Sample records for wall thin pan

  1. Pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Fang; Li, Ling-Ling; Hao, Hong-Xia

    2014-01-01

    The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.

  2. Corrections to the thin wall approximation in general relativity

    NASA Technical Reports Server (NTRS)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  3. Failure Behavior of Elbows with Local Wall Thinning

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak

    Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.

  4. Thin-wall approximation in vacuum decay: A lemma

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.

    2018-05-01

    The "thin-wall approximation" gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for nonperturbative vacuum instability.

  5. Standard surface grinder for precision machining of thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.

    1967-01-01

    Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.

  6. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-06-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.

  7. Linear motion feed through with thin wall rubber sealing element

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. P.; Deulin, E. A.

    2017-07-01

    The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.

  8. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    PubMed Central

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-01-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species. PMID:27302853

  9. Nonlinear fracture mechanics-based analysis of thin wall cylinders

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.

    1994-01-01

    This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.

  10. Pan Revealed

    NASA Image and Video Library

    2017-03-16

    These two images from NASA's Cassini spacecraft show how the spacecraft's perspective changed as it passed within 15,300 miles (24,600 kilometers) of Saturn's moon Pan on March 7, 2017. This was Cassini's closest-ever encounter with Pan, improving the level of detail seen on the little moon by a factor of eight over previous observations. The views show the northern and southern hemispheres of Pan, at left and right, respectively. Both views look toward Pan's trailing side, which is the side opposite the moon's direction of motion as it orbits Saturn. Cassini imaging scientists think that Pan formed within Saturn's rings, with ring material accreting onto it and forming the rounded shape of its central mass, when the outer part of the ring system was quite young and the ring system was vertically thicker. Thus, Pan probably has a core of icy material that is denser than the softer mantle around it. The distinctive, thin ridge around Pan's equator is thought to have come after the moon formed and had cleared the gap in the rings in which it resides today. At that point the ring was as thin as it is today, yet there was still ring material accreting onto Pan. However, at the tail end of the process, that material was raining down on the moon solely in (or close to) its equatorial region. Thus, the infalling material formed a tall, narrow ridge of material. On a larger, more massive body, this ridge would not be so tall (relative to the body) because gravity would cause it to flatten out. But Pan's gravity is so feeble that the ring material simply settles onto Pan and builds up. Other dynamical forces keep the ridge from growing indefinitely. The images are presented here at their original size. The views were acquired by the Cassini narrow-angle camera at distances of 15,275 miles or 24,583 kilometers (left view) and 23,199 miles or 37,335 kilometers (right view). Image scale is 482 feet or 147 meters per pixel (left view) and about 735 feet or 224 meters per pixel

  11. Stability of Thin-Walled Tubes Under Torsion

    NASA Technical Reports Server (NTRS)

    Donnell, L H

    1935-01-01

    In this report a theoretical solution is developed for the torsion on a round thin-walled tube for which the walls become unstable. The results of this theory are given by a few simple formulas and curves which cover all cases. The differential equations of equilibrium are derived in a simpler form than previously found, it being shown that many items can be neglected.

  12. Optimization of an asymmetric thin-walled tube in rotary draw bending process

    NASA Astrophysics Data System (ADS)

    Xue, Xin; Liao, Juan; Vincze, Gabriela; Gracio, Jose J.

    2013-12-01

    The rotary draw bending is one of the advanced thin-walled tube forming processes with high efficiency, low consumption and good flexibility in several industries such as automotive, aerospace and shipping. However it may cause undesirable deformations such as over-thinning and ovalization, which bring the weakening of the strength and difficulties in the assembly process respectively. Accurate modeling and effective optimization design to eliminate or reduce undesirable deformations in tube bending process have been a challenging topic. In this paper, in order to study the deformation behaviors of an asymmetric thin-walled tube in rotary draw bending process, a 3D elastic-plastic finite element model has been built under the ABAQUS environment, and the reliability of the model is validated by comparison with experiment. Then, the deformation mechanism of thin-walled tube in bending process was briefly analysis and the effects of wall thickness ratio, section height width ratio and mandrel extension on wall thinning and ovalization in bending process were investigated by using Response Surface Methodology. Finally, multi-objective optimization method was used to obtain an optimum solution of design variables based on simulation results.

  13. Strength Tests on Thin-walled Duralumin Cylinders in Torsion

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E

    1932-01-01

    This report is the first of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptical section; it comprises the results obtained to date from torsion (pure shear) tests on 65 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The effect of variations in the length/radius and radius/thickness ratios on the type of failure is indicated, and a semi-empirical equation for the shearing stress at maximum load is given.

  14. Isotropic thin-walled pressure vessel experiment

    NASA Technical Reports Server (NTRS)

    Denton, Nancy L.; Hillsman, Vernon S.

    1992-01-01

    The objectives are: (1) to investigate the stress and strain distributions on the surface of a thin walled cylinder subject to internal pressure and/or axial load; and (2) to relate stress and strain distributions to material properties and cylinder geometry. The experiment, supplies, and procedure are presented.

  15. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  16. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  17. Thin-walled reinforcement lattice structure for hollow CMC buckets

    DOEpatents

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  18. Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression

    NASA Astrophysics Data System (ADS)

    Różyło, P.; Wysmulski, P.; Falkowicz, K.

    2017-05-01

    Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.

  19. Near-wall turbulence alteration through thin streamwise riblets

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lazos, Barry S.

    1987-01-01

    The possibility of improving the level of drag reduction associated with near-wall riblets is considered. The methodology involves the use of a hot-wire anemometer to study various surface geometries on small, easily constructed models. These models consist of small, adjacent rectangular channels on the wall aligned in the streamwise direction. The VITA technique is modified and applied to thin-element-array and smooth flat-plate data and the results are indicated schematically.

  20. Electroless-plating technique for fabricating thin-wall convective heat-transfer models

    NASA Technical Reports Server (NTRS)

    Avery, D. E.; Ballard, G. K.; Wilson, M. L.

    1984-01-01

    A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.

  1. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  2. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1982-01-01

    The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  3. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    DOEpatents

    Hovis, V.M. Jr.; Northcutt, W.G. Jr.

    The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  4. Simple method for forming thin-wall pressure vessels

    NASA Technical Reports Server (NTRS)

    Erickson, A. L.; Guist, L. R.

    1972-01-01

    Application of internal hydrostatic pressure to seam-welded circular cylindrical tanks having corner-welded, flat, circular ends forms large thin-walled high quality tanks. Form limits expansion of cylindrical portion of final tank while hemispherical ends develop freely; no external form or restraint is required to fabricate spherical tanks.

  5. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  6. Leakproof Swaged Joints in Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.

    1986-01-01

    Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.

  7. The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures

    NASA Technical Reports Server (NTRS)

    Aitchison, C S; Tuckerman, L B

    1939-01-01

    The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.

  8. A new local thickening reverse spiral origami thin-wall construction for improving of energy absorption

    NASA Astrophysics Data System (ADS)

    Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.

    2018-02-01

    As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.

  9. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    NASA Technical Reports Server (NTRS)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  10. Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng; Day, Michael L.

    This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.

  11. Method of fabricating an article with cavities. [with thin bottom walls

    NASA Technical Reports Server (NTRS)

    Dale, W. J.; Jurscaga, G. M. (Inventor)

    1974-01-01

    An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.

  12. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    PubMed

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  13. An analytical method for prediction of stability lobes diagram of milling of large-size thin-walled workpiece

    NASA Astrophysics Data System (ADS)

    Yao, Jiming; Lin, Bin; Guo, Yu

    2017-01-01

    Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.

  14. Preparation of magnetic ODS-PAN thin-films for microextraction of quetiapine and clozapine in plasma and urine samples followed by HPLC-UV detection.

