Sample records for wall thickness measured

  1. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, Leander J.; Bergren, Donald A.

    1989-01-01

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  2. Wall thickness measuring method and apparatus

    DOEpatents

    Salzer, L.J.; Bergren, D.A.

    1987-10-06

    An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.

  3. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  4. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  5. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  6. Comparison between Carotid Artery Wall Thickness Measured by Multidetector Row Computed Tomography Angiography and Intimae-Media Thickness Measured by Sonography

    PubMed Central

    Savić, Živorad N.; Soldatović, Ivan I.; Brajović, Milan D.; Pavlović, Aleksandra M.; Mladenović, Dušan R.; Škodrić-Trifunović, Vesna D.

    2011-01-01

    The increased thickness of the carotid wall >1 mm is a significant predictor of coronary and cerebrovascular diseases. The purpose of our study was to assess the agreement between multidetector row computed tomography angiography (MDCTA) in measuring carotid artery wall thickness (CAWT) and color Doppler ultrasound (CD-US) in measuring intimae-media thickness (IMT). Eighty-nine patients (aged 35–81) were prospectively analyzed using a 64-detector MDCTA and a CD-US scanner. Continuous data were described as the mean value ± standard deviation, and were compared using the Mann–Whitney U test. A p value <0.05 was considered significant. Bland–Altman statistics were employed to measure the agreement between MDCTA and CD-US. CAWT ranged from 0.62 to 1.60 mm, with a mean value of 1.09 mm. IMT ranged from 0.60 to 1.55 mm, with a mean value of 1.06 mm. We observed an excellent agreement between CD-US and MDCTA in the evaluation of the common carotid artery thickness, with a bias between methods of 0.029 mm (which is a highly statistically important difference of absolute values [t = 43.289; p < 0.01] obtained by paired T test), and limits of agreement from 0.04 to 0.104. Pearson correlation coefficient was 0.9997 (95% CI 0.9996–0.9998; p < 0.01). We conclude that there is an excellent correlation between CAWT and IMT measurements obtained with the MDCTA and CD-US. PMID:22224072

  7. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch

    NASA Astrophysics Data System (ADS)

    Genovese, Katia; Humphrey, Jay D.

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries.

  8. Measurement of three-dimensional normal vectors, principal curvatures, and wall thickness of the heart using cine-MRI

    NASA Astrophysics Data System (ADS)

    Coghlan, Leslie; Singleton, H. R.; Dell'Italia, L. J.; Linderholm, C. E.; Pohost, G. M.

    1995-05-01

    We have developed a method for measuring the detailed in vivo three dimensional geometry of the left and right ventricles using cine-magnetic resonance imaging. From data in the form of digitized short axis outlines, the normal vectors, principal curvatures and directions, and wall thickness were computed. The method was evaluated on simulated ellipsoids and on human MRI data. Measurements of normal vectors and of wall thickness were very accurate in simulated data and appeared appropriate in patient data. On simulated data, measurements of the principal curvature k1 (corresponding approximately to the short axis direction of the left ventricle) and of principal directions were quite accurate, but measurements of the other principal curvature (k2) were less accurate. The reasons behind this are considered. We expect improvements in the accuracy with thinner slices and improved representation of the surface data. Gradient echo images were acquired from 8 dogs with a 1.5T system (Philips Gyroscan) at baseline and four months after closed chest experimentally produced mitral regurgitation (MR). The product (k1 + k2) X wall thickness averaged over all slices at end-diastole was significantly lower after surgery (n equals 8, p < 0.005). These geometry changes were consistent with the expected increase in wall stress after MR.

  9. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-08-04

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  10. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-01-01

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  11. New portable pipe wall thickness measuring technique

    NASA Astrophysics Data System (ADS)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  12. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  13. Ultrasonographic wall thickness measurement of the upper and lower uterine segments in the prediction of the progress of preterm labour.

    PubMed

    Sayed Ahmed, W A; Madny, E H; Habash, Y H; Ibrahim, Z M; Morsy, A G K; Said, M E

    2015-01-01

    To assess the role of ultrasonographic measurement of the upper and lower uterine segments wall thickness in predicting the progress of preterm labour in patients presenting with preterm labour pains. Fifty pregnant women presenting at Obstetrics Department - Suez Canal University, Egypt with regular lower abdominal pains and diagnosed as having preterm labour were enrolled in the study. Measurements of the upper and lower uterine segments wall thickness by transabdominal ultrasonography in-between contractions and with full bladder were taken. The upper/lower uterine wall thickness ratio was calculated and correlated to the progress of the preterm labour and to the response to tocolytics. The ultrasonographic upper/lower uterine wall thickness ratio was directly related to the progress of preterm delivery (PTD). The change in this ratio is correlated inversely with the response to tocolysis. Using the ROC curve, when the upper/lower uterine wall thickness ratio was ≤ 1.26 the sensitivity was 94.74 and the specificity was 100.00, and when the ratio was ≤ 1.52 the sensitivity was 100.00 and the specificity was 83.33. These data may serve as a baseline ultrasonographic reference values for further studies in prediction the progress of preterm labour in patients presenting with preterm labour pains.

  14. A pilot study on bladder wall thickness at different filling stages

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Yang; Li, Baojuan; Zhang, Guopeng; Liang, Zhengrong; Lu, Hongbing

    2015-03-01

    The ever-growing death rate and the high recurrence of bladder cancer make the early detection and appropriate followup procedure of bladder cancer attract more attention. Compare to optical cystoscopy, image-based studies have revealed its potentials in non-invasive observations of the abnormities of bladder recently, in which MR imaging turns out to be a better choice for bladder evaluation due to its non-ionizing and high contrast between urine and wall tissue. Recent studies indicate that bladder wall thickness tends to be a good indicator for detecting bladder wall abnormalities. However, it is difficult to quantitatively compare wall thickness of the same subject at different filling stages or among different subjects. In order to explore thickness variations at different bladder filling stages, in this study, we preliminarily investigate the relationship between bladder wall thickness and bladder volume based on a MRI database composed of 40 datasets acquired from 10 subjects at different filling stages, using a pipeline for thickness measurement and analysis proposed in our previous work. The Student's t-test indicated that there was no significant different on wall thickness between the male group and the female group. The Pearson correlation analysis result indicated that negative correlation with a correlation coefficient of -0.8517 existed between the wall thickness and bladder volume, and the correlation was significant(p <0.01). The corresponding linear regression equation was then estimated by the unary linear regression. Compared to the absolute value of wall thickness, the z-score of wall thickness would be more appropriate to reflect the thickness variations. For possible abnormality detection of a bladder based on wall thickness, the intra-subject and inter-subject thickness variation should be considered.

  15. Diffusion capacity and CT measures of emphysema and airway wall thickness - relation to arterial oxygen tension in COPD patients.

    PubMed

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Lind Eagan, Tomas Mikal; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.

  16. A Probabilistic Method for Estimation of Bowel Wall Thickness in MR Colonography

    PubMed Central

    Menys, Alex; Jaffer, Asif; Bhatnagar, Gauraang; Punwani, Shonit; Atkinson, David; Halligan, Steve; Hawkes, David J.; Taylor, Stuart A.

    2017-01-01

    MRI has recently been applied as a tool to quantitatively evaluate the response to therapy in patients with Crohn’s disease, and is the preferred choice for repeated imaging. Bowel wall thickness on MRI is an important biomarker of underlying inflammatory activity, being abnormally increased in the acute phase and reducing in response to successful therapy; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. We propose a novel method for estimating bowel wall-thickness to improve the poor interobserver agreement of the manual procedure. We show that the variability of wall thickness measurement between the algorithm and observer measurements (0.25mm ± 0.81mm) has differences which are similar to observer variability (0.16mm ± 0.64mm). PMID:28072831

  17. Pulse wave velocity as a diagnostic index: The effect of wall thickness

    NASA Astrophysics Data System (ADS)

    Hodis, Simona

    2018-06-01

    Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.

  18. Average chest wall thickness at two anatomic locations in trauma patients.

    PubMed

    Schroeder, Elizabeth; Valdez, Carrie; Krauthamer, Andres; Khati, Nadia; Rasmus, Jessica; Amdur, Richard; Brindle, Kathleen; Sarani, Babak

    2013-09-01

    Needle thoracostomy is the emergent treatment for tension pneumothorax. This procedure is commonly done using a 4.5cm catheter, and the optimal site for chest wall puncture is controversial. We hypothesize that needle thoracostomy cannot be performed using this catheter length irrespective of the site chosen in either gender. A retrospective review of all chest computed tomography (CT) scans obtained on trauma patients from January 1, 2011 to December 31, 2011 was performed. Patients aged 18 and 80 years were included and patients whose chest wall thickness exceeded the boundary of the images acquired were excluded. Chest wall thickness was measured at the 2nd intercostal (ICS), midclavicular line (MCL) and the 5th ICS, anterior axillary line (AAL). Injury severity score (ISS), chest wall thickness, and body mass index (BMI) were analyzed. 201 patients were included, 54% male. Average (SD) BMI was 26 (7)kg/m(2). The average chest wall thickness in the overall cohort was 4.08 (1.4)cm at the 2nd ICS/MCL and 4.55 (1.7)cm at the 5th ICS/AAL. 29% of the overall cohort (27 male and 32 female) had a chest wall thickness greater than 4.5cm at the 2nd ICS/MCL and 45% (54 male and 36 female) had a chest wall thickness greater than 4.5cm at the 5th ICS/AAL. There was no significant interaction between gender and chest wall thickness at either site. BMI was positively associated with chest wall thickness at both the 2nd and 5th ICS/AAL. A 4.5cm catheter is inadequate for needle thoracostomy in most patients regardless of puncture site or gender. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Ellipsometric measurement of liquid film thickness

    NASA Technical Reports Server (NTRS)

    Chang, Ki Joon; Frazier, D. O.

    1989-01-01

    The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls.

  20. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  1. Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation.

    PubMed

    Bishop, Martin; Rajani, Ronak; Plank, Gernot; Gaddum, Nicholas; Carr-White, Gerry; Wright, Matt; O'Neill, Mark; Niederer, Steven

    2016-03-01

    Transmural lesion formation is critical to success in atrial fibrillation ablation and is dependent on left atrial wall thickness (LAWT). Pre- and peri-procedural planning may benefit from LAWT measurements. To calculate the LAWT, the Laplace equation was solved over a finite element mesh of the left atrium derived from the segmented computed tomographic angiography (CTA) dataset. Local LAWT was then calculated from the length of field lines derived from the Laplace solution that spanned the wall from the endocardium or epicardium. The method was validated on an atrium phantom and retrospectively applied to 10 patients who underwent routine coronary CTA for standard clinical indications at our institute. The Laplace wall thickness algorithm was validated on the left atrium phantom. Wall thickness measurements had errors of <0.2 mm for thicknesses of 0.5-5.0 mm that are attributed to image resolution and segmentation artefacts. Left atrial wall thickness measurements were performed on 10 patients. Successful comprehensive LAWT maps were generated in all patients from the coronary CTA images. Mean LAWT measurements ranged from 0.6 to 1.0 mm and showed significant inter and intra patient variability. Left atrial wall thickness can be measured robustly and efficiently across the whole left atrium using a solution of the Laplace equation over a finite element mesh of the left atrium. Further studies are indicated to determine whether the integration of LAWT maps into pre-existing 3D anatomical mapping systems may provide important anatomical information for guiding radiofrequency ablation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. Normal reference values for bladder wall thickness on CT in a healthy population.

    PubMed

    Fananapazir, Ghaneh; Kitich, Aleksandar; Lamba, Ramit; Stewart, Susan L; Corwin, Michael T

    2018-02-01

    To determine normal bladder wall thickness on CT in patients without bladder disease. Four hundred and nineteen patients presenting for trauma with normal CTs of the abdomen and pelvis were included in our retrospective study. Bladder wall thickness was assessed, and bladder volume was measured using both the ellipsoid formula and an automated technique. Patient age, gender, and body mass index were recorded. Linear regression models were created to account for bladder volume, age, gender, and body mass index, and the multiple correlation coefficient with bladder wall thickness was computed. Bladder volume and bladder wall thickness were log-transformed to achieve approximate normality and homogeneity of variance. Variables that did not contribute substantively to the model were excluded, and a parsimonious model was created and the multiple correlation coefficient was calculated. Expected bladder wall thickness was estimated for different bladder volumes, and 1.96 standard deviation above expected provided the upper limit of normal on the log scale. Age, gender, and bladder volume were associated with bladder wall thickness (p = 0.049, 0.024, and < 0.001, respectively). The linear regression model had an R 2 of 0.52. Age and gender were negligible in contribution to the model, and a parsimonious model using only volume was created for both the ellipsoid and automated volumes (R 2  = 0.52 and 0.51, respectively). Bladder wall thickness correlates with bladder wall volume. The study provides reference bladder wall thicknesses on CT utilizing both the ellipsoid formula and automated bladder volumes.

  3. Measurement of thickness of film deposited on the plasma-facing wall in the QUEST tokamak by colorimetry.

    PubMed

    Wang, Z; Hanada, K; Yoshida, N; Shimoji, T; Miyamoto, M; Oya, Y; Zushi, H; Idei, H; Nakamura, K; Fujisawa, A; Nagashima, Y; Hasegawa, M; Kawasaki, S; Higashijima, A; Nakashima, H; Nagata, T; Kawaguchi, A; Fujiwara, T; Araki, K; Mitarai, O; Fukuyama, A; Takase, Y; Matsumoto, K

    2017-09-01

    After several experimental campaigns in the Kyushu University Experiment with Steady-state Spherical Tokamak (QUEST), the originally stainless steel plasma-facing wall (PFW) becomes completely covered with a deposited film composed of mixture materials, such as iron, chromium, carbon, and tungsten. In this work, an innovative colorimetry-based method was developed to measure the thickness of the deposited film on the actual QUEST wall. Because the optical constants of the deposited film on the PFW were position-dependent and the extinction coefficient k 1 was about 1.0-2.0, which made the probing light not penetrate through some thick deposited films, the colorimetry method developed can only provide a rough value range of thickness of the metal-containing film deposited on the actual PFW in QUEST. However, the use of colorimetry is of great benefit to large-area inspections and to radioactive materials in future fusion devices that will be strictly prohibited from being taken out of the limited area.

  4. Comparison of Maximal Wall Thickness in Hypertrophic Cardiomyopathy Differs Between Magnetic Resonance Imaging and Transthoracic Echocardiography.

    PubMed

    Bois, John P; Geske, Jeffrey B; Foley, Thomas A; Ommen, Steve R; Pellikka, Patricia A

    2017-02-15

    Left ventricular (LV) wall thickness is a prognostic marker in hypertrophic cardiomyopathy (HC). LV wall thickness ≥30 mm (massive hypertrophy) is independently associated with sudden cardiac death. Presence of massive hypertrophy is used to guide decision making for cardiac defibrillator implantation. We sought to determine whether measurements of maximal LV wall thickness differ between cardiac magnetic resonance imaging (MRI) and transthoracic echocardiography (TTE). Consecutive patients were studied who had HC without previous septal ablation or myectomy and underwent both cardiac MRI and TTE at a single tertiary referral center. Reported maximal LV wall thickness was compared between the imaging techniques. Patients with ≥1 technique reporting massive hypertrophy received subset analysis. In total, 618 patients were evaluated from January 1, 2003, to December 21, 2012 (mean [SD] age, 53 [15] years; 381 men [62%]). In 75 patients (12%), reported maximal LV wall thickness was identical between MRI and TTE. Median difference in reported maximal LV wall thickness between the techniques was 3 mm (maximum difference, 17 mm). Of the 63 patients with ≥1 technique measuring maximal LV wall thickness ≥30 mm, 44 patients (70%) had discrepant classification regarding massive hypertrophy. MRI identified 52 patients (83%) with massive hypertrophy; TTE, 30 patients (48%). Although guidelines recommend MRI or TTE imaging to assess cardiac anatomy in HC, this study shows discrepancy between the techniques for maximal reported LV wall thickness assessment. In conclusion, because this measure clinically affects prognosis and therapeutic decision making, efforts to resolve these discrepancies are critical. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    PubMed Central

    Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev

    2014-01-01

    The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure. PMID:24523632

  6. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, D.A.

    1980-05-30

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  7. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, David A.

    1982-01-01

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  8. Risk Assessment of Abdominal Wall Thickness Measured on Pre-Operative Computerized Tomography for Incisional Surgical Site Infection after Abdominal Surgery.

    PubMed

    Tongyoo, Assanee; Chatthamrak, Putipan; Sriussadaporn, Ekkapak; Limpavitayaporn, Palin; Mingmalairak, Chatchai

    2015-07-01

    The surgical site infection (SSI) is a common complication of abdominal operation. It relates to increased hospital stay, increased healthcare cost, and decreased patient's quality of life. Obesity, usually defined by BMI, is known as one of the risks of SSI. However, the thickness of subcutaneous layers of abdominal wall might be an important local factor affecting the rate of SSI after the abdominal operations. The objective of this study is to assess the importance of the abdominal wall thickness on incisional SSI rate. The subjects of the present study were patients who had undergone major abdominal operations at Thammasat University Hospital between June 2013 and May 2014, and had been investigated with CT scans before their operations. The demographic data and clinical information of these patients were recorded. The thickness ofsubcutaneous fatty tissue from skin down to the most superficial layer of abdominal wall muscle at the surgical site was measured on CT images. The wound infectious complication was reviewed and categorized as superficial and deep incisional SSIfollowing the definition from Centersfor Disease Control and Prevention (CDC) guidelines. The significance ofeach potentialfactors on SSI rates was determined separately with student t-test for quantitative data and χ2-test for categorical data. Then all factors, which had p < 0.10, were included into the multivariate logistic regression analysis and were analyzed with significance at p < 0.05. One hundred and thirty-nine patients were included in this study. They all underwent major abdominal surgery and had had pre-operative CTscans. Post-operative SSI was 25.2% (35/139), superficial and deep types in 27 and 8 patients, respectively. The comparison of abdominal wall thickness between patients with and without infection was significantly different (20.0 ± 8.4 mm and 16.0 ± 7.2 mm, respectively). When the thickness at 20 mm was used as the cut-off value, 43 of 139 patients had abdominal wall

  9. Measuring Thicknesses of Wastewater Films

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Davenport, R. J.

    1987-01-01

    Sensor determines when thickness of film of electrically conductive wastewater on rotating evaporator drum exceeds preset value. Sensor simple electrical probe that makes contact with liquid surface. Made of materials resistant to chemicals in liquid. Mounted on shaft in rotating cylinder, liquid-thickness sensor extends toward cylinder wall so tip almost touches. Sensor body accommodates probe measuring temperature of evaporated water in cylinder.

  10. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.

    PubMed

    Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M

    2013-09-10

    Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.

  11. Myocardium wall thickness transducer and measuring method

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Silver, R. H.; Culler, V. H. (Inventor)

    1976-01-01

    A miniature transducer for measuring changes of thickness of the myocardium is described. The device is easily implantable without traumatizing the subject, without affecting the normal muscle behavior, and is removable and implantable at a different muscle location. Operating features of the device are described.

  12. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...

  13. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...

  14. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...

  15. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...

  16. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not known...

  17. Accuracy Evaluation in the Measurement of a Small Change in the Thickness of Arterial Walls and the Measurement of Elasticity of the Human Carotid Artery

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Kanai, Hiroshi; Hoshimiya, Nozomu; Chubachi, Noriyoshi; Koiwa, Yoshiro

    1998-05-01

    For the diagnosis of the early stages of atherosclerosis, it isimportant to evaluate the local acoustic characteristics of thearterial wall. For this purpose, it is necessary to increase thespatial resolution in the axial direction to several millimeters,which corresponds to the size of the macular lesion on the surface ofthe wall. We have proposed a method for measuring small velocitysignals on the intima and adventitia of the arterial wall from theskin surface using pulsive ultrasonic waves. The small change inthickness of the arterial wall is obtained by integrating thedifference between the two velocity signals on the intima andadventitia. The elastic property of the arterial wall is noninvasivelyevaluated from the change in thickness and the arterial innerpressure. In this paper, we evaluate the accuracy of the proposedmethod for measuring the small displacement. Moreover, we applied thismethod to evaluate the elastic property of the arterial wall of 50patients and 8 healthy subjects.

  18. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    PubMed

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  19. The implications of different lateral wall thicknesses on surgical access to the maxillary sinus.

    PubMed

    Lim, Ee Lian; Ngeow, Wei Cheong; Lim, Daniel

    2017-11-27

    The objective of this study was to measure the topographic thickness of the lateral wall of the maxillary sinus in selected Asian populations. Measurements were made on the lateral walls of maxillary sinuses recorded using CBCT in a convenient sample of patients attending an Asian teaching hospital. The points of measurement were the intersections between the axes along the apices of the canine, first premolar, and second premolar and along the mesiobuccal and distobuccal apices of the first and second molars and horizontal planes 10 mm, 20 mm, 30 mm and 40 mm beneath the orbital floor. The CBCT images of 109 patients were reviewed. The mean age of the patients was 33.0 (SD 14.8) years. Almost three quarters (71.8%) of the patients were male. The mean bone thickness decreased beginning at the 10-mm level and continuing to 40 mm below the orbital floor. Few canine regions showed encroachment of the maxillary sinus. The thickness of the buccal wall gradually increased from the canine region (where sinus encroachment of the canine region was present) to the first molar region, after which it decreased to the thickness observed at the canine region. The buccal wall of the maxillary sinus became thicker anteroposteriorly, except in the region of the second molar, and thinner superoinferiorly. These changes will affect the approach used to osteotomize the lateral sinus wall for oral surgery and for the sinus lift procedure.

  20. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  1. Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans.

    PubMed

    Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Birk, Gurpreet K; Timothy Cable, N; Green, Daniel J

    2013-08-01

    Exercise training is associated with direct effects on conduit artery function and structure. Cross-sectional studies suggest the presence of systemic changes in wall thickness as a result of exercise in healthy subjects, but no previous study has examined this question in humans undertaking exercise training. To examine the change in superficial femoral (SFA, i.e. local effect) and carotid (CA, i.e. systemic effect) artery wall thickness across 8 weeks of lower limb cycle training in healthy young men. Fourteen healthy young male subjects were assigned to an 8-week training study of cycling exercise (n = 9) or a control period (n = 5). Before, during (2, 4 and 6 weeks) and after training, SFA and CA wall thickness was examined using automated edge-detection of high resolution ultrasound images. We also measured resting diameter and calculated the wall:lumen(W:L)-ratio. Exercise training did not alter CA or SFA baseline diameter (P = 0.14), but was associated with gradual, consistent and significant decreases in wall thickness and W:L-ratio in both the CA and SFA (P < 0.001 and 0.002, respectively). Two-way ANOVA revealed a comparable magnitude of decrease in wall thickness and W:L-ratio in both arteries across the 8-week period (interaction-effect; P = 0.29 and 0.12, respectively). No changes in artery diameter, wall thickness or W:L-ratio were apparent in controls (0.82, 0.38 and 0.52, respectively). We found that cycle exercise training in healthy young individuals is associated with modest, but significant, decreases in wall thickness in the superficial femoral and carotid arteries. These findings suggest that exercise training causes systemic adaptation of the arterial wall in healthy young subjects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Ultrasonic Wall Thickness Monitoring at High Temperatures (>500 °C)

    NASA Astrophysics Data System (ADS)

    Cegla, F. B.; Allin, J.; Davies, J. O.; Collins, P.; Cawley, P.

    2011-06-01

    Corrosion and erosion shorten the life of components that are used in the petrochemical industry. In order to mitigate the safety and financial risks posed by the degradation mechanisms, plant operators monitor wall thicknesses at regular inspection intervals. In high temperature locations inspections have to be carried out at plant shut downs because conventional ultrasonic sensors cannot withstand the high operating temperatures. The authors have developed a waveguide based high temperature thickness gauge for monitoring of wall thicknesses in high temperature areas. The waveguide allows the use of conventional transduction systems (max temp. 60 °C) at one end and guides ultrasonic waves into the high temperature region where the inspection is to be carried out. Slender stainless steel waveguides allow a temperature drop of ˜500-600 °C per 200 mm length to be sustained simply by natural convection cooling. This paper describes the technical challenges that had to be overcome (dispersion and source/receiver characteristics) in order to implement this "acoustic cable". A range of experimental results of thickness measurements on components of different thickness, and furnace tests at different temperatures are presented. An accelerated corrosion test that demonstrates the effectiveness of the monitoring for corrosion is also presented.

  3. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Stich, D.; Heidemeyer, P.; Bastian, M.; Hochrein, T.

    2014-05-01

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  4. Gastric full-thickness suturing during EMR and for treatment of gastric-wall defects (with video).

    PubMed

    von Renteln, Daniel; Schmidt, Arthur; Riecken, Bettina; Caca, Karel

    2008-04-01

    The endoscopic full-thickness Plicator device was initially developed to provide an endoscopic treatment option for patients with GERD. Because the endoscopic full-thickness Plicator enables rapid and easy placement of transmural sutures, comparable with surgical sutures, we used the Plicator device for endoscopic treatment or prevention of GI-wall defects. To describe the outcomes and complications of endoscopic full-thickness suturing during EMR and for the treatment of gastric-wall defects. A report of 4 cases treated with the endoscopic full-thickness suturing between June 2006 and April 2007. A large tertiary-referral center. Four subjects received endoscopic full-thickness suturing. The subjects were women, with a mean age of 67 years. Of the 4 subjects, 3 received endoscopic full-thickness suturing during or after an EMR. One subject received endoscopic full-thickness suturing for treatment of a fistula. Primary outcome measurements were clinical procedural success and procedure-related adverse events. The mean time for endoscopic full-thickness suturing was 15 minutes. In all cases, GI-wall patency was restored or ensured, and no procedure-related complications occurred. All subjects responded well to endoscopic full-thickness suturing. The resection of one GI stromal tumor was incomplete. Because of the Plicator's 60F distal-end diameter, endoscopic full-thickness suturing could only be performed with the patient under midazolam and propofol sedation. The durable Plicator suture might compromise the endoscopic follow-up after EMR. The endoscopic full-thickness Plicator permits rapid and easy placement of transmural sutures and seems to be a safe and effective alternative to surgical intervention to restore GI-wall defects or to ensure GI-wall patency during EMR procedures.

  5. Agreement between methods of measurement of mean aortic wall thickness by MRI.

    PubMed

    Rosero, Eric B; Peshock, Ronald M; Khera, Amit; Clagett, G Patrick; Lo, Hao; Timaran, Carlos

    2009-03-01

    To assess the agreement between three methods of calculation of mean aortic wall thickness (MAWT) using magnetic resonance imaging (MRI). High-resolution MRI of the infrarenal abdominal aorta was performed on 70 subjects with a history of coronary artery disease who were part of a multi-ethnic population-based sample. MAWT was calculated as the mean distance between the adventitial and luminal aortic boundaries using three different methods: average distance at four standard positions (AWT-4P), average distance at 100 automated positions (AWT-100P), and using a mathematical computation derived from the total vessel and luminal areas (AWT-VA). Bland-Altman plots and Passing-Bablok regression analyses were used to assess agreement between methods. Bland-Altman analyses demonstrated a positive bias of 3.02+/-7.31% between the AWT-VA and the AWT-4P methods, and of 1.76+/-6.82% between the AWT-100P and the AWT-4P methods. Passing-Bablok regression analyses demonstrated constant bias between the AWT-4P method and the other two methods. Proportional bias was, however, not evident among the three methods. MRI methods of measurement of MAWT using a limited number of positions of the aortic wall systematically underestimate the MAWT value compared with the method that calculates MAWT from the vessel areas. Copyright (c) 2009 Wiley-Liss, Inc.

  6. New research perspectives from a novel approach to quantify tracheid wall thickness.

    PubMed

    Prendin, Angela Luisa; Petit, Giai; Carrer, Marco; Fonti, Patrick; Björklund, Jesper; von Arx, Georg

    2017-07-01

    The analysis of xylem cell anatomical features in dated tree rings provides insights into xylem functional responses and past growth conditions at intra-annual resolution. So far, special focus has been given to the lumen of the water-conducting cells, whereas the equally relevant cell wall thickness (CWT) has been less investigated due to methodological limitations. Here we present a novel approach to measure tracheid CWT in high-resolution images of wood cross-sections that is implemented within the specialized image-analysis tool 'ROXAS'. Compared with the traditional manual line measurements along a selection of few radial files, this novel image-analysis tool can: (i) measure CWT of all tracheids in a tree-ring cross-section, thus increasing the number of individual tracheid measurements by a factor of ~10-20; (ii) measure the tangential and radial walls separately; and (iii) laterally integrate the measurements in a customizable way from only the thinnest central part of the cell walls up to the thickest part of the tracheids at the corners. Cell wall thickness measurements performed with our novel approach and the traditional manual approach showed comparable accuracy for several image resolutions, with an optimal accuracy-efficiency balance at 100× magnification. The configurable settings intended to underscore different cell wall properties indeed changed the absolute levels and intra- and inter-annual patterns of CWT. This versatility, together with the high data production capacity, allows to tailor the measurements of CWT to the specific goal of each study, which opens new research perspectives, e.g., for investigating structure-function relationships, tree stress responses and carbon allocation patterns, and for reconstructing climate based on intra- and inter-annual variability of anatomical wood density. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Dietary fat intake and carotid artery wall thickness: the Atherosclerosis Risk in Communities (ARIC) Study.

    PubMed

    Tell, G S; Evans, G W; Folsom, A R; Shimakawa, T; Carpenter, M A; Heiss, G

    1994-05-15

    Associations between atherosclerosis and dietary fat and cholesterol have been demonstrated in numerous animal experiments. The relation between these dietary components and atherosclerosis has not previously been reported in a population-based study among human beings. The associations of dietary fat and cholesterol with carotid artery wall thickness (atherosclerosis) were investigated in a population-based study, the Atherosclerosis Risk in Communities (ARIC) Study, from 1987 to 1989. Participants were 2,095 black women, 5,146 white women, 1,318 black men and 4,589 white men, aged 45-64 years, recruited from four US communities: Jackson, Mississippi; Forsyth County, North Carolina; Washington County, Maryland; and Minneapolis, Minnesota. Habitual diet was assessed with a food frequency questionnaire. Wall thickness was measured with B-mode ultrasound. After adjustment for age and energy intake, animal fat, saturated fat, monounsaturated fat, cholesterol, and Keys' score were positively related to wall thickness, while vegetable fat and polyunsaturated fat were inversely related to wall thickness. These associations persisted after further adjustment for smoking and hypertension and were consistent across the four race and sex groups. Thus, elements of habitual dietary intake were consistently associated with carotid artery wall thickness, compatible with their putatively atherogenic and antiatherogenic properties.

  8. The Effects of Modified Wall Squat Exercises on Average Adults’ Deep Abdominal Muscle Thickness and Lumbar Stability

    PubMed Central

    Cho, Misuk

    2013-01-01

    [Purpose] The purpose of this study was to compare the effects of bridge exercises applying the abdominal drawing-in method and modified wall squat exercises on deep abdominal muscle thickness and lumbar stability. [Subjects] A total of 30 subjects were equally divided into an experimental group and a control group. [Methods] The experimental group completed modified wall squat exercises, and the control group performed bridge exercises. Both did so for 30 minutes three times per week over a six-week period. Both groups’ transversus abdominis (Tra), internal oblique (IO), and multifidus muscle thickness were measured using ultrasonography, while their static lumbar stability and dynamic lumbar stability were measured using a pressure biofeedback unit. [Results] A comparison of the pre-intervention and post-intervention measures of the experimental group and the control group was made; the Tra and IO thicknesses were significantly different in both groups. [Conclusion] The modified wall squat exercise and bridge exercise affected the thicknesses of the Tra and the IO muscles. While the bridge exercise requirs space and a mattress to lie on, the modified wall squat exercise can be conveniently performed anytime. PMID:24259831

  9. Measurement of wall thickness alone does not accurately assess the presence of left ventricular hypertrophy.

    PubMed

    Leibowitz, David; Planer, David; Ben-Ibgi, Fanny; Rott, David; Weiss, A Teddy; Bursztyn, Michael

    2007-02-01

    Clinical echocardiographic assessment of left ventricular hypertrophy (LVH) is generally performed by measuring wall thickness alone (WT). The objective of this study was to compare the assessment of LVH using the measurement of WT to that using indexed LV mass. Hypertensive patients underwent echocardiography with the measurement of LV WT and LV mass. For each patient, the presence of LVH was assessed by both methods with WT compared to the gold standard of LV mass index. In all, 92 patients (51M/41F) were entered, and in only 55 patients (60%) were the two methods concordant. There was a tendency for WT to underestimate LVH in females (sensitivity 37%, specificity 79%) and overestimate LVH in males (sensitivity 88%, specificity 56%). The measurement of WT alone overestimates LVH in males and underestimates LVH in females and should not be used as a surrogate marker for increased LV mass.

  10. SU-C-BRA-04: Use of Esophageal Wall Thickness in Evaluation of the Response to Chemoradiation Therapy for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Kligerman, S; Lu, W

    2015-06-15

    Purpose: To quantitatively evaluate the esophageal cancer response to chemoradiation therapy (CRT) by measuring the esophageal wall thickness in CT. Method: Two datasets were used in this study. The first dataset is composed of CT scans of 15 esophageal cancer patients and 15 normal controls. The second dataset is composed of 20 esophageal cancer patients who underwent PET/CT scans before (Pre-CRT) and after CRT (Post-CRT). We first segmented the esophagus using a multi-atlas-based algorithm. The esophageal wall thickness was then computed, on each slice, as the equivalent circle radius of the segmented esophagus excluding the lumen. To evaluate the changesmore » of wall thickness, we computed the standard deviation (SD), coefficient of variation (COV, SD/Mean), and flatness [(Max–Min)/Mean] of wall thickness along the entire esophagus. Results: For the first dataset, the mean wall thickness of cancer patients and normal controls were 6.35 mm and 6.03 mm, respectively. The mean SD, COV, and flatness of the wall thickness were 2.59, 0.21, and 1.27 for the cancer patients and 1.99, 0.16, and 1.13 for normal controls. Statistically significant differences (p < 0.05) were identified in SD and flatness. For the second dataset, the mean wall thickness of pre-CRT and post-CRT patients was 7.13 mm and 6.84 mm, respectively. The mean SD, COV, and flatness were 1.81, 0.26, and 1.06 for pre-CRT and 1.69, 0.26, and 1.06 for post-CRT. Statistically significant difference was not identified for these measurements. Current results are based on the entire esophagus. We believe significant differences between pre- and post-CRT scans could be obtained, if we conduct the measurements at tumor sites. Conclusion: Results show thicker wall thickness in pre-CRT scans and differences in wall thickness changes between normal and abnormal esophagus. This demonstrated the potential of esophageal wall thickness as a marker in the tumor CRT response evaluation. This work was supported in

  11. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  12. Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient

    PubMed Central

    Mirle, Elisabeth; Wogatzki, Anna; Kunzmann, Robert; Schoenfelder, Axel M; Litzke, Lutz F

    2017-01-01

    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4 mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness. PMID:28761667

  13. Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient.

    PubMed

    Mirle, Elisabeth; Wogatzki, Anna; Kunzmann, Robert; Schoenfelder, Axel M; Litzke, Lutz F

    2017-01-01

    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4 mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness.

  14. Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models

    PubMed Central

    Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F

    2007-01-01

    A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291

  15. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments

    PubMed Central

    Dong, Ding-Hui; Liu, Wen-Yan; Feng, Hai-Bo; Fu, Yi-Li; Huang, Shi; Xiang, Jun-Xi; Lyu, Yi

    2015-01-01

    Background: Magnetic anchored surgical instruments (MASI), relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT) deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3) is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. “BMI-ICAWT” curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x) = P1 × x2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056), P2 = 1.098 (0.03197, 2.164), P3 = −18.52 (−31.64, −5.412), R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of “BMI-ICAWT” curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI. PMID:26228215

  16. Evolution of thick domain walls in de Sitter universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su

    We consider thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we are interested not only in stationary solutions found therein, but also investigate the general case of domain wall evolution with time. When the wall thickness parameter, δ{sub 0}, is smaller than H {sup −1}/√2, where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ{sub 0} ≥ H {sup −1}/√2. We have calculated numerically the rate of the wallmore » expansion in this case and have found that the width of the wall grows exponentially fast for δ{sub 0} >> H {sup −1}. An explanation for the critical value δ{sub 0} {sub c} = H {sup −1}/√2 is also proposed.« less

  17. Dynamic film thickness between bubbles and wall in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Damsohn, Manuel; Prasser, Horst-Michael; Aritomi, Masanori

    2011-09-01

    The present paper describes a novel technique to characterize the behavior of the liquid film between gas bubbles and the wall in a narrow channel. The method is based on the electrical conductance. Two liquid film sensors are installed on both opposite walls in a narrow rectangular channel. The liquid film thickness underneath the gas bubbles is recorded by the first sensor, while the void fraction information is obtained by measuring the conductance between the pair of opposite sensors. Both measurements are taken on a large two-dimensional domain and with a high speed. This makes it possible to obtain the two-dimensional distribution of the dynamic liquid film between the bubbles and the wall. In this study, this method was applied to an air-water flow ranging from bubbly to churn regimes in the narrow channel with a gap width of 1.5 mm.

  18. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  19. Influence of the internal wall thickness of electrical capacitance tomography sensors on image quality

    NASA Astrophysics Data System (ADS)

    Liang, Shiguo; Ye, Jiamin; Wang, Haigang; Wu, Meng; Yang, Wuqiang

    2018-03-01

    In the design of electrical capacitance tomography (ECT) sensors, the internal wall thickness can vary with specific applications, and it is a key factor that influences the sensitivity distribution and image quality. This paper will discuss the effect of the wall thickness of ECT sensors on image quality. Three flow patterns are simulated for wall thicknesses of 2.5 mm to 15 mm on eight-electrode ECT sensors. The sensitivity distributions and potential distributions are compared for different wall thicknesses. Linear back-projection and Landweber iteration algorithms are used for image reconstruction. Relative image error and correlation coefficients are used for image evaluation using both simulation and experimental data.

