Khan, S.; Jarrott, L.; Kritcher, A.; Springer, P.

    2015-11-01

    The temperature of the burning DT hot spot in an ICF implosion is a crucial parameter in understanding the thermodynamic conditions of the fuel at stagnation and and the performance of the implosion in terms of alpha-particle self-heating and energy balance. The continuum radiation spectrum emitted from the hot spot provides an accurate measure of the emissivity-weighted electron temperature. Absolute measurements of the emitted radiation are made with several independent instruments including spatially-resolved broadband imagers, and space- and time-integrated monochromatic detectors. We present estimates of the electron temperature in DT layered implosions derived from the radiation spectrum most consistent with the available measurements. The emissivity-weighted electron temperatures are compared to the neutron-averaged apparent ion temperatures inferred from neutron time-of-flight detectors. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    2000-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  2. A Precise Calibration Technique for Measuring High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Schultz, Donald F.

    1999-01-01

    A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.

  3. Measurement of microdosimetric spectra with a wall-less tissue-equivalent proportional counter for a 290 MeV/u 12C beam.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi

    2010-09-07

    The frequency distribution of the lineal energy, y, of a 290 MeV/u carbon beam was measured to obtain the dose-weighted mean of y and compare it with the linear energy transfer (LET). In the experiment, a wall-less tissue-equivalent proportional counter (TEPC) in a cylindrical volume with a simulated diameter of 0.72 microm was used. The measured frequency distribution of y as well as its dose-mean value agrees within 10% uncertainty with the corresponding data from microdosimetric calculations using the PHITS code. The ratio of the measured dose-mean lineal energy to the LET of the 290 MeV/u carbon beam is 0.73, which is much smaller than the corresponding data obtained by a wall TEPC. This result demonstrates that a wall-less TEPC is necessary to precisely measure the dose-mean of y for energetic heavy ion beams.

  4. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  5. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less

  6. An intelligent instrument for measuring exhaust temperature of marine engine

    NASA Astrophysics Data System (ADS)

    Ma, Nan-Qi; Su, Hua; Liu, Jun

    2006-12-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple. Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer). The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually.

  7. An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer

    NASA Astrophysics Data System (ADS)

    Beaulieu, L. Y.; Logan, E. R.; Gering, K. L.; Dahn, J. R.

    2017-09-01

    An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering's Advanced Electrolyte Model (AEM).

  8. Measure Guideline: Wall Air Sealing and Insulation Methods in Existing Homes; An Overview of Opportunity and Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, S.; Stephenson, R.

    2012-09-01

    This guide provides renovators and retrofit contractors an overview of considerations when including wall air sealing and insulation in an energy retrofit project. It also outlines the potential project risks, various materials for insulating, possible field inspections needed, installation procedures, as well as the benefits and drawbacks. The purpose of this document is to provide the outline of the overview and process of insulating and air sealing walls so that home retrofit professionals can identify approaches to air sealing and insulation measures.

  9. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  10. Artefacts in intracavitary temperature measurements during regional hyperthermia.

    PubMed

    Kok, H P; Van den Berg, C A T; Van Haaren, P M A; Crezee, J

    2007-09-07

    For adequate hyperthermia treatments, reliable temperature information during treatment is essential. During regional hyperthermia, temperature information is preferably obtained non-invasively from intracavitary or intraluminal measurements to avoid implant risks for the patient. However, for intracavitary or intraluminal thermometry optimal tissue contact is less natural as for invasive thermometry. In this study, the reliability of intraluminal/intracavitary measurements was examined in phantom experiments and in a numerical model for various extents of thermal contact between thermometry and the surroundings. Both thermocouple probes and fibre optic probes were investigated. Temperature rises after a 30 s power pulse of the 70 MHz AMC-4 hyperthermia system were measured in a tissue-equivalent phantom using a multisensor thermocouple probe placed centrally in a hollow tube. The tube was filled with (1) air, (2) distilled water or (3) saline solution that mimics the properties of tissue, simulating situations with (1) bad thermal contact and no power dissipation in the tube, (2) good thermal contact but no power dissipation or (3) good thermal contact and tissue representative power dissipation. For numerical simulations, a cylindrical symmetric model of a thermocouple probe or a fibre optic probe in a cavity was developed. The cavity was modelled as air, distilled water or saline solution. A generalised E-Field distribution was assumed, resulting in a power deposition. With this power deposition, the temperature rise after a 30 s power pulse was calculated. When thermal contact was bad (1), both phantom measurements and simulations with a thermocouple probe showed very high temperature rises (>0.5 degrees C), which are artefacts due to self-heating of the thermocouple probe, since no power is dissipated in air. Simulations with a fibre optic probe showed almost no temperature rise when the cavity was filled with air. When thermal contact was good, but no power

  11. Hawking radiation from a Reisner-Nordström domain wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Eric, E-mail: esg3@buffalo.edu