    PubMed

    Li, Dan; Zou, Juan; Cai, Pei-Shan; Xiong, Chao-Mei; Ruan, Jin-Lan

    2016-06-05

    In this study, conventional thin-film microextraction (TFME) was endowed with magnetic by introducing superparamagnetic SiO2@Fe3O4 nanoparticles in thin-films. Novel magnetic octadecylsilane (ODS)-polyacrylonitrile (PAN) thin-films were prepared by spraying, and used for the microextraction of quetiapine and clozapine in plasma and urine samples, followed by the detection of HPLC-UV. The influencing factors on the extraction efficiency of magnetic ODS-PAN TFME, including pH, extraction time, desorption solvent, desorption time, and ion strength were investigated systematically. Under the optimal conditions, both analytes showed good linearity over ranges of 0.070-9.000μgmL(-1) and 0.012-9.000μgmL(-1) in plasma and urine samples, respectively, with correlation coefficients (R(2)) above 0.9990. Limits of detection (LODs) for quetiapine in plasma and urine samples were 0.013 and 0.003μgmL(-1), respectively. LODs for clozapine in plasma and urine samples were 0.015 and 0.003μgmL(-1), respectively. The relative standard deviations (RSDs) for quetiapine and clozapine were less than 9.23%. After the validation, the protocol was successfully applied for the determination of quetiapine and clozapine in patients' plasma and urine samples with satisfactory recoveries between 99-110%. The proposed magnetic ODS-PAN TFME was very simple, fast and easy to handle. It showed high potential as a powerful pretreatment technology for routine therapeutic drug monitoring (TDM) in plasma and urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Extraordinary Corrosion Protection from Polymer-Clay Nanobrick Wall Thin Films.

    PubMed

    Schindelholz, Eric J; Spoerke, Erik D; Nguyen, Hai-Duy; Grunlan, Jaime C; Qin, Shuang; Bufford, Daniel C

    2018-06-20

    Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H 2 S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.

  16. The Twisting of Thin-walled, Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Schapitz, E

    1938-01-01

    On the basis of the present investigation of the twisting of thin-walled, stiffened cylinders the following conclusions can be reached: 1) there is as yet no generally applicable formula for the buckling moment of the skin; 2) the mathematical treatment of the condition of the shell after buckling of the skin is based on the tension-field theory, wherein the strain condition is considered homogenous.

  17. 22. RW Meyer Sugar Mill: 18761889. Sorghum Pan. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. RW Meyer Sugar Mill: 1876-1889. Sorghum Pan. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: Historical view, 1934, T.T. Waterman Collection, Hawaiian Sugar Planters' Association, Oahu, Hawaii. View looking toward east end of sorghum pan and interior of east end of the boiling house. Walls and final compartment of the sorghum pan are still intact. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  18. Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts

    NASA Astrophysics Data System (ADS)

    Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.

    2017-07-01

    Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.

  19. One-dimensional analysis of filamentary composite beam columns with thin-walled open sections

    NASA Technical Reports Server (NTRS)

    Lo, Patrick K.-L.; Johnson, Eric R.

    1986-01-01

    Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.

  20. Nonlinear analysis of composite thin-walled helicopter blades

    NASA Astrophysics Data System (ADS)

    Kalfon, J. P.; Rand, O.

    Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.

  1. Silver plating technique seals leaks in thin wall tubing joints

    NASA Technical Reports Server (NTRS)

    Blenderman, W. H.

    1966-01-01

    Leaks in thin wall tubing joints are sealed by cleaning and silver plating the hot gas side of the joint in the leakage area. The pressure differential across the silver during hydrostatic test and subsequent use forces the ductile silver into the leak area and seals it.

  2. Method for preparing thin-walled ceramic articles of configuration

    DOEpatents

    Holcombe, C.E.; Powell, G.L.

    1975-11-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)

  3. 14. RW Meyer Sugar Mill: 18761889. Sorghum Pan. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. RW Meyer Sugar Mill: 1876-1889. Sorghum Pan. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: In the sorghum pan, heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. The pan was set on a slope so that the juice would move through the compartments by gravity. The hand-lever sluice valves in the partition walls between the compartments permitted the sugar boiler to regulate the movement of batches of cane juice flowing through the pan. The metal fins projecting from the bottom of the pan imparted a circuitous route to the juice as it flowed through the pan--this made it flow over a much greater heated surface. The fins also supplemented the pan's heating surface by ... - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  4. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  5. Investigation into the energy-absorbing properties of multilayered circular thin-walled tube

    NASA Astrophysics Data System (ADS)

    Qi, Aidong; Liu, Chuanhua; Hu, Gongli; Gu, Hongjun

    2002-05-01

    With the rise in collision accident and the increase in requirement for resistance of blastproof structures in recent years, people attach much importance to the research and application of energy-absorbing device. In this paper the author calculates the specific strength, the specific hardness and ultimate internal force of a circular thin-walled tube by theoretic calculations, discusses the feasibility of using circular thin-walled tube as an energy-absorbing element, analyzes the energy-absorbing properties and the energy-absorbing mechanism through the energy-absorbing experiments using various materials and forms of arrangement, reaches the conclusion that the load-bearing capacity and energy-absorbing properties of multilayered tubes are superior to that of single tube, and puts forward the concept of 'grading tube'.

  6. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    DOE PAGES

    Tselev, Alexander; Yu, Pu; Cao, Ye; ...

    2016-05-31

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less

  7. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  8. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  9. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness.

    PubMed

    Smith, N Adam; Clarke, Julia A

    2014-02-01

    Although studies of osteological morphology, gross myology, myological histology, neuroanatomy, and wing-scaling have all documented anatomical modifications associated with wing-propelled diving, the osteohistological study of this highly derived method of locomotion has been limited to penguins. Herein we present the first osteohistological study of the derived forelimbs and hind limbs of wing-propelled diving Pan-Alcidae (Aves, Charadriiformes). In addition to detailing differences between wing-propelled diving charadriiforms and nondiving charadriiforms, microstructural modifications to the humeri, ulnae and femora of extinct flightless pan-alcids are contrasted with those of volant alcids. Histological thin-sections of four species of pan-alcids (Alca torda, †Alca grandis, †Pinguinus impennis, †Mancalla cedrosensis) and one outgroup charadriiform (Stercorarius longicaudus) were compared. The forelimb bones of wing-propelled diving charadriiforms were found to have significantly thicker (∼22%) cortical bone walls. Additionally, as in penguins, the forelimbs of flightless pan-alcids are found to be osteosclerotic. However, unlike the pattern documented in penguins that display thickened cortices in both forelimbs and hind limbs, the forelimb and hind limb elements of pan-alcids display contrasting microstructural morphologies with thickened forelimb cortices and relatively thinner femoral cortices. Additionally, the identification of medullary bone in the sampled †Pinguinus impennis specimen suggests that further osteohistological investigation could provide an answer to longstanding questions regarding sexual dimorphism of Great Auks. Finally, these results suggest that it is possible to discern volant from flightless wing-propelled divers from fragmentary fossil remains. Copyright © 2013 Wiley Periodicals, Inc.

  10. Experimental validation of tape springs to be used as thin-walled space structures

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.

    2018-04-01

    With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.

  11. Finite element modelling of AA6063T52 thin-walled tubes under quasi-static axial loading

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ismail, AE

    2018-04-01

    The behavior of aluminum alloy 6063T52 thin walled tubes have been present in this paper to determine absorbed energy under quasi-static axial loading. The correlation and comparison have been implemented for each experimental and finite element analysis results, respectively. Wall-thickness of 1.6 and 1.9 mm were selected and all specimen tested under room temperature standard. The length of each specimen were fixed at 125 mm as well as diameter as well as a width and diameter of the tube at 50.8 mm. The two types of tubular cross-section were examined whereas a round and square thin-walled profiles. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyzed for each specimen and model to see the behavior induced to failure under progressive collapse. Result showed that a correlation less than 5% different between both of comparison experimental and finite element model. It has been found that the thin walled round tube absorbed more energy rather than square profile in term of specific energy with both of either 1.6 or 1.9 of 23.93% and 35.36%, respectively. Overall for crush force efficiency (CFE) of each tube profile around 0.42 to 0.58 value. Indicated that the all specimen profile fail under progressive damage. The calibration between deformed model and experimental specimen were examined and discussed. It was found that the similarity failure mechanism observed for each thin walled profiles.

  12. Twisting of thin walled columns perfectly restrained at one end

    NASA Technical Reports Server (NTRS)

    Lazzarino, Lucio

    1938-01-01

    Proceeding from the basic assumptions of the Batho-Bredt theory on twisting failure of thin-walled columns, the discrepancies most frequently encountered are analyzed. A generalized approximate method is suggested for the determination of the disturbances in the stress condition of the column, induced by the constrained warping in one of the end sections.