  20. Echocardiographic Manifestations of Glycogen Storage Disease III: Increase in Wall Thickness and Left Ventricular Mass over Time

    PubMed Central

    Vertilus, Shawyntee M.; Austin, Stephanie L.; Foster, Kimberly S.; Boyette, Keri E.; Bali, Deeksha; Li, Jennifer S.; Kishnani, Priya S.; Wechsler, Stephanie Burns

    2013-01-01

    Purpose Glycogen Storage Disease (GSD) type III, glycogen debranching enzyme deficiency, causes accumulation of glycogen in liver, skeletal, and cardiac muscle. Some patients develop increased left ventricular (LV) thickness by echocardiography, but the rate of increase and its significance remain unclear. Methods We evaluated 33 patients with GSD type III, 23 with IIIa and 10 with IIIb, ages 1 month – 55.5 yrs, by echocardiography for wall thickness, LV mass, shortening and ejection fractions, at 1 time point (n = 33) and at 2 time points in patients with more than 1 echocardiogram (13 of the 33). Results Of 23 cross-sectional patients with type IIIa, 12 had elevated LV mass, 11 had elevated wall thickness. One type IIIb patient had elevated LV mass but 4 had elevated wall thickness. For those with multiple observations, 9 of 10 with type IIIa developed increased LV mass over time, with 3 already increased at first measurement. Shortening and ejection fractions were generally normal. Conclusion Elevated LV mass and wall thickness is more common in patients with type IIIa but develops rarely in type IIIb, though ventricular systolic function is preserved. This suggests serial echocardiograms with attention to LV thickness and mass are important for care of these patients. PMID:20526204

  1. Enhancing cell-free layer thickness by bypass channels in a wall.

    PubMed

    Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T

    2016-07-26

    When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  3. Incidence of non-pulmonary cancer and lung cancer by amount of emphysema and airway wall thickness: a community-based cohort.

    PubMed

    Aamli Gagnat, Ane; Gjerdevik, Miriam; Gallefoss, Frode; Coxson, Harvey O; Gulsvik, Amund; Bakke, Per

    2017-05-01

    There is limited knowledge about the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness in cancer.The aim of this study was to investigate if using CT to quantitatively assess the amount of emphysema and airway wall thickness independently predicts the subsequent incidence of non-pulmonary cancer and lung cancer.In the GenKOLS study of 2003-2005, 947 ever-smokers performed spirometry and underwent CT examination. The main predictors were the amount of emphysema measured by the percentage of low attenuation areas (%LAA) on CT and standardised measures of airway wall thickness (AWT-PI10). Cancer data from 2003-2013 were obtained from the Norwegian Cancer Register. The hazard ratio associated with emphysema and airway wall thickness was assessed using Cox proportional hazards regression for cancer diagnoses.During 10 years of follow-up, non-pulmonary cancer was diagnosed in 11% of the subjects with LAA <3%, in 19% of subjects with LAA 3-10%, and in 17% of subjects with LAA ≥10%. Corresponding numbers for lung cancer were 2%, 3% and 11%, respectively. After adjustment, the baseline amount of emphysema remained a significant predictor of the incidence of non-pulmonary cancer and lung cancer. Airway wall thickness did not predict cancer independently.This study offers a strong argument that emphysema is an independent risk factor for both non-pulmonary cancer and lung cancer. Copyright ©ERS 2017.

  4. Photoelastic Analysis of Cracked Thick Walled Cylinders

    NASA Astrophysics Data System (ADS)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

  5. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph; Baker, Peter

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  6. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  7. Effect of the Coronal Wall Thickness of Dental Implants on the Screw Joint Stability in the Internal Implant-Abutment Connection.

    PubMed

    Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.

  8. 49 CFR 179.500-4 - Thickness of wall.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-4 Thickness of wall...

  9. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    PubMed

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  10. Measurement of defect thickness of the wall thinning defect pipes by lock-in infrared thermography technique

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongsuk; Kim, Kyungsu; Jung, Hyunchul; Chang, Hosub

    2010-03-01

    Mostly piping which is using for the nuclear power plants are made up of carbon steel pipes. The wall thinning defects occurs by the effect of the flow accelerated corrosion of fluid that flows in carbon steel pipes. The defects could be found on the welding part and anywhere in the pipes. The infrared thermography technique which is one of the non-destructive testing method has used for detecting the defects of various kinds of materials over the years. There is a limitation for measuring the defect of metals that have a big coefficient of thermal diffusion. However, a technique using lock-in method gets over the difficulty. Consequently, the lock-in infrared thermography technique has been applied to the various industry fields. In this paper, the defect thickness of the straight pipe which has an artificial defect the inside of the pipes was measured by using the lock-in infrared thermography technique and the result could be utilized in detecting defects of carbon steel pipes.

  11. The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms.

    PubMed

    Biehler, J; Wall, W A

    2018-02-01

    If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  13. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph; Baker, Peter

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various designmore » elements.« less

  14. Space- and time-resolved resistive measurements of liquid metal wall thickness.

    PubMed

    Mirhoseini, S M H; Volpe, F A

    2016-11-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  15. Analysis of thermoelastic characteristics in a thick walled FGM cylinder

    NASA Astrophysics Data System (ADS)

    Tanvir, A. N. M.; Islam, Md. Didarul; Ahmed, Faisal

    2017-12-01

    This study is concerned with the behavior of stress and strain in a thick walled functionally graded material (FGM) cylinder under internal pressure. The incompatible eigenstrain and equivalent eigenstrain developed in the cylinder, are taken into account. As a demonstration, a TiC/Al2O3 FGM cylinder is considered and different components of stress and strain are presented in order to study the effects of internal pressure, temperature difference (between room and sintering temperature), cylinder wall thickness and material distribution. The numerical result presented here shows that the thermoelastic characteristic like stress and strain of an FGM cylinder is significantly influenced by some of the above-mentioned parameters and can be controlled by properly controlling these parameters.

  16. Space- and time-resolved resistive measurements of liquid metal wall thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirhoseini, S. M. H.; Volpe, F. A., E-mail: fvolpe@columbia.edu

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstratedmore » for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.« less

  17. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.

    PubMed

    Meixner, Eva; Michelson, Georg

    2015-11-01

    To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level

  18. Sensitivity of dual-wall structures under hypervelocity impact to multi-layer thermal insulation thickness and placement

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1993-04-01

    Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.

  19. [The cutaneous groin flap for coverage of a full-thickness abdominal wall defect].

    PubMed

    Doebler, O; Spierer, R

    2010-08-01

    A full-thickness defect of the abdominal wall is rare and may occur as a complication of extended abdominal surgery procedures. We report about a 69-year-old patient who was presented to our department with a full-thickness abdominal wall defect and a fully exposed collagen-mesh for reconstructive wound closure. 13 operations with resections of necrotic parts of the abdominal wall were performed following a complicated intraabdominal infection. After debridement and mesh explantation, closure of the remaining defect of the lower abdominal region was achieved by a cutaneous groin flap. Georg Thieme Verlag KG Stuttgart New York.

  20. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  1. Ultrasound assessment of bladder wall thickness as a screening test for detrusor instability.

    PubMed

    Abou-Gamrah, Amgad; Fawzy, Mounir; Sammour, Hazem; Tadros, Sherif

    2014-05-01

    The aim of the current study was to evaluate the diagnostic accuracy of transvaginal ultrasound measurement of bladder wall thickness (BWT) in diagnosis of over active bladder (OAB). The current prospective study was conducted at Ain Shams University Maternity Hospital over 2 years. Patients presented to the urogynecology outpatient clinic with symptoms of urinary frequency, urgency, nocturia and/or urge incontinence were included in this study. The allocated patients were divided into two groups; Group 1(study group): fifty (50) patients with urodynamic diagnosis of detrusor instability (OAB) were included. Group 2 (control): fifty (50) patients with urodynamic diagnosis of stress incontinence were included. Using a transvaginal probe, BWT was measured in three sites at the thickest part of (a) the dome of the bladder (b) the trigone, and (c) the anterior wall of the bladder. An average of the three measurements was considered as the mean bladder thickness. A total of 100 patients with lower urinary symptoms were finally analyzed. There were no statistical significant differences between both groups regarding age, parity and body mass index, while there was statistically longer disease duration in group 2. Excluding urgency, there was statistical significant difference (P < 0.001) regarding lower urinary tract symptoms namely frequency, urgency incontinence, coital incontinence and nocturia. Patients in group 1 were more positive to symptoms of frequency, urgency incontinence, and nocturia, while patients in group 2 were more positive regarding coital incontinence. The thickness of trigon, dome, anterior wall and mean BWT was significantly higher in group 1 when compared to group 2. Receiver operator characteristics curve was constructed for estimating the association between mean BWT and prediction of OAB in patients with lower urinary tract symptoms. Mean BWT at 4.78 mm was considered as best cut-off value for prediction of OAB with sensitivity of 90 % and

  2. Enhanced washout of 99mTc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional 123I-BMIPP uptake and wall thickness determined by MRI.

    PubMed

    Thet-Thet-Lwin; Takeda, Tohoru; Wu, Jin; Fumikura, Yuko; Iida, Keiji; Kawano, Satoru; Yamaguchi, Iwao; Itai, Yuji

    2003-07-01

    The diagnostic value of technetium-99m tetrofosmin (TF) washout in hypertrophic cardiomyopathy (HCM) was examined by investigating its relation to the metabolic abnormality depicted by iodine-123 beta-methyl- p-iodophenylpentadecanoic acid (BMIPP) uptake and the left ventricular (LV) myocardial wall thickness as measured by magnetic resonance imaging (MRI). TF washout was evaluated in 31 patients with HCM and 23 normal control subjects using 30-min (early) and 3-h (delayed) TF single-photon emission tomography images. The LV myocardial wall was divided into 19 segments and the percentage TF washout, regional BMIPP uptake and LV wall thickness were measured in each segment. Mean TF washout in the patients with HCM was significantly faster than that in normal control subjects (23.7+/-5.7 vs 13.4+/-4.1, P<0.0001). In the patients with HCM, TF washout showed an excellent correlation with MRI wall thickness ( r=0.82, P<0.0001) and a good inverse correlation with regional BMIPP uptake ( r=-0.72, P<0.0001). In addition, a good linear correlation was observed between TF uptake and MRI wall thickness in the 19 regional segments. In conclusion, the degree of TF washout corresponds well with the severity of myocardial wall thickness and the degree of metabolic abnormality in patients with HCM. These results suggest that enhanced TF washout might provide additional clinical information regarding metabolic alterations in HCM.

  3. Forming limit diagrams of tubes with initial wall-thickness difference based on different instability criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Qiwen; Yang, Lianfa; He, Yulin

    2018-05-01

    The Forming limit diagram (FLD), also known as a forming limit curves (FLC), is generally used in metal forming for predicting forming behavior of metals. The purpose of the study is to clarify the difference among the FLC of tubes with initial wall-thickness difference under tension-compression strain states using finite element (FE) simulation of tube hydroforming (THF) and different instability criteria. Firstly, geometrical models for SUS304 stainless steel tubes with initial wall-thickness differences were built by introducing an index `wall-thickness deviation rate'. Secondly, forced-end hydro-bugling of the tubes was modeled and the forming process was simulated by using the commercial finite element (FE) code ABAQUS/Explicit 6.10. Afterwards, the limiting strains of the material in the hydro-bugling process were calculated based on the simulated resultant data and three instability criteria-strain change criterion, strain rate change criterion and strain path change criterion, respectively. Finally, the FLD for the tubes was established and the effect of wall-thickness deviation rate on the FLD was analyzed and the differences among the FLC based on the three instability criteria were compared. The results showed that the FLC are observed to shift in the major-minor strain coordinate system due to the initial non-uniform wall-thickness; however, no distinct differences among the FLC based on the three instability criteria were observed.

  4. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD.

    PubMed

    Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter

    2014-09-01

    Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.

  5. An exact solution for a thick domain wall in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.

  6. Tissue factor levels and the fibrinolytic system in thin and thick intraluminal thrombus and underlying walls of abdominal aortic aneurysms.

    PubMed

    Siennicka, Aldona; Zuchowski, Marta; Kaczmarczyk, Mariusz; Cnotliwy, Miłosław; Clark, Jeremy Simon; Jastrzębska, Maria

    2018-03-20

    The hemostatic system cooperates with proteolytic degradation in processes allowing abdominal aortic aneurysm (AAA) formation. In previous studies, it has been suggested that aneurysm rupture depends on intraluminal thrombus (ILT) thickness, which varies across each individual aneurysm. We hypothesized that hemostatic components differentially accumulate in AAA tissue in relation to ILT thickness. Thick (A1) and thin (B1) segments of ILTs and aneurysm wall sections A (adjacent to A1) and B (adjacent to B1) from one aneurysm sac were taken from 35 patients undergoing elective repair. Factor levels were measured using enzyme-linked immunosorbent assay of protein extract. Tissue factor (TF) activities were significantly higher in thinner segments of AAA (B1 vs A1, P = .003; B vs A, P < .001; B vs A1, P < .001; B vs B1, P = .001). Significantly higher tissue plasminogen activator was found in thick thrombus-covered wall segments (A) than in B, A1, and B1 (P = .015, P < .001, and P < .001, respectively). Plasminogen concentrations were highest in ILT. Concentrations of α 2 -antiplasmin in thin ILT adjacent walls (B) were higher compared with wall (A) adjacent to thick ILT (P = .021) and thick ILT (A1; P < .001). Significant correlations between levels of different factors were mostly found in thick ILT (A1). However, no correlations were found at B sites, except for a correlation between plasmin and TF activities (r = 0.55; P = .004). These results suggest that higher TF activities are present in thinner AAA regions. These parameters and local fibrinolysis may be part of the processes leading to destruction of the aneurysm wall. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Development of a Versatile Laser-Ultrasonic System and Application to the Online Measurement for Process Control of Wall Thickness and Eccentricity of Seamless Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert V. Kolarik II

    2002-10-23

    A system for the online, non-contact measurement of wall thickness in steel seamless mechanical tubing has been developed and demonstrated at a tubing production line at the Timken Company in Canton, Ohio. The system utilizes laser-generation of ultrasound and laser-detection of time of flight with interferometry, laser-doppler velocimetry and pyrometry, all with fiber coupling. Accuracy (<1% error) and precision (1.5%) are at targeted levels. Cost and energy savings have exceeded estimates. The system has shown good reliability in measuring over 200,000 tubes in its first six months of deployment.

  8. Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate- lead titanate thin films

    DOE PAGES

    Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...

    2017-04-11

    Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less

  9. Ultrasound bladder wall thickness measurement in diagnosis of recurrent urinary tract infections and cystitis cystica in prepubertal girls.

    PubMed

    Milošević, Danko; Trkulja, Vladimir; Turudić, Daniel; Batinić, Danica; Spajić, Borislav; Tešović, Goran

    2013-12-01

    To evaluate urinary bladder wall thickness (BWT) assessed by ultrasound as a diagnostic tool for cystitis cystica. This was a 9-year prospective study comprising 120 prepubertal girls. Sixty subjects of whom half underwent cystoscopy represented cases while the other 60 (those with a single urinary tract infection and healthy subjects) represented controls. Based on receiver operating characteristics (ROC) analysis, BWT discriminated very well between cases and controls with area under the ROC curve close to 1.0. At the optimum cut-off defined at 3.9 mm, negative predictive value (NPV) was 100% leaving no probability of cystic cystitis with BWT <3.9 mm. Positive predictive value (PPV) was also very high (95.2%), indicating only around 4.82% probability of no cystic cystitis in patients with BWT values ≥3.9 mm. BWT could also distinguish between healthy subjects and those with a cured single urinary tract infection, although discriminatory properties were moderate (area under ROC 86.7%, PPV 78.8%, NPV 85.2%). Ultrasound mucosal bladder wall measurement is a non-invasive, simple and quite reliable method in diagnosis of cystitis cystica in prepubertal girls with recurrent urinary tract infections. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  10. Ultrasound Thickness of Bladder Wall in Continent and Incontinent Women and Its Correlation with Cystometry

    PubMed Central

    Otsuki, Edney Norio; Oliveira, Emerson; Sartori, Marair Gracio Ferreira; Girão, Manoel João Batista Castelo; Jármy-Di Bella, Zsuzsanna Ilona Katalin

    2014-01-01

    Objective. To compare bladder wall thickness in two kinds of urinary incontinent women—stress urinary incontinence (SUI) and overactive bladder (OAB) with urodynamic detrusor overactivity (DO), and to compare them with continent patients by ultrasound, also, correlate with cystometric results in incontinent women. Methods. 91 women were divided into the following groups: continent (n = 31), SUI (n = 30), and DO (n = 30) groups after clinical evaluation and urodynamic test (only in incontinent women). Transvaginal ultrasound was performed to the bladder wall thickness (BWT) measurement. The mean of BWT was calculated and data were analyzed with ANOVA and Turkey's multiple comparison tests. Pearson's correlation coefficient (r) was used to compare two variables. Receiver operating characteristic (ROC) curve was performed to study BWT as a diagnostic parameter. Results. BWT in DO group was significantly higher than that in the other groups (P < 0.005). A moderate positive correlation was found between BWT and maximum bladder pressure during involuntary bladder contraction. There was no difference in BWT between SUI and continent groups. DO group had lower first desire to void and cystometric capacity. Maximum bladder pressure at detrusor contraction had a moderate positive correlation with BWT. The ROC revealed an area under the curve of 0.962 (95% CI, 0.90–1.01). Conclusions. DO patients have increased bladder wall thickness, lower first desire to void, and lower cystometric capacity. There was a moderate correlation between BWT and maximum bladder pressure during involuntary bladder contraction. PMID:25538959

  11. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    PubMed Central

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important

  12. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    NASA Astrophysics Data System (ADS)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  13. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    NASA Astrophysics Data System (ADS)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  14. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    NASA Astrophysics Data System (ADS)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  15. Application of small panel damping measurements to larger walls

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  16. Fine-tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang

    2017-12-01

    Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.

  17. Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels.

    PubMed

    Payne, S J

    2004-11-01

    The effects of gravitational forces and wall thickness on the behaviour of a model of blood flow through axisymmetric vessels were studied. The governing fluid dynamic equations were derived from the Navier-Stokes equations for an incompressible fluid and linked to a simple model of the vessel wall. A closed form of the hyperbolic partial differential equations was found, including a significant source term from the gravitational forces. The inclination of the vessel is modelled using a slope parameter that varied between -1 and 1. The wave speed was shown to be related to the wall thickness, and the time to first shock formation was shown to be directly proportional to this thickness. Two non-dimensional parameters were derived for the ratio of gravitational forces to viscous and momentum forces, respectively, and their values were calculated for the different types of vessel found in the human vasculature, showing that gravitational forces were significant in comparison with either viscous or momentum forces for every type of vessel. The steady-state solution of the governing equations showed that gravitational forces cause an increase in area of approximately 5% per metre per unit slope. Numerical simulations of the flow field in the aorta showed that a positive slope causes a velocity pulse to change in amplitude approximately linearly with distance: -4% per metre and +5% per metre for vessels inclined vertically upwards and downwards, respectively, in comparison with only +0.5% for a horizontal vessel. These simulations also showed that the change relative to the zero slope condition in the maximum rate of change of area with distance, which was taken to be a measure of the rate of shock formation, is proportional to both the slope and the wall thickness-to-inner radius ratio, with a constant of proportionality of 1.2. At a ratio of 0.25, typical of that found in human arteries, the distance to shock formation is thus decreased and increased by 30% for vessels

  18. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro.

    PubMed

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-11-01

    To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P=0.1606) or among the 3 densities of intravascular contrast material (MBIR, P=0.8185; Detail kernel, P=0.0802). Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of contrast enhancement on measurement of carotid artery intimal medial thickness.

    PubMed

    Macioch, James E; Katsamakis, C Dean; Robin, Jason; Liebson, Philip R; Meyer, Peter M; Geohas, Chris; Raichlen, Joel S; Davidson, Michael H; Feinstein, Steven B

    2004-02-01

    Previous studies have used standard B-mode ultrasound to quantify the aggregate mean intimal medial thickness (IMT) of the near and far wall of the common carotid artery (CCA). Many investigators have had difficulty in accurately evaluating the near wall IMT secondary to difficulty in discerning the vessel lumen and intima. The purpose of this study is to determine the effect of contrast enhanced ultrasound on IMT measurement when compared with non-enhanced images. Twenty-six patients who had standard carotid ultrasounds completed over a 6-month period were evaluated, with 24 imaged by the same sonographer. Five to six measurements of the near and far walls were obtained over a 1 cm distance, beginning and ending 0.5 cm and 1.5 cm proximal to the carotid bifurcation. The measurements were made with and without the contrast agent Optison (perflutren protein type-A microspheres), which was given as an i.v. bolus (0.5-0.7 cc). Of those imaged by the same sonographer, 40 carotid arteries were examined and a total of 867 measurements were obtained. A total of 10% of the carotid ultrasounds were restudied approximately 1 month after the initial interpretation to assess observer accuracy. The near wall CCA mean (SD) IMT was 0.075 (0.019) cm for left with contrast versus 0.067 (0.023) cm for left without contrast and 0.089 (0.024) cm for right with versus 0.071 (0.022) cm for right without, p < or = 0.0001 both sides. For the far wall of the CCA, the mean (SD) IMT comparison was 0.075 (0.021) cm for left with versus 0.070 (0.016) cm for left without, p = 0.005, and 0.070 (0.023) cm for right with versus 0.070 (0.016) cm for right without, p = 0.68. In conclusion, contrast-enhanced IMT measurement showed a highly statistically significant difference in near carotid wall thickness determinations versus non-contrast values. The thicker measurement is in agreement with previously reported data showing that non-contrast images underestimated near wall common carotid IMT in

  20. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully

  1. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!

    PubMed Central

    Tosens, Tiina; Laanisto, Lauri; Niinemets, Ülo

    2017-01-01

    Abstract Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance. PMID:28419340

  2. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  3. Impact of emphysema and airway wall thickness on quality of life in smoking-related COPD.

    PubMed

    Gietema, Hester A; Edwards, Lisa D; Coxson, Harvey O; Bakke, Per S

    2013-08-01

    Limited data are available as to the relationship between computed tomography (CT) derived data on emphysema and airway wall thickness, and quality of life in subjects with chronic obstructive pulmonary disease (COPD). Such data may work to clarify the clinical correlate of the CT findings. We included 1778 COPD subjects aged 40-75 years with a smoking history of at least 10 pack-years. They were examined with St George's Respiratory Questionnaire (SGRQ-C) and high-resolution chest CT. Level of emphysema was assessed as percent low-attenuation areas less than -950 Hounsfield units (%LAA). Airway wall thickness was estimated by calculating the square root of wall area of an imaginary airway with an internal perimeter of 10 mm (Pi10). In both men and women, the mean total score and most of the subscores of SGRQ-C increased with increasing level of emphysema and increasing level of airway wall thickness, after adjusting for age, smoking status, pack years, body mass index and FEV1. The highest gradient was seen in the relationship between the activity score and the emphysema level. The activity score increased by 35% from the lowest to the highest emphysema tertile. The relationship between level of emphysema and the total SGRQ-C score became weaker with increasing GOLD (Global initiative for Chronic Obstructive Lung Disease) stages (p < 0.001), while the impact of gender was limited. In subjects with COPD, increasing levels of emphysema and airway wall thickness are independently related to impaired quality of life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    NASA Astrophysics Data System (ADS)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  5. High levels of thyroid-stimulating hormone are associated with aortic wall thickness in the general population.

    PubMed

    Ittermann, Till; Lorbeer, Roberto; Dörr, Marcus; Schneider, Tobias; Quadrat, Alexander; Heßelbarth, Lydia; Wenzel, Michael; Lehmphul, Ina; Köhrle, Josef; Mensel, Birger; Völzke, Henry

    2016-12-01

    Our aim was to investigate the association of thyroid function defined by serum concentrations of thyroid-stimulating hormone (TSH) with thoracic aortic wall thickness (AWT) as a marker of atherosclerotic processes. We pooled data of 2,679 individuals from two independent population-based surveys of the Study of Health in Pomerania. Aortic diameter and AWT measurements were performed on a 1.5-T MRI scanner at the concentration of the right pulmonary artery displaying the ascending and the descending aorta. TSH, treated as continuous variable, was significantly associated with descending AWT (β = 0.11; 95 % confidence interval (CI) 0.02-0.21), while the association with ascending AWT was not statistically significant (β = 0.20; 95 % CI -0.01-0.21). High TSH (>3.29 mIU/L) was significantly associated with ascending (β = 0.12; 95 % CI 0.02-0.23) but not with descending AWT (β = 0.06; 95 % CI -0.04-0.16). There was no consistent association between TSH and aortic diameters. Our study demonstrated that AWT values increase with increasing serum TSH concentrations. Thus, a hypothyroid state may be indicative for aortic atherosclerosis. These results fit very well to the findings of previous studies pointing towards increased atherosclerotic risk in the hypothyroid state. • Serum TSH concentrations are positively associated with aortic wall thickness. • Serum TSH concentrations are not associated with the aortic diameters. • Serum 3,5-diiodothyronine concentrations may be positively associated with aortic wall thickness.

  6. Effect of multi-layer thermal insulation thickness and location on the hypervelocity impact response of dual-wall structures

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.

  7. The development and structure of thick-walled, multicellular, aerial spores in Diheterospora chlamydosporia (=Verticillium chlamydosporium).

    PubMed

    Cambell, W P; Griffiths, D A

    1975-07-01

    The aerial, thick-walled spores in Diheterospara chlamydosporia arose as terminal swellings on erect hyphae. Repeated septation of the continuously swelling spore resulted in a multicellular structure. Immediately after the onset of septation secondary wall material was laid down between the two-layered primary wall and the plasmalemma. The presence of secondary wall material indicates that the multicellular spore is a dictyochlamydospore and not an aleuriospore. The relationship between chlamydospores and aleuriospores in other fungi is discussed.

  8. Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness

    USDA-ARS?s Scientific Manuscript database

    The thickness of cotton fiber cell walls is an important property that partially determines the economic value of cotton. To better understand the physical and chemical manifestations of the genetic variations that regulate the degree of fiber wall thickness, we used a comprehensive set of methods t...

  9. Planar measurements of spray-induced wall cooling using phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  10. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines

    PubMed Central

    He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-01-01

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636

  11. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines.

    PubMed

    Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-03-02

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

  12. Automatic Thickness and Volume Estimation of Sprayed Concrete on Anchored Retaining Walls from Terrestrial LIDAR Data

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, J.; Puente, I.; GonzálezJorge, H.; Riveiro, B.; Arias, P.

    2016-06-01

    When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the city of Vigo (Spain), resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by increasing productivity and improving previous empirical proposals for real time thickness estimation.

  13. Use of computed tomography to identify atrial fibrillation associated differences in left atrial wall thickness and density.

    PubMed

    Dewland, Thomas A; Wintermark, Max; Vaysman, Anna; Smith, Lisa M; Tong, Elizabeth; Vittinghoff, Eric; Marcus, Gregory M

    2013-01-01

    Left atrial (LA) tissue characteristics may play an important role in atrial fibrillation (AF) induction and perpetuation. Although frequently used in clinical practice, computed tomography (CT) has not been employed to describe differences in LA wall properties between AF patients and controls. We sought to noninvasively characterize AF-associated differences in LA tissue using CT. CT images of the LA were obtained in 98 consecutive patients undergoing AF ablation and in 89 controls. A custom software algorithm was used to measure wall thickness and density in four prespecified regions of the LA. On average, LA walls were thinner (-15.5%, 95% confidence interval [CI] -23.2 to -7.8%, P < 0.001) and demonstrated significantly lower density (-19.7 Hounsfield Units [HU], 95% CI -27.0 to -12.5 HU, P < 0.001) in AF patients compared to controls. In linear mixed models adjusting for demographics, clinical variables, and other CT measurements, the average LA, interatrial septum, LA appendage, and anterior walls remained significantly thinner in AF patients. After adjusting for the same potential confounders, history of AF was associated with reduced density in the LA anterior wall and increased density below the right inferior pulmonary vein and in the LA appendage. Application of an automated measurement algorithm to CT imaging of the atrium identified significant thinning of the LA wall and regional alterations in tissue density in patients with a history of AF. These findings suggest differences in LA tissue composition can be noninvasively identified and quantified using CT. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  14. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    NASA Astrophysics Data System (ADS)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  15. Three-dimensional ultrasound measurements of carotid vessel wall and plaque thickness and their relationship with pulmonary abnormalities in ex-smokers without airflow limitation.

    PubMed

    Cheng, Jieyu; Pike, Damien; Chow, Tommy W S; Kirby, Miranda; Parraga, Grace; Chiu, Bernard

    2016-09-01

    The relationship between carotid disease and modestly abnormal airflow in ex-smokers without chronic obstructive pulmonary disease (COPD) is not well-understood. We generated 3D ultrasound measurements of carotid vessel-wall-plus-plaque thickness (VWT) and vessel wall volume (VWV) to quantify and evaluate such carotid ultrasound measurements in ex- and never-smokers without airflow limitation. These patients did not fulfill the diagnostic criteria for COPD. We also investigated the relationship of carotid atherosclerosis with pulmonary phenotypes of COPD. We evaluated 61 subjects without a clinical diagnosis of pulmonary or vascular diseases including 34 never-smokers (72 ± 6 year) and 27 ex-smokers (73 ± 9 year). We measured mean VWT ([Formula: see text]) and mean VWT specific to carotid regions-of-interest ([Formula: see text]) and evaluated potential differences between ex- and never-smokers. Carotid ultrasound and pulmonary disease measurement relationships were also evaluated using correlation coefficients (r) and multivariate regression analyses. Ex-smokers had a significantly greater [Formula: see text] (p = 0.003) and [Formula: see text] (p < 0.00001) than never-smokers, whereas a significant difference between the two groups was not detected by VWV (p = 1.0). There were significant correlations between the ventilation defect percent (VDP) measured by MRI with [Formula: see text] (r = 0.42, p = 0.001) and [Formula: see text] (r = 0.56, p = 0.00001). Multivariate regression models showed that VDP significantly predicted [Formula: see text] (β = 0.38, p = 0.004) and [Formula: see text] (β = 0.50, p = 0.00001). VWT-based measurements detected differences in vessel-wall-plus-plaque burden in ex- and never-smokers, which were not revealed using VWV. There were significant correlations between cardiovascular and pulmonary disease biomarkers in these ex-smokers who did not have a clinical diagnosis of

  16. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  17. Biofilm thickness measurement using an ultrasound method in a liquid phase.

    PubMed

    Maurício, R; Dias, C J; Jubilado, N; Santana, F

    2013-10-01

    In this report, the development of an online, noninvasive, measurement method of the biofilm thickness in a liquid phase is presented. The method is based in the analysis of the ultrasound wave pulse-echo behavior in a liquid phase reproducing the real reactor conditions. It does not imply the removal of the biomass from the support or any kind of intervention in the support (pipes) to detect and perform the measurements (non-invasiveness). The developed method allows for its sensor to be easily and quickly mounted and unmounted in any location along a pipe or reactor wall. Finally, this method is an important innovation because it allows the thickness measurement of a biofilm, in liquid phase conditions that can be used in monitoring programs, to help in scheduling cleaning actions to remove the unwanted biofilm, in several application areas, namely in potable water supply pipes.

  18. CMR assessment of the left ventricle apical morphology in subjects with unexplainable giant T-wave inversion and without apical wall thickness ≥15 mm.

    PubMed

    Wu, Bailin; Lu, Minjie; Zhang, Yan; Song, Bo; Ling, Jian; Huang, Jinghan; Yin, Gang; Lan, Tian; Dai, Linlin; Song, Lei; Jiang, Yong; Wang, Hao; He, Zuoxiang; Lee, Jongmin; Yong, Hwan Seok; Patel, Mehul B; Zhao, Shihua

    2017-02-01

    Patients with unexplainable giant T-wave inversion in the precordial leads and apical wall thickness <15 mm have been reported. These patients cannot be diagnosed as apical hypertrophic cardiomyopathy (AHCM) according to the current criteria. The objective of this study was to evaluate the apical morphological features of this type of patients using cardiac magnetic resonance. Institutional ethics approval and written informed consent were obtained. A total of 60 subjects with unexplainable giant T-wave inversion and 76 healthy volunteers were prospectively enrolled in the study. The segmented left ventricular (LV) wall thickness was measured according to the American Heart Association 17-segmented model. The apical angle (apA) as well as the regional variations in LV wall thickness was analysed. Considerable variation in LV wall thickness in normals was observed with progressive thinning from the base to apex (male and female, P < 0.01). The apical thickness of subjects with giant T-wave inversion was 8.10 ± 1.67 mm in male, which is thicker than that of controls (4.14 ± 1.17 mm, P < 0.01). In female, the apical thickness was also significantly different from controls (5.85 ± 2.16 vs. 2.99 ± 0.65 mm, P < 0.01). Compared with normals, the apA decreased significantly in male (87.44 ± 13.86 vs.115.03 ± 9.90°, P < 0.01) and female (90.69 ± 8.84 vs. 110.07 ± 13.58°, P < 0.01) subjects, respectively. Although the absolute thickness of apical wall was below the current diagnostic criteria of AHCM, the apical morphological features of subjects with unexplainable giant T-wave inversion were significantly different from normals. Whether these subjects should be included into a preclinical scope of AHCM needs further investigations. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  19. A thermoelastic transversely isotropic thick walled cylinder/disk application: An analytical solution and study

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.

  20. Noninvasive evaluation of gastric emptying and gastric wall thickness in SLE patients.

    PubMed

    Shen, Hao-Lin; Yang, Shu-Ping; Wang, Kang-Jian; Huang, Bei-Lei; Huang, Wen-Bao; Wu, Jin-Zhi; Lyu, Guo-Rong

    2017-04-01

    The objective of this study is to evaluate the gastric emptying in patients with systemic lupus erythematosus (SLE) with gastrointestinal involvement using three-dimensional (3D) ultrasonography. The gastric emptying times at 25% (T1), 50% (T2), and 75% (T3) of SLE patients with gastrointestinal involvement (n = 40) and healthy controls (n = 80) were evaluated and compared. In addition, the correlations among the gastric wall thickness, SLE disease activity index (SLEDAI), and upper gastrointestinal symptoms were calculated. The gastric wall thickness was correlated with the SLEDAI (r = 0.928, p < 0.001) and the upper gastrointestinal symptom index (r = 0.848, p < 0.001). The emptying times T1, T2, and T3 of the SLE patients were 17.08 ± 2.65 min (mean ± standard deviation), 39.85 ± 6.54 min, and 83.58 ± 7.12 min, respectively. For healthy controls, they were 19.65 ± 5.39 min, 41.08 ± 7.51 min, and 70.34 ± 8.03 min. The T1 of the SLE patients was shorter (p < 0.01), while the T3 was longer (p < 0.001). Moreover, T3 in the SLE group had the best correlation with the upper gastrointestinal symptom index (r = 0.553, p < 0.001). T1 in the SLE group was anti-correlated with early satiety (r = -0.366, p < 0.05). Combining the emptying times T1 and T3, as well as the gastric wall thickness, the SLEDAI and the upper gastrointestinal symptoms index can provide accurate clinical diagnosis of SLE with gastric involvement.

  1. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis.

    PubMed

    Goebel, Paul; Kluess, Daniel; Wieding, Jan; Souffrant, Robert; Heyer, Horst; Sander, Manuela; Bader, Rainer

    2013-03-01

    To increase the range of motion of total hip endoprostheses, prosthetic heads need to be enlarged, which implies that the cup and/or liner thickness must decrease. This may have negative effects on the wear rate, because the acetabular cups and liners could deform during press-fit implantation and hip joint loading. We compared the metal cup and polyethylene liner deformations that occurred when different wall thicknesses were used in order to evaluate the resulting changes in the clearance of the articulating region. A parametric finite element model utilized three cup and liner wall thicknesses to analyze cup and liner deformations after press-fit implantation into the pelvic bone. The resultant hip joint force during heel strike was applied while the femur was fixed, accounting for physiological muscle forces. The deformation behavior of the liner under joint loading was therefore assessed as a function of the head diameter and the resulting clearance. Press-fit implantation showed diametral cup deformations of 0.096, 0.034, and 0.014 mm for cup wall thicknesses of 3, 5, and 7 mm, respectively. The largest deformations (average 0.084 ± 0.003 mm) of liners with thicknesses of 4, 6, and 8 mm occurred with the smallest cup wall thickness (3 mm). The smallest liner deformation (0.011 mm) was obtained with largest cup and liner wall thicknesses. Under joint loading, liner deformations in thin-walled acetabular cups (3 mm) reduced the initial clearance by about 50 %. Acetabular press-fit cups with wall thicknesses of ≤5 mm should only be used in combination with polyethylene liners >6 mm thick in order to minimize the reduction in clearance.

  2. Development of airborne oil thickness measurements.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    A laboratory sensor has now been developed to measure the absolute thickness of oil on water slicks. This prototype oil slick thickness measurement system is known as the laser-ultrasonic remote sensing of oil thickness (LURSOT) sensor. This laser opto-acoustic sensor is the initial step in the ultimate goal of providing an airborne sensor with the ability to remotely measure oil-on-water slick thickness. The LURSOT sensor employs three lasers to produce and measure the time-of-flight of ultrasonic waves in oil and hence provide a direct measurement of oil slick thickness. The successful application of this technology to the measurement of oil slick thickness will benefit the scientific community as a whole by providing information about the dynamics of oil slick spreading and the spill responder by providing a measurement of the effectiveness of spill countermeasures such as dispersant application and in situ burning. This paper will provide a review of early developments and discuss the current state-of-the-art in the field of oil slick thickness measurement.

  3. Measure of chest wall thickness in French soldiers: which technique to use for needle decompression of tension pneumothorax at the front?

    PubMed

    Lamblin, Antoine; Turc, Jean; Bylicki, Olivier; Lohéas, Damien; Martinez, Jean-Yves; Derkenne, Clément; Wey, Pierre-François; Précloux, Pascal

    2014-07-01

    Needle decompression of tension pneumothorax in soldiers of the French infantry has a risk for failure when the standard procedure that involves the insertion of a 14-gauge, 5-cm catheter into the 2nd intercostal space (ICS) is used. This study measured the chest wall thickness (CWT) to assess whether this approach is appropriate. CWT was measured by ultrasound in 122 French soldiers at the 2nd and 4th ICSs on both the right and left sides. CWT was measured at 4.19 cm (± 0.96 cm) at the 2nd ICS and 3.00 cm (± 0.91 cm) at the 4th ICS (p < 0.001). CWT was greater than 5 cm in 24.2% of cases at the 2nd ICS and 4.9% of cases at the 4th ICS (p < 0.001). This study suggests a high risk of failure when using the technique currently taught in the French army. A lateral approach into the 4th ICS could decrease this risk. The results of this study must be validated in patients presenting tension pneumothorax. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  4. Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm.