    2010-01-01

    We investigate the effect on the Hawking radiation given off during the time of collapse of a Reisner-Nordström domain wall. Using the functional Schrödinger formalism we are able to probe the time-dependent regime, which is out of the reach of the standard approximations like the Bogolyubov method. We calculate the occupation number of particles for a scalar field and complex scalar field. We demonstrate that the particles from the scalar field are unaffected by the charge of the Reisner-Nordström domain wall, as is expected since the scalar field doesn't carry any charge, which would couple to the charge of themore » Reisner-Nordström domain wall. Here the situation effectively reduces to the uncharged case, a spherically symmetric domain wall. To take the charge into account, we consider the complex scalar field which represents charged particles and anti-particles. Here investigate two different cases, first the non-extremal case and second the extremal case. In the non-extremal case we demonstrate that when the particle (anti-particle) carries charge opposite to that of the domain wall, the occupation number becomes suppressed during late times of the collapse. Therefore the dominate occupation number is when the particle (anti-particle) carries the same charge as the domain wall, as expected due to the Coulomb potential carried by the domain walls. In the extremal case we demonstrate that as time increases the temperature of the radiation decreases until when the domain wall reaches the horizon and the temperature then goes to zero. This is in agreement with the Hawking temperature for charged black holes.« less

  12. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  13. Annealing effect on current-driven domain wall motion in Pt/[Co/Ni] wire

    NASA Astrophysics Data System (ADS)

    Furuta, Masaki; Liu, Yang; Sepehri-Amin, Hossein; Hono, Kazuhiro; Zhu, Jian-Gang Jimmy

    2017-09-01

    The annealing effect on the efficiency of current-driven domain wall motion governed by the spin Hall effect in perpendicularly magnetized Pt/[Co/Ni] wires is investigated experimentally. Important physical parameters, such as the Dzyaloshinskii-Moriya Interaction (DMI), spin Hall angle, and perpendicular anisotropy field strength, for the domain wall motion are all characterized at each annealing temperature. It is found that annealing of wires at temperatures over 120 °C causes significant reduction of the domain wall velocity. Energy dispersive X-ray spectroscopy analysis shows pronounced Co diffusion across the Pt/Co interface resulted from annealing at relatively high temperatures. The combined modeling study shows that the reduction of DMI caused by annealing is mostly responsible for the domain wall velocity reduction due to annealing.

  14. Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature

    NASA Astrophysics Data System (ADS)

    Dixit, Saurabh; Shukla, A. K.

    2018-06-01

    In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.

  15. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch

    NASA Astrophysics Data System (ADS)

    Genovese, Katia; Humphrey, Jay D.

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries.

  16. A laser Doppler velocimeter approach for near-wall three-dimensional turbulence measurements

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Brown, J. D.

    1990-01-01

    A near-wall laser Doppler velocimeter approach is described that relies on a beam-turning probe which makes possible the direct measurement of the crossflow velocity at a grazing incident and the placement of optical components close to the flow region of interest regardless of test facility size. Other important elements of the approach are the use of digital frequency processing, an optically smooth measurement surface, and observation of the sensing volume at 90 degrees. The combination was found to dramatically reduce noise-in-signal effects caused by surface light scattering. Turbulent boundary-layer data to within 20 microns (y(sup+) approximately equal to 1) of the surface are presented which illustrate the potential of the approach.

  17. Floating Probe Assembly for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Selinsky, T.; Stewart, Randy; Ruffin, Clyde

    2002-01-01

    A floating apparatus denoted a temperature probe aquatic suspension system (TPASS) has been developed for measuring the temperature of an ocean, lake, or other natural body of water at predetermined depths. Prior instruments built for the same purpose were found to give inaccurate readings because the apparatuses themselves significantly affected the temperatures of the water in their vicinities. The design of the TPASS is intended to satisfy a requirement to minimize the perturbation of the temperatures to be measured. The TPASS includes a square-cross-section aluminum rod 28 in. (approx. = 71 cm) long with floats attached at both ends. Each float includes five polystyrene foam disks about 3/4 in. (approx. = 1.9 cm) thick and 2.5 in. (approx. = 6.4 cm) in diameter. The disks are stacked to form cylinders, bolted to the rod, and covered with hollow plastic sleeves. A metal sleeve is clamped to the middle of the aluminum rod, from whence it hangs down into the water. Temperature probes (which can be thermocouples, thermistors, or resistance temperature devices) are placed within the sleeve at the desired measurement depths. Wires from the temperature probes are routed to the input terminals of a data logger. This work was done by Randy

  18. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  19. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  20. VIS-NIR multispectral synchronous imaging pyrometer for high-temperature measurements.