  13. Experimental Investigation of Compressed Thin-Walled Steel Members

    NASA Astrophysics Data System (ADS)

    Juhás, Pavol; Juhásová Šenitková, Ingrid

    2017-10-01

    The paper presents fundamental information about realized experimental-theoretical research to determinate the load-carrying capacities for thin-walled compressed steel members with quasi-homogenous and hybrid cross-sections. The webs of such members are stressed in the elastic-plastic region. This continuous research joins on previous research of the first author of the paper. The aim of this research is to investigate and analyse the elastic-plastic post-critical behaviour of thin web and its interaction with flanges. The experimental program, test members and their geometrical parameters and material properties are evident from table 1 and table 2 as well as from figure 1 and figure 2. The test arrangement and failures of the test members are illustrated on Figures 3, 4 and 5. Some partial results are presented in Table 3 of the paper, too.

  14. Theory of thin-walled rods

    NASA Technical Reports Server (NTRS)

    Goldenveizer, A L

    1951-01-01

    Starting with the Love equations for bending of extensible shells, "principal stress states" are sought for a thin-walled rod of arbitrary but open cross section. Principal stress states exclude those local states arising from end conditions which damp out with distance from the ends. It is found that for rods of intermediate length, long enough to avoid local bending at a support, and short enough that elementary torsion and bending are not the most significant stress states, four principal states exist. Three of these states are associated with the planar distribution of axial stress and are equivalent to the engineering theory of extension and bending of solid sections. The fourth state resembles that which has been called in the literature "bending stress due to torsional", except that cross sections are permitted to bend and the shear along the center line of the cross section is permitted to differ from zero.

  15. Behaviour of thin-walled cold-formed steel members in eccentric compression

    NASA Astrophysics Data System (ADS)

    Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan

    2018-01-01

    Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.

  16. Elastic torsional buckling of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  17. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  18. Energy absorption capabilities of complex thin walled structures

    NASA Astrophysics Data System (ADS)

    Tarlochan, F.; AlKhatib, Sami

    2017-10-01

    Thin walled structures have been used in the area of energy absorption during an event of a crash. A lot of work has been done on tubular structures. Due to limitation of manufacturing process, complex geometries were dismissed as potential solutions. With the advancement in metal additive manufacturing, complex geometries can be realized. As a motivation, the objective of this study is to investigate computationally the crash performance of complex tubular structures. Five designs were considered. In was found that complex geometries have better crashworthiness performance than standard tubular structures used currently.

  19. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.

  20. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  1. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  2. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  3. Thermal Conductivity of Diamond Packed Electrospun PAN-Based Carbon Fibers Incorporated with Multi Wall Carbon Nanotubes.

    PubMed

    Dong, Qi; Lu, Chunyuan; Tulugan, Kelimu; Jin, Chunzi; Yoon, Soo Jong; Park, Yeong Min; Kim, Tae Gyu

    2016-02-01

    Multi wall carbon nanotubes (MWCNTs) and diamond are renowned as superlative material due to their relatively high thermal conductivity and hardness while comparing with any bulk materials. In this research, polyacrylonitrile (PAN) solution incorporated with MWCNTs at an alteration of mass fractions (0 wt%, 0.6 wt%, 1 wt%, 2 wt%) were fabricated via electrospinning under optimized parameters. Dried composite nanofibers were stabilized and carbonized, after which water base polytrafluorethylene (PTFE) mixed with nano diamond powder solution was spin coated on them. Scanning electron microscopy, Raman spectroscopy, X-ray scattering and Laserflash thermal conductivity were used to characterize the composite nanofiber sheets. The result shows that the thermal conductivity increased to 4.825 W/m K from 2.061 W/mK. The improvement of thermal conductivities is suggesting the incorporation of MWCNTs.

  4. On the interpretation of combined torsion and tension tests of thin-wall tubes

    NASA Technical Reports Server (NTRS)

    Prager, W

    1948-01-01

    General ways of testing thin-wall tubes under combined tension and torsion as a means of checking the various theories of plasticity are discussed. Suggestions also are given for the interpretation of the tests.

  5. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-02

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.

  6. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.

    PubMed

    Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai

    2013-07-01

    In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.

  7. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  8. 77 FR 41457 - Aging Management Associated With Wall Thinning Due to Erosion Mechanisms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0170] Aging Management Associated With Wall Thinning Due... management program (AMP) in NUREG-1801, Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's aging management review procedure and acceptance criteria contained in NUREG-1800...

  9. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature.

    PubMed

    Huang, Yang; Bando, Yoshio; Tang, Chengchun; Zhi, Chunyi; Terao, Takeshi; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri

    2009-02-25

    Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick. A mechanism combining the vapor-liquid-solid (VLS) and template self-sacrificing processes is proposed to explain the formation of these novel one-dimensional microstructures, in which the Li(2)O-B(2)O(3) eutectic reaction plays an important role. Cathodoluminescence studies show that even at room temperature the thin-walled BN microtubes can possess an intense band-edge emission at approximately 216.5 nm, which is distinct compared with other BN nanostructures. The study suggests that the thin-walled BN microtubes should be promising for constructing compact deep UV devices and find potential applications in microreactors and microfluidic and drug delivery systems.

  10. Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.

    PubMed

    Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun

    2017-09-12

    This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.

  11. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method

    NASA Astrophysics Data System (ADS)

    Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei

    2001-08-01

    In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.

  12. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  13. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly.

    PubMed

    Shastry, Tejas A; Seo, Jung-Woo T; Lopez, Josue J; Arnold, Heather N; Kelter, Jacob Z; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2013-01-14

    By varying the evaporation conditions and the nanotube and surfactant concentrations, large-area, aligned single-walled carbon nanotube (SWCNT) thin films are fabricated from electronically monodisperse SWCNT solutions by evaporation-driven self-assembly with precise control over the thin film growth geometry. Tunability is possible from 0.5 μm stripes to continuous thin films. The resulting SWCNT thin films possess highly anisotropic electrical and optical properties that are well suited for transparent conductor applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical and Experimental Study on Manufacture of a Novel High-Capacity Engine Oil Pan Subjected to Hydro-Mechanical Deep Drawing

    NASA Astrophysics Data System (ADS)

    Chen, D. Y.; Xu, Y.; Zhang, S. H.; El-Aty, A. Abd; Ma, Y.

    2017-09-01

    The oil pan is equipped at the bottom of engine crankcase of the automobile to prevent impurity and collect the lubrication oil from the surfaces of the engine which is helpful for heat dissipation and oxidation prevention. The present study aims at manufacturing a novel high-capacity engine oil pan, which is considered as a complex shaped component with features of thin wall, large size and asymmetric deep cavity through both numerical and experimental methods. The result indicated that it is difficult to form the current part through the common deep drawing process. Accordingly, the hydro-mechanical deep drawing technology was conducted, which consisted of two steps, previous local drawing and the final integral deep drawing with hydraulic pressure. The finite element analysis (FEA) was carried out to investigate the influence of initial blank dimension and the key process parameters such as loading path, draw-bead force and fillet radius on the formability of the sheet blank. Compared with the common deep drawing, the limit drawing ratio by hydro-mechanical deep drawing can be increased from 2.34 to 2.77, while the reduction in blank wall thickness can be controlled in the range of 28%. The formability is greatly improved without any defects such as crack and wrinkle by means of parameters optimisation. The results gained from simulation keep a reasonable agreement with that obtained from experiment trials.

  15. Stiffness Matrix of Thin-Walled Open Bar Subject to Bending, Bending Torsion and Shift of Cross Section Middle Surface

    NASA Astrophysics Data System (ADS)

    Panasenko, N. N.; Sinelschikov, A. V.

    2017-11-01

    One of the main stages in the analysis of complex 3D structures and engineering constructions made of thin-walled open bars using FEM is a stiffness matrix developing. Taking into account middle surface shear deformation caused by the work of tangential stresses in the formula to calculate a potential energy of thin-walled open bars, the authors obtain an important correction at calculation of the bar deformation and fundamental frequencies. The results of the analysis of the free end buckling of a cantilever H-bar under plane bending differ from exact solution by 0.53%. In the course of comparison of the obtained results with the cantilever bar buckling regardless the middle surface shear deformation, an increase made 16.6%. The stiffness matrix of a thin-walled open bar developed in the present work can be integrated into any software suite using FEM for the analysis of complex 3-D structures and engineering constructions with n-freedoms.