    PubMed

    Hiraoka, Kenichiro; Kitamura, Seiji

    2015-12-01

    The purposes of the present study are to assess the clinical efficiency of Piezo-intracytoplasmic sperm injection (ICSI) and to improve the Piezo-ICSI method for human oocytes. We examined three ICSI methods to determine their clinical efficiency by comparing the survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates. The three ICSI methods tested were conventional ICSI (CI) (using beveled spiked micropipettes with a wall thickness of 1 μm), conventional Piezo-ICSI (CPI) (using flat-tipped micropipettes with a wall thickness of 0.925 μm), and improved Piezo-ICSI (IPI) (using flat-tipped micropipettes with a wall thickness of 0.625 μm). We collectively investigated 2020 mature oocytes retrieved from 437 patients between October 2010 and January 2014. The survival rates after CI, CPI, and IPI were 90, 95, and 99 %, respectively. The fertilization rates after CI, CPI, and IPI were 68, 75, and 89 %, respectively. The good-quality day-3 embryo rates after CI, CPI, and IPI were 37, 43, and 55 %, respectively. The pregnancy rates after the transfer of good-quality day-3 embryo of CI, CPI, and IPI were 19, 21, and 31 %, respectively. The live birth rates of CI, CPI, and IPI were 15, 16, and 25 %, respectively. Significantly higher survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates were obtained using IPI. When comparing the IPI to the CI and CPI, the results revealed that the Piezo-ICSI using flat-tipped micropipettes with a wall thickness of 0.625 μm significantly improves survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates.

  5. Sarcocystis sinensis is the most prevalent thick-walled Sarcocystis species in beef on sale for consumers in Germany.

    PubMed

    Moré, G; Pantchev, A; Skuballa, J; Langenmayer, M C; Maksimov, P; Conraths, F J; Venturini, M C; Schares, G

    2014-06-01

    Bovines are intermediate hosts of Sarcocystis cruzi, Sarcocystis hirsuta, and Sarcocystis hominis, which use canids, felids, or primates as definitive hosts, respectively. Cattle represent also intermediate hosts of Sarcocystis sinensis, but the definitive hosts of this parasite are not yet known. Sarcocystosis in cattle is frequently asymptomatic. The infection is characterized by the presence of thin-walled (S. cruzi) or thick-walled muscle cysts or sarcocysts (S. hominis, S. sinensis, and S. hirsuta). Recent reports suggest high prevalence of the zoonotic S. hominis in beef in Europe. We therefore aimed at differentiating Sarcocystis spp. in beef offered to consumers in Germany using molecular and microscopical methods, focusing on those species producing thick-walled sarcocysts. A total of 257 beef samples were obtained from different butcheries and supermarkets in Germany and processed by conventional and multiplex real-time PCR. In addition, 130 of these samples were processed by light microscopy and in 24.6% thick-walled cysts were detected. Transmission electron microscopical analysis of six of these samples revealed an ultrastructural cyst wall pattern compatible with S. sinensis in five samples and with S. hominis in one sample. PCR-amplified 18S ribosomal DNA (rDNA) fragments of 28 individual thick-walled cysts were sequenced, and sequence identities of ≥98% with S. sinensis (n = 22), S. hominis (n = 5) and S. hirsuta (n = 1) were observed. Moreover, nine Sarcocystis sp. 18S rDNA full length gene sequences were obtained, five of S. sinensis, three of S. hominis, and one of S. hirsuta. Out of all samples (n = 257), 174 (67.7%) tested positive by conventional PCR and 179 (69.6%) by multiplex real-time PCR for Sarcocystis spp. Regarding individual species, 134 (52%), 95 (37%), 17 (6.6%), and 16 (6.2%) were positive for S. cruzi, S. sinensis, S. hirsuta, and S. hominis, respectively. In conclusion, S. sinensis is the most prevalent thick-walled

  6. Charged magnetic domain walls as observed in nanostructured thin films: dependence on both film thickness and anisotropy.

    PubMed

    Favieres, C; Vergara, J; Madurga, V

    2013-02-13

    The magnetic domain configurations of soft magnetic, nanostructured, pulsed laser-deposited Co films were investigated. Their dependence on both the thickness t (20 nm ≤ t ≤ 200 nm) and the anisotropy was studied. Charged zigzag walls, with a characteristic saw-tooth vertex angle θ, were observed. θ changed with t from θ ≈ 17° to ≈25°, presenting an intermediate sharp maximum that has not been described before. The reduced length of the zigzag walls also exhibited a peak at t ≈ 70 nm. The relationship between the total reduced length and the density energy of the magnetic wall allowed us to establish a change from a Néel-type to a Bloch-type core of the zigzag walls at this thickness, t ≈ 70 nm. We also accounted for the magnetic energy arising from the surface roughness of the thinner films after imaging the film surface morphologies. Moreover, this distinctive behaviour of the zigzag walls of these low-anisotropy films was compared to that of high-anisotropy films.

  7. Effects of thickness, insulation, and surface color on the net heat loss through an adobe wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, R.W.

    1980-01-01

    A finite difference computer program was written and run to study the net thermal losses through a large variety of adobe walls. Fifty-four different combinations of surface color, wall thickness, and insulation position and R value were modeled over a typical two week winter period for locations similar to Albuquerque, New Mexico. A transient analysis of the heat loss from the room to the interior wall surface was compared to both conventional U value and steady-state calculations.

  8. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  9. Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample.

    PubMed

    Rosero, Eric B; Peshock, Ronald M; Khera, Amit; Clagett, Patrick; Lo, Hao; Timaran, Carlos H

    2011-04-01

    Reference values and age-related changes of the wall thickness of the abdominal aorta have not been described in the general population. We characterized age-, race-, and gender-specific distributions, and yearly rates of change of mean aortic wall thickness (MAWT), and associations between MAWT and cardiovascular risk factors in a multi-ethnic population-based probability sample. Magnetic resonance imaging measurements of MAWT were performed on 2466 free-living white, black, and Hispanic adult subjects. MAWT race/ethnicity- and gender-specific percentile values across age were estimated using regression analyses. MAWT was greater in men than in women and increased linearly with age in all the groups and across all the percentiles. Hispanic women had the thinnest and black men the thickest aortas. Black men had the highest and white women the lowest age-related MAWT increase. Age, gender, ethnicity, smoking status, systolic blood pressure, low-density lipoprotein-cholesterol levels, high-density lipoprotein-cholesterol levels, and fasting glucose levels were independent predictors of MAWT. Age, gender, and racial/ethnic differences in MAWT distributions exist in the general population. Such differences should be considered in future investigations assessing aortic atherosclerosis and the effects of anti-atherosclerotic therapies. Published by Mosby, Inc.

  10. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  11. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity

    NASA Astrophysics Data System (ADS)

    Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.

    2017-03-01

    The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.

  12. Ceramic inlays and partial ceramic crowns: influence of remaining cusp wall thickness on the marginal integrity and enamel crack formation in vitro.

    PubMed

    Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-01-01

    No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall

  13. Quantitative evaluation of the relationship between dorsal wall length, sole thickness, and rotation of the distal phalanx in the bovine claw using computed tomography.

    PubMed

    Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T

    2014-10-01

    Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. An Automatic Method for Measurements of Arterial Intima-Media Thickness Using Ultrasonic B-Mode Data

    NASA Astrophysics Data System (ADS)

    Cinthio, Magnus; Ahlgren, Åsa Rydén; Jansson, Tomas; Nilsson, Tobias; Lindström, Kjell; Persson, Hans W.

    We have previously developed algorithms that use B-mode cineloops for simultaneous measurements of arterial diameter change and longitudinal movement of the arterial wall. In this study the lumen diameter algorithm was extended to also measure arterial intima-media thickness of the far wall. To optimize the algorithm the influence of the lateral width of the region-of-interest (1 pixel, 0.1 mm, 0.5 mm, 1 mm, 2.5 mm and 5 mm) was evaluated. The algorithm estimated intima-media thickness at diastole automatically by measuring the distance between the two positions where the laterally averaged B-mode intensity envelope crosses a threshold value relative to the maximum amplitudes of the intimal and adventitial echoes, respectively. The sub-pixel resolution is achieved by solving the equation of a straight line between the two samples on either side of the threshold value. The measurements were performed on 20 healthy normotensive volunteers (age 25-57 years) on the common carotid artery 2-3 cm proximal to the bifurcation. For the 2.5-mm width, which was considered the best, the intima-media thickness was mean 646 μm (SD 66) for men and 613 μm (SD 68) for women. The systematic difference was -5 μm and the random difference was 31 μm. The CV was 4.9%. The study indicates that the reproducibility is sufficient for in vivo studies when the width of the region-of-interest is 1.0 mm or wider.

  15. Stress intensity factors in a reinforced thick-walled cylinder

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.

  16. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  17. Fracture resistance of welded thick-walled high-pressure vessels in power plants. Report No. 2. Approach to evaluating static strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorynin, I.V.; Filatov, V.M.; Ignatov, V.A.

    1986-07-01

    The authors examine data on the effect of defects on the fracture resistance of high-pressure vessels and their models obtained within the framework of the HSST program. Results of internal-pressure tests of two types of vessels with a wall thickness of 152 mm made from forgings of steels SA508 and SA533, as well as small vessels with a wall thickness of 11.5 and 23mm made of steel SA533 are shown. The authors state that testing thick-walled welded high-pressure vessels and thin-walled vessels with surface defects of different sizes has demonstrated that there are substantial static-strength reserves in structures designed bymore » existing domestic and foreign standards on the strength of power-plant equipment. A correction was proposed for the presently used method of calculating the resistance of highpressure vessels to brittle fracture that allows for the dimensions of the defects in relation to the type of vessel, the manufacturing technology, and the method of inspection.« less

  18. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  19. Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    NASA Technical Reports Server (NTRS)

    Hebbar, K. S.; Melnik, W. L.

    1976-01-01

    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.

  20. Improved Coal-Thickness Measurement

    NASA Technical Reports Server (NTRS)

    Barr, T. A.

    1984-01-01

    Summed signals and dielectric-filled antenna improve measurement. Improved FM radar for measuring thickness of coal seam eliminates spectrum splitting and reduces magnitude of echo from front coal surface.

  1. The effect of fig wall thickness in Ficus erecta var. beecheyana on parasitism

    NASA Astrophysics Data System (ADS)

    Tzeng, Hsy-Yu; Ou, Chern-Hsiung; Lu, Fu-Yuan; Bain, Anthony; Chou, Lien-Siang; Kjellberg, Finn

    2014-05-01

    Fig wasp communities constitute a model system to analyse determinants of community complexity and to investigate how biological interaction networks are maintained. It has been suggested for monoecious figs, that fig pollinating wasps avoid ovipositing in flowers located close to the fig wall because of strong parasitic pressure by wasps ovipositing through the fig wall. This behaviour could help explain why mainly seeds are produced in flowers located close to the fig wall, thus stabilizing the fig-pollinating wasp mutualism. In this contribution we explore, for dioecious figs, whether ovipositor length of parasitic species may really be limiting. In dioecious figs, functionally male figs produce pollinating wasps and pollen while female figs produce only seeds, facilitating selection of traits favouring pollinator reproduction in male figs. We show in Ficus erecta that fig walls are thicker in male figs than in female figs. Male figs presenting thick walls, thicker than the length of the parasites' ovipositors, went unparasitized while male figs presenting thinner walls were systematically parasitized. Hence, in F. erecta, ovipositor length of the parasites is limiting access to some figs. However, we also show that in another dioecious species, Ficus formosana, presenting thin walled male figs, no fig is protected against oviposition by its two parasites. Hence in dioecious as well as in monoecious figs, in some Ficus species, ovipositors of the parasites are limiting access to ovules, while in other Ficus species all ovules are exposed to parasitism.

  2. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    PubMed

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  3. Structural health monitoring ultrasonic thickness measurement accuracy and reliability of various time-of-flight calculation methods

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2016-02-01

    The accuracy, precision, and reliability of ultrasonic thickness structural health monitoring systems are discussed in-cluding the influence of systematic and environmental factors. To quantify some of these factors, a compression wave ultrasonic thickness structural health monitoring experiment is conducted on a flat calibration block at ambient temperature with forty four thin-film sol-gel transducers and various time-of-flight thickness calculation methods. As an initial calibration, the voltage response signals from each sensor are used to determine the common material velocity as well as the signal offset unique to each calculation method. Next, the measurement precision of the thickness error of each method is determined with a proposed weighted censored relative maximum likelihood analysis technique incorporating the propagation of asymmetric measurement uncertainty. The results are presented as upper and lower confidence limits analogous to the a90/95 terminology used in industry recognized Probability-of-Detection assessments. Future work is proposed to apply the statistical analysis technique to quantify measurement precision of various thickness calculation methods under different environmental conditions such as high temperature, rough back-wall surface, and system degradation with an intended application to monitor naphthenic acid corrosion in oil refineries.

  4. Measuring Metal Thickness With an Electric Probe

    NASA Technical Reports Server (NTRS)

    Shumka, A.

    1986-01-01

    Thickness of metal parts measured from one side with aid of Kelvin probe. Method developed for measuring thickness of end plate on sealed metal bellows from outside. Suitable for thicknesses of few thousandth's of inch (few hundred micrometers). Method also used to determine thickness of metal coatings applied by sputtering, electroplating, and flame spraying.

  5. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    PubMed

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.

  6. Corneal thickness: measurement and implications.

    PubMed

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  7. A tale of two neglected systems-structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves.

    PubMed

    Botha, C E J

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5-7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.

  8. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).

  9. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).

  10. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  11. Airway wall thickness of allergic asthma caused by weed pollen or house dust mite assessed by computed tomography.

    PubMed

    Liu, Liping; Li, Guangrun; Sun, Yuemei; Li, Jian; Tang, Ningbo; Dong, Liang

    2015-03-01

    Little was known about Airway wall thickness of asthma patients with different allergen allergy. So we explored the possible difference of Airway wall thickness of asthma patients mono-sensitized to weed pollen or HDM using high-resolution computed tomography. 85 severe asthma patients were divided into weed pollen group and HDM group according to relevant allergen. 20 healthy donors served as controls. Airway wall area, percentage wall area and luminal area at the trunk of the apical bronchus of the right upper lobe were quantified using HRCT and compared. The values of pulmonary function were assessed as well. There were differences between HDM group and weed pollen group in WA/BSA,WA% and FEF25-75% pred, and no significant difference in FEV1%pred, FEV1/FVC and LA/BSA. In weed pollen group, WA/BSA was observed to correlate with the duration of rhinitis, whereas in HDM group, WA/BSA and LA/BSA was observed to correlate with the duration of asthma. In weed pollen group, FEV1/FVC showed a weak but significant negative correlation with WA%, but in HDM group FEV1/FVC showed a significant positive correlation with WA% and a statistical negative correlation with LA/BSA. FEV1/FVC and FEF25-75% pred were higher and WA/BSA and LA/BSA were lower in healthy control group than asthma group. FEV1%pred and WA% was no significant difference between asthma patients and healthy subjects. There are differences between HDM mono-sensitized subjects and weed pollen mono-sensitized subjects, not only in airway wall thickness, but also small airway obstruction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Measuring Rind Thickness on Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Miller, J.; Brown, H.

    1985-01-01

    Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.

  13. Gauge Measures Thicknesses Of Blankets

    NASA Technical Reports Server (NTRS)

    Hagen, George R.; Yoshino, Stanley Y.

    1991-01-01

    Tool makes highly repeatable measurements of thickness of penetrable blanket insulation. Includes commercial holder for replaceable knife blades, which holds needle instead of knife. Needle penetrates blanket to establish reference plane. Ballasted slider applies fixed preload to blanket. Technician reads thickness value on scale.

  14. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm.

    PubMed

    Rodrigues, Jonathan C L; Rohan, Stephen; Ghosh Dastidar, Amardeep; Harries, Iwan; Lawton, Christopher B; Ratcliffe, Laura E; Burchell, Amy E; Hart, Emma C; Hamilton, Mark C K; Paton, Julian F R; Nightingale, Angus K; Manghat, Nathan E

    2017-03-01

    European guidelines state left ventricular (LV) end-diastolic wall thickness (EDWT) ≥15mm suggests hypertrophic cardiomyopathy (HCM), but distinguishing from hypertensive heart disease (HHD) is challenging. We identify cardiovascular magnetic resonance (CMR) predictors of HHD over HCM when EDWT ≥15mm. 2481 consecutive clinical CMRs between 2014 and 2015 were reviewed. 464 segments from 29 HCM subjects with EDWT ≥15mm but without other cardiac abnormality, hypertension or renal impairment were analyzed. 432 segments from 27 HHD subjects with EDWT ≥15mm but without concomitant cardiac pathology were analyzed. Magnitude and location of maximal EDWT, presence of late gadolinium enhancement (LGE), LV asymmetry (>1.5-fold opposing segment) and systolic anterior motion of the mitral valve (SAM) were measured. Multivariate logistic regression was performed. Significance was defined as p<0.05. HHD and HCM cohorts were age-/gender-matched. HHD had significantly increased indexed LV mass (110±27g/m 2 vs. 91±31g/m 2 , p=0.016) but no difference in site or magnitude of maximal EDWT. Mid-wall LGE was significantly more prevalent in HCM. Elevated indexed LVM, mid-wall LGE and absence of SAM were significant multivariate predictors of HHD, but LV asymmetry was not. Increased indexed LV mass, absence of mid-wall LGE and absence of SAM are better CMR discriminators of HHD from HCM than EDWT ≥15mm. • Hypertrophic cardiomyopathy (HCM) is often diagnosed with end-diastolic wall thickness ≥15mm. • Hypertensive heart disease (HHD) can be difficult to distinguish from HCM. • Retrospective case-control study showed that location and magnitude of EDWT are poor discriminators. • Increased left ventricular mass and midwall fibrosis are independent predictors of HHD. • Cardiovascular magnetic resonance parameters facilitate a better discrimination between HHD and HCM.

  15. Measuring Thicknesses of Coatings on Metals

    NASA Technical Reports Server (NTRS)

    Cotty, Glenn M., Jr.

    1986-01-01

    Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.

  16. Stress-intensity factors for a thick-walled cylinder containing an annular imbedded or external or internal surface crack

    NASA Technical Reports Server (NTRS)

    Erdol, R.; Erdogan, F.

    1976-01-01

    The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.

  17. A tale of two neglected systems—structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves

    PubMed Central

    Botha, C. E. J.

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280

  18. Fabrication of chitosan single-component microcapsules with a micrometer-thick and layered wall structure by stepwise core-mediated precipitation.

    PubMed

    Han, Yuanyuan; Tong, Weijun; Zhang, Yuying; Gao, Changyou

    2012-02-27

    Incubation of CaCO(3) microparticles in chitosan (CS) solution at pH 5.2 and following with ethylenediaminetetraacetic acid disodium salt (EDTA) treatment resulted in CS single-component microcapsules with an ultra-thick wall structure. Repeating the incubation caused stepwise increase of wall thickness and finally resulted in CS microcapsules with a layered structure. This unique method is mediated by precipitation of CS on the CaCO(3) particles as a result of pH increase caused by the partial dissolution of CaCO(3) . The obtained CS capsules are stable at neutral pH. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.

    PubMed

    Cogswell, Petrice M; Siero, Jeroen C W; Lants, Sarah K; Waddle, Spencer; Davis, L Taylor; Gilbert, Guillaume; Hendrikse, Jeroen; Donahue, Manus J

    2018-03-31

    Flow suppression techniques have been developed for intracranial (IC) vessel wall imaging (VWI) and optimized using simulations; however, simulation results may not translate in vivo. To evaluate experimentally how IC vessel wall and lumen measurements change in identical subjects when evaluated using the most commonly available blood and cerebrospinal fluid (CSF) flow suppression modules and VWI sequences. Prospective. Healthy adults (n = 13; age = 37 ± 15 years) were enrolled. A 3.0T 3D T 1 /proton density (PD)-weighted turbo-spin-echo (TSE) acquisition with post-readout anti-driven equilibrium module, with and without Delay-Alternating-with-Nutation-for-Tailored-Excitation (DANTE) was applied. DANTE flip angle (8-12°) and TSE refocusing angle (sweep = 40-120° or 50-120°) were varied. Basilar artery and internal carotid artery (ICA) wall thicknesses, CSF signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio (SR) were assessed. Measurements were made by two readers (radiology resident and board-certified neuroradiologist). A Wilcoxon signed-rank test was applied with corrected two-sided P < 0.05 required for significance (critical P = 0.008, 0.005, and 0.05 for SNR/CNR, SR, and wall thickness, respectively). A TSE pulse sweep = 40-120° and sweep = 50-120° provided similar (P = 0.55) CSF suppression. Addition of the DANTE preparation reduced CSF SNR from 17.4 to 6.7, thereby providing significant (P < 0.008) improvement in CSF suppression. The DANTE preparation also resulted in a significant (P < 0.008) reduction in vessel wall SNR, but variable vessel wall to CSF CNR improvement (P = 0.87). There was a trend for a difference in blood SNR with vs. without DANTE (P = 0.05). The outer vessel wall diameter and wall thickness values were lower (P < 0.05) with (basilar artery 4.45 mm, 0.81 mm, respectively) vs. without (basilar artery 4.88 mm, 0.97 mm, respectively) DANTE 8

  20. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  1. Non-contact thickness measurement using UTG

    NASA Technical Reports Server (NTRS)

    Bui, Hoa T. (Inventor)

    1996-01-01

    A measurement structure for determining the thickness of a specimen without mechanical contact but instead employing ultrasonic waves including an ultrasonic transducer and an ultrasonic delay line connected to the transducer by a retainer or collar. The specimen, whose thickness is to be measured, is positioned below the delay line. On the upper surface of the specimen a medium such as a drop of water is disposed which functions to couple the ultrasonic waves from the delay line to the specimen. A receiver device, which may be an ultrasonic thickness gauge, receives reflected ultrasonic waves reflected from the upper and lower surface of the specimen and determines the thickness of the specimen based on the time spacing of the reflected waves.

  2. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  3. Flight Measurement of Wall-Pressure Fluctuations and Boundary-Layer Turbulence

    NASA Technical Reports Server (NTRS)

    Mull, Harold R.; Algranti, Joseph S.

    1960-01-01

    The results are presented for a flight test program using a fighter type jet aircraft flying at pressure altitudes of 10,000, 20,000, and 30,000 feet at Mach numbers from 0.3 to 0.8. Specially designed apparatus was used to measure and record the output of microphones and hot-wire anemometers mounted on the forward-fuselage section and wing of the airplane. Mean-velocity profiles in the boundary layers were obtained from total-pressure measurements. The ratio of the root-mean-square fluctuating wall pressure to the free-stream dynamic pressure is presented as a function of Reynolds number and Mach number. The longitudinal component of the turbulent-velocity fluctuations was measured, and the turbulence-intensity profiles are presented for the wing and forward-fuselage section. In general, the results are in agreement with wind-tunnel measurements which have been-reported in the literature. For example, the variation the square root of p(sup 2)/q times the square root of p(sup 2) is the root mean square of the wall-pressure fluctuation, and q is the free-stream dynamic pressure) with Reynolds number was found to be essentially constant for the forward-fuselage-section boundary layer, while variations at the wing station were probably unduly affected by the microphone diameter (5/8 in.), which was large compared with the boundary-layer thickness.

  4. Ureteral wall thickness at the impacted ureteral stone site: a critical predictor for success rates after SWL.

    PubMed

    Sarica, Kemal; Kafkasli, Alper; Yazici, Özgür; Çetinel, Ali Cihangir; Demirkol, Mehmet Kutlu; Tuncer, Murat; Şahin, Cahit; Eryildirim, Bilal

    2015-02-01

    The aim of the study was to determine the possible predictive value of certain patient- and stone-related factors on the stone-free rates and auxiliary procedures after extracorporeal shock wave lithotripsy in patients with impacted proximal ureteral calculi. A total of 111 patients (86 male, 25 females M/F: 3.44/1) with impacted proximal ureteral stones treated with shock wave lithotripsy were evaluated. Cases were retrieved from a departmental shock wave lithotripsy database. Variables analyzed included BMI of the case, diameter of proximal ureter and renal pelvis, stone size and Hounsfield unit, ureteral wall thickness at the impacted stone site. Stone-free status on follow-up imaging at 3 months was considered a successful outcome. All patients had a single impacted proximal ureteral stone. While the mean age of the cases was 46 ± 13 years (range 26-79 years), mean stone size was 8.95 mm (5.3-15.1 mm). Following shock wave lithotripsy although 87 patients (78.4%) were completely stone-free at 3-month follow-up visit, 24 (21.6%) cases had residual fragments requiring further repeat procedures. Prediction of the final outcome of SWL in patients with impacted proximal ureteral stones is a challenging issue and our data did clearly indicate a highly significant relationship between ureteral wall thickness and the success rates of shock wave lithotripsy particularly in cases requiring additional procedures. Of all the evaluated stone- and patient-related factors, only ureteral wall thickness at the impacted stone site independently predicted shock wave lithotripsy success.

  5. Formation of Rhamnogalacturonan II-Borate Dimer in Pectin Determines Cell Wall Thickness of Pumpkin Tissue1

    PubMed Central

    Ishii, Tadashi; Matsunaga, Toshiro; Hayashi, Noriko

    2001-01-01

    Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of 10B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-10B. The wall thickness of the 10B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed. PMID:11500567

  6. Ultrasound determination of chest wall thickness: implications for needle thoracostomy.

    PubMed

    McLean, A Robb; Richards, Michael E; Crandall, Cameron S; Marinaro, Jonathan L

    2011-11-01

    Computed tomography measurements of chest wall thickness (CWT) suggest that standard-length angiocatheters (4.5 cm) may fail to decompress tension pneumothoraces. We used an alternative modality, ultrasound, to measure CWT. We correlated CWT with body mass index (BMI) and used national data to estimate the percentage of patients with CWT greater than 4.5 cm. This was an observational, cross-sectional study of a convenience sample. We recorded standing height, weight, and sex. We measured CWT with ultrasound at the second intercostal space, midclavicular line and at the fourth intercostal space, midaxillary line on supine subjects. We correlated BMI (weight [in kilograms]/height(2) [in square meters]) with CWT using linear regression. 95% Confidence intervals (CIs) assessed statistical significance. National Health and Nutrition Examination Survey results for 2007-2008 were combined to estimate national BMI adult measurements. Of 51 subjects, 33 (65%) were male and 18 (35%) were female. Mean anterior CWT (male, 2.1 cm; CI, 1.9-2.3; female, 2.3 cm; CI, 1.7-2.7), lateral CWT (male, 2.4 cm; CI, 2.1-2.6; female, 2.5 cm; CI 2.0-2.9), and BMI (male, 27.7; CI, 26.1-29.3; female, 30.0; CI, 25.8-34.2) did not differ by sex. Lateral CWT was greater than anterior CWT (0.2 cm; CI, 0.1-0.4; P < .01). Only one subject with a BMI of 48.2 had a CWT that exceeded 4.5 cm. Using national BMI estimates, less than 1% of the US population would be expected to have CWT greater than 4.5 cm. Ultrasound measurements suggest that most patients will have CWT less than 4.5 cm and that CWT may not be the source of the high failure rate of needle decompression in tension pneumothorax. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output. © 2016. Published by The Company of Biologists Ltd.

  8. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    NASA Astrophysics Data System (ADS)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  9. Simulation of the development and interaction of instabilities in a relativistic electron beam under variation of the beam wall thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badarin, A. A.; Kurkin, S. A.; Koronovskii, A. A.

    The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner onmore » the magnitude of the external magnetic field.« less

  10. Detonation Failure Thickness Measurement in AN Annular Geometry

    NASA Astrophysics Data System (ADS)

    Mack, D. B.; Petel, O. E.; Higgins, A. J.

    2007-12-01

    The failure thickness of neat nitromethane in aluminum confinement was measured using a novel experimental technique. The thickness was approximated in an annular geometry by the gap between a concentric aluminum tube and rod. This technique was motivated by the desire to have a periodic boundary condition in the direction orthogonal to the annulus thickness, rather than a free surface occurring in typical rectangular geometry experiments. This results in a two-dimensional charge analogous to previous failure thickness setups but with infinite effective width (i.e. infinite aspect ratio). Detonation propagation or failure was determined by the observation of failure patterns engraved on the aluminum rod by the passing detonation. Analysis of these engraved patterns provides a statistical measurement of the spatial density of failure waves. Failure was observed as far as 180 thicknesses downstream. The failure thickness was measured to be 1.45 mm±0.15 mm.

  11. Validation of conducting wall models using magnetic measurements

    DOE PAGES

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca; ...

    2016-08-16

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  12. Validation of conducting wall models using magnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  13. Attenuation of radiation from distributed gamma sources as a function of wall thickness of a concrete blockhouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmoke, M. A.; Rexroad, R. E.; Tiller, H. J.

    1963-06-15

    The experiment described constitutes part of the shielding program conducted by Army Nuclear Defense Laboratory and was designed to experimentally verify theoretical calculations used to predict the amount of radiation protection afforded by above-ground structures in a fallout radiation field. This method requires the knowledge of some physical parameters of a structure such as mass thickness of the walls and the geometric orientation of the detectors within the structure. From this information, a reduction factor for any given structure may be calculated. This Laboratory's experimental program was initially begun by measuring the attenuation of a simple structure with no complicatingmore » internal or external geometries and will proceed to more complex structures with basements, interior partitions, and upper floors. (auth)« less

  14. Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas

    2017-01-01

    Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1-5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces.

  15. Effect of the body wall on lithotripter shock waves.

    PubMed

    Li, Guangyan; McAteer, James A; Williams, James C; Berwick, Zachary C

    2014-04-01

    Determine the influence of passage through the body wall on the properties of lithotripter shock waves (SWs) and the characteristics of the acoustic field of an electromagnetic lithotripter. Full-thickness ex vivo segments of pig abdominal wall were secured against the acoustic window of a test tank coupled to the lithotripter. A fiber-optic probe hydrophone was used to measure SW pressures, determine shock rise time, and map the acoustic field in the focal plane. Peak positive pressure on axis was attenuated roughly proportional to tissue thickness-approximately 6% per cm. Irregularities in the tissue path affected the symmetry of SW focusing, shifting the maximum peak positive pressure laterally by as much as ∼2 mm. Within the time resolution of the hydrophone (7-15 ns), shock rise time was unchanged, measuring ∼17-21 ns with and without tissue present. Mapping of the field showed no effect of the body wall on focal width, regardless of thickness of the body wall. Passage through the body wall has minimal effect on the characteristics of lithotripter SWs. Other than reducing pulse amplitude and having the potential to affect the symmetry of the focused wave, the body wall has little influence on the acoustic field. These findings help to validate laboratory assessment of lithotripter acoustic field and suggest that the properties of SWs in the body are much the same as have been measured in vitro.

  16. Suprascarpal fat pad thickness may predict venous drainage patterns in abdominal wall flaps.

    PubMed

    Bast, John; Pitcher, Austin A; Small, Kevin; Otterburn, David M

    2016-02-01

    Abdominal wall flaps are routinely used in reconstructive procedures. In some patients inadequate venous drainage from the deep vein may cause fat necrosis or flap failure. Occasionally the superficial inferior epigastric vessels (SIEV) are of sufficient size to allow for microvascular revascularization. This study looked at the ratio of the sub- and suprascarpal fat layers, the number of deep system perforators, and SIEV diameter to determine any correlation of the fat topography and SIEV. 50 abdominal/pelvic CT angiograms (100 hemiabdomens) were examined in women aged 34-70 years for number of perforators, SIEV diameter, and fat pad thickness above and below Scarpa's fascia. Data was analyzed using multivariate model. The average suprascarpal and subscarpal layers were 18.6 ± 11.5 mm and 6.2 ± 7.2 mm thick, respectively. The average SIEV diameter was 2.06 ± 0.81 mm and the average number of perforators was 2.09 ± 1.03 per hemiabdomen. Hemiabdomens with suprascarpal thickness>23 mm had greater SIEV diameter [2.69 mm vs. 1.8 mm (P < 0.0001)] The fat layer thickness did not correlate with the number of perforators. Neither subscarpal fat thickness nor suprascarpal-to-subscarpal fat layer thickness correlated significantly with SIEV caliber or number of perforators in multivariate model. Suprascarpal fat pad thicker than 23 mm had larger SIEVs irrespective of the number of deep system perforators. This may indicate a cohort of patients at risk of venous congestion from poor venous drainage if only the deep system is revascularized. We recommend harvesting the SIEV in patients with suprascarpal fat pad >23 mm to aid in superficial drainage. © 2015 Wiley Periodicals, Inc.

  17. Stress measurement in thick plates using nonlinear ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less

  18. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  19. Modelling ultrasound guided wave propagation for plate thickness measurement

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Dabak, Anand; Murthy, Nitish Krishna

    2014-03-01

    Structural Health monitoring refers to monitoring the health of plate-like walls of large reactors, pipelines and other structures in terms of corrosion detection and thickness estimation. The objective of this work is modeling the ultrasonic guided waves generated in a plate. The piezoelectric is excited by an input pulse to generate ultrasonic guided lamb waves in the plate that are received by another piezoelectric transducer. In contrast with existing methods, we develop a mathematical model of the direct component of the signal (DCS) recorded at the terminals of the piezoelectric transducer. The DCS model uses maximum likelihood technique to estimate the different parameters, namely the time delay of the signal due to the transducer delay and amplitude scaling of all the lamb wave modes due to attenuation, while taking into account the received signal spreading in time due to dispersion. The maximum likelihood estimate minimizes the energy difference between the experimental and the DCS model-generated signal. We demonstrate that the DCS model matches closely with experimentally recorded signals and show it can be used to estimate thickness of the plate. The main idea of the thickness estimation algorithm is to generate a bank of DCS model-generated signals, each corresponding to a different thickness of the plate and then find the closest match among these signals to the received signal, resulting in an estimate of the thickness of the plate. Therefore our approach provides a complementary suite of analytics to the existing thickness monitoring approaches.

  20. Myocardial effective transverse relaxation time T2* Correlates with left ventricular wall thickness: A 7.0 T MRI study.

    PubMed

    Huelnhagen, Till; Hezel, Fabian; Serradas Duarte, Teresa; Pohlmann, Andreas; Oezerdem, Celal; Flemming, Bert; Seeliger, Erdmann; Prothmann, Marcel; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2017-06-01

    Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  2. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  3. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.

    PubMed

    Bazan, I; Ramos, A; Balay, G; Negreira, C

    2018-07-01

    The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., < 7 μm in carotid arteries). The novelty of our proposal is the new technique used to estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being

  4. Digital Thickness Measurement of a Transparent Plastic Orthodontic Device

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Hwan; Rhim, Sung-Han

    2018-05-01

    A transparent orthodontic device is used to move the teeth to the final calibration position to form a proper set of teeth. Because the uniform thickness of the device plays an important role in tooth positioning, the accuracy of the device's thickness profile is important for effective orthodontic treatment. However, due to the complexity of the device's geometry and the transparency of the device's material, measuring the complete thickness profile has been difficult. In the present study, a new optical scanning method to measure the thickness profile of transparent plastic orthodontic devices is proposed and evaluated by using scanning electron microscopy (SEM). The error of the new measurement method is less than ±18 μm. The new method can be used to measure the thickness of non-specific, multi-curved, transparent orthodontic devices.

  5. Changes in optical coherence tomography measurements after orbital wall decompression in dysthyroid optic neuropathy.

    PubMed

    Park, Kyung-Ah; Kim, Yoon-Duck; Woo, Kyung In

    2018-06-01

    The purpose of our study was to assess changes in peripapillary retinal nerve fiber layer (RNFL) thickness after orbital wall decompression in eyes with dysthyroid optic neuropathy (DON). We analyzed peripapillary optical coherence tomography (OCT) images (Cirrus HD-OCT) from controls and patients with DON before and 1 and 6 months after orbital wall decompression. There was no significant difference in mean preoperative peripapillary retinal nerve fiber layer thickness between eyes with DON and controls. The superior and inferior peripapillary RNFL thickness decreased significantly 1 month after decompression surgery compared to preoperative values (p = 0.043 and p = 0.022, respectively). The global average, superior, temporal, and inferior peripapillary RNFL thickness decreased significantly 6 months after decompression surgery compared to preoperative values (p = 0.015, p = 0.028, p = 0.009, and p = 0.006, respectively). Patients with greater preoperative inferior peripapillary RNFL thickness tended to have better postoperative visual acuity at the last visit (p = 0.024, OR = 0.926). Our data revealed a significant decrease in peripapillary RNFL thickness postoperatively after orbital decompression surgery in patients with DON. We also found that greater preoperative inferior peripapillary RNFL thickness was associated with better visual outcomes. We suggest that RNFL thickness can be used as a prognostic factor for DON before decompression surgery.

  6. Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles

    PubMed Central

    Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas

    2017-01-01

    Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1–5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces. PMID:28054589

  7. Wall Thickness, Pulmonary Hypertension, and Diastolic Filling Abnormalities Predict Response to Postoperative Biventricular Pacing

    PubMed Central

    Brusen, Robin M.; Hahn, Rebecca; Cabreriza, Santos E.; Cheng, Bin; Wang, Daniel Y.; Truong, Wanda; Spotnitz, Henry M.

    2017-01-01

    Objective Post-cardiopulmonary bypass biventricular pacing improves hemodynamics but without clearly defined predictors of response. Based on preclinical studies and prior observations, it was suspected that diastolic dysfunction or pulmonary hypertension is predictive of hemodynamic benefit. Design Randomized controlled study of temporary biventricular pacing after cardiopulmonary bypass. Setting Single-center study at university-affiliated tertiary care hospital. Interventions Patients who underwent bypass with pre-operative ejection fraction ≤40% and QRS duration ≥100 ms or double-valve surgery were enrolled. At 3 time points between separation from bypass and postoperative day 1, pacing delays were varied to optimize hemodynamics. Participants Data from 43 patients were analyzed. Measurements and Main Results Cardiac output and arterial pressure were measured under no pacing, atrial pacing, and biventricular pacing. Preoperative echocardiograms and pulmonary artery catheterizations were reviewed, and measures of both systolic and diastolic function were compared to hemodynamic response. Early after separation, improvement in cardiac output was positively correlated with pulmonary vascular resistance (R2 = 0.97, p < 0.001), ventricle wall thickness (R2 = 0.72, p = 0.002)), and E/e′, a measure of abnormal diastolic ventricular filling velocity (R2 = 0.56, p = 0.04). Similar trends were seen with mean arterial pressure. QRS duration and ejection fraction did not correlate significantly with improvements in hemodynamics. Conclusions There may be an effect of biventricular pacing related to amelioration of abnormal diastolic filling patterns rather than electrical resynchronization in the postoperative state. PMID:25998068

  8. Huge domain-wall speed variation with respect to ferromagnetic layer thickness in ferromagnetic Pt/Co/TiO2/Pt films

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Yu, Ji-Sung; Kim, Joo-Sung; Kim, Duck-Ho; Min, Byoung-Chul; Choe, Sug-Bong

    2018-02-01

    In this study, we investigate the influence of the ferromagnetic layer thickness on the magnetization process. A series of ultrathin Pt/Co/TiO2/Pt films exhibits domain-wall (DW) speed variation of over 100,000 times even under the same magnetic field, depending on the ferromagnetic layer thickness. From the creep-scaling analysis, such significant variation is found to be mainly attributable to the thickness-dependence of the creep-scaling constant in accordance with the creep-scaling theory of the linear proportionality between the creep-scaling constant and the ferromagnetic layer thickness. Therefore, a thinner film shows a faster DW speed. The DW roughness also exhibits sensitive dependence on the ferromagnetic layer thickness: a thinner film shows smoother DW. The present observation provided a guide for an optimal design rule of the ferromagnetic layer thickness for better performance of DW-based devices.