    PubMed

    Fu, Tairan; Liu, Jiangfan; Tian, Jibin

    2017-06-01

    A visible-infrared multispectral synchronous imaging pyrometer was developed for simultaneous, multispectral, two-dimensional high temperature measurements. The multispectral image pyrometer uses prism separation construction in the spectrum range of 650-950 nm and multi-sensor fusion of three CCD sensors for high-temperature measurements. The pyrometer had 650-750 nm, 750-850 nm, and 850-950 nm channels all with the same optical path. The wavelength choice for each channel is flexible with three center wavelengths (700 nm, 810 nm, and 920 nm) with a full width at half maximum of the spectrum of 3 nm used here. The three image sensors were precisely aligned to avoid spectrum artifacts by micro-mechanical adjustments of the sensors relative to each other to position them within a quarter pixel of each other. The pyrometer was calibrated with the standard blackbody source, and the temperature measurement uncertainty was within 0.21 °C-0.99 °C in the temperatures of 600 °C-1800 °C for the blackbody measurements. The pyrometer was then used to measure the leading edge temperatures of a ceramics model exposed to high-enthalpy plasma aerodynamic heating environment to verify the system applicability. The measured temperature ranges are 701-991 °C, 701-1134 °C, and 701-834 °C at the heating transient, steady state, and cooling transient times. A significant temperature gradient (170 °C/mm) was observed away from the leading edge facing the plasma jet during the steady state heating time. The temperature non-uniformity on the surface occurs during the entire aerodynamic heating process. However, the temperature distribution becomes more uniform after the heater is shut down and the experimental model is naturally cooled. This result shows that the multispectral simultaneous image measurement mode provides a wider temperature range for one imaging measurement of high spatial temperature gradients in transient applications.

  1. Thermo-voltage measurements of atomic contacts at low temperature

    PubMed Central

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul

    2016-01-01

    Summary We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. PMID:27335765

  2. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  3. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  4. In-pile tritium-permeation measurements on T91 tubes with double walls or a Fe-Al/Al 2O 3 coating

    NASA Astrophysics Data System (ADS)

    Conrad, R.; Bakker, K.; Chabrol, C.; Fütterer, M. A.; van der Laan, J. G.; Rigal, E.; Stijkel, M. P.

    2000-12-01

    Two new irradiation projects are being performed at the HFR Petten, named EXOTIC-8.9 and EXOTIC-8.10. Issues such as tritium release from candidate ceramic breeder pebbles for the HCPB blanket and tritium permeation through cooling tubes of the WCLL blanket are investigated simultaneously. In EXOTIC-8.9, the tritium release behaviour of a Li 2TiO 3 pebble bed is measured along with the tritium-permeation rate through a double-wall tube (DWT) of T91 with a Cu interlayer. In EXOTIC-8.10, the tritium release behaviour of a Li 4SiO 4 pebble bed is measured along with the tritium permeation rate through a T91 tube with a Fe-Al/Al 2O 3 coating as tritium permeation barrier (TPB). Tritium permeation phenomena are studied by variations of temperatures and purge gas conditions. This paper reports on the results of the first 100 irradiation days.

  5. Unsteady Velocity Measurements in the NASA Research Low Speed Axial Compressor: Smooth Wall Configuration

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2007-01-01

    The report is a collection of experimental unsteady data acquired in the first stage of the NASA Low Speed Axial Compressor in configuration with smooth (solid) wall treatment over the first rotor. The aim of the report is to present a reliable experimental data base that can be used for analysis of the compressor flow behavior, and hopefully help with further improvements of compressor CFD codes. All data analysis is strictly restricted to verification of reliability of the experimental data reported. The report is divided into six main sections. First two sections cover the low speed axial compressor, the basic instrumentation, and the in-house developed methodology of unsteady velocity measurements using a thermo-anemometric split-fiber probe. The next two sections contain experimental data presented as averaged radial distributions for three compressor operation conditions, including the distribution of the total temperature rise over the first rotor, and ensemble averages of unsteady flow data based on a rotor blade passage period. Ensemble averages based on the rotor revolution period, and spectral analysis of unsteady flow parameters are presented in the last two sections. The report is completed with two appendices where performance and dynamic response of thermo-anemometric probes is discussed.

  6. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  7. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    PubMed

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  8. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  9. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  10. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  11. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  12. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  13. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  14. Thermocouple design for measuring temperatures of small insects

    Treesearch

    A.A. Hanson; R.C. Venette

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to...

  15. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  16. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  17. Quantitative Measures for Evaluation of Ultrasound Therapies of the Prostate

    NASA Astrophysics Data System (ADS)

    Kobelevskiy, Ilya; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2010-03-01

    Development of non-invasive techniques for prostate cancer treatment requires implementation of quantitative measures for evaluation of the treatment results. In this paper. we introduce measures that estimate spatial targeting accuracy and potential thermal damage to the structures surrounding the prostate. The measures were developed for the technique of treating prostate cancer with a transurethral ultrasound heating applicators guided by active MR temperature feedback. Variations of ultrasound element length and related MR imaging parameters such as MR slice thickness and update time were investigated by performing numerical simulations of the treatment on a database of ten patient prostate geometries segmented from clinical MR images. Susceptibility of each parameter configuration to uncertainty in MR temperature measurements was studied by adding noise to the temperature measurements. Gaussian noise with zero mean and standard deviation of 0, 1, 3 and 5° C was used to model different levels of uncertainty in MR temperature measurements. Results of simulations for each parameter configuration were averaged over the database of the ten prostate patient geometries studied. Results have shown that for update time of 5 seconds both 3- and 5-mm elements achieve appropriate performance for temperature uncertainty up to 3° C, while temperature uncertainty of 5° C leads to noticeable reduction in spatial accuracy and increased risk of damaging rectal wall. Ten-mm elements lacked spatial accuracy and had higher risk of damaging rectal wall compared to 3- and 5-mm elements, but were less sensitive to the level of temperature uncertainty. The effect of changing update time was studied for 5-mm elements. Simulations showed that update time had minor effects on all aspects of treatment for temperature uncertainty of 0° C and 1° C, while temperature uncertainties of 3° C and 5° C led to reduced spatial accuracy, increased potential damage to the rectal wall, and