  16. Electromagnetic modulation of the ultrasonic signal for nondestructive detection of small defects and ferromagnetic inclusions in thin wall structures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter

    2008-03-01

    We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.

  17. Basic Principles of Thin-Walled Open Bars Taking into Account Where Influence Shifts of Cross Sections are Concerned

    NASA Astrophysics Data System (ADS)

    Panasenko, N. N.; Sinelschikov, A. V.

    2017-11-01

    The finite element method is considered to be the most effective in relation to the calculation of strength and stability of buildings and engineering constructions. As a rule, for the modelling of supporting 3-D frameworks, finite elements with six degrees of freedom are used in each of the nodes. In practice, such supporting frameworks represent the thin-walled welded bars and hot-rolled bars of open and closed profiles in which cross-sectional deplanation must be taken into account. This idea was first introduced by L N Vorobjev and brought to one of the easiest variants of the thin-walled bar theory. The development of this approach is based on taking into account the middle surface shear deformation and adding the deformations of a thin-walled open bar to the formulas for potential and kinetic energy; these deformations depend on shearing stress and result in decreasing the frequency of the first tone of fluctuations to 13%. The authors of the article recommend taking into account this fact when calculating fail-proof dynamic systems.

  18. Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Lim, Teik C.

    2010-08-01

    A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.

  19. Static and free-vibrational response of semi-circular graphite-epoxy frames with thin-walled open sections

    NASA Technical Reports Server (NTRS)

    Collins, J. Scott; Johnson, Eric R.

    1989-01-01

    Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.

  20. Buckling of thin walled composite cylindrical shell filled with solid propellant

    NASA Astrophysics Data System (ADS)

    Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.

    2017-12-01

    This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.

  1. Numerical Estimation of the Elastic Properties of Thin-Walled Structures Manufactured from Short-Fiber-Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.

    2003-05-01

    A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.

  2. One-dimensional analysis of thin-walled beams with diaphragms and its application to optimization for stiffness reinforcement

    NASA Astrophysics Data System (ADS)

    Jung, Joon Hee; Jang, Gang-Won; Shin, Dongil; Kim, Yoon Young

    2018-03-01

    This paper presents a method to analyze thin-walled beams with quadrilateral cross sections reinforced with diaphragms using a one-dimensional higher-order beam theory. The effect of a diaphragm is reflected focusing on the increase of static stiffness. The deformations on the beam-interfacing boundary of a thin diaphragm are described by using deformation modes of the beam cross section while the deformations inside the diaphragm are approximated in the form of complete cubic polynomials. By using the principle of minimum potential energy, its stiffness that significantly affects distortional deformation of a thin-walled beam can be considered in the one-dimensional beam analysis. It is shown that the accuracy of the resulting one-dimensional analysis is comparable with that by a shell element based analysis. As a means to demonstrate the usefulness of the present approach for design, position optimization problems of diaphragms for stiffness reinforcement of an automotive side frame are solved.

  3. Thin Wall Pipe Ultrasonic Inspection through Paint Coating

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cătălin

    Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.

  4. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study

    PubMed Central

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-01-01

    Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424

  5. A tale of two neglected systems-structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves.

    PubMed

    Botha, C E J

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5-7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.

  6. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A. B.; Lemaître, A.; Jamet, J.-P.

    2016-07-01

    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

  7. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    PubMed

    Zhou, Zhengping; Liu, Guoliang

    2017-04-01

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of a thin-walled pressurized torus in contact with a plane. [aircraft tires study

    NASA Technical Reports Server (NTRS)

    Mack, M. J., Jr.; Gassman, P. M.; Baumgarten, J. R.

    1983-01-01

    Finite element analysis is applied to study the large deflection of a standing torus loaded by a plane. The internally pressurized thin-walled structure is found to have an elliptical footprint area. Considerable bulge occurs in the sidewall in the region of the load plane. Stress distributions throughout the torus are shown for various load levels and for various modeling strategies at a given load level. In large load ranges finite element calculations show compressive circumferential stress and negative curvature in the footprint region. Results are compared with inelastic wall analysis.

  9. Stresses In And Near A Bend In A Thin-Walled Duct

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Aggarwal, P. K.

    1995-01-01

    Report describes computational study of distributions of stresses in and near 90 degrees bend in thin-walled duct subject to various applied loads. Purpose of study to help satisfy need for more accurate knowledge of local concentrations of stresses caused by loads: such knowledge makes possible to design light-weight ducts to survive reasonably foreseeable operating conditions with some degree of reliability. Also guides selection of locations for mounting strain gauges to measure local stresses for comparison with computed values, contributing to refinement of theoretical concepts and computational techniques.

  10. A tale of two neglected systems—structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves

    PubMed Central

    Botha, C. E. J.

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280

  11. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    NASA Astrophysics Data System (ADS)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  12. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    NASA Astrophysics Data System (ADS)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  13. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2017-12-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  14. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  15. Analysis of defects of overhead facade systems and other light thin-walled structures

    NASA Astrophysics Data System (ADS)

    Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.

    2017-04-01

    This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.

  16. Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films.

    PubMed

    Guyonnet, Jill; Gaponenko, Iaroslav; Gariglio, Stefano; Paruch, Patrycja

    2011-12-01

    Domain wall conduction in insulating Pb(Zr(0.2) Ti(0.8))O(3) thin films is demonstrated. The observed electrical conduction currents can be clearly differentiated from displacement currents associated with ferroelectric polarization switching. The domain wall conduction, nonlinear and highly asymmetric due to the specific local probe measurement geometry, shows thermal activation at high temperatures, and high stability over time. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of Heat Treatment Parameters on the Characteristics of Thin Wall Austempered Ductile Iron Casting

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Rajat; Singh, K. K.; Kumar, Rajeev

    2018-03-01

    The technology of thin parts is necessary steps to designers for energy consuming equipment to choose accurate material based on material properties. Here austempering treatment process was utilized to acquire thin wall austempered ductile iron castings. The plate thickness (2-5) mm were austenitized at 900 °C for, 30 minutes took after by holding at 350°C, 400°C and 450°C inoculated by Ce-Ca-Al-S-O-FeSi,Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.2wt%,0.4wt% and 0.6wt% for 2,5 and 10 minutes for every temperature.The austempered samples are comparatively harder than the as-cast ductile iron plates. The micro hardness(HV20) also decreases with increase in austempering temperature for a given austempering time for thinner plates and also the micro hardness(HV20) is more for the samples treated at 350°C than those treated at 400°C and 450°C at 0.4wt% for a given austempering time. The yield strength and ultimate tensile strength of 2 mm thin wall austempered ductile iron are higher and ductility and impact strength are lower than that of as-cast 2 mm thin plate ductile iron inoculated by Ce-Ca-Al-S-O-FeSi compare to Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.4wt%. This may be attributed to the change in the structure change from ferrite-pearlite to austenite-bainite.

  18. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    NASA Astrophysics Data System (ADS)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  19. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  20. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    NASA Astrophysics Data System (ADS)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  1. A study on plastic wrinkling in thin-walled tube bending via an energy-based wrinkling prediction model

    NASA Astrophysics Data System (ADS)

    Li, H; Yang, H; Zhan, M

    2009-04-01

    Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.

  2. PanWeb: A web interface for pan-genomic analysis.

    PubMed

    Pantoja, Yan; Pinheiro, Kenny; Veras, Allan; Araújo, Fabrício; Lopes de Sousa, Ailton; Guimarães, Luis Carlos; Silva, Artur; Ramos, Rommel T J

    2017-01-01

    With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.

  3. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

    DOE PAGES

    Damodaran, Anoop; Okatan, M. B.; Kacher, J.; ...

    2016-02-15

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less

  4. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodaran, Anoop; Okatan, M. B.; Kacher, J.

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less

  5. Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Films for Optical Detection.