  9. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  10. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  11. Practicable methods for histological section thickness measurement in quantitative stereological analyses.

    PubMed

    Matenaers, Cyrill; Popper, Bastian; Rieger, Alexandra; Wanke, Rüdiger; Blutke, Andreas

    2018-01-01

    The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 μm thick semi-thin Epon (glycid ether)-sections and of 1-3 μm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability

  12. Practicable methods for histological section thickness measurement in quantitative stereological analyses

    PubMed Central

    Matenaers, Cyrill; Popper, Bastian; Rieger, Alexandra; Wanke, Rüdiger

    2018-01-01

    The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 μm thick semi-thin Epon (glycid ether)-sections and of 1–3 μm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability

  13. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  14. High-throughput measurement of polymer film thickness using optical dyes

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  15. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  16. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOEpatents

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  17. Measurement of compressed breast thickness by optical stereoscopic photogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyson, Albert H.; Mawdsley, Gordon E.; Yaffe, Martin J.

    2009-02-15

    The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of themore » breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.« less

  18. Measurement of compressed breast thickness by optical stereoscopic photogrammetry.

    PubMed

    Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J

    2009-02-01

    The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.

  19. Increased carotid wall thickness measured by computed tomography is associated with the presence and severity of coronary artery calcium.

    PubMed

    Nabavi, Vahid; Ahmadi, Naser; Bhatia, Harpreet S; Flores, Ferdinand; Ebrahimi, Ramin; Karlsberg, Ronald P; Budoff, Matthew J

    2011-03-01

    Previous studies have shown that increase in carotid wall thickness (CWT) is associated with cardiovascular risk factors. However, simultaneous systemic and local involvement of atherosclerosis in subjects with high risk of coronary atherosclerosis is not well studied. This study investigates the relation of carotid subclinical atherosclerosis assessed by CWT with the presence and severity of coronary artery calcium(CAC). One hundred and twenty nine subjects (age of 69±10 years, 72% male) underwent CAC, carotid CT angiography, and their metabolic status was evaluated. CAC was defined as 0, 1-100, 101-400, 401-1000 and 1000+. CWT (mm) was calculated as: [mean of both right and left CT-measured CWT 10-mm below the common carotid bifurcation]. Modest correlation between CWT and CAC was noted (r=0.48, p=0.0001). CWT increased substantially with the severity of CAC from CAC 0 to CAC 1000+ (p<0.05). Increased CWT (1.0 mm+) was more prevalent in subjects with significant CAC (100+) as compared to CAC 0 (44.7% vs. 3.3%, p<0.05). Increase in CWT was associated with increased rates of metabolic syndrome and diabetes mellitus. After adjustment for cardiovascular risk factors, the risk of metabolic syndrome and DM was 1.7 and 2.3 respectively for each standard deviation (SD) increase in CWT. Similarly, the risk for each SD increase in CWT increased with severity of CAC as compared to CAC 0 (RR:CAC 1-100:1.2, CAC 101-400:1.5, CAC 400-1000:2.1, and CAC 1000+:3.4, respectively). Increased CWT is associated with the presence and severity of CAC, metabolic syndrome and DM independent of conventional cardiovascular risk factors; highlighting the important role of comprehensive carotid and coronary atherosclerotic assessment to identify at-risk individuals. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Wall shear measurement in sand-water mixture flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yucel, O.; Grad, W.H.

    1975-07-01

    The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less

  1. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  2. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...

  3. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...

  4. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...

  5. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-8 Thickness of plates... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any 3..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...

  6. Microscopic image processing systems for measuring nonuniform film thickness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.H.; Plawsky, J.L.; DasGupta, S.

    1994-01-01

    In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less

  7. Model-based cartilage thickness measurement in the submillimeter range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the

  8. Longwave Stability of Two Liquid Layers Coating Both Sides of a Thick Wall in the Absence of Gravity

    NASA Astrophysics Data System (ADS)

    Dávalos-Orozco, L. A.

    2018-05-01

    A system of two coupled nonlinear equations was calculated to describe the thermocapillary evolution of the free surface deformations of two liquid layers coating both sides of a wall of finite thickness and thermal conductivity in the absence of gravity. The equations were obtained under the small wavenumber approximation. A temperature gradient appears perpendicular to the liquid-wall-liquid system due to the temperature difference between the atmospheres outside the free surfaces of both fluid layers. The linear growth rate of the system was investigated with respect to a variety of parameters. Under some conditions, two stationary modes and one oscillatory mode between them were found. The second stationary mode was concluded to be always stable. It was also found that under different conditions only stationary convection is possible. These results depended on the relative thickness of the two fluid films. It is of interest to know if the coupled free surface perturbations presented a nonlinear sinuous or varicose mode. Thus, a two-dimensional numerical analysis was performed to find out which conditions lead to the sinuous or to the varicose mode of instability.

  9. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-01

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.

  10. Measurement and Ranking of Permeation Specimen Thickness Profiles: High-Density Polyethylene Swatches

    DTIC Science & Technology

    2016-05-01

    6 3.2 Thickness Comparison between Lube-Cooled and No-Lube Techniques: Non- Welded ...14 3.3 Measured Thickness of Permeation Specimens: Non- Welded ........................16 3.4 Plots of Specimen Measurement Position...versus Thickness ...........................21 3.5 Measured Thickness of Permeation Specimens: Welded ................................23 4

  11. Female urinary incontinence at orgasm: a possible marker of a more severe form of detrusor overactivity. Can ultrasound measurement of bladder wall thickness explain it?

    PubMed

    Serati, Maurizio; Salvatore, Stefano; Cattoni, Elena; Siesto, Gabriele; Soligo, Marco; Braga, Andrea; Sorice, Paola; Cromi, Antonella; Ghezzi, Fabio; Cardozo, Linda; Bolis, Pierfrancesco

    2011-06-01

    Coital incontinence (CI) during orgasm is a form of urinary incontinence possibly because of detrusor overactivity (DO), as the underlying pathophysiological condition. Women with this symptom usually show a pharmacological lower cure rate than those with DO alone. The ultrasound measurement of the bladder wall thickness (BWT) allows an indirect evaluation of detrusor muscle thickness, giving a potential index of detrusor activity. We wanted to understand if CI at orgasm could be a marker of severity of DO by comparing BWT in women with both DO and CI at orgasm vs. women with DO alone. In addition we aimed to confirm if CI during orgasm is related to antimuscarinics treatment failure. This is a prospective cohort study performed in two tertiary urogynecological referral departments, recruiting consecutive patients seeking treatment for symptomatic DO. All patients were thoroughly assessed including physical examination, urodynamic evaluation, and BWT measurement according to the International Continence Society/International Urogynecological Association and ICI recommendations. Solifenacine 5 mg once daily was then prescribed and follow-up was scheduled to evaluate treatment. Multiple logistic regression (MLR) was performed to identify risk factors for treatment failure. Between September 2007 and March 2010, 31 (22.6%) and 106 (77.4%) women with DO with and without CI at orgasm were enrolled. Women complaining of CI at orgasm had significantly higher BWT than the control group (5.8 ± 0.6 mm vs. 5.2 ± 1.2 mm [P=0.007]). In patients with CI at orgasm, the nonresponder rate to antimuscarinics was significantly higher than controls (P=0.01). After MLR, CI at orgasm was the only independent predictor decreasing antimuscarinics efficacy (odds ratio [OR] 3.16 [95% CI 1.22-8.18], P=0.02). Women with DO and CI at orgasm showed a significantly higher BWT values and worse cure rates than women with DO alone. CI at orgasm could be a marker of a more severe form of DO.

  12. Optimum Material Composition for Minimizing the Stress Intensity Factor of Edge Crack in Thick-Walled FGM Circular Pipes Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Sekine, Hideki; Yoshida, Kimiaki

    This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.

  13. Ice thickness measurements and volume estimates for glaciers in Norway

    NASA Astrophysics Data System (ADS)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  14. Macular thickness measurements using Copernicus Spectral Domain Optical Coherence Tomography.

    PubMed

    Gella, Laxmi; Raman, Rajiv; Sharma, Tarun

    2015-01-01

    To provide normal macular thickness measurements using Spectral Domain Optical Coherence Tomography (SDOCT, Copernicus, Optopol Technologies, Zawierci, Poland). Fifty-eight eyes of 58 healthy subjects were included in this prospective study. All subjects had comprehensive ophthalmic examination including best-corrected visual acuity (BCVA). All the subjects underwent Copernicus SDOCT. Central foveal thickness (CFT) and photoreceptor layer (PRL) thickness were measured and expressed as mean and standard deviation. Mean retinal thickness for each of the 9 regions defined in the Early Treatment Diabetic Retinopathy Study was reported. The data were compared with published literature in Indians using Stratus and Spectralis OCTs to assess variation in instrument measurements. The mean CFT in the study sample was 173.8 ± 18.16 microns (131-215 microns) and the mean PRL thickness was 65.48 ± 4.23 microns (56-74 microns). No significant difference (p = 0.148) was found between CFT measured automated (179.28 ± 22 microns) and manually (173.83 ± 18.1 microns). CFT was significantly lower in women (167.62 ± 16.36 microns) compared to men (180.03 ± 18 microns) (p = 0.008). Mean retinal thickness reported in this study was significantly different from published literature using Stratus OCT and Spectralis OCT. We report the normal mean retinal thickness in central 1 mm area to be between 138 and 242 microns in Indian population using Copernicus SDOCT. We suggest that different OCT instruments cannot be used interchangeably for the measurement of macular thickness as they vary in segmentation algorithms.

  15. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: Two- and three-dimensional multilayer speckle tracking echocardiography.

    PubMed

    Cho, Eun Jeong; Park, Sung-Ji; Kim, Eun Kyoung; Lee, Ga Yeon; Chang, Sung-A; Choi, Jin-Oh; Lee, Sang-Chol; Park, Seung Woo

    2017-04-01

    The aim of this study was to determine the capability of real time three-dimensional echocardiography (RT3DE) and two-dimensional (2D) multilayer speckle tracking echocardiography (MSTE) for evaluation of early myocardial dysfunction triggered by increased left ventricular (LV) wall thickness in severe aortic stenosis (AS) with normal LV ejection fraction (EF≥55%). Conventional, RT3D STE and 2D MSTE were performed in 45 patients (mean 68.9±9.0 years) with severe AS (aortic valve area <1 cm 2 , aortic velocity Vmax >4 m/s or mean PG >40 mm Hg) and normal left ventricular ejection fraction (LVEF) without overt coronary artery disease and in 18 age-, sex-matched healthy controls. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were calculated using RT3DE and MSTE. The severe AS group had lower 3D GLS, GRS, GAS and 2D epicardium, and mid-wall and endocardium GLS compared to healthy controls. In MSTE analysis, 2D LS and CS values decreased from the endocardial layer toward the epicardial layer. Severe AS patients with increased LV wall thickness had lower 3D GLS and 2D epicardium, and mid-wall and endocardium GLS compared with severe AS patients without LV wall thickening. GLS on RT3D STE was correlated with GLS on 2D MSTE, left ventricular mass index, LVEF, left atrial volume index, and lnNT-proBNP. RT3DE and 2D MSTE can be used to identify subtle contractile dysfunction triggered by increased LV wall thickness in severe AS with normal LVEF. Therefore, RT3D STE and 2D MSTE may provide additional information that can facilitate decision-making regarding severe AS patients with increased LV wall thickness and normal LV function. © 2017, Wiley Periodicals, Inc.

  16. Thickness Measurement of Surface Attachment on Plate with Lamb Wave

    NASA Astrophysics Data System (ADS)

    Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu

    2017-12-01

    Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.

  17. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  18. Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.

    PubMed

    Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan

    2016-10-01

    We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4  RIU (refractive index unit).

  19. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    PubMed

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  20. Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice

    NASA Technical Reports Server (NTRS)

    Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.

    2007-01-01

    An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.

  1. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, H.; Pettit, B.

    2015-06-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution that provides insulation to the interior of the wall assembly with the use of a double stud wall. The guide describes two approaches to retrofitting the existing the walls: one involving replacement of the existing cladding, and the other that leaves the existing cladding in place. It discusses the design principles related to the use of various insulation types, and provides strategies and procedures for implementing the double stud wall retrofit. It also evaluates important moisture-related and indoor air quality measures that need to be implemented to achieve amore » durable, high performance wall.« less

  2. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  3. Accurate Measurement of Small Airways on Low-Dose Thoracic CT Scans in Smokers

    PubMed Central

    Conradi, Susan H.; Atkinson, Jeffrey J.; Zheng, Jie; Schechtman, Kenneth B.; Senior, Robert M.; Gierada, David S.

    2013-01-01

    Background: Partial volume averaging and tilt relative to the scan plane on transverse images limit the accuracy of airway wall thickness measurements on CT scan, confounding assessment of the relationship between airway remodeling and clinical status in COPD. The purpose of this study was to assess the effect of partial volume averaging and tilt corrections on airway wall thickness measurement accuracy and on relationships between airway wall thickening and clinical status in COPD. Methods: Airway wall thickness measurements in 80 heavy smokers were obtained on transverse images from low-dose CT scan using the open-source program Airway Inspector. Measurements were corrected for partial volume averaging and tilt effects using an attenuation- and geometry-based algorithm and compared with functional status. Results: The algorithm reduced wall thickness measurements of smaller airways to a greater degree than larger airways, increasing the overall range. When restricted to analyses of airways with an inner diameter < 3.0 mm, for a theoretical airway of 2.0 mm inner diameter, the wall thickness decreased from 1.07 ± 0.07 to 0.29 ± 0.10 mm, and the square root of the wall area decreased from 3.34 ± 0.15 to 1.58 ± 0.29 mm, comparable to histologic measurement studies. Corrected measurements had higher correlation with FEV1, differed more between BMI, airflow obstruction, dyspnea, and exercise capacity (BODE) index scores, and explained a greater proportion of FEV1 variability in multivariate models. Conclusions: Correcting for partial volume averaging improves accuracy of airway wall thickness estimation, allowing direct measurement of the small airways to better define their role in COPD. PMID:23172175

  4. A temperature correlation for the radiation resistance of a thick-walled circular duct exhausting a hot gas

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Cline, J. G.; Jones, J. D.

    1984-01-01

    It is often useful to know the radiation impedance of an unflanged but thick-walled circular duct exhausting a hot gas into relatively cold surroundings. The reactive component is shown to be insensitive to temperature, but the resistive component is shown to be temperature dependent. A temperature correlation is developed permitting prediction of the radiation resistance from a knowledge of the temperature difference between the ambient air and the gas flowing from the duct, and a physical basis for this correlation is presented.

  5. Metatarsophalangeal joint extension changes ultrasound measurements for plantar fascia thickness.

    PubMed

    Granado, Michael J; Lohman, Everett B; Gordon, Keith E; Daher, Noha S

    2018-01-01

    Ultrasound is an inexpensive method for quantifying plantar fascia thickness, especially in those with plantar fasciitis. Ultrasound has also been used to assess the effectiveness of various treatments for plantar fasciitis by comparing plantar fascia thickness before and after an intervention period. While a plantar fascia thickness over 4 mm via ultrasound has been proposed to be consistent with plantar fasciitis, some researchers believe the 4 mm plantar fascia thickness level to be a dubious guideline for diagnosing plantar fasciitis due to the lack of standardization of the measurement process for plantar fascia thickness. In particular, no universal guidelines exist on the positioning of the metatarsophalangeal (MTP) joints during the procedure and the literature also has inconsistent protocols. The purpose of this study is to investigate and compare the influence of MTP joint extension on plantar fascia thickness in healthy participants and those with unilateral plantar fasciitis. The plantar fascia thickness of forty participants (20 with unilateral plantar fasciitis and 20 control) was measured via ultrasound three times at three different MTP joint positions: 1) at rest, 2) 30° of extension from the plantar surface, and 3) maximal extension possible. The plantar fascia became significantly thinner as MTP joint extension increased in both the plantar fasciitis group ( p  < 0.001) and the control group ( p  < 0.001). In the plantar fasciitis group, the involved plantar fascia was 1.2 to 1.3 mm thicker (p < 0.001) than the uninvolved side depending on the MTP joint position. In the control group, the difference in plantar fascia thickness between the two sides was less than 0.1 mm ( p  < 0.92) at any MTP joint position. MTP joint position can influence the ultrasound measurement of plantar fascia thickness. It is recommended that plantar fascia thickness measurements be performed with the toes at rest. If MTP joints must be extended

  6. The interaction of moderately strong shock waves with thick perforated walls of low porosity

    NASA Technical Reports Server (NTRS)

    Grant, D. J.

    1972-01-01

    A theoretical prediction is given of the flow through thick perforated walls of low porosity resulting from the impingement of a moderately strong traveling shock wave. The model was a flat plate positioned normal to the direction of the flow. Holes bored in the plate parallel to the direction of the flow provided nominal hole length-to-diameter ratios of 10:1 and an axial porosity of 25 percent of the flow channel cross section. The flow field behind the reflected shock wave was assumed to behave as a reservoir producing a quasi-steady duct flow through the model. Rayleigh and Fanno duct flow theoretical computations for each of three possible auxiliary wave patterns that can be associated with the transmitted shock (to satisfy contact surface compatibility) were used to provide bounding solutions as an alternative to the more complex influence coefficients method. Qualitative and quantitative behavior was verified in a 1.5- by 2.0-in. helium shock tube. High speed Schlieren photography, piezoelectric pressure-time histories, and electronic-counter wave speed measurements were used to assess the extent of correlation with the theoretical flow models. Reduced data indicated the adequacy of the bounding theory approach to predict wave phenomena and quantitative response.

  7. Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology

    NASA Astrophysics Data System (ADS)

    Pulker, H. K.

    1983-11-01

    There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special

  8. Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow

    NASA Astrophysics Data System (ADS)

    Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team

    2017-11-01

    We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.

  9. Completeness of carotid intima media thickness measurements depends on body composition: the RADIANCE 1 and 2 trials.

    PubMed

    Dogan, Soner; Duivenvoorden, Raphaël; Grobbee, Diederick E; Kastelein, John J P; Shear, Charles L; Evans, Gregory W; Visseren, Frank L; Bots, Michiel L

    2010-05-01

    Ultrasound protocols to measure carotid intima media thickness (CIMT) differ considerably with regard to the inclusion of the number of carotid segments and angles used. Detailed information on the completeness of CIMT information is often lacking in published reports, and at most, overall percentages are presented. We therefore decided to study the completeness of CIMT measurements and its relation with vascular risk factors using data from two CIMT intervention studies: one among familial hypercholesterolemia (FH) patients, the Rating Atherosclerotic Disease change by Imaging With A New CETP Inhibitor (RADIANCE 1), and one among mixed dyslipidemia (MD) patients, the Rating Atherosclerotic Disease change by Imaging With A New CETP Inhibitor (RADIANCE 2). We used baseline ultrasound scans from the RADIANCE 1 (n=872) and RADIANCE 2 (n=752) studies. CIMT images were recorded for 12 artery-wall combinations (near and far walls of the left and right common carotid artery (CCA), bifurcation (BIF) and internal carotid artery (ICA) segments) at 4 set angles, resulting in 48 possible measurements per patient. The presence or absence of CIMT measurements was assessed per artery-wall combination and per angle. The relation between completeness and patient characteristics was evaluated with logistic regression analysis. In 89% of the FH patients, information on CIMT could be obtained on all twelve carotid segments, and in 7.6%, eleven segments had CIMT information (nearly complete 96.6%). For MD patients this was 74.6% and 17.9%, respectively (nearly complete: 92.5%). Increased body mass index and increased waist circumference were significantly (p=0.01) related to less complete data in FH patients. For MD patients, relations were seen with increased waist circumference (p<0.01). Segment-specific data indicated that in FH patients, completeness was less for the near wall of the left (96%) and right internal carotid artery (94%) as compared to other segments (all >98%). In MD

  10. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  11. Measuring the Thickness of a Transparent Ring with a Laser

    ERIC Educational Resources Information Center

    Leung, Alfred F.

    2007-01-01

    There seems to be no reasonable way to measure the thickness of a narrow-mouth glass bottle. One can measure the outer and inner diameters of the mouth with a ruler or a pair of calipers and then calculate the thickness. However, this measurement might be interfered with by the threads at the mouth. Furthermore, it is uncertain whether the…

  12. The measurement of the transmission loss of single leaf walls and panels by an impulse method

    NASA Astrophysics Data System (ADS)

    Balilah, Y. A.; Gibbs, B. M.

    1988-06-01

    The standard methods of measurement and rating of sound insulation of panels and walls are generally time-consuming and require expensive and often bulky equipment. In addition, the methods establish only that there has been failure to comply with insulation requirements without indicating the mode of failure. An impulse technique is proposed for the measurement of walls and partitions in situ. The method requires the digital capture of a short duration signal generated by a loudspeaker, and the isolation of the direct component from other reflected and scattered components by time-of-flight methods and windowing. The signal, when transferred from the time to frequency domain by means of fast Fourier transforms, can yield the sound insulation of a partition expressed as a transfer function. Experimental problems in the use of this technique, including those resulting from sphericity of the incident wave front and concentric bending excitation of the partition, are identified and methods proposed for their elimination. Most of the results presented are of single leaf panels subjected to sound at normal incidence, although some measurements were undertaken at oblique incidence. The range of surface densities considered was 7-500 kg/m 2, the highest value corresponding to a brick and plaster wall of thickness 285 mm. Measurement is compared with theoretical prediction, at one-third octave intervals in a frequency range of 100-5000 Hz, or as a continuous function of frequency with a typical resolution of 12·5 Hz. The dynamic range of the measurement equipment sets an upper limit to the measurable transmission loss. For the equipment eventually employed this was represented by a random incidence value of 50 dB.

  13. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    NASA Astrophysics Data System (ADS)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  14. Optimization of wall thickness and lay-up for the shell-like composite structure loaded by non-uniform pressure field

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2017-01-01

    The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2

  15. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.

    PubMed

    Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N

    2005-02-01

    To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, <5 microm for each instrument). In the control group, there also was no significant change in GDx FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps < or = 0.001). LASIK does not seem to change RNFL thickness. Reduction in GDx FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.

  16. Evaluation of Strains and Thicknesses of Pipe Elbows on the Basis of Expressions Resulting from the Eudirective for the Case of Large and Small Deformations

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2017-12-01

    The relations to calculate the maximum value of strains in processes of bending tubes on benders, in stretched layers of tubes, are presented in this work on the basis of the EU-Directive concerning production of pressure equipment. It has been shown that for large deformations that occur during bending of the pipes on knees, logarithmic strain measures (real) and relative strain measures give different values of strain but equal wall thicknesses in the bending zone. Logarithmic measures are frequently used in engineering practice and are valid for large and small deformations. Reverse expressions were also derived to calculate the required initial wall thickness of the tube to be bent, in order to obtain the desired wall thickness of the knee after bending.

  17. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Real-time thickness measurement of MCC ablator material

    NASA Technical Reports Server (NTRS)

    Greenway, R. Bryan, Jr.

    1994-01-01

    One of the most favorable characteristics of the Space Shuttle Program is the reusability of two of its primary components: the orbiter itself and the Solid Rocket Boosters (SRB). The SRB's provide the primary source of propulsion for the Space Shuttle during take-off after which they are recovered for refurbishment and reuse. During refurbishment, the SRB's are stripped of all remaining ablative (heat resistant) coating. A new layer is applied to the appropriate sections (nose cone, frustum, forward skirt, and aft skirt). It is the process of applying the ablative coating which provided the impetus for this project. The thickness of this protective layer is considered to be of primary importance to the level of thermal protection provided. The objectives of this effort are to investigate possible techniques for measuring the thickness of MCC, and if possible to test the specific capabilities of those considered good candidates for implementation. The system would be able to take measurements in real-time as close to the spray gun as possible. This will allow the information to be used in the control of the process without an inordinate time delay between a measurement and its appropriate response. The thickness of the deposited material is to be measured with less than 0.100 in if uncertainty. This is the defined tolerance window for the ablator thickness. Finally, it must operate within the confines of the chamber which encloses the turntable, robot, and spray system, and therefore is required to be insensitive to, or at least maintainable in, that environment.

  19. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiationmore » dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low

  20. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... welded joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of..., except that for seamless heads, E=1.0. (c) The minimum wall thickness, after forming, of a flanged and...

  1. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, R.; Adamson, P.; Burov, A.

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  2. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  3. Flow characteristics and scaling past highly porous wall-mounted fences

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2017-07-01

    An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.

  4. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  5. Corrections to the thin wall approximation in general relativity

    NASA Technical Reports Server (NTRS)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  6. Associations of anger, anxiety, and depressive symptoms with carotid arterial wall thickness: the multi-ethnic study of atherosclerosis.

    PubMed

    Ohira, Tetsuya; Diez Roux, Ana V; Polak, Joseph F; Homma, Shunichi; Iso, Hiroyasu; Wasserman, Bruce A

    2012-06-01

    Carotid arterial wall thickness, measured as intima-media thickness (IMT), is an early subclinical indicator of cardiovascular disease. Few studies have investigated the association of psychological factors with IMT across multiple ethnic groups and by sex. We included 6561 men and women (2541 whites, 1790 African Americans, 1436 Hispanics, and 794 Chinese) aged 45 to 84 years who took part in the first examination of the Multi-Ethnic Study of Atherosclerosis. Associations of trait anger, trait anxiety, and depressive symptoms with mean values of common carotid artery (CCA) and internal carotid artery (ICA) IMTs were investigated using multivariable regression and logistic models. In age-, sex-, and race/ethnicity-adjusted analyses, the trait anger score was positively associated with CCA and ICA IMTs (mean differences per 1-standard deviation increment of trait anger score were 0.014 [95% confidence interval {CI} = 0.003-0.025, p = .01] and 0.054 [95% CI = 0.017-0.090, p = .004] for CCA and ICA IMTs, respectively). Anger was also associated with the presence of carotid plaque (age-, sex-, and race/ethnicity-adjusted odds ratio per 1-standard deviation increase in trait anger = 1.27 [95% CI = 1.06-1.52]). The associations of the anger score with thicker IMT were attenuated after adjustment for covariates but remained statistically significant. Associations were stronger in men than in women and in whites than in other race/ethnic groups, but heterogeneity was only marginally statistically significant by race/ethnicity. There was no association of depressive symptoms or trait anxiety with IMT. Only one of the three measures examined was associated with IMT, and the patterns seemed to be heterogeneous across race/ethnic groups.

  7. In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe

    PubMed Central

    2014-01-01

    This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223

  8. Study on thickness distribution of thermoformed medical PVC blister

    NASA Astrophysics Data System (ADS)

    Li, Yiping

    2017-08-01

    Vacuum forming has many advantages over other plastic forming processes due to its cost effectiveness, time efficiency, higher product precision, and more design flexibility. Nevertheless, when pressures greater than the atmospheric value are required to force the thermo-plastic into more intimate contact with the mold surface, pressure forming is a better choice. This paper studies the process of air-pressure thermoforming of plastic sheet, and focuses on medical blister PVC products. ANSYS POLYFLOW tool is used to simulate the process and analyze the wall thickness distribution of the blister. The influence of mold parameters on the wall thickness distribution of thermoformed part is thus obtained through simulation. Increasing radius between mold and side wall at the bottom of blister and draft prove to improve the wall thickness distribution.

  9. Measurement of the thickness of the urethrovaginal space in women with or without vaginal orgasm.

    PubMed

    Gravina, Giovanni Luca; Brandetti, Fulvia; Martini, Paolo; Carosa, Eleonora; Di Stasi, Savino M; Morano, Susanna; Lenzi, Andrea; Jannini, Emmanuele A

    2008-03-01

    The physiology and anatomy of female sexual function are poorly understood. The differences in sexual function among women may be partly attributed to anatomical factors. The purpose of this study was to use ultrasonography to evaluate the anatomical variability of the urethrovaginal space in women with and without vaginal orgasm. Twenty healthy, neurologically intact volunteers were recruited from a population of women who were a part of a previous published study. All women underwent a complete urodynamic evaluation and those with clinical and urodynamic urinary incontinence, idiopathic detrusor overactivity, or micturition disorders, as well as postmenopausal women and those with sexual dysfunction were excluded. The reported experience of vaginal orgasm was investigated. The urethrovaginal space thickness as measured by ultrasound was chosen as the indicator of urogenital anatomical variability. Designated evaluators carried out the measurements in a blinded fashion. The urethrovaginal space and distal, middle, and proximal urethrovaginal segments were thinner in women without vaginal orgasm. A direct correlation between the presence of vaginal orgasm and the thickness of urethrovaginal space was found. Women with a thicker urethrovaginal space were more likely to experience vaginal orgasm (r = 0.884; P = 0.015). A direct and significant correlation between the thickness of each urethrovaginal segment and the presence of vaginal orgasm was found, with the best correlation observed for the distal segment (r = 0.863; P < 0.0001). Interobserver agreement between the designated evaluators was excellent (r = 0.87; P < 0.001). The measurement of the space within the anterior vaginal wall by ultrasonography is a simple tool to explore anatomical variability of the human clitoris-urethrovaginal complex, also known as the G-spot, which can be correlated to the ability to experience the vaginally activated orgasm.

  10. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, H.; Pettit, B.

    2015-06-22

    This Measure Guideline describes a deep energy enclosure retrofit solution that provides insulation to the interior of the wall assembly with the use of a double-stud wall. The guide describes two approaches to retrofitting the existing walls—one that involves replacing the existing cladding and the other that leaves the cladding in place. This guideline also covers the design principles related to the use of various insulation types and provides strategies and procedures for implementing the double-stud wall retrofit. It also includes an evaluation of important moisture-related and indoor air quality measures that need to be implemented to achieve a durablemore » high-performance wall.« less

  11. Reliability of Various Measurement Stations for Determining Plantar Fascia Thickness and Echogenicity.

    PubMed

    Bisi-Balogun, Adebisi; Cassel, Michael; Mayer, Frank

    2016-04-13

    This study aimed to determine the relative and absolute reliability of ultrasound (US) measurements of the thickness and echogenicity of the plantar fascia (PF) at different measurement stations along its length using a standardized protocol. Twelve healthy subjects (24 feet) were enrolled. The PF was imaged in the longitudinal plane. Subjects were assessed twice to evaluate the intra-rater reliability. A quantitative evaluation of the thickness and echogenicity of the plantar fascia was performed using Image J, a digital image analysis and viewer software. A sonography evaluation of the thickness and echogenicity of the PF showed a high relative reliability with an Intra class correlation coefficient of ≥0.88 at all measurement stations. However, the measurement stations for both the PF thickness and echogenicity which showed the highest intraclass correlation coefficient (ICCs) did not have the highest absolute reliability. Compared to other measurement stations, measuring the PF thickness at 3 cm distal and the echogenicity at a region of interest 1 cm to 2 cm distal from its insertion at the medial calcaneal tubercle showed the highest absolute reliability with the least systematic bias and random error. Also, the reliability was higher using a mean of three measurements compared to one measurement. To reduce discrepancies in the interpretation of the thickness and echogenicity measurements of the PF, the absolute reliability of the different measurement stations should be considered in clinical practice and research rather than the relative reliability with the ICC.

  12. Reliability of Various Measurement Stations for Determining Plantar Fascia Thickness and Echogenicity

    PubMed Central

    Bisi-Balogun, Adebisi; Cassel, Michael; Mayer, Frank

    2016-01-01

    This study aimed to determine the relative and absolute reliability of ultrasound (US) measurements of the thickness and echogenicity of the plantar fascia (PF) at different measurement stations along its length using a standardized protocol. Twelve healthy subjects (24 feet) were enrolled. The PF was imaged in the longitudinal plane. Subjects were assessed twice to evaluate the intra-rater reliability. A quantitative evaluation of the thickness and echogenicity of the plantar fascia was performed using Image J, a digital image analysis and viewer software. A sonography evaluation of the thickness and echogenicity of the PF showed a high relative reliability with an Intra class correlation coefficient of ≥0.88 at all measurement stations. However, the measurement stations for both the PF thickness and echogenicity which showed the highest intraclass correlation coefficient (ICCs) did not have the highest absolute reliability. Compared to other measurement stations, measuring the PF thickness at 3 cm distal and the echogenicity at a region of interest 1 cm to 2 cm distal from its insertion at the medial calcaneal tubercle showed the highest absolute reliability with the least systematic bias and random error. Also, the reliability was higher using a mean of three measurements compared to one measurement. To reduce discrepancies in the interpretation of the thickness and echogenicity measurements of the PF, the absolute reliability of the different measurement stations should be considered in clinical practice and research rather than the relative reliability with the ICC. PMID:27089369

  13. Methods for measuring plating thicknesses on TAB lead frames

    NASA Technical Reports Server (NTRS)

    Hagen, M. P.

    1977-01-01

    Plating three layer tape lead frames, used for tape automated bonding, offers a challenge to the electroplater because of nonuniform topography. Each lead frame contains large (typically .05 x. .05 inch) flat test pads located around the perimeter of the frame. These test pads are electrically connected to the bondable lead frame fingers which extend into an area in the center of the frame called the feature hole. The feature hole exposes these fingers to plating on all sides, while the test pads are exposed on only one side. In addition, the fingers are small in cross section (typically .003 x .0015 inches). Recent thickness measurements indicate that plating around the lead frame fingers is nearly twice as thick as that on test pad areas. Procedures and equipment were developed for measuring the thickness of the deposited material. Discussion was centered on the data obtained using the various measurement techniques and equipment.

  14. Ultrasonographic evaluation of myometrial thickness and prediction of a successful external cephalic version.

    PubMed

    Buhimschi, Catalin S; Buhimschi, Irina A; Wehrum, Mark J; Molaskey-Jones, Sherry; Sfakianaki, Anna K; Pettker, Christian M; Thung, Stephen; Campbell, Katherine H; Dulay, Antonette T; Funai, Edmund F; Bahtiyar, Mert O

    2011-10-01

    To test the hypothesis that myometrial thickness predicts the success of external cephalic version. Abdominal ultrasonographic scans were performed in 114 consecutive pregnant women with breech singletons before an external cephalic version maneuver. Myometrial thickness was measured by a standardized protocol at three sites: the lower segment, midanterior wall, and the fundal uterine wall. Independent variables analyzed in conjunction with myometrial thickness were: maternal age, parity, body mass index, abdominal wall thickness, estimated fetal weight, amniotic fluid index, placental thickness and location, fetal spine position, breech type, and delivery outcomes such as final mode of delivery and birth weight. Successful version was associated with a thicker ultrasonographic fundal myometrium (unsuccessful: 6.7 [5.5-8.4] compared with successful: 7.4 [6.6-9.7] mm, P=.037). Multivariate regression analysis showed that increased fundal myometrial thickness, high amniotic fluid index, and nonfrank breech presentation were the strongest independent predictors of external cephalic version success (P<.001). A fundal myometrial thickness greater than 6.75 mm and an amniotic fluid index greater than 12 cm were each associated with successful external cephalic versions (fundal myometrial thickness: odds ratio [OR] 2.4, 95% confidence interval [CI] 1.1-5.2, P=.029; amniotic fluid index: OR 2.8, 95% CI 1.3-6.0, P=.008). Combining the two variables resulted in an absolute risk reduction for a failed version of 27.6% (95% CI 7.1-48.1) and a number needed to treat of four (95% CI 2.1-14.2). Fundal myometrial thickness and amniotic fluid index contribute to success of external cephalic version and their evaluation can be easily incorporated in algorithms before the procedure. III.

  15. Early detection of AD using cortical thickness measurements

    NASA Astrophysics Data System (ADS)

    Spjuth, M.; Gravesen, F.; Eskildsen, S. F.; Østergaard, L. R.

    2007-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that causes cortical atrophy and impaired cognitive functions. The diagnosis is difficult to make and is often made over a longer period of time using a combination of neuropsychological tests, and structural and functional imaging. Due to the impact of early intervention the challenge of distinguishing early AD from normal ageing has received increasing attention. This study uses cortical thickness measurements to characterize the atrophy in nine mild AD patients (mean MMSE-score 23.3 (std: 2.6)) compared to five healthy middle-aged subjects. A fully automated method based on deformable models is used for delineation of the inner and outer boundaries of the cerebral cortex from Magnetic Resonance Images. This allows observer independent high-resolution quantification of the cortical thickness. The cortex analysis facilitates detection of alterations throughout the entire cortical mantle. To perform inter-subject thickness comparison in which the spatial information is retained, a feature-based registration algorithm is developed which uses local cortical curvature, normal vector, and a distance measure. A comparison of the two study groups reveals that the lateral side of the hemispheres shows diffuse thinner areas in the mild AD group but especially the medial side shows a pronounced thinner area which can be explained by early limbic changes in AD. For classification principal component analysis is applied to reduce the high number of thickness measurements (>200,000) into fewer features. All mild AD and healthy middle-aged subjects are classified correctly (sensitivity and specificity 100%).

  16. Thickness measurement by two-sided step-heating thermal imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.

  17. Measuring and mapping rock wall permafrost across Norway

    NASA Astrophysics Data System (ADS)

    Magnin, Florence; Etzelmuller, Bernd; Hilger, Paula; Westermann, Sebastian; Isaksen, Ketil; Hermans, Reginald

    2017-04-01

    The investigation of rock wall permafrost is of high relevance for geohazards assessment and for understanding cold-climate landscape evolution since its changes over time can cause slope instability and trigger rock falls. The destabilization of steep slopes is a serious threat to human activities and lives in Norway, especially because most of rock walls lie directly above houses, infrastructures and large water bodies with potential of high-energy displacement waves. Rock wall permafrost has been investigated since the early 2010s in alpine massifs of western Norway thanks to the CryoLINK project (2008-2011). The CryoWALL project (2015-2019) aims at extending this preliminary study to the nation-wide scale. It consists in systematic measurements of rock surface temperature (RST) in order model and to map the spatial distribution of rock wall permafrost. In between August 2015 and August 2016, 20 RST loggers (Geoprecision mini data loggers, accuracy ± 0.1°C, precision 0.01°C, sensors PT1000) were installed at 10 cm depth of 7 selected sites. These loggers are distributed along a latitudinal transect (from 60°50'N to 69°46'N), cover various elevations and sun-exposures, and are completed by 4 other loggers installed in Jotunheimen in 2009 and 2010. The RST time series are used for (a) characterizing the distribution of rock wall permafrost across Norway, (b) running steady-state and transient numerical models of rock wall permafrost at selected sites, and to (c) calibrate a general linear regression model that will be used to (d) predict the spatial distribution of rock wall permafrost at the national scale. In this communication we will introduce the RST measurement installations and sites, as well as the first RST records that encompass 6 years of continuous measurements in Jotunheimen, and 1 year of record for 13 other loggers. The preliminary analysis shows that RST differs by 3°C between N and S faces in Southern Norway, with mean annual RST as low as

  18. Reliability of real-time ultrasound measurement of transversus abdominis thickness in healthy trained subjects.

    PubMed

    Gnat, Rafael; Saulicz, Edward; Miądowicz, Barbara

    2012-08-01

    To investigate intra- and inter-rater reliability of the ultrasound measurement of transversus abdominis (TrA) thickness and thickness change (difference between thickness at rest and during contraction) in asymptomatic, trained subjects. To define the number of repeated measurements that provide acceptable level of reliability. To investigate variability of the measurements over time of 5 days and the reliability of duplicate analysis of images. A single-group repeated-measures design was used to assess reliability. Healthy volunteers (n = 10) were subjected to 1-week training in voluntary activation of TrA. Real-time ultrasound imaging and subsequent measurement of the TrA thickness at rest and during voluntary contraction were repeated on Monday, Wednesday and Friday of the next week. Using a single repeated measurement, intraclass correlation coefficients (ICCs) for TrA thickness were: 0.86-0.95 (intra-rater), 0.86-0.92 (inter-rater); and for TrA thickness change: 0.34-0.56 (intra-rater), 0.47-0.61 (inter-rater). Using the mean of three repeated measurements respective values were: 0.97, 0.96-0.98; and 0.81-0.84, 0.80-0.90. No significant differences were found between mean values of TrA thickness as well as thickness change obtained on three consecutive measurement days. Duplicate analysis of the images was highly reliable with ICCs of 0.89-0.99. Two repeated measurements for TrA thickness and at least three measurements for TrA thickness change are needed to achieve acceptable levels of intra- and inter-rater reliability. In healthy trained volunteers TrA thickness and thickness change are relatively stable parameters over a 5-day period. Duplicate analysis of the same images by two blinded observers is reliable.