  18. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  19. Elevated-temperature luminescence measurements to improve spatial resolution

    NASA Astrophysics Data System (ADS)

    Pluska, Mariusz; Czerwinski, Andrzej

    2018-01-01

    Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  20. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  1. Controlled Atmosphere High Temperature SPM for electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.

    2007-03-01

    A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.

  2. Correction factor in temperature measurements by optoelectronic systems

    NASA Astrophysics Data System (ADS)

    Bikberdina, N.; Yunusov, R.; Boronenko, M.; Gulyaev, P.

    2017-11-01

    It is often necessary to investigate high temperature fast moving microobjects. If you want to measure their temperature, use optoelectronic measuring systems. Optoelectronic systems are always calibrated over a stationary absolutely black body. One of the problems of pyrometry is that you can not use this calibration to measure the temperature of moving objects. Two solutions are proposed in [1]. This article outlines the first results of validation [2]. An experimentally justified coefficient that allows one to take into account the influence of its motion on the decrease in the video signal of the photosensor in the regime of charge accumulation. The study was partially supported by RFBR in the framework of a research project № 15-42-00106

  3. A temperature microsensor for measuring laser-induced heating in gold nanorods.

    PubMed

    Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S

    2015-01-01

    Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.

  4. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; hide

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  5. Ultrasonographic wall thickness measurement of the upper and lower uterine segments in the prediction of the progress of preterm labour.

    PubMed

    Sayed Ahmed, W A; Madny, E H; Habash, Y H; Ibrahim, Z M; Morsy, A G K; Said, M E

    2015-01-01

    To assess the role of ultrasonographic measurement of the upper and lower uterine segments wall thickness in predicting the progress of preterm labour in patients presenting with preterm labour pains. Fifty pregnant women presenting at Obstetrics Department - Suez Canal University, Egypt with regular lower abdominal pains and diagnosed as having preterm labour were enrolled in the study. Measurements of the upper and lower uterine segments wall thickness by transabdominal ultrasonography in-between contractions and with full bladder were taken. The upper/lower uterine wall thickness ratio was calculated and correlated to the progress of the preterm labour and to the response to tocolytics. The ultrasonographic upper/lower uterine wall thickness ratio was directly related to the progress of preterm delivery (PTD). The change in this ratio is correlated inversely with the response to tocolysis. Using the ROC curve, when the upper/lower uterine wall thickness ratio was ≤ 1.26 the sensitivity was 94.74 and the specificity was 100.00, and when the ratio was ≤ 1.52 the sensitivity was 100.00 and the specificity was 83.33. These data may serve as a baseline ultrasonographic reference values for further studies in prediction the progress of preterm labour in patients presenting with preterm labour pains.

  6. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors

    PubMed Central

    Goodrich, LF; Cheggour, N; Stauffer, TC; Filla, BJ; Lu, XF

    2013-01-01

    We review variable-temperature, transport critical-current (Ic) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium (“liquid” or Ic liq) at

  7. Comparison between Carotid Artery Wall Thickness Measured by Multidetector Row Computed Tomography Angiography and Intimae-Media Thickness Measured by Sonography

    PubMed Central

    Savić, Živorad N.; Soldatović, Ivan I.; Brajović, Milan D.; Pavlović, Aleksandra M.; Mladenović, Dušan R.; Škodrić-Trifunović, Vesna D.

    2011-01-01

    The increased thickness of the carotid wall >1 mm is a significant predictor of coronary and cerebrovascular diseases. The purpose of our study was to assess the agreement between multidetector row computed tomography angiography (MDCTA) in measuring carotid artery wall thickness (CAWT) and color Doppler ultrasound (CD-US) in measuring intimae-media thickness (IMT). Eighty-nine patients (aged 35–81) were prospectively analyzed using a 64-detector MDCTA and a CD-US scanner. Continuous data were described as the mean value ± standard deviation, and were compared using the Mann–Whitney U test. A p value <0.05 was considered significant. Bland–Altman statistics were employed to measure the agreement between MDCTA and CD-US. CAWT ranged from 0.62 to 1.60 mm, with a mean value of 1.09 mm. IMT ranged from 0.60 to 1.55 mm, with a mean value of 1.06 mm. We observed an excellent agreement between CD-US and MDCTA in the evaluation of the common carotid artery thickness, with a bias between methods of 0.029 mm (which is a highly statistically important difference of absolute values [t = 43.289; p < 0.01] obtained by paired T test), and limits of agreement from 0.04 to 0.104. Pearson correlation coefficient was 0.9997 (95% CI 0.9996–0.9998; p < 0.01). We conclude that there is an excellent correlation between CAWT and IMT measurements obtained with the MDCTA and CD-US. PMID:22224072

  8. Newly Designed Apparatus for Measuring the Angular Dependent Surface Emittance in a Wide Wavelength Range and at Elevated Temperatures up to 1400°C

    NASA Astrophysics Data System (ADS)

    Rydzek, M.; Stark, T.; Arduini-Schuster, M.; Manara, J.