    PubMed

    Banimuslem, Hikmat; Hassan, Aseel; Basova, Tamara; Durmuş, Mahmut; Tuncel, Sinem; Esenpinar, Aliye Asli; Gürek, Ayşe Gül; Ahsen, Vefa

    2015-03-01

    Thin films of non-covalently hybridized single-walled carbon nanotubes (SWCNT) and tetra-substituted copper phthalocyanine (CuPcR4) molecules have been produced from their solutions in dimethylformamide (DMF). FTIR spectra revealed the 7π-7π interaction between SWCNTs and CuPcR4 molecules. DC conductivity of films of acid-treated SWCNT/CuPcR4 hybrid has increased by more than three orders of.magnitude in comparison with conductivity of CuPcR4 films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements have shown that films obtained from the acid-treated SWCNTs/CuPcR4 hybrids demonstrated more homogenous surface which is ascribed to the highly improved solubility of the hybrid powder in DMF Using total internal reflection ellipsometry spectroscopy (TIRE), thin films of the new hybrid have been examined as an optical sensing membrane for the detection of benzo[a]pyrene in water to demonstrate the sensing properties of the hybrid.

  6. Differences in evaporation between a floating pan and class a pan on land

    USGS Publications Warehouse

    Masoner, J.R.; Stannard, D.I.; Christenson, S.C.

    2008-01-01

    Research was conducted to develop a method for obtaining floating pan evaporation rates in a small (less than 10,000 m2) wetland, lagoon, or pond. Floating pan and land pan evaporation data were collected from March 1 to August 31, 2005, at a small natural wetland located in the alluvium of the Canadian River near Norman, Oklahoma, at the U.S. Geological Survey Norman Landfill Toxic Substances Hydrology Research Site. Floating pan evaporation rates were compared with evaporation rates from a nearby standard Class A evaporation pan on land. Floating pan evaporation rates were significantly less than land pan evaporation rates for the entire period and on a monthly basis. Results indicated that the use of a floating evaporation pan in a small free-water surface better simulates actual physical conditions on the water surface that control evaporation. Floating pan to land pan ratios were 0.82 for March, 0.87 for April, 0.85 for May, 0.85 for June, 0.79 for July, and 0.69 for August. ?? 2008 American Water Resources Association.

  7. Innovative uses of GigaPan Technology for Onsite and Distance Education

    NASA Astrophysics Data System (ADS)

    Bentley, C.; Schott, R. C.; Piatek, J. L.; Richards, B.

    2013-12-01

    GigaPans are gigapixel panoramic images that can be viewed at a wide range of magnifications, allowing users to explore them in various degrees of detail from the smallest scale to the full image extent. In addition to panoramic images captured with the GigaPan camera mount ('Dry Falls' - http://www.gigapan.com/gigapans/89093), users can also upload annotated images (For example, 'Massanutten sandstone slab with trace fossils (annotated)', http://www.gigapan.com/gigapans/124295) and satellite images (For example, 'Geology vs. Topography - State of Connecticut', http://www.gigapan.com/gigapans/111265). Panoramas with similar topics have been gathered together on the site in galleries, both user-generated and site-curated (For example, http://www.gigapan.com/galleries?categories=geology&page=1). Further innovations in display technology have also led to the development of improved viewers (for example, the annotations in the image linked above can be explored via paired viewers at http://coursecontent.nic.edu/bdrichards/gigapixelimages/callanview) GigaPan panoramas can be created through use of the GigaPan robotic camera mount and a digital camera (different models of the camera mount are available and work with a wide range of cameras). The camera mount can be used to create high-resolution pans ranging in scale from hand sample to outcrop up to landscape via the stitching software included with the robotic mount. The software can also be used to generate GigaPan images from other sources, such as thin section or satellite images, so these images can also be viewed with the online viewer. GigaPan images are typically viewed via a web-based interface that allows the user to interact with the image from the limits of the image detail up to the full panorama. After uploading, information can be added to panoramas with both text captions and geo-referencing (geo-located panoramas can then be viewed in Google Earth). Users can record specific locations and zoom levels in

  8. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  9. Stress distribution in and equivalent width of flanges of wide, thin-wall steel beams

    NASA Technical Reports Server (NTRS)

    Winter, George

    1940-01-01

    The use of different forms of wide-flange, thin-wall steel beams is becoming increasingly widespread. Part of the information necessary for a national design of such members is the knowledge of the stress distribution in and the equivalent width of the flanges of such beams. This problem is analyzed in this paper on the basis of the theory of plane stress. As a result, tables and curves are given from which the equivalent width of any given beam can be read directly for use in practical design. An investigation is given of the limitations of this analysis due to the fact that extremely wide and thin flanges tend to curve out of their plane toward the neutral axis. A summary of test data confirms very satisfactorily the analytical results.

  10. Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose

    2006-07-01

    It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.

  11. Charge Diffusion Variations in Pan-STARRS1 CCDs

    NASA Astrophysics Data System (ADS)

    Magnier, Eugene A.; Tonry, J. L.; Finkbeiner, D.; Schlafly, E.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C. Z.

    2018-06-01

    Thick back-illuminated deep-depletion CCDs have superior quantum efficiency over previous generations of thinned and traditional thick CCDs. As a result, they are being used for wide-field imaging cameras in several major projects. We use observations from the Pan-STARRS 3π survey to characterize the behavior of the deep-depletion devices used in the Pan-STARRS 1 Gigapixel Camera. We have identified systematic spatial variations in the photometric measurements and stellar profiles that are similar in pattern to the so-called “tree rings” identified in devices used by other wide-field cameras (e.g., DECam and Hypersuprime Camera). The tree-ring features identified in these other cameras result from lateral electric fields that displace the electrons as they are transported in the silicon to the pixel location. In contrast, we show that the photometric and morphological modifications observed in the GPC1 detectors are caused by variations in the vertical charge transportation rate and resulting charge diffusion variations.

  12. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  13. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, David T.; Bunn, Jeffrey R.; Gussev, Maxim N.

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  14. PanACEA: a bioinformatics tool for the exploration and visualization of bacterial pan-chromosomes.

    PubMed

    Clarke, Thomas H; Brinkac, Lauren M; Inman, Jason M; Sutton, Granger; Fouts, Derrick E

    2018-06-27

    Bacterial pan-genomes, comprised of conserved and variable genes across multiple sequenced bacterial genomes, allow for identification of genomic regions that are phylogenetically discriminating or functionally important. Pan-genomes consist of large amounts of data, which can restrict researchers ability to locate and analyze these regions. Multiple software packages are available to visualize pan-genomes, but currently their ability to address these concerns are limited by using only pre-computed data sets, prioritizing core over variable gene clusters, or by not accounting for pan-chromosome positioning in the viewer. We introduce PanACEA (Pan-genome Atlas with Chromosome Explorer and Analyzer), which utilizes locally-computed interactive web-pages to view ordered pan-genome data. It consists of multi-tiered, hierarchical display pages that extend from pan-chromosomes to both core and variable regions to single genes. Regions and genes are functionally annotated to allow for rapid searching and visual identification of regions of interest with the option that user-supplied genomic phylogenies and metadata can be incorporated. PanACEA's memory and time requirements are within the capacities of standard laptops. The capability of PanACEA as a research tool is demonstrated by highlighting a variable region important in differentiating strains of Enterobacter hormaechei. PanACEA can rapidly translate the results of pan-chromosome programs into an intuitive and interactive visual representation. It will empower researchers to visually explore and identify regions of the pan-chromosome that are most biologically interesting, and to obtain publication quality images of these regions.

  15. A new axi-symmetric element for thin walled structures

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Yoon, Jeong Whan; Dick, Robert E.

    2010-03-01

    A new axi-symmetric finite element for thin walled structures is presented in this work. It uses the solid-shell element’s concept with only a single element and multiple integration points along the thickness direction. The cross-section of the element is composed of four nodes with two degrees of freedom each. The proposed formulation overcomes many locking pathologies including transverse shear locking, Poisson’s locking and volumetric locking. For transverse shear locking, the formulation uses the selective reduced integration technique, for Poisson’s locking it uses the enhanced assumed strain (EAS) method with only one enhancing variable. The B-bar approach is used to eliminate the isochoric deformations in the hourglass field while the EAS method is used to alleviate the volumetric locking in the constant part of the deformation tensor. Several examples are shown to demonstrate the performance and accuracy of the proposed element with special focus on the numerical simulations for the beverage can industry.