  19. Positive feedback loop for cystitis cystica: the effect of recurrent urinary tract infection on the number of bladder wall mucosa nodules.

    PubMed

    Vrljicak, Kristina; Turudić, Daniel; Bambir, Ivan; Gradiski, Ivan Pavao; Spajić, Borislav; Batinić, Danica; Topalović-Grković, Marija; Spajić, Marija; Batinić, Danko; Milosević, Danko

    2013-12-01

    The main purpose of this study was to demonstrate positive feedback loop between bladder wall nodules (nodules being one of the key diagnostic factors), bladder wall thickness, and recurrent urinary tract infections. Cystitis cystica was diagnosed in 115 prepubertal girls (mean age 7.79 +/- 3.05 years) by optic examination of bladder mucosal nodules and by ultrasonographic measurement of bladder wall thickness. Bladder wall thickness increased with the frequency of recurrent urinary tract infections as well as with the number of nodules on bladder wall mucosa (3.52 +/- 0.522 mm < or = 5 nodules vs. 4.42 +/- 0.429 mm 6-10 nodules vs. 5.20 +/- 0.610 mm > 10 nodules, respectively). Study results suggested that early control of urinary tract infections by chemoprophylaxis could prevent higher grades of bladder wall mucosal changes and consequently shorten the length of chemoprophylaxis.

  20. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  1. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-02

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.

  2. Compliance of the abdominal wall during laparoscopic insufflation.

    PubMed

    Becker, Chuck; Plymale, Margaret A; Wennergren, John; Totten, Crystal; Stigall, Kyle; Roth, J Scott

    2017-04-01

    To provide adequate workspace between the viscera and abdominal wall, insufflation with carbon dioxide is a common practice in laparoscopic surgeries. An insufflation pressure of 15 mmHg is considered to be safe in patients, but all insufflation pressures create perioperative and postoperative physiologic effects. As a composition of viscoelastic materials, the abdominal wall should distend in a predictable manner given the pressure of the pneumoperitoneum. The purpose of this study was to elucidate the relationship between degree of abdominal distention and the insufflation pressure, with the goal of determining factors which impact the compliance of the abdominal wall. A prospective, IRB-approved study was conducted to video record the abdomens of patients undergoing insufflation prior to a laparoscopic surgery. Photo samples were taken every 5 s, and the strain of the patient's abdomen in the sagittal plane was determined, as well as the insufflator pressure (stress) at bedside. Patients were insufflated to 15 mmHg. The relationship between the stress and strain was determined in each sample, and compliance of the patient's abdominal wall was calculated. Subcutaneous fat thickness and rectus abdominus muscle thickness were obtained from computed tomography scans. Correlations between abdominal wall compliances and subcutaneous fat and muscle content were determined. Twenty-five patients were evaluated. An increased fat thickness in the abdominal wall had a direct exponential relationship with abdominal wall compliance (R 2  = 0.59, p < 0.05). There was no correlation between muscle and fat thickness. All insufflation pressures create perioperative and postoperative complications. The compliance of patients' abdominal body walls differs, and subcutaneous fat thickness has a direct exponential relationship with abdominal wall compliance. Thus, insufflation pressures can be better tailored per the patient. Future studies are needed to demonstrate the

  3. An experimental study of near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, Rakesh K.; Raj, Rishi S.

    1989-01-01

    The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly

  4. Droplet-air collision dynamics: Evolution of the film thickness

    NASA Astrophysics Data System (ADS)

    Opfer, L.; Roisman, I. V.; Venzmer, J.; Klostermann, M.; Tropea, C.

    2014-01-01

    This study is devoted to the experimental and theoretical investigation of aerodynamic drop breakup phenomena. We show that the phenomena of drop impact onto a rigid wall, drop binary collisions, and aerodynamic drop deformation are similar if the correct scaling is applied. Then we use observations of the deforming drop to estimate the evolution of the film thickness of the bag, the value that determines the size of the fine child drops produced by bag breakup. This prediction of film thickness, based on film kinematics, is validated for the initial stage by direct drop thickness measurements and at the latest stage by the data obtained from the velocity of hole expansion in the film. It is shown that the film thickness correlates well with the dimensionless position of the bag apex.

  5. In vivo wall shear measurements within the developing zebrafish heart.

    PubMed

    Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas

    2013-01-01

    Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  6. Refining enamel thickness measurements from B-mode ultrasound images.

    PubMed

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  7. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  8. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    NASA Astrophysics Data System (ADS)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  9. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Method and apparatus for thickness measurement using microwaves

    DOEpatents

    Woskov, Paul [Bedford, MA; Lamar, David A [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  11. Measuring Changes in Ciliary Muscle Thickness with Accommodation in Young Adults

    PubMed Central

    Lossing, Laura Ashley; Sinnott, Loraine T.; Kao, Chiu-Yen; Richdale, Kathryn; Bailey, Melissa D.

    2012-01-01

    Purpose To develop a measurement protocol for changes in the shape and size of the ciliary muscle with accommodation using the Zeiss Visante™ Anterior Segment Optical Coherence Tomographer (AS-OCT) and to determine the test-retest repeatability of these measurements. Methods Subjects were 25 adults ages 23–28 years. The ciliary muscle was imaged at two visits with the Visante™ while accommodative response was monitored during imaging using the PowerRefractor. Ciliary muscle thickness was measured at 1 mm (CMT1), 2 mm (CMT2), and 3 mm (CMT3) posterior to the scleral spur and at the point of maximal thickness (CMTMAX). Thickness was measured at these locations while subjects viewed a target at distance and at a 4.00-D accommodative stimulus. Outcome measures were the change in thickness between distance and the 4.00-D stimulus and the change in thickness per diopter of accommodative response (PowerRefractor). Finally, the repeatability measurements between visit 1 and visit 2 were determined with a Bland-Altman analysis. Results The statistically significant modeled changes in ciliary muscle thickness were as follows: CMTMAX = 69.2 μm (4.00-D stimulus) and 18.1 μm (per diopter of accommodation); CMT1 = 45.2 μm (4.00-D stimulus) and 12.3 μm (per diopter of accommodation); and CMT3 = −45.9 μm (4.00-D stimulus) and −12.0 μm (per diopter of accommodation); p < 0.0001 for all. Conclusions The combination of the Visante™ and the PowerRefractor is a feasible tool for measuring thickening of ciliary muscle at more anterior locations and thinning at more posterior locations during accommodation. We noted a wide range of accommodative responses during the time of image capture in this study indicating that the most accurate estimates of the change in ciliary muscle dimensions with accommodation may be obtained by using accommodative response rather than stimulus values and by using measurements taken simultaneously with image capture. PMID:22504328

  12. Correlation of root dentin thickness and length of roots in mesial roots of mandibular molars.

    PubMed

    Dwivedi, Shweta; Dwivedi, Chandra Dhar; Mittal, Neelam

    2014-09-01

    The purpose of this study was to analyze the relation of tooth length and distal wall thickness of mesial roots in mandibular molars at different locations (ie, 2 mm below the furcation and at the junction between the middle and apical third). Forty-five mandibular first molars were taken, and the length of each tooth was measured. Then, specimens were divided into three groups according to their length: group I-long (24.2 mm ± 1.8), group II-medium (21 mm ± 1.5) and group III-short (16.8 mm ± 1.8). mesial root of each marked at two levels - at 2 mm below the furcation as well as at junction of apical and middle third of roots. The minimum thickness of the distal root dentine associated with the buccal and lingual canals of the mesial roots was measured, The distance between the buccal and lingual canals and the depth of concavity in the distal surface of the mesial roots were also measured. Statistical analysis was performed by using analysis of variance and the Student-Newman-Keuls test. The minimum thickness of the distal wall of the mesiobuccal canal was significantly different (P < .001) between groups 1 (long) and 3 (short). Distal wall thickness of the mesiobuccal root and distal concavity of the mesial root of mandibular first molars were found to be thinner in longer teeth compared with shorter teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Ultrasonographic analysis in vitro of parietal thickness of lower limb varicose veins.

    PubMed

    Bruschi, E; Como, G; Zuiani, C; Segatto, E; Rocco, M; Biasi, G; Bazzocchi, M

    2006-09-01

    The aim of this study was to evaluate the ability of ultrasound (US) to measure the parietal thickness of varicose veins. In a blind in vitro analysis, 28 great saphenous veins, obtained after stripping surgery from 28 patients with chronic venous insufficiency, were examined with a digital US scanner ATL-HDI5000, linear 5-1 to 2-MHz broadband probe, compound imaging technique and analogic-digital zooming. We obtained one to three progressive measurements for each vein wall (total 67 parietal thicknesses). The samples, fixed in formalin, were sent to the pathology laboratory: sections were obtained at the same level of the sonographic planes, and images were obtained by digital camera mounted on an optical microscope. Measurements obtained at histology were considered as the gold standard. K-statistic was applied to compare sonographic and histologic measurements. Considering only the hypoechoic wall portion, 29/29 (100%) diagnoses of hypotrophy (K=0.91), 19/22 (86%) diagnoses of normotrophy (K=0,47) and 12/16 (75%) diagnoses of hypertrophy (K=0.7) were obtained by sonography. In our preliminary experience, the in vitro study of varicose veins allows precise, at least morphological, detection of hypotrophic walls. If these preliminary data are confirmed in vivo, sonography could be used to discriminate patients eligible for conservative treatment instead of surgery.

  14. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  15. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  16. Space-Time Correlations and Spectra of Wall Pressure in a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Willmarth, W. W.

    1959-01-01

    Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.

  17. The Relationship of Educational Attainment with Pulmonary Emphysema and Airway Wall Thickness.

    PubMed

    Gjerdevik, Miriam; Grydeland, Thomas B; Washko, George R; Coxson, Harvey O; Silverman, Edwin K; Gulsvik, Amund; Bakke, Per S

    2015-06-01

    Low educational attainment is a risk factor of chronic obstructive pulmonary disease (COPD). There is limited knowledge on the relationship between educational level and computed tomography measures of emphysema and airway wall thickness (AWT). We hypothesized that low educational attainment is associated with increased emphysema and AWT in ever-smokers with and without COPD. We included 462 and 485 ever-smokers with and without COPD in a cross-sectional study, aged 40-86 years. The sample was divided into groups reflecting educational attainment: primary, secondary, and university. We performed linear regression to examine associations between educational attainment and both emphysema and AWT separately for those with and without COPD. We adjusted for sex, age, smoking status, age of onset of smoking, pack-years, height, and body mass index. Compared with university education, in subjects with COPD, primary education was associated with a 68.1% (95% confidence interval = 14.2-147.6%; P = 0.01) relative increase in emphysema and secondary education was associated with a 50.6% (95% confidence interval = 5.7-114.6%; P = 0.02) relative increase. There was a nonsignificant trend toward an association between lower educational attainment and increased emphysema among those without COPD (P = 0.18), yet greater age appeared to modify this association (P = 0.01). We did not detect significant linear relationships between educational attainment and AWT in subjects with or without COPD. Lower educational attainment was associated with increased emphysema among adults with COPD. Among those without COPD, this association was more pronounced with increasing age. No significant linear relationship between educational attainment and AWT was found. Clinicians treating adults with emphysema should keep in mind that factors related to low education beyond that of smoking and occupational dust exposure might be of importance to the disease.

  18. Noncontact optical measurement of lens capsule thickness ex vivo

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie

    2004-07-01

    Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.

  19. Imperfection and Thickness Measurement of Panels Using a Coordinate Measurement Machine

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.

    2006-01-01

    This paper summarizes the methodology used to measure imperfection and thickness variation for flat and curved panels using a Coordinate Measurement Machine (CMM) and the software program MeasPanel. The objective is to provide a reference document so that someone with a basic understanding of CMM operation can measure a panel with minimal training. Detailed information about both the measurement system setup and computer software is provided. Information is also provided about the format of the raw data, as well as how it is post-processed for use in finite-element analysis.

  20. Production test IP-544-A, irradiation of 1.6% enriched thick walled single tube elements in KER-1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kratzer, W.K.; Wise, M.J.

    1962-12-12

    The objective of this production test is to authorize the irradiation of coextruded Zr-2 jacketed thick walled 1.6% enriched tubular elements in KER loops 1 and 2 to evaluate the swelling behavior of fuel elements at high uranium temperatures Coextruded Zr-2 jacketed 1.6% enriched tubular fuel elements 1.79 inch OD, 0.97 inch ID, and 12 inches long will be irradiated KER loops 1 and 2 to exposures no greater than 2500 MWD/T.

  1. Comparison between spin-orbit torques measured by domain-wall motions and harmonic measurements

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Sung; Nam, Yune-Seok; Kim, Dae-Yun; Park, Yong-Keun; Park, Min-Ho; Choe, Sug-Bong

    2018-05-01

    Here we report the comparison of the spin torque efficiencies measured by three different experimental schemes for Pt/Co/X stacks with material X (= Pt, Ta, Ti, Al, Au, Pd, and Ru. 7 materials). The first two spin torque efficiencies ɛDW (1 ) and ɛDW (2 ) are quantified by the measurement of spin-torque-induced effective field for domain-wall depinning and creeping motions, respectively. The last one—longitudinal spin torque efficiency ɛL—is measured by harmonic signal measurement of the magnetization rotation with uniform magnetization configuration. The results confirm that, for all measured Pt/Co/X stacks, ɛDW (1 ) and ɛDW (2 ) are exactly consistent to each other and these two efficiencies are roughly proportional to ɛL with proportionality constant π/2, which comes from the integration over the domain-wall configuration.

  2. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  3. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  4. Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.

    PubMed

    Kleinloog, Rachel; Korkmaz, Emine; Zwanenburg, Jaco J M; Kuijf, Hugo J; Visser, Fredy; Blankena, Roos; Post, Jan A; Ruigrok, Ynte M; Luijten, Peter R; Regli, Luca; Rinkel, Gabriel J E; Verweij, Bon H

    2014-12-01

    Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. To introduce a novel protocol for imaging wall thickness variation using ultra--high-resolution 7.0-Tesla (7.0-T) magnetic resonance imaging (MRI). We studied 33 unruptured intracranial aneurysms in 24 patients with a T1-weighted 3-dimensional magnetization-prepared inversion-recovery turbo-spin-echo whole-brain sequence with a resolution of 0.8 × 0.8 × 0.8 mm. We performed a validation study with a wedge phantom and with 2 aneurysm wall biopsies obtained during aneurysm treatment using ex vivo MRI and histological examination and correlating variations in MRI signal intensity with variations in actual thickness of the aneurysm wall. In vivo, the aneurysm wall was visible in 28 of the 33 aneurysms. Variation in signal intensity was observed in all visible aneurysm walls. Ex vivo MRI showed variation in signal intensity across the wall of the biopsies, similar to that observed on the in vivo images. Signal intensity and actual thickness in both biopsies had a linear correlation, with Pearson correlation coefficients of 0.85 and 0.86. Unruptured intracranial aneurysm wall and its variation in thickness can be visualized with 7.0-T MRI. Aneurysm wall thickness variation can now be further studied as a risk factor for rupture in prospective studies.

  5. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  6. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  7. Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori

    2008-05-01

    The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.

  8. Investigation of blown boundary layers with an improved wall jet system

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1980-01-01

    Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.

  9. Computer vision based nacre thickness measurement of Tahitian pearls

    NASA Astrophysics Data System (ADS)

    Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban

    2017-03-01

    The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.

  10. Label-free measurement of microbicidal gel thickness using low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Braun, Kelly E.; Boyer, Jeffrey D.; Henderson, Marcus H.; Katz, David F.; Wax, Adam

    2006-03-01

    Spectral-domain low-coherence interferometry (LCI) was used to measure the thickness of microbicidal gels applied to a cylindrical calibration test socket. Microbicides are topical formulations containing active ingredients targeted to inhibit specific pathogens that are currently under development for application to the epithelial lining of the lower female reproductive tract to combat sexually transmitted infections such as HIV. Understanding the deployment and drug delivery of these formulations is vital to maximizing their effectiveness. Previously, in vivo measurements of microbicidal formulation thickness were assessed using fluorescence measurements of fluorescein-labeled gels via an optical endoscope-based device. Here we present an LCI-based device that measures the thickness of a formulation without the use of any exogenous agents by analyzing the interference pattern generated between the reflections from the front and back surface of the sample. Results are presented that validate the effectiveness and performance of the LCI measurement in a clinically relevant system as compared to an existing fluorescence-based method. The impact of the new LCI-based design on in vivo measurements is discussed.

  11. Apparatus and method for measuring the thickness of a coating

    DOEpatents

    Carlson, Nancy M.; Johnson, John A.; Tow, David M.; Walter, John B

    2002-01-01

    An apparatus and method for measuring the thickness of a coating adhered to a substrate. An electromagnetic acoustic transducer is used to induce surface waves into the coating. The surface waves have a selected frequency and a fixed wavelength. Interpolation is used to determine the frequency of surface waves that propagate through the coating with the least attenuation. The phase velocity of the surface waves having this frequency is then calculated. The phase velocity is compared to known phase velocity/thickness tables to determine the thickness of the coating.

  12. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  13. [Factors influencing the measurement of tear film lipid layer thickness with interferometry].

    PubMed

    Finis, D; Pischel, N; Borrelli, M; Schrader, S; Geerling, G

    2014-06-01

    The quantitative measurement of the tear film lipid layer thickness is a relatively new and promising method. However, so far it has not been investigated whether there is a diurnal or a day to day variability and whether certain factors are confounding the measurement of the lipid layer thickness. In three different experimental settings, 10 subjects without known sicca syndrome were examined at three different time points on one day, on three different days and before and after therapeutic expression of the Meibomian glands. As a comparison, the parameters tear film break-up time, tear meniscus height, diagnostic expression of the Meibomian glands and subjective symptoms, determined using the OSDI (ocular surface disease index) questionnaire, were measured. The results of the study showed a smaller variation of the lipid layer thickness measurements during the day and from day to day compared to the tear film break-up time. The expression of the Meibomian glands significantly increased the lipid layer thickness. There was a correlation between the baseline values of tear film break-up time and the lipid layer thickness. Our data showed that the lipid layer thickness as measured with the Lipiview® interferometer appears to be a relatively constant parameter over time. In addition, the expression of the Meibomian glands could be identified as a potential confounding factor. In this study we included only healthy subjects without known sicca syndrome. For the future our findings need to be validated in dry eye patients. Georg Thieme Verlag KG Stuttgart · New York.

  14. Traction and film thickness measurements under starved elastohydrodynamic conditions

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1974-01-01

    Traction measurements under starved elastohydrodynamic conditions were obtained for a point contact geometry. Simultaneous measurements of the film thickness and the locations of the inlet lubricant boundary were made optically. The thickness of a starved film for combination rolling and sliding conditions varies with the location of the inlet boundary in the same way found previously for pure rolling. A starved film was observed to possess greater traction than a flooded film for the same slide roll ratio. For a given slide roll ratio a starved film simply increases the shear rate in the Hertz region. The maximum shear rate depends on the degree of starvation and has no theoretical limit. Traction measurements under starved conditions were compared with flooded conditions under equivalent shear rates in the Hertz region. When the shear rates in the Hertz region were low and the film severely starved, the measured tractions were found to be much lower than expected.

  15. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    NASA Astrophysics Data System (ADS)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  16. Error in Dasibi flight measurements of atmospheric ozone due to instrument wall-loss

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Hagemeyer, J. R.; Reed, E. I.

    1981-01-01

    Theory suggests that in laminar flow the percent loss of a trace constituent to the walls of a measuring instrument varies as P to the -2/3, where P is the total gas pressure. Preliminary laboratory ozone wall-loss measurements confirm this P to the -2/3 dependence. Accurate assessment of wall-loss is thus of particular importance for those balloon-borne instruments utilizing laminar flow at ambient pressure, since the ambient pressure decreases by a factor of 350 during ascent to 40 km. Measurements and extrapolations made for a Dasibi ozone monitor modified for balloon flight indicate that the wall-loss error at 40 km was between 6 and 30 percent and that the wall-loss error in the derived total ozone column-content for the region from the surface to 40 km altitude was between 2 and 10 percent. At 1000 mb, turbulence caused an order of magnitude increase in the Dasibi wall-loss.

  17. Ultrasonographic Measurement of the Femoral Cartilage Thickness in Hemiparetic Patients after Stroke

    ERIC Educational Resources Information Center

    Tunc, Hakan; Oken, Oznur; Kara, Murat; Tiftik, Tulay; Dogu, Beril; Unlu, Zeliha; Ozcakar, Levent

    2012-01-01

    The aim of the study was to evaluate the femoral cartilage thicknesses of hemiparetic patients after stroke using musculoskeletal ultrasonography and to determine whether there is any correlation between cartilage thicknesses and the clinical characteristics of the patients. Femoral cartilage thicknesses of both knees were measured in 87 (33…

  18. Detrital illite crystals identified from crystallite thickness measurements in siliciclastic sediments

    USGS Publications Warehouse

    Aldega, L.; Eberl, D.D.

    2005-01-01

    Illite crystals in siliciclastic sediments are heterogeneous assemblages of detrital material coming from various source rocks and, at paleotemperatures >70 ??C, of superimposed diagenetic modification in the parent sediment. We distinguished the relative proportions of 2M1 detrital illite and possible diagenetic 1Md + 1M illite by a combined analysis of crystal-size distribution and illite polytype quantification. We found that the proportions of 1Md + 1M and 2M1 illite could be determined from crystallite thickness measurements (BWA method, using the MudMaster program) by unmixing measured crystallite thickness distributions using theoretical and calculated log-normal and/or asymptotic distributions. The end-member components that we used to unmix the measured distributions were three asymptotic-shaped distributions (assumed to be the diagenetic component of the mixture, the 1Md + 1M polytypes) calculated using the Galoper program (Phase A was simulated using 500 crystals per cycle of nucleation and growth, Phase B = 333/cycle, and Phase C = 250/ cycle), and one theoretical log-normal distribution (Phase D, assumed to approximate the detrital 2M1 component of the mixture). In addition, quantitative polytype analysis was carried out using the RockJock software for comparison. The two techniques gave comparable results (r2 = 0.93), which indicates that the unmixing method permits one to calculate the proportion of illite polytypes and, therefore, the proportion of 2M1 detrital illite, from crystallite thickness measurements. The overall illite crystallite thicknesses in the samples were found to be a function of the relative proportions of thick 2M1 and thin 1Md + 1M illite. The percentage of illite layers in I-S mixed layers correlates with the mean crystallite thickness of the 1Md + 1M polytypes, indicating that these polytypes, rather than the 2M1 polytype, participate in I-S mixed layering.

  19. Method of accurate thickness measurement of boron carbide coating on copper foil

    DOEpatents

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  20. Validation of OCT-based Crystalline Lens Thickness Measurements in Children

    PubMed Central

    Lehman, Bret M.; Berntsen, David A.; Bailey, Melissa D.; Zadnik, Karla

    2010-01-01

    Purpose To evaluate the validity and repeatability of crystalline lens thickness measurements obtained by anterior segment optical coherence tomography. Methods Forty-seven normal children (mean age, 11.06 ± 2.30 years) had their crystalline lens thickness measured with the Visante anterior segment optical coherence tomography (OCT) (Carl Zeiss Meditec, Dublin, CA) and with conventional corneal touch A-scan ultransonography (ultrasound) (Humphrey 820). The subjects’ right corneas were anesthetized, and their right eyes were cyclopleged. Five ultrasound measurements were recorded per eye, and three Visante OCT measurements were recorded per eye. Thirty-eight subjects had measurements at a second visit where three additional Visante OCT measurements were recorded. Results The mean of the differences between the Visante OCT and ultrasound was −0.045 mm (p = 0.017) with 95% limits of agreement from −0.29 to 0.20 mm indicating that the measurement of crystalline lens thickness was slightly thinner with the Visante OCT. When validity was assessed using only Visante OCT images that contained the corneal reflex, the mean of the differences was 0.019 mm (p = 0.11) with 95% limits of agreement from −0.091 to 0.13 mm. For the repeatability of the Visante OCT, the mean of the differences between visit one and visit two was −0.008 mm (p = 0.25) with 95% limits of agreement from −0.088 to 0.072 mm. Repeatability improved when reassessed using only images that contain the corneal reflex; the mean of the differences was −0.0001 mm (p = 0.97) with 95% limits of agreement from −0.030 to 0.030 mm. Conclusion The Visante OCT is a non-contact instrument that is simple to use, and it provides valid crystalline lens thickness measurements with excellent repeatability. Validity and repeatability are optimized when the Visante OCT images contain the corneal reflex and a consistent corneal index refraction is applied to the entire image. PMID:19182701

  1. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.

    PubMed

    Van Blitterswyk, Jared; Rocha, Joana

    2017-02-01

    A more complete understanding of the physical relationships, between wall-pressure and turbulence, is required for modeling flow-induced noise and developing noise reduction strategies. In this study, the wall-pressure fluctuations, induced by low Reynolds number turbulent boundary layers, are experimentally studied using a high-resolution microphone array. Statistical characteristics obtained using traditional cross-correlation and cross-spectra analyses are complimented with wall-pressure-velocity cross-spectra and wavelet cross-correlations. Wall-pressure-velocity correlations revealed that turbulent activity in the buffer layer contributes at least 40% of the energy to the wall-pressure spectrum at all measured frequencies. As Reynolds number increases, the low-frequency energy shifts from the buffer layer to the logarithmic layer, as expected for regions of uniform streamwise momentum formed by hairpin packets. Conditional cross-spectra suggests that the majority of broadband wall-pressure energy is concentrated within the packets, with the pressure signatures of individual hairpin vortices estimated to decay on average within traveling ten displacement thicknesses, and the packet signature is retained for up to seven boundary layer thicknesses on average.

  2. Enhanced cortical thickness measurements for rodent brains via Lagrangian-based RK4 streamline computation

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Oguz, Ipek; Styner, Martin

    2016-03-01

    The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline.

  3. Increased Airway Wall Thickness is Associated with Adverse Longitudinal First-Second Forced Expiratory Volume Trajectories of Former World Trade Center workers.

    PubMed

    de la Hoz, Rafael E; Liu, Xiaoyu; Doucette, John T; Reeves, Anthony P; Bienenfeld, Laura A; Wisnivesky, Juan P; Celedón, Juan C; Lynch, David A; San José Estépar, Raúl

    2018-05-24

    Occupational exposures at the WTC site after September 11, 2001 have been associated with several presumably inflammatory lower airway diseases. In this study, we describe the trajectories of expiratory air flow decline, identify subgroups with adverse progression, and investigate the association of a quantitative computed tomography (QCT) imaging measurement of airway wall thickness, and other risk factors for adverse progression. We examined the trajectories of expiratory air flow decline in a group of 799 former WTC workers and volunteers with QCT-measured (with two independent systems) wall area percent (WAP) and at least 3 periodic spirometries. We calculated individual regression lines for first-second forced expiratory volume (FEV 1 ), identified subjects with rapidly declining and increasing ("gainers"), and compared them to subjects with normal and "stable" FEV 1 decline. We used multivariate logistic regression to model decliner vs. stable trajectories. The mean longitudinal FEV 1 slopes for the entire study population, and its stable, decliner, and gainer subgroups were, respectively, - 35.8, - 8, - 157.6, and + 173.62 ml/year. WAP was associated with "decliner" status (OR adj 1.08, 95% CI 1.02, 1.14, per 5% increment) compared to stable. Age, weight gain, baseline FEV 1 percent predicted, bronchodilator response, and pre-WTC occupational exposures were also significantly associated with accelerated FEV 1 decline. Analyses of gainers vs. stable subgroup showed WAP as a significant predictor in unadjusted but not consistently in adjusted analyses. The apparent normal age-related rate of FEV 1 decline results from averaging widely divergent trajectories. WAP is significantly associated with accelerated air flow decline in WTC workers.

  4. Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.

    1996-01-01

    We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.

  5. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks.

    PubMed

    Mueller, D; Roquemore, A L; Jaworski, M; Skinner, C H; Miller, J; Creely, A; Raman, P; Ruzic, D

    2014-11-01

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an (241)Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm(2) thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  6. Comparison of lateral abdominal muscle thickness between weightlifters and matched controls.

    PubMed

    Sitilertpisan, Patraporn; Pirunsan, Ubon; Puangmali, Aatit; Ratanapinunchai, Jonjin; Kiatwattanacharoen, Suchart; Neamin, Hudsaleark; Laskin, James J

    2011-11-01

    To compare lateral abdominal muscle thickness between weightlifters and matched controls. A case control study design. University laboratory. 16 female Thai national weightlifters and 16 matched controls participated in this study. Ultrasound imaging with a 12-MHz linear array was used to measure the resting thickness of transversus abdominis (TrA), internal oblique (IO) and total thickness (Total) of lateral abdominal muscle (LAM) on the right side of abdominal wall. The absolute muscle thickness and the relative contribution of each muscle to the total thickness were determined. Weightlifters had significantly thicker absolute TrA and IO muscles than matched controls (p < 0.01). Further, the relative thickness of the IO was significantly greater in weightlifters than matched controls (p < 0.05). The findings of this study suggest that routine Olympic style weight training among female weightlifters appears to result in preferential hypertrophy or adaptation of the IO muscle. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    NASA Astrophysics Data System (ADS)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  8. Optical coherence tomography assessment of vessel wall degradation in aneurysmatic thoracic aortas

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Val-Bernal, J. Fernando; Mayorga, Marta; Revuelta, José M.; López-Higuera, José; Conde, Olga M.

    2013-06-01

    Optical coherence tomographic images of ascending thoracic human aortas from aneurysms exhibit disorders on the smooth muscle cell structure of the media layer of the aortic vessel as well as elastin degradation. Ex-vivo measurements of human samples provide results that correlate with pathologist diagnosis in aneurysmatic and control aortas. The observed disorders are studied as possible hallmarks for aneurysm diagnosis. To this end, the backscattering profile along the vessel thickness has been evaluated by fitting its decay against two different models, a third order polynomial fitting and an exponential fitting. The discontinuities present on the vessel wall on aneurysmatic aortas are slightly better identified with the exponential approach. Aneurysmatic aortic walls present uneven reflectivity decay when compared with healthy vessels. The fitting error has revealed as the most favorable indicator for aneurysm diagnosis as it provides a measure of how uniform is the decay along the vessel thickness.

  9. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    NASA Astrophysics Data System (ADS)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  10. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.

    PubMed

    Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y

    2010-09-01

    To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.

  11. SU-E-I-53: Variation in Measurements of Breast Skin Thickness Obtained Using Different Imaging Modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, U; Kumaraswamy, N; Markey, M

    Purpose: To investigate variation in measurements of breast skin thickness obtained using different imaging modalities, including mammography, computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI). Methods: Breast skin thicknesses as measured by mammography, CT, ultrasound, and MRI were compared. Mammographic measurements of skin thickness were obtained from published studies that utilized standard positioning (upright) and compression. CT measurements of skin thickness were obtained from a published study of a prototype breast CT scanner in which the women were in the prone position and the breast was uncompressed. Dermatological ultrasound exams of the breast skin were conducted at our institution,more » with the subjects in the upright position and the breast uncompressed. Breast skin thickness was calculated from breast MRI exams at our institution, with the patient in the prone position and the breast uncompressed. Results: T tests for independent samples demonstrated significant differences in the mean breast skin thickness as measured by different imaging modalities. Repeated measures ANOVA revealed significant differences in breast skin thickness across different quadrants of the breast for some modalities. Conclusion: The measurement of breast skin thickness is significantly different across different imaging modalities. Differences in the amount of compression and differences in patient positioning are possible reasons why measurements of breast skin thickness vary by modality.« less

  12. Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®)

    PubMed Central

    Kim, David Y.; Silverman, Ronald H.; Chan, R.V. Paul; Khanifar, Aziz A.; Rondeau, Mark; Lloyd, Harriet; Schlegel, Peter; Coleman, D. Jackson

    2011-01-01

    Objective To demonstrate anatomic and physiologic changes in the human choroid following systemic sildenafil citrate (ViagraR) using enhanced depth imaging spectral domain-optical coherence tomography (EDI-OCT) and swept-scan high frequency digital ultrasound. Methods Seven healthy male subjects (mean age 32.7 years) were evaluated at baseline and two hours after ingesting 50 mg of sildenafil. Swept-scan high frequency digital ultrasound and EDI-OCT were utilized to measure choroidal perfusion and thickness, respectively. Results were read by masked observers. The Wilcoxon signed-rank test and t-test were used to analyze differences in choroidal flow and thickness at baseline and two hours after ingestion of sildenafil. Results Two hours following sildenafil, increased choroidal perfusion was observed in 11 of 12 eyes measured by swept-scan high frequency digital ultrasound. The mean increase was 3.46 (±2.00) times baseline with a range of 0.47 to 7.80 times baseline (p=0.004). Increased choroidal thickness was observed in 12 of 12 eyes measured with EDI-OCT. The average choroidal thickness increased by 11.6% temporal to the fovea, 9.3% nasal to the fovea, and 10.7% underneath the fovea (p<0.001 for all values). Conclusions Choroidal perfusion and thickness both increase in response to systemic sildenafil. These changes could secondarily affect retinal function, explain previously reported clinical symptoms, and potentially be a useful adjunct for treatment of ocular diseases that would benefit from increased choroidal blood flow. PMID:22974308

  13. Thin-film thickness measurement method based on the reflection interference spectrum

    NASA Astrophysics Data System (ADS)

    Jiang, Li Na; Feng, Gao; Shu, Zhang

    2012-09-01

    A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.

  14. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    NASA Astrophysics Data System (ADS)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  15. Digital analysis of wind tunnel imagery to measure fluid thickness

    NASA Technical Reports Server (NTRS)

    Easton, Roger L., Jr.; Enge, James

    1992-01-01

    Documented here are the procedure and results obtained from the application of digital image processing techniques to the problem of measuring the thickness of a deicing fluid on a model airfoil during simulated takeoffs. The fluid contained a fluorescent dye and the images were recorded under flash illumination on photographic film. The films were digitized and analyzed on a personal computer to obtain maps of the fluid thickness.

  16. Limitations of Airway Dimension Measurement on Images Obtained Using Multi-Detector Row Computed Tomography

    PubMed Central

    Oguma, Tsuyoshi; Hirai, Toyohiro; Niimi, Akio; Matsumoto, Hisako; Muro, Shigeo; Shigematsu, Michio; Nishimura, Takashi; Kubo, Yoshiro; Mishima, Michiaki

    2013-01-01

    Objectives (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. Methods An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai), and the wall area percentage (WA%). To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. Results Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001), and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. Conclusions The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner. PMID:24116105

  17. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  18. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Limore » on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.« less

  19. Regional repeatability measures of corneal thickness: Orbscan II and ultrasound.

    PubMed

    Jonuscheit, Sven; Doughty, Michael J

    2007-01-01

    To compare repeatability of the measures of corneal thickness obtained by slit-scanning light method (Orbscan II) with those obtained by an ultrasound pachymeter, with special interest in the peripheral region of the cornea. On 24 normal adults, aged 20 to 58 years (average 36 years) with up to -8.5 DS refractive error, three measures of corneal thickness were taken using Orbscan II and then by ultrasound pachymetry (under topical anesthesia with benoxinate 0.4%). The Orbscan central sample zone of 1 mm was selected, or the numerical maps were used to extract single point data along the horizontal corneal meridian to the nasal and temporal sides out to 4.5 mm. Ultrasound readings were taken from the central cornea and at the periphery just inside the limbus (4.5 mm from center) with a 2.4-mm diameter probe. For a central 1-mm diameter zone, the coefficient of variation (CV) for three consecutive corneal thickness measures was 0.81%+/-0.44%, but was marginally higher (p=0.004), if just the central single point data was taken with Orbscan (0.86%+/-0.45%). Similar repeatability was noted for the numerical output across the temporal side along the horizontal meridian out to 2.5 mm from the center, but farther out to 4 mm and on the nasal side the repeatability was slightly less and around 1.0% (p<0.001). Orbscan point readings of thickness could only sometimes be obtained at 4.5 mm temporally (with a poorer CV of 1.32%) and very rarely at 4.5 mm on the nasal side. No absolute differences in Orbscan repeatability were noted when comparing emmetropic with myopic subjects (p>or=0.5). Ultrasound pachymetry readings across the central zone were repeatable to 0.82%+/-0.67%. When measured with the edge of the ultrasound probe just touching the limbus, the repeatability of ultrasound readings was 1.37%+/-1.10% temporally and 1.49%+/-1.02% nasally, but neither was statistically worse that the most peripheral readings for Orbscan (p>or=0.210). However, it was also noted that the

  20. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  1. Sea-ice thickness from field measurements in the northwestern Barents Sea

    NASA Astrophysics Data System (ADS)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin

    2017-02-01

    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  2. Human Uterine Wall Tension Trajectories and the Onset of Parturition

    PubMed Central

    Sokolowski, Peter; Saison, Francis; Giles, Warwick; McGrath, Shaun; Smith, David; Smith, Julia; Smith, Roger

    2010-01-01

    Uterine wall tension is thought to be an important determinant of the onset of labor in pregnant women. We characterize human uterine wall tension using ultrasound from the second trimester of pregnancy until parturition and compare preterm, term and twin pregnancies. A total of 320 pregnant women were followed from first antenatal visit to delivery during the period 2000–2004 at the John Hunter Hospital, NSW, Australia. The uterine wall thickness, length, anterior-posterior diameter and transverse diameter were determined by serial ultrasounds. Subjects were divided into three groups: women with singleton pregnancies and spontaneous labor onset, either preterm or term and women with twin pregnancies. Intrauterine pressure results from the literature were combined with our data to form trajectories for uterine wall thickness, volume and tension for each woman using the prolate ellipsoid method and the groups were compared at 20, 25 and 30 weeks gestation. Uterine wall tension followed an exponential curve, with results increasing throughout pregnancy with the site of maximum tension on the anterior wall. For those delivering preterm, uterine wall thickness was increased compared with term. For twin pregnancies intrauterine volume was increased compared to singletons (), but wall thickness was not. There was no evidence for increased tension in those delivering preterm or those with twin gestations. These data are not consistent with a role for high uterine wall tension as a causal factor in preterm spontaneous labor in singleton or twin gestations. It seems likely that hormonal differences in multiple gestations are responsible for increased rates of preterm birth in this group rather than increased tension. PMID:20585649

  3. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  4. Longleaf pine inner bark and outer bark thicknesses: Measurement and relevance

    Treesearch

    Thomas Eberhardt

    2013-01-01

    Measurements of bark thickness generally ignore the fact that bark is comprised of both living inner bark (phloem) and essentially dead outer bark (rhytidome).Discerning between them has ramifications for the utility of bark as a byproduct of timber harvesting and its functionality on a living tree. Inner bark and outer bark thicknesses for longleaf pine (Pinus...