    2012-11-01

    An optimized apparatus for measuring the angular dependent surface emittance up to elevated temperatures has been designed. This emittance measurement apparatus (EMMA) is coupled to a Bruker Vertex 70v FTIR-spectrometer, so that a wavelength range from about 2 μm up to 25 μm is accessible. The central part of the new apparatus is a double walled, stainless steel vessel which can be evacuated or filled with various gases or with air. Inside the vessel a cylindrical tube furnace is pivot-mounted on a system of discs, for automatically rotating up to an angle of 180°. This allows both, the measurement at different detection angles (0° to 85°) and a consecutive measurement of sample and black-body reference without ventilating and opening the pot. The aim of this work is to present the newly designed emittance measurement apparatus which enables the determination of the angular dependent spectral emittance of opaque samples at temperatures up to 1400 °C. Next to the setup of the apparatus, the measurement results of various materials are presented at different detection angles.

  9. Comparison of methods of temperature measurement in swine.

    PubMed

    Hanneman, S K; Jesurum-Urbaitis, J T; Bickel, D R

    2004-07-01

    The purpose of these experiments was to test the equivalence of pulmonary artery, urinary bladder, tympanic, rectal and femoral artery methods of temperature measurement in healthy and critically ill swine under clinical intensive care unit (ICU) conditions using a prospective, time series design. First, sensors were tested for error and sensitivity to change in temperature with a precision-controlled water bath and a laboratory-certified digital thermometer for temperatures 34-42 degrees C. There was virtually no systematic (bias) or random (precision) error (<0.2 degrees C). The bladder sensor had the slowest response time to change in temperature (105-120 s). Next, testing was done in an experimental porcine ICU in a non-profit research institution with four male, sedated, and mechanically ventilated domestic farm pigs. The in vivo experiments were conducted over periods of 41-168 h with temperatures measured every 1-5 s. The bladder, tympanic and rectal methods had unacceptable bias (>or=0.5 degrees C) and/or precision (>or=0.2 degrees C). Response time varied from 7 s with the femoral artery method to 280 s (4.7 min) with the tympanic method. We concluded that equivalence of the methods was insufficient for them to be used interchangeably in the porcine ICU. Intravascular monitoring of core body temperature produces optimal measurement of porcine temperature under varying conditions of physiological stability.

  10. Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer.

    PubMed

    Yoshizawa, Nobuko; Ueda, Yukio; Nasu, Hatsuko; Ogura, Hiroyuki; Ohmae, Etsuko; Yoshimoto, Kenji; Takehara, Yasuo; Yamashita, Yutaka; Sakahara, Harumi

    2016-11-01

    Optical imaging and spectroscopy using near-infrared light have great potential in the assessment of tumor vasculature. We previously measured hemoglobin concentrations in breast cancer using a near-infrared time-resolved spectroscopy system. The purpose of the present study was to evaluate the effect of the chest wall on the measurement of hemoglobin concentrations in normal breast tissue and cancer. We measured total hemoglobin (tHb) concentration in both cancer and contralateral normal breast using a near-infrared time-resolved spectroscopy system in 24 female patients with breast cancer. Patients were divided into two groups based on menopausal state. The skin-to-chest wall distance was determined using ultrasound images obtained with an ultrasound probe attached to the spectroscopy probe. The apparent tHb concentration of normal breast increased when the skin-to-chest wall distance was less than 20 mm. The tHb concentration in pre-menopausal patients was higher than that in post-menopausal patients. Although the concentration of tHb in cancer tissue was statistically higher than that in normal breast, the contralateral normal breast showed higher tHb concentration than cancer in 9 of 46 datasets. When the curves of tHb concentrations as a function of the skin-to-chest wall distance in normal breast were applied for pre- and post-menopausal patients separately, all the cancer lesions plotted above the curves. The skin-to-chest wall distance affected the measurement of tHb concentration of breast tissue by near-infrared time-resolved spectroscopy. The tHb concentration of breast cancer tissue was more precisely evaluated by considering the skin-to-chest wall distance.

  11. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  12. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  13. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  14. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  15. High temperature spectral emissivity measurement using integral blackbody method

    NASA Astrophysics Data System (ADS)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  16. Ab initio study of edge effect on relative motion of walls in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.

    2013-01-01

    Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.