  16. 77 FR 22181 - Pan American Day and Pan American Week, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... American Day and Pan American Week, 2012 By the President of the United States of America A Proclamation In April of 1890, delegates from countries throughout the Americas gathered in Washington, D.C., united in... democracy and economic opportunity for all our people. During Pan American Day and Pan American Week, we...

  17. Vibration characteristics of two-stage planetary transmission system with thin-walled ring gear on elastic supports

    NASA Astrophysics Data System (ADS)

    Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing

    2018-03-01

    A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.

  18. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  19. Thermal modeling and analysis of thin-walled structures in micro milling

    NASA Astrophysics Data System (ADS)

    Zhang, J. F.; Ma, Y. H.; Feng, C.; Tang, W.; Wang, S.

    2017-11-01

    The numerical analytical model has been developed to predict the thermal effect with respect to thin walled structures by micro-milling. In order to investigate the temperature distribution around micro-edge of cutter, it is necessary to considering the friction power, the shearing power, the shear area between the tool micro-edge and materials. Due to the micro-cutting area is more difficult to be measured accurately, the minimum chip thickness as one of critical factors is also introduced. Finite element-based simulation was employed by the Advantedge, which was determined from the machining of Ti-6Al-4V over a range of the uncut chip thicknesses. Results from the proposed model have been successfully accounted for the effects of thermal softening for material.

  20. Some considerations on instability of combined loaded thin-walled tubes with a crack

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Akbarpour, A.

    2016-05-01

    Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.

  1. Frontal horn thin walled cysts in preterm neonates are benign

    PubMed Central

    Pal, B; Preston, P; Morgan, M; Rushton, D; Durbin, G

    2001-01-01

    BACKGROUND—Screening cranial ultrasound led to the discovery of isolated frontal horn cysts quite distinct from periventricular leucomalacia cysts.
AIM—To clarify their significance, incidence, characteristics, causal factors or aetiology, and effect on long term outcome.
DESIGN—A retrospective observational study of all first cranial ultrasound scans (total of 2914) performed during the period 1984-1994 inclusive found 21 neonates with smooth thin walled frontal horn cysts: 18 of 2629 scanned were of birth weight < 1500 g or gestation < 33 weeks, and three of 285 were > 33 weeks gestation. Sequential ultrasound, maternal records, and neonatal events were retrospectively assessed. In survivors, routine neurodevelopmental evaluations were obtained. Postmortem studies of one cyst were performed to determine the nature and origin of these lesions.
RESULTS—Of the 21 subjects, 15 had isolated frontal horn cysts and six had additional ultrasound scan abnormalities, including four with subependymal haemorrhage. The sonographic features of frontal horn cysts were of distinctive morphology (elliptical, smooth, thin walled, ranging in size from 3 to 20 mm) and position (adjacent to the tip of the anterior horns). The cysts enlarged and then regressed by a median corrected age of 2 months. Subjects of < 33 weeks gestation (n = 18) had a median birth weight of 1465g (range 720-1990) and median gestation of 30 weeks (range 24-32). There was no consistent perinatal course. The neurodevelopmental outcome in 10 of the 11 survivors with isolated frontal horn cysts was normal. Five subjects died from causes unrelated to brain pathology in the neonatal period, and one subject died after infancy. Histological examination of a cyst at autopsy in one additional subject subsequent to the period of study confirmed the cyst to be lined by neuroblasts and ependymal cells.
CONCLUSIONS—The incidence of frontal horn cysts in this low birthweight population was 7 per 1000 (0

  2. A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqian; Yang, Huilin

    2017-12-01

    The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.

  3. Superficial Velocity Effects on HZ-PAN and AgZ-PAN for Kr/Xe Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, Amy Keil; Garn, Troy Gerry; Greenhalgh, Mitchell Randy

    2016-04-01

    Nearly all previous testing of HZ-PAN and AgZ-PAN was conducted at the same flow rate in order to maintain consistency among tests. This testing was sufficient for sorbent capacity determinations, but did not ensure that sorbents were capable of functioning under a range of flow regimes. Tests were conducted on both HZ-PAN and AgZ-PAN at superficial velocities between 20 and 700 cm/min. For HZ-PAN, Kr capacity increased from 60 mmol/kg to 110 mmol/kg as superficial velocity increased from 21 to 679 cm/min. Results for AgZ-PAN were similar, with capacity ranging from 72 to 124 mmol/kg over the same range ofmore » superficial. These results are promising for scaling up to process flows, demonstrating flexibility to operate in a broad range of superficial velocities while maintaining sorbent capacity. While preparing for superficial velocity testing it was also discovered that AgZ-PAN Xe capacity, previously observed to diminish over time, could be recovered with increased desorption temperature. Further, a substantial Xe capacity increase was observed. Previous room temperature capacities in the range of 22-25 mmol Xe/kg AgZ-PAN were increased to over 60 mmol Xe/kg AgZ-PAN. While this finding has not yet been fully explored to optimize activation and desorption temperatures, it is encouraging.« less

  4. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Oxides within DOE-STD-3013-2000 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mount, M E; O'Connell, W J

    2005-06-03

    Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised ofmore » a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm{sup 3} to 4.62 g/cm{sup 3}) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results.« less

  5. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    PubMed

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  6. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  7. Examination of Buckling Behavior of Thin-Walled Al-Mg-Si Alloy Extrusions

    NASA Astrophysics Data System (ADS)

    Vazdirvanidis, Athanasios; Koumarioti, Ioanna; Pantazopoulos, George; Rikos, Andreas; Toulfatzis, Anagnostis; Kostazos, Protesilaos; Manolakos, Dimitrios

    To achieve the combination of improved crash tolerance and maximum strength in aluminium automotive extrusions, a research program was carried out. The main objective was to study AA6063 alloy thin-walled square tubes' buckling behavior under axial quasi-static load after various artificial aging treatments. Variables included cooling rate after solid solution treatment, duration of the 1st stage of artificial aging and time and temperature of the 2nd stage of artificial aging. Metallography and tensile testing were employed for developing deeper knowledge on the effect of the aging process parameters. FEM analysis with the computer code LS-DYNA was supplementary applied for deformation mode investigation and crashworthiness prediction. Results showed that data from actual compression tests and numerical modeling were in considerable agreement.

  8. Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

    NASA Astrophysics Data System (ADS)

    Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng

    2018-02-01

    Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

  9. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.

    PubMed

    Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah

    2014-09-10

    We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.

  10. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  11. Numerical modelling of thin-walled Z-columns made of general laminates subjected to uniform shortening

    NASA Astrophysics Data System (ADS)

    Teter, Andrzej; Kolakowski, Zbigniew

    2018-01-01

    The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.

  12. Instantons for vacuum decay at finite temperature in the thin wall limit

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume

    1994-05-01

    In N+1 dimensions, false vacuum decay at zero temperature is dominated by the O(N+1)-symmetric instanton, a sphere of radius R0, whereas at temperatures T>>R-10, the decay is dominated by a ``cylindrical'' (static) O(N)-symmetric instanton. We study the transition between these two regimes in the thin wall approximation. Taking an O(N)-symmetric ansatz for the instantons, we show that for N=2 and N=3 new periodic solutions exist in a finite temperature range in the neighborhood of T~R-10. However, these solutions have a higher action than the spherical or the cylindrical one. This suggests that there is a sudden change (a first order transition) in the derivative of the nucleation rate at a certain temperature T*, when the static instanton starts dominating. For N=1, on the other hand, the new solutions are dominant and they smoothly interpolate between the zero temperature instanton and the high temperature one, so the transition is of second order. The determinantal prefactors corresponding to the ``cylindrical'' instantons are discussed, and it is pointed out that the entropic contributions from massless excitations corresponding to deformations of the domain wall give rise to an exponential enhancement of the nucleation rate for T>>R-10.

  13. Large structural, thin-wall castings made of metals subject to hot tearing, and their fabrication

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor)

    2001-01-01

    An article, such as a gas turbine engine mixer, is made by providing a mold structure defining a thin-walled, hollow article, and a base metal that is subject to hot tear cracking when cast in a generally equiaxed polycrystalline form, such as Rene' 108 and Mar-M247. The article is fabricated by introducing the molten base metal into the mold structure, and directionally solidifying the base metal in the mold structure to form a directionally oriented structure. The directionally oriented structure may be formed of a single grain or oriented multiple grains.