  5. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression

    Treesearch

    Sheree Cato; Lisa McMillan; Lloyd Donaldson; Thomas Richardson; Craig Echt; Richard Gardner

    2006-01-01

    Wood formation was investigated at five heights along the bole for two unrelated trees of Pinus radiataBoth trees showed clear gradients in wood properties from the base to the crown. Cambial cells at the base of the tree were dividing 3.3-fold slower than those at the crown, while the average thickness of cell walls in wood was highest at the base....

  6. Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita

    2003-11-01

    A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also

  7. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  8. Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustovitov, V. D.; National Research Nuclear University “MEPhI,” Kashirskoe sh. 31, Moscow 115409; Yanovskiy, V. V.

    The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasingmore » the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.« less

  9. A digital instrument for nondestructive measurements of coating thicknesses by beta backscattering

    NASA Astrophysics Data System (ADS)

    Farcasiu, D. M.; Apostolescu, T.; Bozdog, H.; Badescu, E.; Bohm, V.; Stanescu, S. P.; Jianu, A.; Bordeanu, C.; Cracium, M. V.

    1992-02-01

    The elements of nondestructive gauging of coatings applied on various metal bases are presented. The intensity of the backscattered beta radiations is related to the thickness of the coating. With a fixed measuring geometry and radioactive sources (147Pm, 204Tl, 90Sr+90Y) the intensity of the backscattered beta particles is dependent on the following parameters: coating thickness, atomic number of the coating material and of the base, the beta particle energy and the surface finish. It can be used for the measurement of a wide range of coating thicknesses provided that the difference between the coating and the support atomic numbers is at least 20%. Fields of application include electronics, electrotechnique and so on.

  10. Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals

    NASA Technical Reports Server (NTRS)

    Dirusso, E.

    1982-01-01

    One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.

  11. A wall interference assessment/correction interface measurement system for the NASA/ARC 12-ft PWT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Development of complex air vehicle configurations is placing increasing demands on wind tunnel testing capabilities. A major area of concern is wall induced interference. Recent developments in wall interference technology provide a means for assessing and correcting for the wall induced interference using information contained in the distribution of flow variables measured at, or near, the wall. The restoration of the NASA-ARC 12-ft pressure wind tunnel (PWT) provides an opportunity to incorporate a measurement system with which wall interference assessment/correction (WIAC) technology can be applied. In this first phase of the development of a WIAC system for the PWT, the design criteria for the placement and the geometry of wall static pressure orifices were determined with a three step approach. First, the operational environment of the PWT was analyzed as to the requirements for the WIAC system. Second, appropriate wall interference theories were evaluated against the requirements determined from the operational environment. Third, the flow about representative models in the PWT was calculated and, specifically, the pressure signatures at the location of the test section wall were obtained. The number of discrete pressure measurements and their locations were determined by curve fitting the pressure distribution through the discrete measurements and evaluating the resulting error.

  12. Elastohydrodynamic film thickness formula based on X-ray measurements with a synthetic paraffinic oil

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.

  13. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  14. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    NASA Astrophysics Data System (ADS)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  15. Online terahertz thickness measurement in films and coatings

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  16. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musunuru, S.; Pettit, B.

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  17. RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS

    PubMed Central

    Ray, Peter M.

    1967-01-01

    Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369

  18. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    PubMed

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P < 0.05). One mutant of S. cerevisiae 2.0016 with increased biomass, cell wall thickness, and cell wall glucan was isolated (P < 0.05). The spaceflight mutant of S. cerevisiae 2.0016 showed 46.7%, 62.6%, and 146.0% increment in biomass, cell wall thickness and beta-glucan content, respectively, when compared to the ground strain. Moreover, growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production.

  19. Behavior of turbulent boundary layers on curved convex walls

    NASA Technical Reports Server (NTRS)

    Schmidbauer, Hans

    1936-01-01

    The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.

  20. Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Lutz, Otto

    1950-01-01

    A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.

  1. Measurements of the thickness of in-place concrete with microwave reflection.

    DOT National Transportation Integrated Search

    1988-01-01

    Previous microwave reflection measurements made on simple, unreinforced concrete blocks have shown that the transit time of a microwave through concrete is linearly related to its thickness. In this study measurements were conducted on concrete slabs...

  2. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  3. Imaging the inside of thick structures using cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardincerri, E., E-mail: elenaguardincerri@lanl.gov; Durham, J. M.; Morris, C.

    2016-01-15

    The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as “multiple scattering muon radiography”, relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result showsmore » the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them.« less

  4. Imaging the inside of thick structures using cosmic rays

    DOE PAGES

    Guardincerri, E.; Durham, J. M.; Morris, C.; ...

    2016-01-01

    Here, we present a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as “multiple scattering muon radiography”, relies on the use of cosmic-ray muons as probes. Our work was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. This result shows the effectiveness of the techniquemore » as a tool to radiograph thick structures and image denser object inside them.« less

  5. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musunuru, S.; Pettit, B.

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  6. Microsurgical Chest Wall Reconstruction After Oncologic Resections

    PubMed Central

    Sauerbier, Michael; Dittler, S.; Kreutzer, C.

    2011-01-01

    Defect reconstruction after radical oncologic resection of malignant chest wall tumors requires adequate soft tissue reconstruction with function, stability, integrity, and an aesthetically acceptable result of the chest wall. The purpose of this article is to describe possible reconstructive microsurgical pathways after full-thickness oncologic resections of the chest wall. Several reliable free flaps are described, and morbidity and mortality rates of patients are discussed. PMID:22294944

  7. Partial Insulation of Aerated Concrete Wall in its Thermal Bridge Regions

    NASA Astrophysics Data System (ADS)

    Li, Baochang; Guo, Lirong; Li, Yubao; Zhang, Tiantian; Tan, Yufei

    2018-01-01

    As a self-insulating building material which can meet the 65 percent energy-efficiency requirements in cold region of China, aerated concrete blocks often go moldy, frost heaving, or cause plaster layer hollowing at thermal bridge parts in the extremely cold regions due to the restrictions of environmental climate and construction technique. In this paper, partial insulation measures of the thermal-bridge position of these parts of aerated concrete walls are designed to weaken or even eliminate thermal bridge effect and improve the temperature of thermal-bridge position. A heat transfer calculation model for L-shaped wall and T-shaped wall is developed. Based on the simulation result, the influence of the thickness on the temperature field is analyzed. Consequently, the condensation inside self-thermal-insulating wall and frost heaving caused by condensation and low temperature will be reduced, avoiding damage to the wall body from condensation..

  8. Gastric wall changes after intragastric balloon placement: a preliminary experience.

    PubMed

    Périssé, Luís Gustavo Santos; Ecbc-Rj, Paulo Cézar Marques Périssé; Ribeiro, Kelson Ferreira

    2016-01-01

    : to evaluate the thickness of the gastric wall at the time of intra gastric balloon (IGB) placement, at the time of its withdrawal and one month after withdrawal. : fifteen morbidly obese patients underwent the introduction of IGB under general anesthesia. In all patients, there was infusion of 500ml of distilled water in the balloon for the test. Measurements of the thickness of the gastric wall were made in the antrum, body and proximal body, using a radial echoendoscope with a frequency of 12MHz and maximum zoom, and its own balloon inflated with 5ml of distilled water. : the presence of IGB led to increased wall thickness of the gastric body by expanding the muscle layer. These changes were apparently transient, since 30 days after the balloon withdrawal there was a tendency to return of the wall thickness values ​​observed before the balloon insertion. : the use of intragastric balloon for the treatment of obesity determines transient increase in the wall thickness of the gastric body caused by expanded muscle layer. avaliar a espessura da parede gástrica no momento do posicionamento do balão intragástrico (BIG), no momento de sua retirada e um mês após a retirada. quinze pacientes obesos mórbidos foram submetidos à introdução de BIG sob anestesia geral. Em todos os pacientes foi feita infusão de 500 ml de água destilada e o balão foi insuflado com 5ml de água destilada. As medidas da espessura da parede gástrica foram feitas no antro, corpo e corpo alto utilizando-se um ecoendoscópio radial com frequência de 12MHz e zoom máximo. a presença do BIG levou ao aumento da espessura da parede do corpo gástrico pelo aumento de espessura da sua camada muscular. Estas alterações são aparentemente transitórias já que após 30 dias da retirada do balão existiu uma tendência de retorno da espessura da parede aos valores observados antes do seu posicionamento. a utilização do balão intragástrico para tratamento da obesidade determina

  9. Normative values for optical coherence tomography parameters in healthy children and interexaminer agreement for choroidal thickness measurements.

    PubMed

    Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay

    2018-01-01

    To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual

  10. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system

    NASA Astrophysics Data System (ADS)

    Zeng, Chao-Feng; Xue, Xiu-Li; Zheng, Gang; Xue, Teng-Yun; Mei, Guo-Xiong

    2018-04-01

    Pre-excavation dewatering (PED) is an important construction stage in deep excavation. Field measurements show that retaining walls can develop obvious deflections during PED, which has been rarely considered in the past. The characteristics of PED-induced wall deflection, and the relationship of this deflection to surrounding ground deformation are still unclear. In this study, a PED test is simulated by a numerical model. The model is verified by field observations and used to investigate the responses of retaining wall and surrounding ground to PED. Results indicate that the maximum wall defection (δhm) and surface settlement (δvm) can all reach centimeter level under common conditions of PED. The ratio of δvm to δhm varies at the range of 0.45-0.67. Wall and soil deformations will be more obvious if the soils within the dewatering depth (Hd) have better permeability. The relative positions between Hd and strata (i.e., aquifer or aquitard) have great influence on the PED-induced deformations. If an aquifer appears below Hd, further increasing Hd can induce a rapid growth of wall and soil deformations. If thick aquitard appears below Hd, the deformation increments by further increasing Hd are not apparent. However, once Hd exceeds the center of the thick aquitard and reaches a thick confined aquifer, the wall deflections and soil deformation zones behind the wall will enlarge significantly. Meanwhile, a large bending moment in the retaining wall will arise around the bottom of the confined aquifer. The designers should consider this condition and allocate enough steel rebars there, preventing the appearance of wall cracks in the confined aquifer.

  11. A prospective clinical study evaluating the development of bowel wall edema during laparoscopic and open visceral surgery.

    PubMed

    Marjanovic, Goran; Kuvendziska, Jasmina; Holzner, Philipp Anton; Glatz, Torben; Sick, Olivia; Seifert, Gabriel; Kulemann, Birte; Küsters, Simon; Fink, Jodok; Timme, Sylvia; Hopt, Ulrich Theodor; Wellner, Ulrich; Keck, Tobias; Karcz, Wojciech Konrad

    2014-12-01

    To examine bowel wall edema development in laparoscopic and open major visceral surgery. In a prospective study, 47 consecutively operated patients with gastric and pancreatic resections were included. Twenty-seven patients were operated in a conventional open procedure (open group) and 20 in a laparoscopic fashion (lap group). In all procedures, a small jejunal segment was resected during standard preparation, of which we measured the dry-wet ratio. Furthermore, HE staining was performed for measuring of bowel wall thickness and edema assessment. Mean value (±std) of dry-wet ratio was significantly lower in the open than in the lap group (0.169 ± 0.017 versus 0.179 ± 0.015; p = 0.03) with the same amount of fluid administration in both groups and a longer infusion interval during laparoscopic surgery. Subgroup analyses (only pancreatic resections) still showed similar results. Histologic examination depicted a significantly larger bowel wall thickness in the open group. Laparoscopic surgery does not seem to lead to the bowel wall edema observed to occur in open surgery regardless of the degree of intravenous fluid administration, thus supporting its use even in major visceral surgery.

  12. nPIV velocity measurement of nanofluids in the near-wall region of a microchannel.

    PubMed

    Anoop, Kanjirakat; Sadr, Reza

    2012-05-31

    Colloidal suspensions of nano-sized particles in a base fluid, nanofluids, have recently gained popularity as cooling fluids mainly due to their enhanced heat transfer capabilities. However, there is controversy in the literature on the reported properties of nanofluids and their applicability, especially since there is no fundamental understanding that explains these enhancements. A better understanding of these fluids and how they interact with a solid boundary may be achieved by a detailed near-wall fluid flow study at nanoscale. This work presents for the first time the near-wall velocity measurements for nanofluids using nanoparticle image velocimetry. This novel technique uses evanescent illumination in the solid-fluid interface to measure near-wall velocity field with an out-of-plane resolution on the order of O(100 nm). Nanofluids of different concentrations were prepared by dispersing silicon dioxide particles (10 to 20 nm) in water as the base fluid. Initially, viscosity measurements were conducted for the prepared nanofluids. The near-wall velocity data were then measured and compared with that of the base fluid at the same flow condition. It was observed that even though nanofluid viscosity had increased with particle loading, the near-wall velocity values were similar to that of the base fluid for a given flow rate. Together, these measurements vindicate the homogenous and Newtonian characteristics of the nanofluids in the near-wall region. Despite the low particle concentrations investigated, the present work also discusses the complexity involved in utilizing the methodology and possible errors arising during experimentation so as to implement this measurement tool more effectively in the future.

  13. A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.

    2017-08-01

    Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.

  14. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  15. EMR Gage Would Measure Coal Thickness Accurately

    NASA Technical Reports Server (NTRS)

    King, J. D.; Rollwitz, W. L.

    1982-01-01

    Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, Sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

  16. A MULTI-ELEMENT THICK GAS ELECTRON MULTIPLIER-BASED MICRODOSEMETER FOR MEASUREMENT OF NEUTRONS DOSE-EQUIVALENT: A MONTE CARLO STUDY.

    PubMed

    Moslehi, A; Raisali, G

    2017-11-01

    To determine the dose-equivalent of neutrons in an extended energy range, in the present work a multi-element thick gas electron multiplier-based microdosemeter made of PMMA (Perspex) walls of 10 mm in thickness is designed. Each cavity is filled with the propane-based tissue-equivalent (TE) gas simulating 1 µm of tissue. Also, a few weight fractions of 3He are assumed to be added to the TE gas. The dose-equivalents are determined for 11 neutron energies between thermal and 14 MeV using the lineal energy distributions calculated by Geant4 simulation toolkit and also the lineal energy-based quality factors. The results show that by adding 0.04% of 3He to the TE gas in each cavity, an energy-independent dose-equivalent response within 30% uncertainty around a median value of 0.91 in the above energy range is achieved. It is concluded that after its construction, the studied microdosemeter can be used to measure the dose-equivalent of neutrons, favorably. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  18. An ultrasonographic evaluation of skin thickness in breast cancer patients after postmastectomy radiation therapy

    PubMed Central

    2011-01-01

    Background To determine the usefulness of ultrasonography in the assessment of post radiotherapy skin changes in postmastectomy breast cancer patients. Methods Patients treated for postmastectomy radiotherapy in National University Hospital (NUH) and Tan Tock Seng Hospital (TTSH), Singapore between January 2004- December 2005 was recruited retrospectively. Ultrasound scan was performed on these Asian patients who had been treated to a total dose of 46-50 Gy with 1 cm bolus placed on the skin. The ultrasound scans were performed blinded to the RTOG scores, and the skin thickness of the individually marked points on the irradiated chest wall was compared to the corresponding points on the non-irradiated breast. Results The mean total skin thickness inclusive of the epidermis and the dermis of the right irradiated chest wall was 0.1712 mm (± 0.03392 mm) compared with the contra-lateral non-irradiated breast which was 0.1845 mm (± 0.04089 mm; p = 0.007). The left irradiated chest wall had a mean skin thickness of 0.1764 mm (± 0.03184 mm) compared with the right non-irradiated breast which was 0.1835 mm (± 0.02584 mm; p = 0.025). These independent t-tests produced a significant difference of reduced skin thickness on the right irradiated chest wall, p = 0.007 (p < 0.05) and left irradiated chest wall p = 0.025 (p < 0.025) in comparison to the non-irradiated skin thickness investigating chronic skin reactions. Patients with grade 2 acute skin toxicity presented with thinner skin as compared to patients with grade 1 (p = 0.006). Conclusions This study has shown that there is a statistically significant difference between the skin thicknesses of the irradiated chest wall and the contra-lateral non-irradiated breast and a predisposition to chronic reactions was found in patients with acute RTOG scoring of grade1 and grade 2. PMID:21261940

  19. Modeling Periodic Adiabatic Shear Bands Evolution in a 304L Stainless Steel Thick-Walled Cylinder

    NASA Astrophysics Data System (ADS)

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2015-06-01

    The self-organization of multiple shear bands in a 304L stainless steel thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of local yield stress, which plays a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied Gauss distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicate that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20 μm) which has significantly different microstructures from base material. The work-hardened layer leads to the phenomenon that most shear bands are in clockwise or counterclockwise direction. In our simulation, periodic oriented perturbations were applied to describe the grain orientation in the work-hardened layer, and the spiral pattern of shear bands was successfully replicated.

  20. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.

    PubMed

    Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J

    2017-12-01

    At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Dry granular avalanche impact force on a rigid wall of semi-infinite height

    NASA Astrophysics Data System (ADS)

    Albaba, Adel; Lambert, Stéphane; Faug, Thierry

    2017-06-01

    The present paper tackles the problem of the impact of a dry granular avalanche-flow on a rigid wall of semi-infinite height. An analytic force model based on depth-averaged shock theory is proposed to describe the flow-wall interaction and the resulting impact force on the wall. Provided that the analytic force model is fed with the incoming flow conditions regarding thickness, velocity and density, all averaged over a certain distance downstream of the undisturbed incoming flow, it reproduces very well the time history of the impact force actually measured by detailed discrete element simulations, for a wide range of slope angles.

  2. Alterations in Cortical Thickness and White Matter Integrity in Mild Cognitive Impairment Measured by Whole Brain Cortical Thickness Mapping and Diffusion Tensor Imaging

    PubMed Central

    Wang, Liya; Goldstein, Felicia C.; Veledar, Emir; Levey, Allan I.; Lah, James J.; Meltzer, Carolyn C.; Holder, Chad A.; Mao, Hui

    2010-01-01

    Background and Purpose Mild cognitive impairment (MCI) is a risk factor for Alzheimer's disease (AD) and can be difficult to diagnose due to the subtlety of symptoms. This work attempted to examine gray and white matter changes with cortical thickness analysis and diffusion tensor imaging (DTI) in MCI patients and demographically-matched comparison subjects in order to test these measurements as possible imaging markers for diagnosis. Materials and Methods Subjects with amnestic MCI (n=10; age 72.2±7.1) and normal cognition (n=10; age 70.1±7.7) underwent DTI and T1 weighted MRI at 3T. Fractional anisotropy, apparent diffusion coefficient and cortical thickness were measured and compared between MCI and control groups. The diagnostic accuracy of two methods, either in combination or separately, was evaluated using binary logistic regression and nonparametric statistical analyses for sensitivity, specificity and accuracy. Results Decreased FA and increased ADC in white matter regions of frontal and temporal lobes and corpus callosum were observed in MCI patients. Cortical thickness was decreased in gray matter regions of the frontal, temporal, parietal lobes in MCI patients. Changes in white matter and cortical thickness appeared to be more pronounced in the left hemisphere than in the right hemisphere. Furthermore the combination of cortical thickness and DTI measurements in left temporal areas improved the accuracy of differentiating MCI patients from controls compared to either measure alone. Conclusion DTI and cortical thickness analyses may both serve imaging markers for differentiating MCI from normal aging. Combined use of two methods may improve the accuracy of MCI diagnosis. PMID:19279272

  3. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  4. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness.

    PubMed

    Staubo, Sara C; Aakre, Jeremiah A; Vemuri, Prashanthi; Syrjanen, Jeremy A; Mielke, Michelle M; Geda, Yonas E; Kremers, Walter K; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Jack, Clifford R; Roberts, Rosebud O

    2017-02-01

    The Mediterranean diet (MeDi) is associated with reduced risk of cognitive impairment, but it is unclear whether it is associated with better brain imaging biomarkers. Among 672 cognitively normal participants (mean age, 79.8 years, 52.5% men), we investigated associations of MeDi score and MeDi components with magnetic resonance imaging measures of cortical thickness for the four lobes separately and averaged (average lobar). Higher MeDi score was associated with larger frontal, parietal, occipital, and average lobar cortical thickness. Higher legume and fish intakes were associated with larger cortical thickness: legumes with larger superior parietal, inferior parietal, precuneus, parietal, occipital, lingual, and fish with larger precuneus, superior parietal, posterior cingulate, parietal, and inferior parietal. Higher carbohydrate and sugar intakes were associated with lower entorhinal cortical thickness. In this sample of elderly persons, higher adherence to MeDi was associated with larger cortical thickness. These cross-sectional findings require validation in prospective studies. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  5. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  6. Manual B-mode versus automated radio-frequency carotid intima-media thickness measurements.

    PubMed

    Dogan, Soner; Plantinga, Yvonne; Dijk, Joke M; van der Graaf, Yolanda; Grobbee, Diederick E; Bots, Michiel L

    2009-10-01

    Carotid intima-media thickness (CIMT) serves as an indicator of atherosclerosis and cardiovascular risk. Manual measurements of B-mode ultrasound images are the most applied method. Automated measurements with radiofrequency (RF) ultrasound have been suggested as an alternative. The aim of this study was to compare these methods in terms of risk-factor relations and associations with future events. Data from participants of the Second Manifestations of Arterial Disease (SMART) study were used. Far wall common CIMT was measured online with manual B-mode and automated RF ultrasound. Measurements were performed by a group of 6 sonographers. Risk-factor information was obtained. All participants were followed for the occurrence of vascular events (mean follow-up, 2.1 years). CIMT was related to risk factors with linear regression models and to future events with Cox proportional-hazards models. Data were available for 2,146 participants. Agreement between the methods was modest (intraclass correlation coefficient = 0.34). Risk-factor relations with age and systolic blood pressure were stronger for B-mode than for RF ultrasound. Association with future events was better for B-mode than for RF ultrasound (vascular death, 1.27 vs 1.00; ischemic stroke, 1.45 vs 1.03). In participants with CIMT < 0.9 mm (without plaque), the intraclass correlation between the measures was 0.50. In addition, in that subgroup, RF ultrasound showed a stronger association with future events than B-mode ultrasound (all events, 1.59 vs 1.09; vascular death, 1.72 vs 0.93; coronary ischemic events, 1.65 vs 1.05). The preference for either B-mode or RF measurements may be driven by the type of study population, the expected presence of local atherosclerotic abnormalities, and the main aim of the study (assessing risk factors or events). However, in this study, as in many others, the B-mode approach was shown to be robust in risk-factor relations and the prediction of events.

  7. Measurement of superficial and deep abdominal muscle thickness: an ultrasonography study.

    PubMed

    Tahan, Nahid; Khademi-Kalantari, Khosro; Mohseni-Bandpei, Mohammad Ali; Mikaili, Saeed; Baghban, Alireza Akbarzadeh; Jaberzadeh, Shapour

    2016-08-23

    Real-time ultrasound imaging is a valid method in the field of rehabilitation. The ultrasound imaging allows direct visualization for real-time study of the muscles as they contract over the time. Measuring of the size of each abdominal muscle in relation to the others provides useful information about the differences in structure, as well as data on trunk muscle activation patterns. The purpose of this study was to assess the size and symmetry of the abdominal muscles at rest in healthy adults and to provide a reference range of absolute abdominal muscle size in a relatively large population. A total 156 healthy subjects with the age range of 18-44 years were randomly recruited. The thickness of internal oblique, external oblique, transverse abdominis, and rectus abdominis muscles was measured at rest on both right and left sides using ultrasound. Independent t test was used to compare the mean thickness of each abdominal muscle between males and females. Differences on side-to-side thicknesses were assessed using paired t test. The association between abdominal muscle thicknesses with gender and anthropometric variables was examined using the Pearson correlation coefficient. A normal pattern of increasing order of mean abdominal muscle thickness was found in both genders at both right and left sides: transverse abdominis < external oblique < internal oblique < rectus abdominis. There was a significant difference on the size of transverse abdominis, internal oblique, and external oblique muscles between right and left sides in both genders. Males had significantly thicker abdominal muscles than females. Age was significantly correlated with the thickness of internal oblique, external oblique, and rectus abdominis muscles. Body mass index was also positively correlated with muscle thickness of rectus abdominis and external oblique. The results provide a normal reference range for the abdominal muscles in healthy subjects and may be used as an index to

  8. A convenient method for X-ray analysis in TEM that measures mass thickness and composition

    NASA Astrophysics Data System (ADS)

    Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.

    2018-01-01

    We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.

  9. Surface dose measurements with commonly used detectors: a consistent thickness correction method

    PubMed Central

    Higgins, Patrick

    2015-01-01

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30‐360) with other parallel plate chambers RMI‐449 (Attix), Capintec PS‐033, PTW 30‐329 (Markus) and Memorial. Measurements of surface dose for 6 MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (−0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid‐state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three‐detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth‐dose curves

  10. Surface dose measurements with commonly used detectors: a consistent thickness correction method.

    PubMed

    Reynolds, Tatsiana A; Higgins, Patrick

    2015-09-08

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30-360) with other parallel plate chambers RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial. Measurements of surface dose for 6MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (-0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid-state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three-detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth-dose curves and is not

  11. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  12. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  13. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  14. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less

  15. Measurement the thickness of the transverse abdominal muscle in different tasks.

    PubMed

    Pang, Ling; Yin, Liquan; Tajiri, Kimiko; Huo, Ming; Maruyama, Hitoshi

    2017-02-01

    [Purpose] This study examined the measurement of the thickness of the transverse abdominal muscle in different tasks. [Subjects and Methods] The subjects were eleven healthy adult females. Thicknesses of transverse abdominal muscle were measured in seven tasks in the supine position. The tasks were: 1) Resting state, 2) Maximal contraction of transverse abdominal muscle, 3) Maximal contraction of levator ani muscle, 4) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle, 5) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle with front side resistance added to both knee, 6) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle with diagonal resistance added to both knees, and 7) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle with lateral resistance added to both knees. [Results] The thicknesses of transverse abdominal muscle during maximal simultaneous contraction and maximal simultaneous contraction with resistance were greater than during the resting state. [Conclusion] The muscle output during simultaneous contraction and resistance movement were larger than that of each individual muscle.

  16. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  17. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  18. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  19. Research on the effect of wall corrosion and rim seal on the withdrawal loss for a floating roof tank.

    PubMed

    Wang, Yongqiang; Liu, Minmin; Liu, Fang; Zhao, Chaocheng; Zhao, Dongfeng; Han, Fenglei; Liu, Chunshuang

    2018-04-25

    Storage tanks are important parts of volatile organic compound (VOC) fugitive emission sources of the petrochemical industry; the floating roof tank is the main oil storage facility at present. Based on the mechanism of withdrawal loss and the type of rim seal, octane and gasoline were taken as the research objects. A model instrument for simulating the oil loading process by the 316 stainless steel and A3 carbon steel as the test piece was designed, and the film thickness was measured by wet film thickness gauge to investigate the influence of the corrosion of the tank wall and rim seal on the withdrawal loss for floating roof tanks. It was found that withdrawal loss was directly proportional to the shell factor, and the oil thickness of the octane and gasoline increased with the strength of the wall corrosion with the same wall material and rim seal. Compared with the untreated test piece, the oil film thickness of the octane/gasoline was increased by 7.04~8.57 μm/13.14~21.93 μm and 5.59~11.49 μm/11.61~25.48 μm under the corrosion of hydrochloric acid for 32 and 75 h, respectively. The oil film thickness of octane and gasoline decreased with the increasing of the rim seal, and the oil film thickness of the octane decreased by 11.97~28.90% and 37.32~73.83% under the resilient-filled seal and the double seal, respectively. The gasoline dropped by 11.97~31.18% and 45.98~75.34% under the resilient-filled seal and the double seal, respectively. In addition, the tank surface roughness reduced the compression of the rim seal on the tank wall, and the effect of scraping decreased. The API withdrawal loss formula for a floating roof tank was recommended to take into account the effect of the rim seal to improve the accuracy of the loss evaluation. Finally, some measures of reducing the withdrawal loss were proposed.

  20. Near Wall measurement in Turbulent Flow over Rough Wall using microscopic HPIV

    NASA Astrophysics Data System (ADS)

    Talapatra, Siddharth; Hong, Jiarong; Katz, Joseph

    2009-11-01

    Using holographic PIV, 3D velocity measurements are being performed in a turbulent rough wall channel flow. Our objective is to examine the contribution of coherent structures to the flow dynamics, momentum and energy fluxes in the roughness sublayer. The 0.45mm high, pyramid-shaped roughness is uniformly distributed on the top and bottom surfaces of a 5X20cm rectangular channel flow, where the Reτ is 3400. To facilitate recording of holograms through a rough plate, the working fluid is a concentrated solution of NaI in water, whose optical refractive index is matched with that of the acrylic rough plates. The test section is illuminated by a collimated laser beam from the top, and the sample volume extends from the bottom wall up to 7 roughness heights. After passing through the sample volume, the in-line hologram is magnified and recorded on a 4864X3248 pixels camera at a resolution of 0.74μm/pixel. The flow is locally seeded with 2μm particles. Reconstruction, spatial filtering and particle tracking provide the 3D velocity field. This approach has been successfully implemented recently, as preliminary data demonstrate.

  1. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    NASA Astrophysics Data System (ADS)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  2. Ultrasound measures of supraspinatus tendon thickness and acromiohumeral distance in rotator cuff tendinopathy are reliable.

    PubMed

    McCreesh, Karen M; Anjum, Shakeel; Crotty, James M; Lewis, Jeremy S

    2016-01-01

    Rotator cuff (RC) tendinopathy has been widely ascribed to impingement of the supraspinatus tendon (SsT) in the subacromial space, measured as the acromiohumeral distance (AHD). Ultrasound (US) is suitable for measuring AHD and SsT thickness, but few reliability studies have been carried out in symptomatic populations, and interrater reliability is unconfirmed. This study aimed to examine the intrarater and interrater reliability of US measurements of AHD and SsT thickness in asymptomatic control subjects and patients with RC tendinopathy. Seventy participants were recruited and grouped as healthy controls (n = 25) and RC tendinopathy (n = 45). Repeated US measurements of AHD and SsT thickness were obtained by one rater in both groups and by two raters in the RC tendinopathy group. Intrarater and interrater reliability coefficients were excellent for both measurements (intraclass correlation > 0.92), but the intrarater reliability was superior. The minimal detectable change values in the symptomatic group were 0.7 mm for AHD and 0.6 mm for SsT thickness for a single experienced examiner; the values rose to 1.2 mm and 1.3 mm, respectively, for the pair of examiners. The results support the reliability of US for the measurement of AHD and SsT thickness in patients with symptomatic RC tendinopathy and provide minimal detectable change values for use in future research studies. © 2015 Wiley Periodicals, Inc.

  3. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-06-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.

  4. Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm

    NASA Astrophysics Data System (ADS)

    Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.

    2018-06-01

    A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.

  5. COMPARISON STUDY OF VARIOUS PLASTICS AS THE WALL MATERIAL OF THGEM-BASED MICRODOSEMETERS FOR FAST NEUTRON MEASUREMENTS.

    PubMed

    Moslehi, A; Raisali, G; Lamehi, M

    2017-04-15

    To find appropriate substitutions for the expensive plastics of A-150 and rexolite used in the construction of thick gas electron multiplier (THGEM)-based tissue-equivalent proportional counters, in the present work, the responses of a THGEM-based microdosimetric detector made of A-150 and rexolite and three others composed of plexiglas (PMMA), polyethylene and polystyrene plastics as the wall materials have been compared. Lineal energy distribution, frequency-averaged lineal energy, dose-averaged lineal energy, mean quality factor and dose-equivalent for 0.1, 1 and 10 MeV neutrons and also for 241Am-Be neutrons are calculated using Geant4 simulation toolkit. Frequency-averaged lineal energy, dose-averaged lineal energy, mean quality factor and dose-equivalent values for all plastics are found similar. In addition, the response of an indigenously constructed microdosemeter with PMMA walls is also measured for 241Am-Be neutrons. The experimental results are in good agreement with the simulation predictions. Conclusively, it was found that the three considered plastics can be used as good candidates instead of A-150 and rexolite plastics in fast neutron microdosimetry. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Serum Carotenoids Reduce Progression of Early Atherosclerosis in the Carotid Artery Wall among Eastern Finnish Men

    PubMed Central

    Karppi, Jouni; Kurl, Sudhir; Ronkainen, Kimmo; Kauhanen, Jussi; Laukkanen, Jari A.

    2013-01-01

    Background Several previous epidemiologic studies have shown that high blood levels of carotenoids may be protective against early atherosclerosis, but results have been inconsistent. We assessed the association between atherosclerotic progression, measured by intima-media thickness of the common carotid artery wall, and serum levels of carotenoids. Methods We studied the effect of carotenoids on progression of early atherosclerosis in a population-based study. The association between concentrations of serum carotenoids, and intima-media thickness of the common carotid artery wall was explored in 840 middle-aged men (aged 46–65 years) from Eastern Finland. Ultrasonography of the common carotid arteries were performed at baseline and 7-year follow-up. Serum levels of carotenoids were analyzed at baseline. Changes in mean and maximum intima media thickness of carotid artery wall were related to baseline serum carotenoid levels in covariance analyses adjusted for covariates. Results In a covariance analysis with adjustment for age, ultrasound sonographer, maximum intima media thickness, examination year, body mass index, systolic blood pressure, smoking, physical activity, serum LDL cholesterol, family history of coronary heart disease, antihypertensive medication and serum high sensitivity C-reactive protein, 7-year change in maximum intima media thickness was inversely associated with lycopene (p = 0.005), α-carotene (p = 0.002) and β-carotene (p = 0.019), respectively. Conclusions The present study shows that high serum concentrations of carotenoids may be protective against early atherosclerosis. PMID:23700460

  7. Static measurement of the thickness of the ablative coating of the solid rocket boosters

    NASA Technical Reports Server (NTRS)

    Harrison, Harry C.

    1996-01-01

    The Solid Rocket Boosters (SRB's) used to launch the Space Shuttle are coated with a layer of ablative material to prevent thermal damage when they reenter the earth's atmosphere. The coating consists of a mixture of cork, glass, and resin. A new coating (Marshall Convergent Coating, MCC-2) was recently developed that is environmentally complaint. The coating must meet certain minimum thickness standards in order to protect the SRB. The coating is applied by a robot controlled nozzle that moves from the bottom to top, as the rocket part rotates on a table. Several coats are applied, building up to the desired thickness. Inspectors do a limited amount of destructive 'wet' testing. This involves an inspector inserting a rod in the wet coating and removing the rod. This results in a hole that, of course, must be patched later. The material is cured and the thickness is measured. There is no real-time feedback as the coating is being applied. Although this might seem like the best way to control thickness, the problems with 'blowback' (reflected material covering the sensor) are formidable, and have not been solved. After the thermal coating is applied, a protective top coat is applied. The SRB part is then placed in a oven and baked to harden the surface. The operations personnel then measure the thickness of the layer using the Kaman 7200 Displacement Measuring System. The probe is placed on the surface. One person (the inspector) reads the instrument, while another(the technician) records the thickness. Measurements are taken at one foot intervals. After the measurements are taken, the number of low readings is tabulated. If more than 10 percent of the points fall below the minimum value, there is a design review, and the part may be stripped of coating, and a new coating is applied. There is no other analysis.

  8. Cortical thickness measurement from magnetic resonance images using partial volume estimation

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria A.; Acosta, Oscar; Bourgeat, Pierrick; Hernández Hoyos, Marcela; Salvado, Olivier; Ourselin, Sébastien

    2008-03-01

    Measurement of the cortical thickness from 3D Magnetic Resonance Imaging (MRI) can aid diagnosis and longitudinal studies of a wide range of neurodegenerative diseases. We estimate the cortical thickness using a Laplacian approach whereby equipotentials analogous to layers of tissue are computed. The thickness is then obtained using an Eulerian approach where partial differential equations (PDE) are solved, avoiding the explicit tracing of trajectories along the streamlines gradient. This method has the advantage of being relatively fast and insure unique correspondence points between the inner and outer boundaries of the cortex. The original method is challenged when the thickness of the cortex is of the same order of magnitude as the image resolution since partial volume (PV) effect is not taken into account at the gray matter (GM) boundaries. We propose a novel way to take into account PV which improves substantially accuracy and robustness. We model PV by computing a mixture of pure Gaussian probability distributions and use this estimate to initialize the cortical thickness estimation. On synthetic phantoms experiments, the errors were divided by three while reproducibility was improved when the same patients was scanned three consecutive times.

  9. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi

    2018-02-01

    The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.

  10. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  11. Modification of the laser triangulation method for measuring the thickness of optical layers

    NASA Astrophysics Data System (ADS)

    Khramov, V. N.; Adamov, A. A.

    2018-04-01

    The problem of determining the thickness of thin films by the method of laser triangulation is considered. An expression is derived for the film thickness and the distance between the focused beams on the photo detector. The possibility of applying the chosen method for measuring thickness is in the range [0.1; 1] mm. We could resolve 2 individual light marks for a minimum film thickness of 0.23 mm. We resolved with the help of computer processing of photos with a resolution of 0.10 mm. The obtained results can be used in ophthalmology for express diagnostics during surgical operations on the corneal layer.

  12. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating.

    PubMed

    Zhao, Jisong

    2018-05-17

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.