  17. Temperature Dependence of Parametric Phenomenon in Airborne Ultrasound for Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Kon, Akihiko; Wakatsuki, Naoto; Mizutani, Koichi

    2008-08-01

    The temperature dependence of parametric phenomenon in air was experimentally studied. It was confirmed from experimental data that the amplitude of upper sideband sound with a frequency of 36.175 kHz, which is caused by parametric phenomenon between high-power ultrasound with a frequency of 20.175 kHz and another normal sound with a frequency of 16.0 kHz, is proportional to -0.88×10-4×(T+273.15). This temperature dependence of the amplitude of upper sideband sound caused by the parametric phenomenon suggests a simple and effective method of temperature measurement.

  18. Liquidus temperature and optical properties measurement by containerless techniques

    NASA Technical Reports Server (NTRS)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  19. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  20. A Temperature-Monitoring Vaginal Ring for Measuring Adherence

    PubMed Central

    Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl

    2015-01-01

    Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956

  1. Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite Debye to ionization length ratio

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Kovačič, J.

    2017-06-01

    A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects to the plasma-wall transition. In this paper, the model is solved for a finite ratio ɛ between the Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24, 063506 (2017)], the solutions for ɛ = 0 are presented. Ion temperature is treated as a given, independent parameter and it is included in the model as a boundary condition. It is shown that when the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the boundary must be consistent with the selected ion temperature. A numerical procedure, how to determine such "consistent boundary conditions," is proposed, and a simple relation between the ion temperature and ion velocity at the boundary of the system is found. The effects of the ion temperature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath and in the sheath are investigated. It is concluded that larger ion temperature results in a better shielding of the plasma from the wall. An attempt is made to include the ion heat flux qi into the model in its simplest form q i = - K ' /d T i d x , where K ' is a constant heat conduction coefficient. It is shown that inclusion of such a term into the energy transfer equation introduces an additional ion heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic even in the sheath.

  2. Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite Debye to ionization length ratio.

    PubMed

    Gyergyek, T; Kovačič, J

    2017-06-01

    A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects to the plasma-wall transition. In this paper, the model is solved for a finite ratio ε between the Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24, 063506 (2017)], the solutions for [Formula: see text] are presented. Ion temperature is treated as a given, independent parameter and it is included in the model as a boundary condition. It is shown that when the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the boundary must be consistent with the selected ion temperature. A numerical procedure, how to determine such "consistent boundary conditions," is proposed, and a simple relation between the ion temperature and ion velocity at the boundary of the system is found. The effects of the ion temperature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath and in the sheath are investigated. It is concluded that larger ion temperature results in a better shielding of the plasma from the wall. An attempt is made to include the ion heat flux q i into the model in its simplest form [Formula: see text], where [Formula: see text] is a constant heat conduction coefficient. It is shown that inclusion of such a term into the energy transfer equation introduces an additional ion heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic even in the sheath.

  3. Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.

    1991-04-01

    Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.

  4. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers

    PubMed Central

    Osinchuk, Stephanie; Taylor, Susan M.; Shmon, Cindy L.; Pharr, John; Campbell, John

    2014-01-01

    This study evaluated the CorTemp® ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp® sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and −0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and −1.1°C. PMID:25320380

  5. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    PubMed

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  6. Is oral temperature an accurate measurement of deep body temperature? A systematic review.

    PubMed

    Mazerolle, Stephanie M; Ganio, Matthew S; Casa, Douglas J; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was -0.50°C ± 0.31°C at rest and -0.58°C ± 0.75°C during a nonsteady state. Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot accurately reflect core body temperature, probably because it is

  7. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu Zhiqiang; Fang Yan

    2008-06-03

    The influence of temperature on synthesizing single-walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition of methane over Mo-Co-MgO catalyst was studied by Transmission Electron Microscope (TEM) and Raman scattering. The Mo-Co-MgO bimetallic catalyst was prepared by decomposing the mixture of magnesium nitrate, ammonium molybdate, citric acid, and cobalt nitrate. The results show that Mo-Co-MgO bimetallic catalyst is effective to synthesize SWCNTs. By using Mo-Co-MgO bimetallic catalyst, generation of SWCNTs even at 940 K was demonstrated. The optimum temperature of synthesizing SWCNTs over Mo-Co-MgO bimetallic catalyst may be about 1123 K. At 1123 K, the diameters of SWCNTs are inmore » the range of 0.75-1.65 nm. The content of SWCNTs is increased with the increase of temperature below 1123 K and the carbon yield rate is also increased with the increase of synthesis temperature. Therefore, the amount of SWCNTs increases with the increase of temperature below 1123 K. However, above 1123 K, the content of SWCNTs is decreased with the increase of temperature; therefore, it is not effective to increase the amount of SWCNTs through increasing synthesis temperature above 1123 K.« less

  8. Fiber Bragg Grating Based System for Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  9. Study of Unsteady Flows with Concave Wall Effect