  14. Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes.

    PubMed

    Lynch, J M; Wood, C G; Luboga, S A

    1996-01-01

    Traditionally, morphometric studies have relied on statistical analysis of distances, angles or ratios to investigate morphometric variation among taxa. Recently, geometric techniques have been developed for the direct analysis of landmark data. In this paper, we offer a summary (with examples) of three of these newer techniques, namely shape coordinate, thin-plate spline and relative warp analyses. Shape coordinate analysis detected significant craniofacial variation between 4 modern human populations, with African and Australian Aboriginal specimens being relatively prognathous compared with their Eurasian counterparts. In addition, the Australian specimens exhibited greater basicranial flexion than all other samples. The observed relationships between size and craniofacial shape were weak. The decomposition of shape variation into affine and non-affine components is illustrated via a thin-plate spline analysis of Homo and Pan cranial landmarks. We note differences between Homo and Pan in the degree of prognathism and basicranial flexion and the position and orientation of the foramen magnum. We compare these results with previous studies of these features in higher primates and discuss the utility of geometric morphometrics as a tool in primatology and physical anthropology. We conclude that many studies of morphological variation, both within and between taxa, would benefit from the graphical nature of these techniques.

  15. Method for making thin carbon foam electrodes

    DOEpatents

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  16. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  17. The effects of temperature on the surface resistivity of polyvinyl alcohol (PVA) thin films doped with silver nanoparticles and multi-walled carbon-nanotubes for optoelectronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Polius, Jemilia R.

    This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.

  18. Tissue factor levels and the fibrinolytic system in thin and thick intraluminal thrombus and underlying walls of abdominal aortic aneurysms.

    PubMed

    Siennicka, Aldona; Zuchowski, Marta; Kaczmarczyk, Mariusz; Cnotliwy, Miłosław; Clark, Jeremy Simon; Jastrzębska, Maria

    2018-03-20

    The hemostatic system cooperates with proteolytic degradation in processes allowing abdominal aortic aneurysm (AAA) formation. In previous studies, it has been suggested that aneurysm rupture depends on intraluminal thrombus (ILT) thickness, which varies across each individual aneurysm. We hypothesized that hemostatic components differentially accumulate in AAA tissue in relation to ILT thickness. Thick (A1) and thin (B1) segments of ILTs and aneurysm wall sections A (adjacent to A1) and B (adjacent to B1) from one aneurysm sac were taken from 35 patients undergoing elective repair. Factor levels were measured using enzyme-linked immunosorbent assay of protein extract. Tissue factor (TF) activities were significantly higher in thinner segments of AAA (B1 vs A1, P = .003; B vs A, P < .001; B vs A1, P < .001; B vs B1, P = .001). Significantly higher tissue plasminogen activator was found in thick thrombus-covered wall segments (A) than in B, A1, and B1 (P = .015, P < .001, and P < .001, respectively). Plasminogen concentrations were highest in ILT. Concentrations of α 2 -antiplasmin in thin ILT adjacent walls (B) were higher compared with wall (A) adjacent to thick ILT (P = .021) and thick ILT (A1; P < .001). Significant correlations between levels of different factors were mostly found in thick ILT (A1). However, no correlations were found at B sites, except for a correlation between plasmin and TF activities (r = 0.55; P = .004). These results suggest that higher TF activities are present in thinner AAA regions. These parameters and local fibrinolysis may be part of the processes leading to destruction of the aneurysm wall. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. The nonlinear bending response of thin-walled laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Hyer, Michael W.

    1992-01-01

    The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.

  20. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  1. Wall contraction in Bloch wall films

    NASA Technical Reports Server (NTRS)

    Bartran, D. S.; Bourne, H. C., Jr.

    1972-01-01

    The phenomenon of wall contraction characterized by a peak in the velocity field relationship and a region of negative differential mobility is observed. Uniaxial magnetic thin films of various compositions and magnetic properties are studied in careful interrupted pulse experiments. The observed results agree quite well with the theory for bulk samples.

  2. Method for making thin carbon foam electrodes

    DOEpatents

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  3. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    PubMed

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  4. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  5. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  6. Mineralogy and geochemistry of the sediments of the Etosha Pan Region in northern Namibia: a reconstruction of the depositional environment

    NASA Astrophysics Data System (ADS)

    Buch, M. W.; Rose, D.

    1996-04-01

    The paper presents the results of mineralogical and chemical analyses of the clay fraction (<2 μm) of samples from boreholes in the Etosha Pan and smaller pans of the Owambo-Pans-Plain in the Etosha National Park, northern Namibia. Four mineral associations can be differentiated within the vertical succession of the profiles in the Etosha Pan: I) analcime/K-feldspar and mica association; II) analcime/K-feldspar and sepiolite (loughlinite) association; III) expandable sheet silicate (saponite/stevensite) association; and IV) calcite and dolomite association. These mineral associations are the expression of the seasonal saline-alkaline to calciferous, saline-alkaline environment of the present Etosha Pan. The sedimentological and pedological descriptions, combined with the results of the mineralogical and chemical analyses, show a clear differentiation of the profiles of the Etosha Pan in: i) disintegrated sedimentary rocks of the Andoni Formation (mineral association I); ii) par-autochthonous sediments (mineral associations I and II); and iii) allochthonous sediments (mineral associations III and IV). Based on this vertical mineralogical differentiation, four sedimentological-mineralogical/ chemical zones are defined for the actual floor of the Etosha Pan. The zonation shows that a thin cover of allochthonous sediments is only present along the southern margin of the Etosha Pan, including Fisher's Pan. The results support the hypothesis that the Etosha Pan is an erosional form rather than a palaeolake. In principle, the zonal configuration of the recent allochthonous and parautochthonous sediments identified on the Etosha Pan provides a small-scale depositional environment model for the formation of the Etosha limestone and sediments of the Andoni Formation during the Oligocene and Miocene. Thus, the findings help to reconstruct the depositional environment of the evolution of the extensive depocentre of the Etosha basin during the Late Tertiary.

  7. The pipes of pan.

    PubMed

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  8. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.

    PubMed

    Kocabas, Coskun; Hur, Seung-Hyun; Gaur, Anshu; Meitl, Matthew A; Shim, Moonsub; Rogers, John A

    2005-11-01

    A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.

  9. 12. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO TAPE EQUIPMENT AND VOICE INTERCOM EQUIPMENT. THE MONITORS ABOVE GLASS WALL DISPLAY UNDERWATER TEST VIDEO TO CONTROL ROOM. FARTHEST CONSOLE ROW CONTAINS CAMERA SWITCHING, PANNING, TILTING, FOCUSING, AND ZOOMING. MIDDLE CONSOLE ROW CONTAINS TEST CONDUCTOR CONSOLES FOR MONITORING TEST ACTIVITIES AND DATA. THE CLOSEST CONSOLE ROW IS NBS FACILITY CONSOLES FOR TEST DIRECTOR, SAFETY AND QUALITY ASSURANCE REPRESENTATIVES. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  10. 13. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. NBS LOWER ROOM. BEHIND FAR GLASS WALL IS VIDEO TAPE EQUIPMENT AND VOICE INTERCOM EQUIPMENT. THE MONITORS ABOVE GLASS WALL DISPLAY UNDERWATER TEST VIDEO TO CONTROL ROOM. FARTHEST CONSOLE ROW CONTAINS CAMERA SWITCHING, PANNING, TILTING, FOCUSING, AND ZOOMING. MIDDLE CONSOLE ROW CONTAINS TEST CONDUCTOR CONSOLES FOR MONITORING TEST ACTIVITIES AND DATA. THE CLOSEST CONSOLE ROW IS NBC FACILITY CONSOLES FOR TEST DIRECTOR, SAFETY AND QUALITY ASSURANCE REPRESENTATIVES. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  11. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens).

    PubMed

    Potau, J M; Arias-Martorell, J; Bello-Hellegouarch, G; Casado, A; Pastor, J F; de Paz, F; Diogo, R

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) and compared them to anatomic variations in these muscles in humans (Homo sapiens) . We have macroscopically dissected these muscles in six adult Pan troglodytes , five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens . Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes ; none of the Pan paniscus , however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus . In all six Pan troglodytes , the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens , it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  12. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens)

    PubMed Central

    Arias-Martorell, J.; Bello-Hellegouarch, G.; Casado, A.; Pastor, J. F.; de Paz, F.; Diogo, R.