  13. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating

    PubMed Central

    Zhao, Jisong

    2018-01-01

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822

  14. Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study

    NASA Astrophysics Data System (ADS)

    Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.

    2010-04-01

    Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.

  15. An engineering study of hybrid adaptation of wind tunnel walls for three-dimensional testing

    NASA Technical Reports Server (NTRS)

    Brown, Clinton; Kalumuck, Kenneth; Waxman, David

    1987-01-01

    Solid wall tunnels having only upper and lower walls flexing are described. An algorithm for selecting the wall contours for both 2 and 3 dimensional wall flexure is presented and numerical experiments are used to validate its applicability to the general test case of 3 dimensional lifting aircraft models in rectangular cross section wind tunnels. The method requires an initial approximate representation of the model flow field at a given lift with wallls absent. The numerical methods utilized are derived by use of Green's source solutions obtained using the method of images; first order linearized flow theory is employed with Prandtl-Glauert compressibility transformations. Equations are derived for the flexed shape of a simple constant thickness plate wall under the influence of a finite number of jacks in an axial row along the plate centerline. The Green's source methods are developed to provide estimations of residual flow distortion (interferences) with measured wall pressures and wall flow inclinations as inputs.

  16. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  17. Long-term fuel retention in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Heinola, K.; Widdowson, A.; Likonen, J.; Alves, E.; Baron-Wiechec, A.; Barradas, N.; Brezinsek, S.; Catarino, N.; Coad, P.; Koivuranta, S.; Krat, S.; Matthews, G. F.; Mayer, M.; Petersson, P.; Contributors, JET

    2016-02-01

    Post-mortem studies with ion beam analysis, thermal desorption, and secondary ion mass spectrometry have been applied for investigating the long-term fuel retention in the JET ITER-like wall components. The retention takes place via implantation and co-deposition, and the highest retention values were found to correlate with the thickness of the deposited impurity layers. From the total amount of retained D fuel over half was detected in the divertor region. The majority of the retained D is on the top surface of the inner divertor, whereas the least retention was measured in the main chamber on the mid-plane of the inner wall limiter. The recessed areas of the inner wall showed significant contribution to the main chamber total retention. Thermal desorption spectroscopy analysis revealed the energetic T from DD reactions being implanted in the divertor. The total T inventory was assessed to be \\gt 0.3 {{mg}}.

  18. Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.

    2013-11-01

    We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.

  19. Quantitative thickness measurement of polarity-inverted piezoelectric thin-film layer by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo

    2017-10-01

    A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.

  20. Full-Thickness Reconstruction with Pedicle Flap and Diced Homologous Cartilage Over the Pericardium Complicated. Cardiac Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, Thomas D.

    1961-01-01

    Successful repair by plastic surgery of nonhealing ulceration of the chest wall, induced by radiotherapy for breast cancer, is described. Reconstruction of the chest wali defect by pedicle flap coverage was carried out. Radiation injury extended through the entire thickness of the chest wall and osteoradionecrosis of the ribs was present. Reconstruction with thoracoabdominal tube was considered to be the best technique, so a 4- by 9-in. tube pedicle was constructed. The underlying donor wound of the pedicle was covered with a split- thickness skin graft. Healing was without incident, and approximates 3 weeks after formation, the inferior end ofmore » this tube pedicle was migrated to the left epigastrium as an intermediate step. Healing was uncomplicated, and the lateral attachment of the pedicle was partially severed. Three weeks later, resection of all avascular tissue along with portions of the fourth and fifth ribs was carried out. This created a full-thickness chest wall defect measuring 4 by 8 in., with the anterior surface of the pericardial sac exposed in the wound. The end of the abdominal tube pedicle was elevated from its bed, rotated into position, and sutured to the healthy margins of the chest wall defect. The exposed subcutaneous fat of the undersurface of the pedicle was placed in juxtaposition to the pericardium. A split-thickness skin graft was cut from the skin of the left thigh and draped over the pedicle flap donor wound. All sutured wounds healed per primum and the entire skin graft survived. The inferior inset of the tube pedicle was cut free and the pedicle flap was tailored into position 6 weeks later. The patient was discharged from the hospital in good condition and engaged in normal activities. An attempt was made to provide protection for the heart beneath the pedicle inset by introduction of diced homologous cartilage grafts, just beneath the skin of the pedicle flap. This healed with the formation of a thick fibrocartilaginous

  1. Reliability of ultrasound thickness measurement of the abdominal muscles during clinical isometric endurance tests.

    PubMed

    ShahAli, Shabnam; Arab, Amir Massoud; Talebian, Saeed; Ebrahimi, Esmaeil; Bahmani, Andia; Karimi, Noureddin; Nabavi, Hoda

    2015-07-01

    The study was designed to evaluate the intra-examiner reliability of ultrasound (US) thickness measurement of abdominal muscles activity when supine lying and during two isometric endurance tests in subjects with and without Low back pain (LBP). A total of 19 women (9 with LBP, 10 without LBP) participated in the study. Within-day reliability of the US thickness measurements at supine lying and the two isometric endurance tests were assessed in all subjects. The intra-class correlation coefficient (ICC) was used to assess the relative reliability of thickness measurement. The standard error of measurement (SEM), minimal detectable change (MDC) and the coefficient of variation (CV) were used to evaluate the absolute reliability. Results indicated high ICC scores (0.73-0.99) and also small SEM and MDC scores for within-day reliability assessment. The Bland-Altman plots of agreement in US measurement of the abdominal muscles during the two isometric endurance tests demonstrated that 95% of the observations fall between the limits of agreement for test and retest measurements. Together the results indicate high intra-tester reliability for the US measurement of the thickness of abdominal muscles in all the positions tested. According to the study's findings, US imaging can be used as a reliable method for assessment of abdominal muscles activity in supine lying and the two isometric endurance tests employed, in participants with and without LBP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Accuracy of measuring the cortical bone thickness adjacent to dental implants using cone beam computed tomography.

    PubMed

    Razavi, Touraj; Palmer, Richard M; Davies, Jonathan; Wilson, Ron; Palmer, Paul J

    2010-07-01

    To assess the accuracy of measuring the cortical bone thickness adjacent to dental implants using two cone beam computed tomography (CBCT) systems. Ten 4 x 11 mm Astra Tech implants were placed at varying distances from the cortical bone in two prepared bovine ribs. Both ribs were scanned in a reproducible position using two different CBCT scanners. Ten examiners each carried out four measurements on all 10 implants using the two CBCT systems: vertical distance between the top of the implant and the alveolar crest (IT-AC), and thickness of the cortical bone from the outer surface of the implant threads at 3, 6 and 9 mm from the top of the implant. Ground sections were prepared and bone thickness was measured using a light microscope and a graticule to give a gold standard (GS) measurement. The examiner's measurements were significantly different between CBCT systems for the vertical and thickness dimensions (P<0.001) while measuring the cortical bone thickness between 0.3 and 3.7 mm. Within that range, i-CAT NG measurements were consistently underestimated in comparison with the GS. Accuitomo 3D60 FPD measurements closely approximated the GS, except when cortical bone thickness was <0.8 mm. The mean percentage errors from the GS at 3, 6 and 9 mm measurement levels were 68%, 28% and 18%, respectively, for i-CAT NG and 23%, 5% and 6%, respectively, for Accuitomo 3D60 FPD. Within the limitations of this study, it was concluded that i-CAT NG (voxel size 0.3) may not produce sufficient resolution of the thin cortical bone adjacent to dental implants and, therefore, the measurements may not be accurate; whereas, Accuitomo 3D60 FPD (voxel size 0.125) may produce better resolution and more accurate measurement of the thin bone.

  3. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea.

    PubMed

    Clement, Colin I; Parker, Douglas G A; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics.

  4. Steel Shear Walls, Behavior, Modeling and Design

    NASA Astrophysics Data System (ADS)

    Astaneh-Asl, Abolhassan

    2008-07-01

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  5. Influence of strong perturbations on wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is

  6. Ultrasound measures of tendon thickness: Intra-rater, Inter-rater and Inter-machine reliability.

    PubMed

    Del Baño-Aledo, María Elena; Martínez-Payá, Jacinto Javier; Ríos-Díaz, José; Mejías-Suárez, Silvia; Serrano-Carmona, Sergio; de Groot-Ferrando, Ana

    2017-01-01

    Ultrasound imaging is often used by physiotherapists and other healthcare professionals but the reliability of image acquisition with different ultrasound machines is unknown. The objective was to compare the intra-rater, inter-rater and intermachine reliability of thickness measurements of the plantar fascia (PF), Achilles tendon (AT), patellar tendon (PT) and elbow common extensor tendon (ECET) with musculoskeletal ultrasound imaging (MSUS). Tendon thickness was measured in four anatomical structures (14 participants, 28 images per tendon) by two sonographers and with two different ultrasound machines. Intraclass Correlation Coefficients (ICCs) and Bland-Altman plots were calculated. The standard error of measurement (SEM) and minimum detectable difference (MDD) were calculated. Inter-rater reliability was excellent for AT (ICC=0.98; 95% CI= 0.96-0.99) and very good for PT (ICC=0.85; 95% CI = 0.67-0.93) and ECET (ICC=0.81; 95% CI= 0.72-0.94). Reliability for PF was moderate, with an ICC of 0.63 (CI 95%= 0.20-0.83). Bland-Altman plot for inter-machine reliability showed a mean difference of 1 m for PF measurements and a mean difference of 4 m and 20 m for AT and PT. The relative SEMs were below 7% and the MDCs were below 0.7 mm. The MSUS reliability in measuring thickness of the four tendons is confirmed by the homogeneous readings intra sonographers, between operators and between different machines. Level of evidence: Tendon thickness can be measured reliably on different ultrasound devices, which is an important step forward in the use of this technique in daily clinical practice and research. III.

  7. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  8. The Impact of a Deepwater Wave on a Wall with Finite Vertical Extent

    NASA Astrophysics Data System (ADS)

    Wang, An; Duncan, James H.

    2016-11-01

    The impact of a dispersively focused 2D plunging breaker (average wave frequency 1.15 Hz) on a 2D wall that is 45 cm high and 30 cm thick is studied experimentally. The temporal evolution of the water surface profile upstream of the wall is measured with a cinematic LIF technique using frame rates up to 4,500 Hz. Impact pressures on the wall are measured simultaneously at sample rates up to 900 kHz. The wall is located horizontally 6.41 m from the wave maker in all cases and the submergence of the bottom surface of the wall is varied. It is found that the impact behavior varies dramatically with the wall submergence. When the bottom is submerged by 13.3 cm, a flip-through impact occurs. In this case, the impact evolves without wave breaking and a vertical jet is formed. When the wall is submerged by less than 4.5 cm, small-amplitude components in the wave packet interact with the bottom of the wall before the main crest arrives. Ripples reflected during this interaction modify the behavior of the incoming breaker significantly. When the bottom of the wall is located sufficiently high above the mean water level, the first interaction occurs when the undisturbed wave crest collides with the wall. The highest pressures are observed in this case. The support of the Office of Naval Research is gratefully acknowledged.

  9. The effects of temperature on the lattice barrier for twin wall motion

    NASA Astrophysics Data System (ADS)

    Zreihan, Noam; Faran, Eilon; Shilo, Doron

    2015-07-01

    The sideways motion of twin walls in ferroic materials requires overcoming an intrinsic energy barrier that originates from the periodicity of the crystal structure. Here, we measure the temperature dependence of the lattice barrier in a ferromagnetic Ni-Mn-Ga crystal using the pulsed magnetic field method. Our results reveal a monotonic decrease in the lattice barrier with increasing temperature. Yet, the barrier does not vanish as the temperature approaches the temperature of the martensite to austenite transformation. These findings enable the formulation of an analytical expression that correlates the lattice barrier to the physical properties of the twin wall, such as its thickness and the associated transformation strain. The derived relation provides a good quantitative description of the data measured in Ni-Mn-Ga.

  10. Automatic Clustering and Thickness Measurement of Anatomical Variants of the Human Perirhinal Cortex

    PubMed Central

    Xie, Long; Pluta, John; Wang, Hongzhi; Das, Sandhitsu R.; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Wolk, David A.; Yushkevich, Paul A.

    2015-01-01

    The entorhinal cortex (ERC) and the perirhinal cortex (PRC) are subregions of the medial temporal lobe (MTL) that play important roles in episodic memory representations, as well as serving as a conduit between other neocortical areas and the hippocampus. They are also the sites where neuronal damage first occurs in Alzheimer’s disease (AD). The ability to automatically quantify the volume and thickness of the ERC and PRC is desirable because these localized measures can potentially serve as better imaging biomarkers for AD and other neurodegenerative diseases. However, large anatomical variation in the PRC makes it a challenging area for analysis. In order to address this problem, we propose an automatic segmentation, clustering, and thickness measurement approach that explicitly accounts for anatomical variation. The approach is targeted to highly anisotropic (0.4×0.4×2.0mm3) T2-weighted MRI scans that are preferred by many authors for detailed imaging of the MTL, but which pose challenges for segmentation and shape analysis. After automatically labeling MTL substructures using multi-atlas segmentation, our method clusters subjects into groups based on the shape of the PRC, constructs unbiased population templates for each group, and uses the smooth surface representations obtained during template construction to extract regional thickness measurements in the space of each subject. The proposed thickness measures are evaluated in the context of discrimination between patients with Mild Cognitive Impairment (MCI) and normal controls (NC). PMID:25320785

  11. The Clinical Significance of Separate Measurements of Carotid Arterial Wall to Assess the Risk Factor for Atherosclerosis.

    PubMed

    Kim, Ji-Hoon; Youn, Ho-Joong; Kim, Gee-Hee; Moon, Keon-Woong; Yoo, Ki-Dong; Kim, Chul-Min

    2016-03-01

    Carotid intima-media thickness (CIMT) is associated with several risk factors for atherosclerosis and has been consistently linked to cardiovascular and cerebrovascular disease. The clinical significance of separate measurements of CIMT, which is the sum of the intima (IT) and media thickness (MT), to use as an assessment of risk for atherosclerosis has not yet been fully established. Among 3377 patients who underwent B-mode ultrasound of carotid arteries and coronary angiography in the Medical Department of St. Mary's Hospital from September 2003 to March 2009, 1146 subjects (M:F = 616:530; mean age, 57.7 ± 12.1 years) who were diagnosed with normal coronary arteries were enrolled in this study. IT, MT, and CIMT of the enrolled patients were manually measured using high-frequency ultrasonography (15 MHz linear array transducer). In multivariate logistic regression analysis, age (β = 0.063, p < 0.0001), body mass index (BMI) (β = 0.028, p = 0.018), and hypertension (HTN) (β = 0.046, p = 0.0002) were associated with MT (R(2) = 0.256) and the IT/MT ratio (R(2) = 0.209). Age (β = 0.065, p < 0.0001), BMI (β = 0.025, p = 0.038), hemoglobin A1c (β = 0.045, p = 0.045), and HTN (β = 0.043, p = 0.0006) correlated with mean CIMT (R(2) = 0.230). Age (β = -0.071, p < 0.0001) and BMI (β = -0.046, p = 0.002) were associated with the IT/MT ratio (R(2) = 0.219) on the left side. Age (β = 0.093, p < 0.0001) was related to MT (R(2) = 0.265) and mean CIMT (R(2) = 0.243) on the left side. We noted different atherosclerotic risk factors were related to measurements of the arterial wall in different ways. Therefore, separate measurements of CIMT might be a useful method to assess the risk for atherosclerosis.

  12. In vivo oxygen transport in the normal rabbit femoral arterial wall.

    PubMed Central

    Crawford, D W; Back, L H; Cole, M A

    1980-01-01

    In vivo measurements of tissue oxygen tension were made at 10-micrometer intervals through functioning in situ rabbit femoral arterial walls, using inhalation anesthesia and recessed microcathodes with approximately 4-micrometer external diameters. External environment was controlled with a superfusion well at 30 torr PO2, 35 torr PCO2. Blood pressure, gas tension levels, and blood pH were held within the normal range. Radial PO2 measurements closely fit a mathematical model for unidimensional diffusion into a thick-walled artery with uniform oxygen consumption, and the distances traversed fit measured dimensions of quick-frozen in vivo sections. Using standard values of diffusion and solubility coefficients, mean calculated medial oxygen consumption was 99 nl0/ml-s. Mural oxygen consumption appeared to be related linearly to mean tangential wall stress. Differences in experimental design and technique were compared with previous in vivo and in vitro measurements of wall oxygenation, and largely account for the varying results obtained. Control of environment external to the artery, and maintenance of normally flowing blood in the lumen in vivo appeared critical to an understanding of mural oxygenation in life. If the conditions of this experiment prevailed in arteries with thicker avascular layers, PO2 could have been 20 torr at approximately 156 micrometer and 10 torr at 168 micrometer from blood (average values). Images PMID:7410554

  13. Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics.

    PubMed

    Kim, Seokhan; Na, Jihoon; Kim, Myoung Jin; Lee, Byeong Ha

    2008-04-14

    We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the phase index related with the thickness of the sample. To relate these, two novel methods were devised. In the first method, the dispersion-induced broadening of the low-coherence envelop signal was utilized, and in the second method the frequency derivative of the phase index was directly obtained by taking the confocal measurements at several wavelengths. The measurements were made with eight different samples; B270, CaF2, two of BK7, two of fused silica, cover glass, and cigarette cover film. The average measurement errors of the first and the second methods were 0.123% and 0.061% in the geometrical thickness, 0.133% and 0.066% in the phase index, and 0.106% and 0.057% in the group index, respectively.

  14. The Relationship between OCT-measured Central Retinal Thickness and Visual Acuity in Diabetic Macular Edema

    PubMed Central

    2008-01-01

    Objective To compare optical coherence tomography (OCT)-measured retinal thickness and visual acuity in eyes with diabetic macular edema (DME) both before and after macular laser photocoagulation. Design Cross-sectional and longitudinal study. Participants 210 subjects (251 eyes) with DME enrolled in a randomized clinical trial of laser techniques. Methods Retinal thickness was measured with OCT and visual acuity was measured with the electronic-ETDRS procedure. Main Outcome Measures OCT-measured center point thickness and visual acuity Results The correlation coefficients for visual acuity versus OCT center point thickness were 0.52 at baseline and 0.49, 0.36, and 0.38 at 3.5, 8, and 12 months post-laser photocoagulation. The slope of the best fit line to the baseline data was approximately 4.4 letters (95% C.I.: 3.5, 5.3) better visual acuity for every 100 microns decrease in center point thickness at baseline with no important difference at follow-up visits. Approximately one-third of the variation in visual acuity could be predicted by a linear regression model that incorporated OCT center point thickness, age, hemoglobin A1C, and severity of fluorescein leakage in the center and inner subfields. The correlation between change in visual acuity and change in OCT center point thickening 3.5 months after laser treatment was 0.44 with no important difference at the other follow-up times. A subset of eyes showed paradoxical improvements in visual acuity with increased center point thickening (7–17% at the three time points) or paradoxical worsening of visual acuity with a decrease in center point thickening (18%–26% at the three time points). Conclusions There is modest correlation between OCT-measured center point thickness and visual acuity, and modest correlation of changes in retinal thickening and visual acuity following focal laser treatment for DME. However, a wide range of visual acuity may be observed for a given degree of retinal edema and paradoxical

  15. The Use of an Intra-Articular Depth Guide in the Measurement of Partial Thickness Rotator Cuff Tears

    PubMed Central

    Carroll, Michael J.; More, Kristie D.; Sohmer, Stephen; Nelson, Atiba A.; Sciore, Paul; Boorman, Richard; Hollinshead, Robert; Lo, Ian K. Y.

    2013-01-01

    Purpose. The purpose of this study was to compare the accuracy of the conventional method for determining the percentage of partial thickness rotator cuff tears to a method using an intra-articular depth guide. The clinical utility of the intra-articular depth guide was also examined. Methods. Partial rotator cuff tears were created in cadaveric shoulders. Exposed footprint, total tendon thickness, and percentage of tendon thickness torn were determined using both techniques. The results from the conventional and intra-articular depth guide methods were correlated with the true anatomic measurements. Thirty-two patients were evaluated in the clinical study. Results. Estimates of total tendon thickness (r = 0.41, P = 0.31) or percentage of thickness tears (r = 0.67, P = 0.07) using the conventional method did not correlate well with true tendon thickness. Using the intra-articular depth guide, estimates of exposed footprint (r = 0.92, P = 0.001), total tendon thickness (r = 0.96, P = 0.0001), and percentage of tendon thickness torn (r = 0.88, P = 0.004) correlated with true anatomic measurements. Seven of 32 patients had their treatment plan altered based on the measurements made by the intra-articular depth guide. Conclusions. The intra-articular depth guide appeared to better correlate with true anatomic measurements. It may be useful during the evaluation and development of treatment plans for partial thickness articular surface rotator cuff tears. PMID:23533789

  16. Single-wall nanohorn structure and distribution of incorporated materials

    NASA Astrophysics Data System (ADS)

    Maigne, Alan; Gloter, Alexandre; Ajima, Kumiko; Colliex, Christian; Iijima, Sumio

    2005-03-01

    Single-wall carbon nanohorns (SWNHs) are unique spherical-aggregates of single-wall carbon quasi-nanotubes. So far, the observable area has been limited to the aggregate surfaces. We studied core-region structure with TEM using thickness measurement method, EELS, and EDS, and found that carbon density was uniform over the whole aggregate. This result allows to modelize the core-region and to clarify previous models of SWNHs. We used same tools to investigate the incorporation of materials such as fullerenes or platinium compounds. We found that particles can even be incorporated in the core-region and that their distribution in the aggregate depends on their concentration. The information available with these models should be useful in the study of SWNH applications to, for example, drug delivery system.

  17. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    PubMed Central

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-01-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species. PMID:27302853

  18. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  19. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    NASA Astrophysics Data System (ADS)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  20. The validation of a swimming turn wall-contact-time measurement system: a touchpad application reliability study.

    PubMed

    Brackley, Victoria; Ball, Kevin; Tor, Elaine

    2018-05-12

    The effectiveness of the swimming turn is highly influential to overall performance in competitive swimming. The push-off or wall contact, within the turn phase, is directly involved in determining the speed the swimmer leaves the wall. Therefore, it is paramount to develop reliable methods to measure the wall-contact-time during the turn phase for training and research purposes. The aim of this study was to determine the concurrent validity and reliability of the Pool Pad App to measure wall-contact-time during the freestyle and backstroke tumble turn. The wall-contact-times of nine elite and sub-elite participants were recorded during their regular training sessions. Concurrent validity statistics included the standardised typical error estimate, linear analysis and effect sizes while the intraclass correlating coefficient (ICC) was used for the reliability statistics. The standardised typical error estimate resulted in a moderate Cohen's d effect size with an R 2 value of 0.80 and the ICC between the Pool Pad and 2D video footage was 0.89. Despite these measurement differences, the results from this concurrent validity and reliability analyses demonstrated that the Pool Pad is suitable for measuring wall-contact-time during the freestyle and backstroke tumble turn within a training environment.

  1. Effect of improper scan alignment on retinal nerve fiber layer thickness measurements using Stratus optical coherence tomograph.

    PubMed

    Vizzeri, Gianmarco; Bowd, Christopher; Medeiros, Felipe A; Weinreb, Robert N; Zangwill, Linda M

    2008-08-01

    Misalignment of the Stratus optical coherence tomograph scan circle placed by the operator around the optic nerve head (ONH) during each retinal nerve fiber layer (RNFL) examination can affect the instrument reproducibility and its theoretical ability to detect true structural changes in the RNFL thickness over time. We evaluated the effect of scan circle placement on RNFL measurements. Observational clinical study. Sixteen eyes of 8 normal participants were examined using the Stratus optical coherence tomograph Fast RNFL thickness acquisition protocol (software version 4.0.7; Carl Zeiss Meditec, Dublin, CA). Four consecutive images were taken by the same operator with the circular scan centered on the optic nerve head. Four images each with the scan displaced superiorly, inferiorly, temporally, and nasally were also acquired. Differences in average and sectoral RNFL thicknesses were determined. For the centered scans, the coefficients of variation (CV) and the intraclass correlation coefficient for the average RNFL thickness measured were calculated. When the average RNFL thickness of the centered scans was compared with the average RNFL thickness of the displaced scans individually using analysis of variance with post-hoc analysis, no difference was found between the average RNFL thickness of the nasally (105.2 microm), superiorly (106.2 microm), or inferiorly (104.1 microm) displaced scans and the centered scans (106.4 microm). However, a significant difference (analysis of variance with Dunnett's test: F=8.82, P<0.0001) was found between temporally displaced scans (115.8 microm) and centered scans. Significant differences in sectoral RNFL thickness measurements were found between centered and each displaced scan. The coefficient of variation for average RNFL thickness was 1.75% and intraclass correlation coefficient was 0.95. In normal eyes, average RNFL thickness measurements are robust and similar with significant superior, inferior, and nasal scan

  2. Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.

    1995-01-01

    A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.

  3. Hyaline cartilage thickness in radiographically normal cadaveric hips: comparison of spiral CT arthrographic and macroscopic measurements.

    PubMed

    Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis

    2007-02-01

    To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P < .001) compared with the anatomic reference standard. Ninety-five percent of the differences between CT arthrography and anatomic values ranged from -1.34 to 0.74 mm. The difference between mean cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P < .001). Changes in cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral

  4. Method of measuring material properties of rock in the wall of a borehole

    DOEpatents

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  5. Method of measuring material properties of rock in the wall of a borehole

    DOEpatents

    Overmier, D.K.

    1984-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  6. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  7. Right ventricular relative wall thickness as a predictor of outcomes and of right ventricular reverse remodeling for patients with pulmonary hypertension.

    PubMed

    Sano, Hiroyuki; Tanaka, Hidekazu; Motoji, Yoshiki; Fukuda, Yuko; Mochizuki, Yasuhide; Hatani, Yutaka; Matsuzoe, Hiroki; Hatazawa, Keiko; Shimoura, Hiroyuki; Ooka, Junichi; Ryo-Koriyama, Keiko; Nakayama, Kazuhiko; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-Ichi

    2017-03-01

    Mid-term right ventricular (RV) reverse remodeling after treatment in patients with pulmonary hypertension (PH) is associated with long-term outcome as well as baseline RV remodeling. However, baseline factors influencing mid-term RV reverse remodeling after treatment and its prognostic capability remain unclear. We studied 54 PH patients. Mid-term RV remodeling was assessed in terms of the RV area, which was traced planimetrically at the end-systole (RVESA). RV reverse remodeling was defined as a relative decrease in the RVESA of at least 15% at 10.2 ± 9.4 months after treatment. Long-term follow-up was 5 years. Adverse events occurred in ten patients (19%) and mid-term RV reverse remodeling after treatment was observed in 37 (69%). Patients with mid-term RV reverse remodeling had more favorable long-term outcomes than those without (log-rank: p = 0.01). Multivariate logistic regression analysis showed that RV relative wall thickness (RV-RWT), as calculated as RV free-wall thickness/RV basal linear dimension at end-diastole, was an independent predictor of mid-term RV reverse remodeling (OR 1.334; 95% CI, 1.039-1.713; p = 0.03). Moreover, patients with RV-RWT ≥0.21 showed better long-term outcomes than did those without (log-rank p = 0.03), while those with RV-RWT ≥0.21 and mid-term RV reverse remodeling had the best long-term outcomes. Patients with RV-RWT <0.21 and without mid-term RV reverse remodeling, on the other hand, had worse long-term outcomes than other sub-groups. In conclusions, RV-RWT could predict mid-term RV reverse remodeling after treatment in PH patients, and was associated with long-term outcomes. Our finding may have clinical implications for better management of PH patients.

  8. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation

    PubMed Central

    Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.

    2012-01-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130

  9. Investigation of thickness uniformity of thin metal films by using α-particle energy loss method and successive scanning measurements

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xu, Jiayun; Bai, Lixin

    2017-03-01

    The metal films are widely used in the Inertial Confinement Fusion (ICF) experiments to obtain the radiation opacity, and the accuracy of the measuring results mainly depends on the accuracy of the film thickness and thickness uniformity. The traditional used measuring methods all have various disadvantages, the optical method and stylus method cannot provide mass thickness which reflects the internal density distribution of the films, and the weighing method cannot provide the uniformity of the thickness distribution. This paper describes a new method which combines the α-particle energy loss (AEL) method and the successive scanning measurements to obtain the film thickness and thickness uniformity. The measuring system was partly installed in the vacuum chamber, and the relationship of chamber pressure and energy loss caused by the residual air in the vacuum chamber was studied for the source-to-detector distance ranging from 1 to 5 cm. The results show that the chamber pressure should be less than 10 Pa for the present measuring system. In the process of measurement, the energy spectrum of α-particles transmitted through each different measuring point were obtained, and then recorded automatically by a self-developed multi-channel analysis software. At the same time, the central channel numbers of the spectrum (CH) were also saved in a text form document. In order to realize the automation of data processing and represent the thickness uniformity visually in a graphic 3D plot, a software package was developed to convert the CH values into film thickness and thickness uniformity. The results obtained in this paper make the film thickness uniformity measurements more accurate and efficient in the ICF experiments.

  10. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimi, Soufiene; Beigang, René; Klier, Jens

    2016-07-11

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wetmore » spray in the painting process.« less

  11. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  12. Comparison between high-frequency ultrasonography and histological assessment reveals weak correlation for measurements of scar tissue thickness.

    PubMed

    Agabalyan, Natacha A; Su, Samuel; Sinha, Sarthak; Gabriel, Vincent

    2017-05-01

    Current methods for evaluating scar tissue volume following burns have shortcomings. The Vancouver Burn Scar scale is subjective, leading to a high variability in assessment. Although histological assessment via punch biopsy can discriminate between the different layers of skin, such an approach is invasive, inefficient, and detrimental to patient experience and wound healing. This study investigates the accuracy of high-frequency ultrasonography, a non-invasive alternative to histology, for measuring dermal and epidermal thickness in scar tissue. Scar thicknesses of 10 patients following burns were assessed using a 2-D high-frequency ultrasound probe. The scars were then biopsied using a circular 4mm punch biopsy for histological assessment. Dermal, epidermal, and total thickness of the scar tissue was measured using ultrasound and histology, and correlations between the two measurements were calculated. There was not a strong correlation between ultrasound measurement and histological analysis for epidermal, dermal, and total thickness (Spearman's rank correlation of -0.1223, -0.6242, and -0.6242) of scar tissue. Measurements of scar thickness using high-frequency ultrasonography did not recapitulate the in vivo dermal, epidermal and total thickness. Based on these findings, strategies for further optimization of 2-D ultrasonography is discussed before clinical and research use. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  13. Design, construction and performance evaluation of the target tissue thickness measurement system in intraoperative radiotherapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Yazdani, Mohammad Reza; Setayeshi, Saeed; Arabalibeik, Hossein; Akbari, Mohammad Esmaeil

    2017-05-01

    Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.

  14. Signal processing and analysis for copper layer thickness measurement within a large variation range in the CMP process.

    PubMed

    Li, Hongkai; Zhao, Qian; Lu, Xinchun; Luo, Jianbin

    2017-11-01

    In the copper (Cu) chemical mechanical planarization (CMP) process, accurate determination of a process reaching the end point is of great importance. Based on the eddy current technology, the in situ thickness measurement of the Cu layer is feasible. Previous research studies focus on the application of the eddy current method to the metal layer thickness measurement or endpoint detection. In this paper, an in situ measurement system, which is independently developed by using the eddy current method, is applied to the actual Cu CMP process. A series of experiments are done for further analyzing the dynamic response characteristic of the output signal within different thickness variation ranges. In this study, the voltage difference of the output signal is used to represent the thickness of the Cu layer, and we can extract the voltage difference variations from the output signal fast by using the proposed data processing algorithm. The results show that the voltage difference decreases as thickness decreases in the conventional measurement range and the sensitivity increases at the same time. However, it is also found that there exists a thickness threshold, and the correlation is negative, when the thickness is more than the threshold. Furthermore, it is possible that the in situ measurement system can be used within a larger Cu layer thickness variation range by creating two calibration tables.

  15. High resolution thickness measurements of ultrathin Si:P monolayers using weak localization

    NASA Astrophysics Data System (ADS)

    Hagmann, Joseph A.; Wang, Xiqiao; Namboodiri, Pradeep; Wyrick, Jonathan; Murray, Roy; Stewart, M. D.; Silver, Richard M.; Richter, Curt A.

    2018-01-01

    The key building blocks for the fabrication of devices based on the deterministic placement of dopants in silicon using scanning tunneling microscopy (STM) hydrogen lithography are the formation of well-defined dopant delta-layers and the overgrowth of high quality crystalline Si. To develop these capabilities, it is of critical importance to quantify dopant movement in the sub-nanometer regime. To this end, we investigate Si:P delta-layer samples produced by fully exposing a Si surface to PH3 prior to Si encapsulation with dramatically different levels of dopant confinement. We examine the effect of delta layer confinement on the weak localization signal in parallel and perpendicular magnetic fields and extract the delta-layer thickness from fits to the Hikami-Larkin-Nagaoka equation. We find good agreement with secondary ion mass spectroscopy measurements and demonstrate the applicability of this method in the sub-nanometer thickness regime. Our analysis serves as detailed instruction for the determination of the conducting layer thickness of a Si:P delta-layer by means of a high-throughput, nondestructive electrical transport measurement.

  16. Abdominal Subcutaneous Fat Thickness Measured by Ultrasonography Correlates with Hyperlipidemia and Steatohepatitis in Obese Children.

    PubMed

    Lee, Sung Hyun; Kim, Dongwan; Baek, Min Young; Tchah, Hann; Kim, Yeon Sun; Ryoo, Eell; Kim, Yun Mi

    2015-06-01

    The aim of this study is to evaluate the relationship between abdominal subcutaneous fat thickness measured by ultrasonography (US) and serum lipid profile and liver transaminases in obese children. One hundred and sixty-six children diagnosed with obesity from May 2001 to December 2013 were included in this study. Data on serum lipid profile and liver transaminases were collected from clinical records. Abdominal subcutaneous fat thickness and grade of hepatic steatosis were evaluated by US. Of the 166 children, 107 were diagnosed with hepatic steatosis by US, 46 with grade I, 56 with grade II, and five children with grade III. According to the grade of hepatic steasosis, the average values of midline abdominal subcutaneous fat thickness and right flank abdominal subcutaneous fat thickness measured 2.9±0.8 cm and 1.9±0.7 cm in the normal group, 3.3±0.8 cm and 2.0±0.7 cm in grade I, 3.8±0.8 cm and 2.3±0.8 cm in grade II, and 4.1±0.8 cm and 2.8±1.4 cm in grade III, respectively. Abdominal subcutaneous fat thickness correlated with grade of hepatic steatosis (p<0.01). In addition, abdominal subcutaneous fat thickness correlated with concentration of serum lipids and liver transaminases in the age group of 12-14 years (p<0.01). Abdominal subcutaneous fat thickness measured by US can be used as a reliable predictor of possible hyperlipidemia and steatohepatitis in children, especially during the adolescent stage.

  17. A Procedure to Measure the in-Situ Hygrothermal Behavior of Earth Walls

    PubMed Central

    Chabriac, Pierre-Antoine; Fabbri, Antonin; Morel, Jean-Claude; Laurent, Jean-Paul; Blanc-Gonnet, Joachim

    2014-01-01

    Rammed earth is a sustainable material with low embodied energy. However, its development as a building material requires a better evaluation of its moisture-thermal buffering abilities and its mechanical behavior. Both of these properties are known to strongly depend on the amount of water contained in wall pores and its evolution. Thus the aim of this paper is to present a procedure to measure this key parameter in rammed earth or cob walls by using two types of probes operating on the Time Domain Reflectometry (TDR) principle. A calibration procedure for the probes requiring solely four parameters is described. This calibration procedure is then used to monitor the hygrothermal behavior of a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its manufacture, and submitted to insulated, natural convection and forced convection conditions. These measurements underline the robustness of the calibration procedure over a large range of water content, even if the wall is submitted to quite important temperature variations. They also emphasize the importance of gravity on water content heterogeneity when the saturation is high, as well as the role of liquid-to-vapor phase change on the thermal behavior. PMID:28788603

  18. Optical Thin Film Thickness Measurement for the Single Atom Microscope

    NASA Astrophysics Data System (ADS)

    Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team

    2017-09-01

    The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.

  19. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  20. SU-E-T-571: Prostate IMRT QA: Prediction of the Range of Rectal NTCP Using a 2D Field Approach Based on Variations of the Rectal Wall Motion and Thickness.

    PubMed

    Grigorov, G; Chow, J; Foster, K

    2012-06-01

    The aims of this study is to (1) introduce a 2D field of possible rectal normal tissue complication probability (NTCP) in prostate intensity modulated radiotherapy (IMRT) plan, so that based on a given prescribed dose the rectal NTCP is merely a function of the rectal wall thickness and rectal motion; and (2) separate the 2D field of rectal NTCP into area of low risk and area of high risk for rectal toxicity < Grade II, based on the threshold rectal NTCP. The 2D field of NTCP model was developed using ten randomly selected prostate IMRT plans. The clinical rectal geometry was initially represented by the cylindrical contour in the treatment planning system. Different combinations of rectal motions, rectal wall thicknesses, planning target volume margins and prescribed doses were used to determine the NTCP in prostate IMRT plans. It was found that the functions bordering the 2D field for the given AP, LR and SI direction can be described as exponential, quadratic and linear equations, respectively. A ratio of the area of 2D field containing data of the low risk NTCP to the entire area of the field was introduced and calculated. Although our method is based on the Kutcher's dose response model and published tissue parameters, other mathematical models can be used in our approach. The 2D field of rectal NTCP is useful to estimate the rectal NTCP range in the prostate pre-treatment and treatment QA. Our method can determine the patient's threshold immobilization for a given rectal wall thickness so that prescribed dose can be delivered to the prostate to avoid rectal complication. Our method is also applicable to multi-phase prostate IMRT, and can be adapted to any treatment planning systems. © 2012 American Association of Physicists in Medicine.

  1. Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kazoe, Yutaka; Sato, Yohei

    A nanoscale laser induced fluorescence imaging was proposed by using fluorescent dye and the evanescent wave with total internal reflection of a laser beam. The present study focused on the two-dimensional measurement of zeta-potential at the microchannel wall, which is an electrostatic potential at the wall surface and a dominant parameter of electroosmotic flow. The evanescent wave, which decays exponentially from the wall, was used as an excitation light of the fluorescent dye. The fluorescent intensity detected by a CCD camera is closely related to the zeta-potential. Two kinds of fluorescent dye solution at different ionic concentrations were injected into a T-shaped microchannel, and formed a mixing flow field in the junction area. The two-dimensional distribution of zeta-potential at the microchannel wall in the pressure-driven flow field was measured. The obtained zeta-potential distribution has a transverse gradient toward the mixing flow field and was changed by the difference in the averaged velocity of pressure-driven flow. To understand the ion motion in the mixing flow field, the three-dimensional flow structure was analyzed by the velocity measurement using micron-resolution particle image velocimetry and the numerical simulation. It is concluded that the two-dimensional distribution of zeta-potential at the microchannel wall was dependent on the ion motion in the flow field, which was governed by the convection and molecular diffusion.