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2003-01-01

    This paper presents computational fluid dynamic studies of the inlet turbulence and wall curvature effects on the flow steadiness at near wall surface locations in boundary layer flows. The time-stepping RANS numerical solver of the NASA Glenn-HT RANS code and a one-equation turbulence model, with a uniform inlet turbulence modeling level of the order of 10 percent of molecular viscosity, were used to perform the numerical computations. The approach was first calibrated for its predictabilities of friction factor, velocity, and temperature at near surface locations within a transitional boundary layer over concave wall. The approach was then used to predict the velocity and friction factor variations in a boundary layer recovering from concave curvature. As time iteration proceeded in the computations, the computed friction factors converged to their values from existing experiments. The computed friction factors, velocity, and static temperatures at near wall surface locations oscillated periodically in terms of time iteration steps and physical locations along the span-wise direction. At the upstream stations, the relationship among the normal and tangential velocities showed vortices effects on the velocity variations. Coherent vortices effect on the velocity components broke down at downstream stations. The computations also predicted the vortices effects on the velocity variations within a boundary layer flow developed along a concave wall surface with a downstream recovery flat wall surface. It was concluded that the computational approach might have the potential to analyze the flow steadiness in a turbine blade flow.

  10. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

    2001-01-01

    Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

  11. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Treesearch

    Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta

    2015-01-01

    Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...

  12. DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana

    2012-02-20

    Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitivemore » to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.« less

  13. Technology and education: First approach for measuring temperature with Arduino

    NASA Astrophysics Data System (ADS)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  14. Temperature evolution during compaction of pharmaceutical powders.

    PubMed

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  15. PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model

    NASA Astrophysics Data System (ADS)

    Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.

  16. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  17. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  18. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  19. Calibrating the HISA temperature: Measuring the temperature of the Riegel-Crutcher cloud

    NASA Astrophysics Data System (ADS)

    Dénes, H.; McClure-Griffiths, N. M.; Dickey, J. M.; Dawson, J. R.; Murray, C. E.

    2018-06-01

    H I self absorption (HISA) clouds are clumps of cold neutral hydrogen (H I) visible in front of warm background gas, which makes them ideal places to study the properties of the cold atomic component of the interstellar medium (ISM). The Riegel-Crutcher (R-C) cloud is the most striking HISA feature in the Galaxy. It is one of the closest HISA clouds to us and is located in the direction of the Galactic Centre, which provides a bright background. High-resolution interferometric measurements have revealed the filamentary structure of this cloud, however it is difficult to accurately determine the temperature and the density of the gas without optical depth measurements. In this paper we present new H I absorption observations with the Australia Telescope Compact Array (ATCA) against 46 continuum sources behind the Riegel-Crutcher cloud to directly measure the optical depth of the cloud. We decompose the complex H I absorption spectra into Gaussian components using an automated machine learning algorithm. We find 300 Gaussian components, from which 67 are associated with the R-C cloud (0 < vLSR < 10 km s-1, FWHM <10 km s-1). Combining the new H I absorption data with H I emission data from previous surveys we calculate the spin temperature and find it to be between 20 and 80 K. Our measurements uncover a temperature gradient across the cloud with spin temperatures decreasing towards positive Galactic latitudes. We also find three new OH absorption lines associated with the cloud, which support the presence of molecular gas.

  20. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  1. USGS Polar Temperature Logging System, Description and Measurement Uncertainties

    USGS Publications Warehouse

    Clow, Gary D.

    2008-01-01

    This paper provides an updated technical description of the USGS Polar Temperature Logging System (PTLS) and a complete assessment of the measurement uncertainties. This measurement system is used to acquire subsurface temperature data for climate-change detection in the polar regions and for reconstructing past climate changes using the 'borehole paleothermometry' inverse method. Specifically designed for polar conditions, the PTLS can measure temperatures as low as -60 degrees Celsius with a sensitivity ranging from 0.02 to 0.19 millikelvin (mK). A modular design allows the PTLS to reach depths as great as 4.5 kilometers with a skid-mounted winch unit or 650 meters with a small helicopter-transportable unit. The standard uncertainty (uT) of the ITS-90 temperature measurements obtained with the current PTLS range from 3.0 mK at -60 degrees Celsius to 3.3 mK at 0 degrees Celsius. Relative temperature measurements used for borehole paleothermometry have a standard uncertainty (urT) whose upper limit ranges from 1.6 mK at -60 degrees Celsius to 2.0 mK at 0 degrees Celsius. The uncertainty of a temperature sensor's depth during a log depends on specific borehole conditions and the temperature near the winch and thus must be treated on a case-by-case basis. However, recent experience indicates that when logging conditions are favorable, the 4.5-kilometer system is capable of producing depths with a standard uncertainty (uZ) on the order of 200-250 parts per million.

  2. [Comparison of different methods of temperature measurment in children].

    PubMed

    Pavlović, Momcilo; Radlović, Nedeljko; Leković, Zoran; Berenji, Karolina

    2008-01-01

    The consequences of failing to notice fever in children can be serious. On the other hand, false positive reading can result in unnecesery investigation or diagnostic approach. The aim of this study was to compare different ways of body temperature measurement. This prospective study was carried out on Pediatric Department of General Hospital in Subotica during 10 months (March-December 2006). In 263 children aged 1 month to 18 years of age, the body temperature was obtained from 4 measurement sites: tactile assesment, forehead and ear by electronic thermometer, rectal temperature in small children (up to 2 years of age) or axillar temperature in older children by mercury thermometer. Tympanic thermometry was considered as a standard for fever detection. The sensitivity of rectal temperature to detect fever is 46.67%, while specificity is 92.19%. The sensitivity of fever detection by electronic thermometry on the forehead is lower according to rectal thermometry - 36.08%, while specificity is 95.18%. The lowest values ofsensitivity are recorded in axillar thermometry (35.82%), specificity is 90.20%. The correlation coefficient is higher between tympanic and rectal temperature measurement (r=0.5076, p<0.0005), than between tympanic and forehead measurements (r=0.5076, p<0,0005), while the lowest was between tympanic and axillar mesurement sites (r=0.4933, p<0.0005). The results of our study and literature data show that the most accurate methods of thermometry are rectal measurement of body temperature in small children and tympanic thermometry in children over 2 years of age.

  3. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  4. Device and method for self-verifying temperature measurement and control

    DOEpatents

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  5. A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector

    PubMed Central

    Therriault-Proulx, Francois; Wootton, Landon; Beddar, Sam

    2015-01-01

    Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40°C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1°C of each other. The depth-dose curve of a 6-MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of −0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs. PMID:26407188

  6. Thermal conductivity measurements of epoxy systems at low temperature

    NASA Astrophysics Data System (ADS)

    Rondeaux, F.; Bredy, Ph.; Rey, J. M.

    2002-05-01

    We have developed a specific thermal conductivity measurement facility for solid materials at low temperature (LHe and LN2). At present, the Measurement of Thermal Conductivity of Insulators (MECTI) facility performs measurements on epoxy resin, as well as on bulk materials such as aluminum alloy and on insulators developed at Saclay. Thermal conductivity measurements on pre-impregnated fiber-glass epoxy composite are presented in the temperature range of 4.2 K to 14 K for different thicknesses in order to extract the thermal boundary resistance. We also present results obtained on four different bonding glues (Stycast 2850 FT, Poxycomet F, DP190, Eccobond 285) in the temperature range of 4.2 K to 10 K.

  7. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less

  8. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  9. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    NASA Astrophysics Data System (ADS)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  10. Flexible, multi-measurement guided wave damage detection under varying temperatures

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander C. S.; Harley, Joel B.

    2018-04-01

    Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).

  11. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    USDA-ARS?s Scientific Manuscript database

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  12. Non-contact temperature measurement requirements for electronic materials processing

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  14. Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping.

    PubMed

    Marshall, Garrett J; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    An OPTOMEC Laser Engineered Net Shaping (LENS(™)) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti-6Al-4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.

  15. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping

    PubMed Central

    Marshall, Garrett J.; Thompson, Scott M.; Shamsaei, Nima

    2016-01-01

    An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials. PMID:27054180

  16. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  17. The realization of temperature controller for small resistance measurement system

    NASA Astrophysics Data System (ADS)

    Sobecki, Jakub; Walendziuk, Wojciech; Idzkowski, Adam

    2017-08-01

    This paper concerns the issues of construction and experimental tests of a temperature stabilization system for small resistance increments measurement circuits. After switching the system on, a PCB board heats up and the long-term temperature drift altered the measurement result. The aim of this work is reducing the time of achieving constant nominal temperature by the measurement system, which would enable decreasing the time of measurements in the steady state. Moreover, the influence of temperatures higher than the nominal on the measurement results and the obtained heating curve were tested. During the working process, the circuit heats up to about 32 °C spontaneously, and it has the time to reach steady state of about 1200 s. Implementing a USART terminal on the PC and an NI USB-6341 data acquisition card makes recording the data (concerning temperature and resistance) in the digital form and its further processing easier. It also enables changing the quantity of the regulator settings. This paper presents sample results of measurements for several temperature values and the characteristics of the temperature and resistance changes in time as well as their comparison with the output values. The object identification is accomplished due to the Ziegler-Nichols method. The algorithm of determining the step characteristics parameters and examples of computations of the regulator settings are included together with example characteristics of the object regulation.

  18. Core-temperature sensor ingestion timing and measurement variability.

    PubMed

    Domitrovich, Joseph W; Cuddy, John S; Ruby, Brent C

    2010-01-01

    Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events. To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise. Crossover study. Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%. Seven healthy, active participants (3 men, 4 women; age  =  27.0 ± 7.5 years, height  =  172.9 ± 6.8 cm, body mass  =  67.5 ± 6.1 kg, percentage body fat  =  12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)]  =  54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study. Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise. Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot. Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1  =  38.3°C ± 0.2°C, P2  =  38.3°C ± 0.4°C). We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.

  19. CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte

    NASA Astrophysics Data System (ADS)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.

  20. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.