  2. Ice thickness measurements over Pine Island and Thwaites Glaciers

    NASA Astrophysics Data System (ADS)

    Kanagaratnam, P.; Casassa, G.; Thomas, R.; Gogineni, S.

    2003-04-01

    The Pine Island and Thwaites glaciers (PIG and TG) are the fastest measured glaciers in Antarctica and have been identified as the part of the West Antarctica ice sheet most prone to instability. However, the reasons for the rapid retreat of these glaciers have not been resolved due to insufficient data. In particular, the role of ice shelves in regulating the ice discharge of these glaciers has been a point of contention in the glaciology community. To help resolve this issue the Centro de Estudios Científicos (CECS) and NASA with the support of the Armada de Chile conducted four airborne remote sensing missions over the PIG/TG regions. In addition, two missions were conducted over the Antarctic Peninsula. The University of Kansas operated its Coherent Radar Depth Sounder (CORDS) to measure the thickness of the ice sheet in these regions. CORDS is a pulse-compression radar that has proven its utility in the glaciological surveys over Greenland. The combination of pulse compression and coherent processing has allowed us to obtain high-sensitivity and high-resolution in the along-track direction while keeping the transmitted power low. CORDS transmits a 140-160 MHz chirp signal with 200 Watts of peak power and has a vertical resolution of about 5 meters in ice. We used a four-element dipole array on either side of the wing to transmit and receive the radar signals. We successfully mapped the thickness of the ice sheet over 99% of the PIG/TG flight lines. In this paper we will provide a description of the radar, experiment and signal processing. We will also discuss samples results of the ice thickness, basal conditions and surface roughness.

  3. Consistency of corneal sublayer thickness measurements using Fourier-domain optical coherence tomography after phacoemulsification.

    PubMed

    López-Miguel, Alberto; Calabuig-Goena, María; Marqués-Fernández, Victoria; Fernández, Itziar; Alió, Jorge L; Maldonado, Miguel J

    2016-11-04

    To assess the reliability of corneal epithelial thickness (CET), nonepithelial central corneal thickness (NECCT), and central corneal thickness (CCT) measurements using Cirrus high-definition optical coherence tomography (HD-OCT) in patients who did and did not undergo cataract surgery. Forty patients who underwent uneventful phacoemulsification and 40 healthy participants were recruited to evaluate the intraobserver repeatability and interobserver reproducibility of CET, NECCT, and CCT measurements using Cirrus HD-OCT. To analyze repeatability, one examiner obtained 5 consecutive scans in each participant; for interobserver reproducibility, another examiner randomly obtained another scan. Within-subject standard deviation, coefficient of variation (CV), limits of agreement, and intraclass correlation coefficient (ICC) data were obtained. For intraobserver repeatability, the intrasession CV (CVw) and ICC values of the CET in the operated and nonoperated groups were 3.7% and 0.80 and 3.8% and 0.73, respectively; for NECCT, 0.7% and 0.98 and 0.8% and 0.97; and for CCT, 0.6% and 0.99 and 0.7% and 0.98. For interobserver reproducibility, the CVw and ICC values for the CET in the operated and nonoperated groups were 2.6% and 0.82 and 2.3% and 0.62, respectively; for NECCT, 0.7% and 0.98 and 0.5% and 0.98; and for CCT, 0.5% and 0.99 and 0.4% and 0.99. The corneal sublayer thickness can be measured reliably using Cirrus HD-OCT in patients who underwent cataract surgery and elderly participants; however, the CET consistency is poorer than the NECCT. Corneal epithelial thickness modifications exceeding 4% reflect true thickness changes instead of random error variations using HD-OCT.

  4. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  5. Terahertz reflection interferometry for automobile paint layer thickness measurement

    NASA Astrophysics Data System (ADS)

    Rahman, Aunik; Tator, Kenneth; Rahman, Anis

    2015-05-01

    Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive

  6. Measurements of Gas-Wall Partitioning of Oxidized Species in Environmental Smog Chambers and Teflon Sampling Lines

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.

    2015-12-01

    Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ­ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.

  7. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  8. Double wall vacuum tubing and method of manufacture

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1989-01-01

    An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.

  9. Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall

    NASA Astrophysics Data System (ADS)

    Hotta, Masaya; Ogawa, Daisuke; Nakamura, Keiji; Sugai, Hideo

    2018-04-01

    A microwave resonator probe called a curling probe (CP) was applied to in situ monitoring of a dielectric layer deposited on a chamber wall during plasma processing. The resonance frequency of the CP was analytically found to shift in proportion to the dielectric layer thickness; the proportionality constant was determined from a comparison with the finite-difference time-domain (FDTD) simulation result. Amorphous carbon layers deposited in acetylene inductively coupled plasma (ICP) discharge were monitored using the CP. The measured resonance frequency shift dictated the carbon layer thickness, which agreed with the results from the surface profiler and ellipsometry.

  10. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  11. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOEpatents

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  12. Flat-walled multilayered anechoic linings: Optimization and application

    NASA Astrophysics Data System (ADS)

    Xu, Jingfeng; Buchholz, Jörg M.; Fricke, Fergus R.

    2005-11-01

    The concept of flat-walled multilayered absorbent linings for anechoic rooms was proposed three decades ago. Flat-walled linings have the advantage of being less complicated and, hence, less costly to manufacture and install than the individual units such as wedges. However, there are difficulties in optimizing the design of such absorbent linings. In the present work, the design of a flat-walled multilayered anechoic lining that targeted a 250 Hz cut-off frequency and a 300 mm maximum lining thickness was first optimized using an evolutionary algorithm. Sixteen of the most commonly used commercial fibrous building insulation materials available in Australia were investigated and fourteen design options (i.e., material combinations) were found by the evolutionary algorithm. These options were then evaluated in accordance with their costs and measured acoustic absorption performances. Finally, the completed anechoic room, where the optimized design was applied, was qualified and the results showed that a large percentage (75%-85%) of the distance between the sound source and the room boundaries, on the traverses made, were anechoic.

  13. Association of digital cushion thickness with sole temperature measured with the use of infrared thermography.

    PubMed

    Oikonomou, G; Trojacanec, P; Ganda, E K; Bicalho, M L S; Bicalho, R C

    2014-07-01

    The main objective of this study was to investigate the association between digital cushion thickness and sole temperature measured by infrared thermography. Data were collected from 216 lactating Holstein cows at 4 to 10d in milk (DIM). Cows were locomotion scored and sole temperature was measured after claw trimming (a minimum delay of 3 min was allowed for the hoof to cool) using an infrared thermography camera. Temperature was measured at the typical ulcer site of the lateral digit of the left hind foot. Immediately after the thermographic image was obtained, the thickness of the digital cushion was measured by ultrasonography. Rumen fluid samples were collected with a stomach tube and sample pH was measured immediately after collection. Additionally, a blood sample was obtained and used for measurements of serum concentrations of β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), and haptoglobin. To evaluate the associations of digital cushion thickness with sole temperature, a linear regression model was built using the GLIMMIX procedure in SAS software (SAS Institute Inc., Cary, NC). Sole temperature was the response variable, and digital cushion thickness quartiles, locomotion score group, rumen fluid pH, rumen fluid sample volume, environmental temperature, age in days, and serum levels of NEFA, BHBA, and haptoglobin were fitted in the model. Only significant variables were retained in the final model. Simple linear regression scatter plots were used to illustrate associations between sole temperature (measured by infrared thermography at the typical ulcer site) and environmental temperature and between NEFA and BHBA serum levels and haptoglobin. One-way ANOVA was used to compare rumen fluid pH for different locomotion score groups and for different digital cushion quartiles. Results from the multivariable linear regression model showed that sole temperature increased as locomotion scores increased and decreased as digital cushion thickness

  14. Measurement of Thicknesses of High-κ Gate-Dielectric Films on Silicon by Angle-Resolved XPS

    NASA Astrophysics Data System (ADS)

    Powell, Cedric; Smekal, Werner; Werner, Wolfgang

    2006-03-01

    We report on the use of a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) in measuring thicknesses of candidate high-κ gate-dielectric materials (HfO2, HfSiO4, ZrO2, and ZrSiO4) on silicon by angle-resolved XPS. For conventional measurements of film thicknesses, effective attenuation lengths (EALs) have been computed for these materials from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs are believed to be more accurate than similar EALs obtained from the transport approximation because realistic cross sections are used for both elastic and inelastic scattering in the film and substrate materials. We also present ``calibration curves'' showing calculated ratios of selected photoelectron intensities from thin films of HfO2 on Si with an intermediate SiO2 layer. These ratios provide a simple and convenient means of determining the thicknesses of SiO2 and HfO2 films for particular measurement conditions.

  15. Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.

    PubMed

    Paës, Gabriel; Habrant, Anouck; Ossemond, Jordane; Chabbert, Brigitte

    2017-01-01

    The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.

  16. [Macular thickness measured by optical coherence tomography in pseudoaphakic eyes with clear vs yellow implant].

    PubMed

    Chamorro, E; Bonnin-Arias, C; Pérez-Carrasco, M J; Alvarez-Rementería, L; Villa-Collar, C; Armadá-Maresca, F; Sánchez-Ramos, C

    2014-04-01

    To study the use of optical coherence tomography (OCT), for measuring the macular thickness variations produced over time in elderly pseudophakic subjects implanted with a clear intraocular lens (IOL) in one eye, and a yellow IOL in the other eye. Macular thickness measurements were obtained in the 36 eyes of 18 subjects over 65 years, with cataracts surgically removed from both eyes and implanted with different absorbance (clear and yellow) IOLs in 2 separate surgeries. Stratus-OCT was used to determine the macular thickness in 2 sessions with 5 years of difference. After 5 years of follow-up, the eyes implanted with clear IOLs revealed a significant decrease in macular thickness. However, in eyes implanted with yellow IOLs the macular thickness remained stable. The mean overall decrease in macular thickness in eyes implanted with clear IOLs was 5 ± 8 μm (P=.02), and foveal thickness reduction was 10 ± 17 μm (P=.02). The macular thickness changes produced in eyes implanted with a yellow IOL differ from those with a clear IOL. These observation point to a possible protective effect of yellow IOL against the harmful effects of light in elderly pseudophakic subjects. However, studies with a longer follow-up are still needed to confirm that the protection provided by this IOL model is clinically significant. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  17. Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Agarwal, Karuna; Katz, Joseph

    2017-11-01

    On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.

  18. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    PubMed

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. 3D cardiac wall thickening assessment for acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Chan, B. T.; Lim, E.; Liew, Y. M.

    2017-06-01

    Acute myocardial infarction (AMI) is the most severe form of coronary artery disease leading to localized myocardial injury and therefore irregularities in the cardiac wall contractility. Studies have found very limited differences in global indices (such as ejection fraction, myocardial mass and volume) between healthy subjects and AMI patients, and therefore suggested regional assessment. Regional index, specifically cardiac wall thickness (WT) and thickening is closely related to cardiac function and could reveal regional abnormality due to AMI. In this study, we developed a 3D wall thickening assessment method to identify regional wall contractility dysfunction due to localized myocardial injury from infarction. Wall thickness and thickening were assessed from 3D personalized cardiac models reconstructed from cine MRI images by fitting inscribed sphere between endocardial and epicardial wall. The thickening analysis was performed in 5 patients and 3 healthy subjects and the results were compared against the gold standard 2D late-gadolinium-enhanced (LGE) images for infarct localization. The notable finding of this study is the highly accurate estimation and visual representation of the infarct size and location in 3D. This study provides clinicians with an intuitive way to visually and qualitatively assess regional cardiac wall dysfunction due to infarction in AMI patients.

  20. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    NASA Astrophysics Data System (ADS)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  1. A numerical study of multiple adiabatic shear bands evolution in a 304LSS thick-walled cylinder

    NASA Astrophysics Data System (ADS)

    Liu, Mingtao; Hu, Haibo; Fan, Cheng; Tang, Tiegang

    2017-01-01

    The self-organization of multiple shear bands in a 304L stainless steel(304LSS) thick-walled cylinder (TWC) was numerically studied. The microstructures of material lead to the non-uniform distribution of the local yield stress, which play a key role in the formation of spontaneous shear localization. We introduced a probability factor satisfied the Gaussian distribution into the macroscopic constitutive relationship to describe the non-uniformity of local yield stress. Using the probability factor, the initiation and propagation of multiple shear bands in TWC were numerically replicated in our 2D FEM simulation. Experimental results in the literature indicated that the machined surface at the internal boundary of a 304L stainless steel cylinder provides a work-hardened layer (about 20˜30μm) which has significantly different microstructures from the base material. The work-hardened layer leads to the phenomenon that most shear bands propagate along a given direction, clockwise or counterclockwise. In our simulation, periodical single direction spiral perturbations were applied to describe the grain orientation in the work-hardened layer, and the single direction spiral pattern of shear bands was successfully replicated.

  2. Differential assembly of alpha- and gamma-filagenins into thick filaments in Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Liu, F.; Ortiz, I.; Hutagalung, A.; Bauer, C. C.; Cook, R. G.; Epstein, H. F.

    2000-01-01

    Muscle thick filaments are highly organized supramolecular assemblies of myosin and associated proteins with lengths, diameters and flexural rigidities characteristic of their source. The cores of body wall muscle thick filaments of the nematode Caenorhabditis elegans are tubular structures of paramyosin sub-filaments coupled by filagenins and have been proposed to serve as templates for the assembly of native thick filaments. We have characterized alpha- and gamma-filagenins, two novel proteins of the cores with calculated molecular masses of 30,043 and 19,601 and isoelectric points of 10.52 and 11.49, respectively. Western blot and immunoelectron microscopy using affinity-purified antibodies confirmed that the two proteins are core components. Immunoelectron microscopy of the cores revealed that they assemble with different periodicities. Immunofluorescence microscopy showed that alpha-filagenin is localized in the medial regions of the A-bands of body wall muscle cells whereas gamma-filagenin is localized in the flanking regions, and that alpha-filagenin is expressed in 1.5-twofold embryos while gamma-filagenin becomes detectable only in late vermiform embryos. The expression of both proteins continues throughout later stages of development. C. elegans body wall muscle thick filaments of these developmental stages have distinct lengths. Our results suggest that the differential assembly of alpha- and gamma-filagenins into thick filaments of distinct lengths may be developmentally regulated.

  3. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  4. Bladder wall thickness in women with symptoms of overactive bladder and detrusor overactivity: Results from the randomised, placebo-controlled shrink study.

    PubMed

    Robinson, Dudley; Oelke, Matthias; Khullar, Vik; Wijkstra, Hessel; Tretter, Reiner; Stow, Bridget; Compion, Gerhard; Tubaro, Andrea

    2016-09-01

    Measurement of bladder wall thickness (BWT) by transvaginal ultrasound (TVUS) may be a less invasive method to diagnose overactive bladder (OAB) or detrusor overactivity (DO) and monitor response to therapy. This study assessed whether treatment with solifenacin affects BWT. This was a double-blind, randomised, placebo-controlled, phase 4 study. Adult women with OAB symptoms received solifenacin 5 or 10 mg or placebo once daily for 12 weeks. The co-primary endpoints were change from baseline to Week 12 in TVUS-measured BWT and urinary nerve growth factor. Only results for BWT are presented here. Overall, 547 patients were randomised, 501 patients had a baseline BWT measurement, and change from baseline could be calculated for 478 patients. Mean BWT at baseline was 5.08 mm (range 2.2-11.1, SD = 1.14) and was normally distributed. A significant reduction in BWT from baseline to 12 weeks versus placebo was observed with solifenacin 5 mg (-0.42 vs. -0.16 mm, P = 0.03), but not with the 10 mg dose or with pooled solifenacin, considered the primary comparison. Both solifenacin doses were associated with improvements in efficacy and patient satisfaction endpoints versus placebo. Solifenacin was well tolerated, with dry mouth being the most common adverse event. There was no consistent effect of solifenacin on BWT in women with OAB/DO, despite improvements in efficacy endpoints. This study suggests that routine clinical assessment of BWT with TVUS for monitoring the effects of OAB/DO treatment is not clinically useful. Neurourol. Urodynam. 35:819-825, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Receiver calibration and the nonlinearity parameter measurement of thick solid samples with diffraction and attenuation corrections.

    PubMed

    Jeong, Hyunjo; Barnard, Daniel; Cho, Sungjong; Zhang, Shuzeng; Li, Xiongbing

    2017-11-01

    This paper presents analytical and experimental techniques for accurate determination of the nonlinearity parameter (β) in thick solid samples. When piezoelectric transducers are used for β measurements, the receiver calibration is required to determine the transfer function from which the absolute displacement can be calculated. The measured fundamental and second harmonic displacement amplitudes should be modified to account for beam diffraction and material absorption. All these issues are addressed in this study and the proposed technique is validated through the β measurements of thick solid samples. A simplified self-reciprocity calibration procedure for a broadband receiver is described. The diffraction and attenuation corrections for the fundamental and second harmonics are explicitly derived. Aluminum alloy samples in five different thicknesses (4, 6, 8, 10, 12cm) are prepared and β measurements are made using the finite amplitude, through-transmission method. The effects of diffraction and attenuation corrections on β measurements are systematically investigated. When diffraction and attenuation corrections are all properly made, the variation of β between different thickness samples is found to be less than 3.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress.

    PubMed

    Joldes, Grand Roman; Miller, Karol; Wittek, Adam; Doyle, Barry

    2016-05-01

    Abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the lower region of the aorta. It is a symptomless condition that if left untreated can expand to the point of rupture. Mechanically-speaking, rupture of an artery occurs when the local wall stress exceeds the local wall strength. It is therefore desirable to be able to non-invasively estimate the AAA wall stress for a given patient, quickly and reliably. In this paper we present an entirely new approach to computing the wall tension (i.e. the stress resultant equal to the integral of the stresses tangent to the wall over the wall thickness) within an AAA that relies on trivial linear elastic finite element computations, which can be performed instantaneously in the clinical environment on the simplest computing hardware. As an input to our calculations we only use information readily available in the clinic: the shape of the aneurysm in-vivo, as seen on a computed tomography (CT) scan, and blood pressure. We demonstrate that tension fields computed with the proposed approach agree well with those obtained using very sophisticated, state-of-the-art non-linear inverse procedures. Using magnetic resonance (MR) images of the same patient, we can approximately measure the local wall thickness and calculate the local wall stress. What is truly exciting about this simple approach is that one does not need any information on material parameters; this supports the development and use of patient-specific modelling (PSM), where uncertainty in material data is recognised as a key limitation. The methods demonstrated in this paper are applicable to other areas of biomechanics where the loads and loaded geometry of the system are known. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.

    2005-03-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations - such as gels - applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150 mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150 mm longmore » by 360 deg. azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [{approx}10 mm diameter; formulations are labeled with 0.1% w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5 mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually

  8. Optical instrument for measurement of vaginal coating thickness by drug delivery formulations

    NASA Astrophysics Data System (ADS)

    Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.; Couchman, Grace M.; Katz, David F.

    2005-03-01

    An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations—such as gels—applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150mm long by 360° azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [˜10mm diameter; formulations are labeled with 0.1%w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted pathogens.

  9. Effects of specimen preparation on the electromagnetic property measurements of solid materials with an automatic network analyzer

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1986-01-01

    Effects of specimen preparation on measured values of an acrylic's electomagnetic properties at X-band microwave frequencies, TE sub 1,0 mode, utilizing an automatic network analyzer have been studied. For 1 percent or less error, a gap between the specimen edge and the 0.901-in. wall of the specimen holder was the most significant parameter. The gap had to be less than 0.002 in. The thickness variation and alignment errors in the direction parallel to the 0.901-in. wall were equally second most significant and had to be less than 1 degree. Errors in the measurement f the thickness were third most significant. They had to be less than 3 percent. The following parameters caused errors of 1 percent or less: ratios of specimen-holder thicknesses of more than 15 percent, gaps between the specimen edge and the 0.401-in. wall less than 0.045 in., position errors less than 15 percent, surface roughness, hickness variation in the direction parallel to the 0.401-in. wall less than 35 percent, and specimen alignment in the direction parallel to the 0.401-in. wall mass than 5 degrees.

  10. Applications of acoustics in the measurement of coal slab thickness

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.

    1980-01-01

    The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.

  11. Measurement of wall shear stress in chick embryonic heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Zhenhe; Dou, Shidan; Zhao, Yuqian; Wang, Yi; Suo, Yanyan; Wang, Fengwen

    2015-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) is one of the components which have been proved to influence the morphogenesis during early stages of cardiac development. To study the mechanism, WSS measurement is a step with significant importance. WSS is caused by blood flow imposed on the inner surface of the heart wall and it can be determined by calculating velocity gradients of blood flow in a direction perpendicular to the wall. However, the WSS of the early stage embryonic heart is difficult to measure since the embryonic heart is tiny and beating fast. Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial and temporal resolution, which is uniquely suitable for the study of early stage embryonic heart development. In this paper, we introduce a method to measure the WSS of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT). 4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. After phase synchronization, OFT boundary segmentation, and OFT center line calculation, Doppler angle of the blood flow in the OFT can be achieved (This method has been described in previous publications). Combining with the Doppler OCT results, we calculate absolute blood flow velocity distribution in the OFT. The boundary of the OFT was segmented at each cross-sectional structural image, then geometrical center of the OFT can be calculated. Thus, the gradients of blood flow in radial direction can be calculated. This velocity gradient near the wall is termed wall shear rate and the WSS value is proportional to the wall shear rate. Based on this method, the WSS at different heart beating phase are compare. The result demonstrates that OCT is capable of early stage chicken embryonic heart WSS study.

  12. Tracheal wall thickening is associated with the granulation tissue formation around silicone stents in patients with post-tuberculosis tracheal stenosis.

    PubMed

    Eom, Jung Seop; Kim, Hojoong; Jeon, Kyeongman; Um, Sang-Won; Koh, Won-Jung; Suh, Gee Young; Chung, Man Pyo; Kwon, O Jung

    2013-07-01

    Tracheal restenosis due to excessive granulation tissue around a silicone stent requires repeated bronchoscopic interventions in patients with post-tuberculosis tracheal stenosis (PTTS). The current study was conducted to identify the risk factors for granulation tissue formation after silicone stenting in PTTS patients. A retrospective study was conducted between January 1998 and December 2010. Forty-two PTTS patients with silicone stenting were selected. Clinical and radiological variables were retrospectively collected and analyzed. Tracheal restenosis due to granulation tissue formation were found in 20 patients (47.6%), and repeated bronchoscopic interventions were conducted. In multivariate analysis, tracheal wall thickness, measured on axial computed tomography scan, was independently associated with granulation tissue formation after silicone stenting. Furthermore, the degree of tracheal wall thickness was well correlated with the degree of granulation tissue formation. Tracheal wall thickening was associated with granulation tissue formation around silicone stents in patients with post-tuberculosis tracheal stenosis.

  13. CORRELATION OF ARTICULAR CARTILAGE THICKNESS MEASUREMENTS MADE WITH MAGNETIC RESONANCE IMAGING, MAGNETIC RESONANCE ARTHROGRAPHY, AND COMPUTED TOMOGRAPHIC ARTHROGRAPHY WITH GROSS ARTICULAR CARTILAGE THICKNESS IN THE EQUINE METACARPOPHALANGEAL JOINT.

    PubMed

    Porter, Erin G; Winter, Matthew D; Sheppard, Barbara J; Berry, Clifford R; Hernandez, Jorge A

    2016-09-01

    Osteoarthritis of the metacarpophalangeal joint is common cause of lameness in equine athletes, and is hallmarked by articular cartilage damage. An accurate, noninvasive method for measuring cartilage thickness would be beneficial to screen for cartilage injury and allow for prompt initiation of interventional therapy. The objective of this methods comparison study was to compare computed tomographic arthrography (CTA), magnetic resonance imaging (MRI), and magnetic resonance arthrography (MRA) measurements of articular cartilage thickness with gross measurements in the metacarpophalangeal joint of Thoroughbred horses. Fourteen cadaveric, equine thoracic limbs were included. Limbs were excluded from the study if pathology of the metacarpophalangeal articular cartilage was observed with any imaging modality. Articular cartilage thickness was measured in nine regions of the third metacarpal bone and proximal phalanx on sagittal plane MRI sequences. After intra-articular contrast administration, the measurements were repeated on sagittal plane MRA and sagittal CTA reformations. In an effort to increase cartilage conspicuity, the volume of intra-articular contrast was increased from 14.5 ml, to maximal distention for the second set of seven limbs. Mean and standard deviation values were calculated, and linear regression analysis was used to determine correlations between gross and imaging measurements of cartilage thickness. This study failed to identify one imaging test that consistently yielded measurements correlating with gross cartilage thickness. Even with the use of intra-articular contrast, cartilage surfaces were difficult to differentiate in regions where the cartilage surfaces of the proximal phalanx and third metacarpal bone were in close contact with each other. © 2016 American College of Veterinary Radiology.

  14. Tear progression of symptomatic full-thickness and partial-thickness rotator cuff tears as measured by repeated MRI.

    PubMed

    Kim, Yang-Soo; Kim, Sung-Eun; Bae, Sung-Ho; Lee, Hyo-Jin; Jee, Won-Hee; Park, Chang Kyun

    2017-07-01

    The purpose of this study was to analyse the natural course of symptomatic full-thickness and partial-thickness rotator cuff tears treated non-operatively and to identify risk factors affecting tear enlargement. One hundred and twenty-two patients who received non-surgical treatment for a partial- or full-thickness supraspinatus tear were included in this study. All rotator cuff tears were diagnosed with magnetic resonance imaging (MRI), and the same modality was used for follow-up studies. Follow-up MRI was performed after at least a 6-month interval. We evaluated the correlation between tear enlargement and follow-up duration. Eleven risk factors were analysed by both univariate and multivariate analyses to identify factors that affect enlargement of rotator cuff tears. The mean follow-up period was 24.4 ± 19.5 months. Out of 122 patients, 34 (27.9%) patients had an initial full-thickness tear and 88 (72.1%) patients had a partial-thickness tear. Considering all patients together, tear size increased in 51/122 (41.8%) patients, was unchanged in 65/122 (53.3%) patients, and decreased in 6/122 (4.9%) patients. Tear size increased for 28/34 (82.4%) patients with full-thickness tears and 23/88 (26.1%) patients with partial-thickness tears. From the two groups which were followed over 12 months, a higher rate of enlargement was observed in full-thickness tears than in partial-thickness tears (6-12 months, n.s.; 12-24 months, P = 0.002; over 24 months, P < 0.001). Logistic regression revealed that having a full-thickness tear was the most reliable risk factor for tear progression (P < 0.001). This study found that 28/34 (82.4%) of symptomatic full-thickness rotator cuff tears and 23/88 (26.1%) of symptomatic partial-thickness tears increased in size over a follow-up period of 6-100 months. Full-thickness tears showed a higher rate of enlargement than partial-thickness tears regardless of the follow-up duration. Univariate and multivariate analyses

  15. Choroidal thickness measurement in children using optical coherence tomography.

    PubMed

    Bidaut-Garnier, Mélanie; Schwartz, Claire; Puyraveau, Marc; Montard, Michel; Delbosc, Bernard; Saleh, Maher

    2014-04-01

    To measure choroidal thickness (CT) in children of various ages by using spectral optical coherence tomography with enhanced depth imaging and to investigate the association between subfoveal CT and ocular axial length, age, gender, weight, and height in children. Healthy children were prospectively included between May and August 2012. Optical coherence tomography with the enhanced depth imaging system (Spectralis, Heidelberg, Germany) was used for choroidal imaging at nine defined points of the macula of both eyes. Axial length was measured using IOLMaster (Carl Zeiss Meditec, Dublin, CA). Height, weight, and refraction were recorded. Interobserver agreement in readings was also assessed by the Bland-Altman Method. Three hundred and forty-eight eyes from 174 children aged 3.5 years to 14.9 years were imaged. The mean subfoveal CT in right eyes was 341.96 ± 74.7 µm. Choroidal thickness increased with age (r = 0.24, P = 0.017), height, and weight but not with gender (P > 0.05). It was also inversely correlated to the axial length (r = 0.24, P = 0.001). The nasal choroid appeared thinner than in the temporal area (analysis of variance, P < 0.0001). In children, CT increases with age and is inversely correlated to axial length. There is a significant variation of CT between children of the same age.

  16. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  17. In situ measurement of the bonded film thickness of Z-Tetraol lubricant on magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Lei; Li Feng

    2010-10-15

    Currently, the bonded film thickness of perfluoropolyether lubricant on top of magnetic recording media is measured by a two-step process. First, the media disk has to be rinsed thoroughly using a fluorocarbon solvent (for instance, Vetrel) to remove the mobile lubricant. Second, the thickness of the remaining lubricant on the media surface which is regarded as the bonded lubricant thickness is then measured either by Fourier transform infrared spectroscopy (FTIR) or electron spectroscopy for chemical analysis. As the total lubricant thickness approaches single molecular dimension ({approx}10 A), current methods face tremendous challenge on the accuracy and sensitivity of the measurement.more » We studied the spectral characteristics responding to the lubricant bonding with the carbon overcoat by the time-of-flight secondary ion mass spectra and proposed to use the peak area ratio (C{sub 3}H{sub 2}F/C{sub 3}H{sub 5}O and C{sub 4}H{sub 10}O/C{sub 3}H{sub 6}O{sub 2}) to characterize the bonded Z-Tetraol lubricant that produces a direct bonded lubricant thickness measurement without the need to remove the mobile lubricant with a solvent. After taking the background signal of disks prior to bonding by UV irradiation into account, this method becomes independent of the total lubricant thickness as well as shows good correlation linearity (R{sup 2{approx}}87%) with the current FTIR method for the ratio of C{sub 4}H{sub 10}O/C{sub 3}H{sub 6}O{sub 2}.« less

  18. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  19. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  20. Electron Microscopy of Staphylococcus aureus Cell Wall Lysis

    PubMed Central

    Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia

    1966-01-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482

  1. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  2. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  3. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  4. Ultrasound semi-automated measurement of fetal nuchal translucency thickness based on principal direction estimation

    NASA Astrophysics Data System (ADS)

    Yoon, Heechul; Lee, Hyuntaek; Jung, Haekyung; Lee, Mi-Young; Won, Hye-Sung

    2015-03-01

    The objective of the paper is to introduce a novel method for nuchal translucency (NT) boundary detection and thickness measurement, which is one of the most significant markers in the early screening of chromosomal defects, namely Down syndrome. To improve the reliability and reproducibility of NT measurements, several automated methods have been introduced. However, the performance of their methods degrades when NT borders are tilted due to varying fetal movements. Therefore, we propose a principal direction estimation based NT measurement method to provide reliable and consistent performance regardless of both fetal positions and NT directions. At first, Radon Transform and cost function are used to estimate the principal direction of NT borders. Then, on the estimated angle bin, i.e., the main direction of NT, gradient based features are employed to find initial NT lines which are beginning points of the active contour fitting method to find real NT borders. Finally, the maximum thickness is measured from distances between the upper and lower border of NT by searching along to the orthogonal lines of main NT direction. To evaluate the performance, 89 of in vivo fetal images were collected and the ground-truth database was measured by clinical experts. Quantitative results using intraclass correlation coefficients and difference analysis verify that the proposed method can improve the reliability and reproducibility in the measurement of maximum NT thickness.

  5. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-01-01

    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P < 0.0001). Coronary wall thicknesses (± standard deviation [SD]) were not significantly different: 1.10 ± 0.14 mm (3D spiral (2RR)), 1.20 ± 0.16 mm (3D spiral (1RR)), 1.14 ± 0.15 mm (2D spiral), and 1.21 ± 0.17 mm (TSE). Wall thickness reproducibility ranged from good (ICC = 0.65, 3D spiral (1RR)) to excellent (ICC = 0.87, 3D spiral (2RR)). High-resolution 3D spiral imaging with B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  6. [Endoscopic full-thickness resection].

    PubMed

    Meier, B; Schmidt, A; Caca, K

    2016-08-01

    Conventional endoscopic resection techniques such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) are powerful tools for the treatment of gastrointestinal (GI) neoplasms. However, those techniques are limited to the superficial layers of the GI wall (mucosa and submucosa). Lesions without lifting sign (usually arising from deeper layers) or lesions in difficult anatomic positions (appendix, diverticulum) are difficult - if not impossible - to resect using conventional techniques, due to the increased risk of complications. For larger lesions (>2 cm), ESD appears to be superior to the conventional techniques because of the en bloc resection, but the procedure is technically challenging, time consuming, and associated with complications even in experienced hands. Since the development of the over-the-scope clips (OTSC), complications like bleeding or perforation can be endoscopically better managed. In recent years, different endoscopic full-thickness resection techniques came to the focus of interventional endoscopy. Since September 2014, the full-thickness resection device (FTRD) has the CE marking in Europe for full-thickness resection in the lower GI tract. Technically the device is based on the OTSC system and combines OTSC application and snare polypectomy in one step. This study shows all full-thickness resection techniques currently available, but clearly focuses on the experience with the FTRD in the lower GI tract.

  7. Thickness measurement of nontransparent free films by double-side white-light interferometry: Calibration and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poilane, C.; Sandoz, P.; Departement d'Optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche-Comte, 25030 Besancon, Cedex

    2006-05-15

    A double-side optical profilometer based on white-light interferometry was developed for thickness measurement of nontransparent films. The profile of the sample is measured simultaneously on both sides of the film. The resulting data allow the computation of the roughness, the flatness and the parallelism of the sides of the film, and the average thickness of the film. The key point is the apparatus calibration, i.e., the accurate determination of the distance between the reference mirrors of the complementary interferometers. Specific samples were processed for that calibration. The system is adaptable to various thickness scales as long as calibration can bemore » made accurately. A thickness accuracy better than 30 nm for films thinner than 200 {mu}m is reported with the experimental material used. In this article, we present the principle of the method as well as the calibration methodology. Limitation and accuracy of the method are discussed. Experimental results are presented.« less

  8. Repeatability of Central Corneal Thickness Measurement Using Rotating Scheimpflug Camera in Dry and Normal Eyes.

    PubMed

    Lee, Jong-Hyuck; Kim, Jae Hyuck; Kim, Sun Woong

    2017-02-27

    To compare the repeatability of central corneal thickness (CCT) measurement using the Pentacam between dry eyes and healthy eyes, as well as to investigate the effect of artificial tears on CCT measurement. The corneal thicknesses of 34 patients with dry eye and 28 healthy subjects were measured using the Pentacam. One eye from each subject was assigned randomly to a repeatability test, wherein a single operator performed three successive CCT measurements time points-before and 5 min after instillation of one artificial teardrop. The repeatability of measurements was assessed using the coefficient of repeatability and the intraclass correlation coefficient. The coefficient of repeatability values of the CCT measurements in dry and healthy eyes were 24.36 and 10.69 μm before instillation, and 16.85 and 9.72 μm after instillation, respectively. The intraclass correlation coefficient was higher in healthy eyes than that of in dry eyes (0.987 vs. 0.891), and it had improved significantly in dry eyes (0.948) after instillation of one artificial teardrop. The CCT measurement fluctuated in dry eyes (repeated-measures analysis of variance, P<0.001), whereas no significant changes were detected in healthy eyes, either before or after artificial tear instillation. Central corneal thickness measurement is less repeatable in dry eyes than in healthy eyes. Artificial tears improve the repeatability of CCT measurements obtained using the Pentacam in dry eyes.

  9. Variability of Retinal Thickness Measurements in Tilted or Stretched Optical Coherence Tomography Images

    PubMed Central

    Uji, Akihito; Abdelfattah, Nizar Saleh; Boyer, David S.; Balasubramanian, Siva; Lei, Jianqin; Sadda, SriniVas R.

    2017-01-01

    Purpose To investigate the level of inaccuracy of retinal thickness measurements in tilted and axially stretched optical coherence tomography (OCT) images. Methods A consecutive series of 50 eyes of 50 patients with age-related macular degeneration were included in this study, and Cirrus HD-OCT images through the foveal center were used for the analysis. The foveal thickness was measured in three ways: (1) parallel to the orientation of the A-scan (Tx), (2) perpendicular to the retinal pigment epithelium (RPE) surface in the instrument-displayed aspect ratio image (Ty), and (3) thickness measured perpendicular to the RPE surface in a native aspect ratio image (Tz). Mathematical modeling was performed to estimate the measurement error. Results The measurement error was larger in tilted images with a greater angle of tilt. In the simulation, with axial stretching by a factor of 2, Ty/Tz ratio was > 1.05 at a tilt angle between 13° to 18° and 72° to 77°, > 1.10 at a tilt angle between 19° to 31° and 59° to 71°, and > 1.20 at an angle ranging from 32° to 58°. Of note with even more axial stretching, the Ty/Tz ratio is even larger. Tx/Tz ratio was smaller than the Ty/Tz ratio at angles ranging from 0° to 54°. The actual patient data showed good agreement with the simulation. The Ty/Tz ratio was greater than 1.05 (5% error) at angles ranging from 13° to 18° and 72° to 77°, greater than 1.10 (10% error) angles ranging from 19° to 31° and 59° to 71°, and greater than 1.20 (20% error) angles ranging from 32° to 58° in the images axially stretched by a factor of 2 (b/a = 2), which is typical of most OCT instrument displays. Conclusions Retinal thickness measurements obtained perpendicular to the RPE surface were overestimated when using tilted and axially stretched OCT images. Translational Relevance If accurate measurements are to be obtained, images with a native aspect ratio similar to microscopy must be used. PMID:28299239

  10. Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.

    PubMed

    Kumar, S Santosh; Hong, Jiarong

    2018-05-14

    We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.

  11. Theory of Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2004-03-01

    Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be ∝[(j_s/j_s^cr)^2-1]^1/2. In the case of thin wall, driven by a force ∝ ρw j, the critical current density is given by j^cr∝ V_0/ρ_w. In nanocontacts, this is estimated to be ˜ 10^7[A/m^2]. This small critical current would be advantageous for device application. [1] G.Tatara and H.Kohno, cond-mat/0308464

  12. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-6 Thickness of plates. (a) The wall...

  13. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-6 Thickness of plates. (a) The wall...

  14. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-6 Thickness of plates. (a) The wall...

  15. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-6 Thickness of plates. (a) The wall...

  16. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-6 Thickness of plates. (a) The wall...

  17. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-6 Thickness of plates. (a) The wall...

  18. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-6 Thickness of plates. (a) The wall...

  19. Effect of wall roughness on liquid oscillations damping in rectangular tanks

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1970-01-01

    Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.

  20. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.

    PubMed

    Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai

    2013-07-01

    In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.