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) and compared them to anatomic variations in these muscles in humans (Homo sapiens). We have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes; none of the Pan paniscus, however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus. In all six Pan troglodytes, the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens, it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues. PMID:29581990

  13. Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; ...

    2016-09-02

    Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in hetero-interfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr 0.2Ti 0.8O 3 are strongly coupled to polar interfaces through the formation of ½<101>{h0l} type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs, where necessary compensating charges for stabilizing the CDWs are associated withmore » vacancies at the CSPs. Lasly, the CDW/CSP coupling yields an atomically narrow domain walls, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.« less

  14. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  15. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  16. An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall.

    PubMed

    Chun, Youngjae; Kealey, Colin P; Levi, Daniel S; Rigberg, David A; Chen, Yanfei; Tillman, Bryan W; Mohanchandra, K P; Shayan, Mahdis; Carman, Gregory P

    2017-03-01

    Sputter-deposited thin film nitinol constructs with various micropatterns were fabricated to evaluate their effect on the vessel wall in vivo when used as a covering for commercially available stents. Thin film nitinol constructs were used to cover stents and deployed in non-diseased swine arteries. Swine were sacrificed after approximately four weeks and the thin film nitinol-covered stents were removed for histopathologic evaluation. Histopathology revealed differences in neointimal thickness that correlated with the thin film nitinol micropattern. Devices covered with thin film nitinol with a lateral × vertical length = 20 × 40 µm diamond pattern had minimal neointimal growth with well-organized cell architecture and little evidence of ongoing inflammation. Devices covered with thin film nitinol with smaller fenestrations exhibited a relatively thick neointimal layer with inflammation and larger fenestrations showed migration of inflammatory and smooth muscle cells through the micro fenestrations. This "proof-of-concept" study suggests that there may be an ideal thin film nitinol porosity and pore geometry to encourage endothelialization and incorporation of the device into the vessel wall. Future work will be needed to determine the optimal pore size and geometry to minimize neointimal proliferation and in-stent stenosis.

  17. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    NASA Astrophysics Data System (ADS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  18. Synthesis of highly conductive thin-walled Al-doped ZnO single-crystal microtubes by a solid state method

    NASA Astrophysics Data System (ADS)

    Hu, Shuopeng; Wang, Yue; Wang, Qiang; Xing, Cheng; Yan, Yinzhou; Jiang, Yijian

    2018-06-01

    ZnO has attracted considerable attention in fundamental studies and practical applications for the past decade due to its outstanding performance in gas sensing, photocatalytic degradation, light harvesting, UV-light emitting/lasing, etc. The large-sized thin-walled ZnO (TW-ZnO) microtube with stable and rich VZn-related acceptors grown by optical vapor supersaturated precipitation (OVSP) is a novel multifunctional optoelectronic material. Unfortunately, the OVSP cannot achieve doping due to the vapor growth process. To obtain doped TW-ZnO microtubes, a solid state method is introduced in this work to achieve thin-walled Al-doping ZnO (TW-ZnO:Al) microtubes with high electrical conductivity. The morphology and microstructures of ZnO:Al microtubes are similar to undoped ones. The Al3+ ions are confirmed to substitute Zn2+ sites and Zn(0/-1) vacancies in the lattice of ZnO by EDS, XRD, Raman and temperature-dependent photoluminescence analyses. The Al dopant acting as a donor level offers massive free electrons to increase the carrier concentrations. The resistivity of the ZnO:Al microtube is reduced down to ∼10-3 Ω·cm, which is one order of magnitude lower than that of the undoped microtube. The present work provides a simple way to achieve doped ZnO tubular components for potential device applications in optoelectronics.

  19. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    PubMed

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  20. Precision Photometry and Astrometry from Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Magnier, Eugene A.; Pan-STARRS Team

    2018-01-01

    The Pan-STARRS 3pi Survey has been calibrated with excellent precision for both astrometry and photometry. The Pan-STARRS Data Release 1, opened to the public on 2016 Dec 16, provides photometry in 5 well-calibrated, well-defined bandpasses (grizy) astrometrically registered to the Gaia frame. Comparisons with other surveys illustrate the high quality of the calibration and provide tests of remaining systematic errors in both Pan-STARRS and those external surveys. With photometry and astrometry of roughly 3 billion astronomical objects, the Pan-STARRS DR1 has substantial overlap with Gaia, SDSS, 2MASS and other surveys. I will discuss the astrometric tie between Pan-STARRS DR1 and Gaia and show comparisons between Pan-STARRS and other large-scale surveys.

  1. GigaPan Technology to Enhance In-Class and In-Field Learning in Community College Settings

    NASA Astrophysics Data System (ADS)

    Villalobos, J. I.; Bentley, C.

    2014-12-01

    Community college students account for over 40% of all undergraduates in the United States as well as the majority of minority and non-traditional students attending undergraduate courses. Implementing innovative, cost effective, and formative pedagogies to the diverse backgrounds of students that typically enroll at a community is often a challenge. Interactive pedagogies in geology pose a unique challenge considering that students gain the most long-term knowledge when topics covered in a course are exposed to them in outdoor settings where they are allowed to explore and make connections. The ability to expose students to real world examples is challenging to many community college faculty considering that that many; lack funds or means for transportation of students, do not have administrative support on such endeavors, teach evening or night classes, or have a high percentage of students who are physically limited or have obligations to work and family. A joint collaborative between El Paso Community College (EPCC) and Northern Virginia Community College (NOVA) has explored the usage of GigaPan technology to create multi-layered online material to minimize these issues faced by many community college faculty and students. The primary layer of the online material is GigaPans of local geological sites that highlight large-scale structures in the El Paso, Texas region that are commonly used in local field trips and lab book material. The second layer is of Macro-GigaPans of hand samples of key outcrops from the primarily GigaPans which facilitate student learning, exploration, and ability to make connections by exploring smaller scale features of the primary layer. A third layer of online material, GigaPans of thin sections of hand samples (from secondary layers), and curriculum based on the GigaPans was then created to assist students in evaluating proposed hypotheses on the primary layers' geological origin. GigaPan cirriculum was utilized in introductory

  2. A model of the biogeographical journey from Proto-pan to Pan paniscus.

    PubMed

    Myers Thompson, Jo A

    2003-04-01

    Pan paniscus is unique in the group of African apes because of its range south of the Congo River. Examination of the bio-geographical journey of the genus Pan to the species P. paniscus is important when discussing the evolution of African apes. This paper is a review of the paleo-geographic events, the zoogeography, and faunal sorting which influenced P. paniscus divergence from the Proto-pan ancestor within the recent Miocene through Pliocene Epochs, approximately 10-2 MYA. Finally, by elucidating modern day evidence of food plant forms in the southern periphery exploited by P. paniscus in the forest/savanna mosaic habitat, we are able to conclude with those extrinsic events that most influenced the occurrence and distribution of P. paniscus.

  3. The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall

    NASA Astrophysics Data System (ADS)

    Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.

    2015-03-01

    We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.

  4. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  5. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    NASA Astrophysics Data System (ADS)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  6. Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells

    NASA Technical Reports Server (NTRS)

    Lintilhac, P. M.; Wei, C.; Tanguay, J. J.; Outwater, J. O.

    2000-01-01

    In this article we describe a new method for the determination of turgor pressures in living plant cells. Based on the treatment of growing plant cells as thin-walled pressure vessels, we find that pressures can be accurately determined by observing and measuring the area of the contact patch formed when a spherical glass probe is lowered onto the cell surface with a known force. Within the limits we have described, we can show that the load (determined by precalibration of the device) divided by the projected area of the contact patch (determined by video microscopy) provides a direct, rapid, and accurate measure of the internal turgor pressure of the cell. We demonstrate, by parallel measurements with the pressure probe, that our method yields pressure data that are consistent with those from the pressure probe. Also, by incubating target tissues in stepped concentrations of mannitol to incrementally reduce the turgor pressure, we show that the pressures measured by tonometry accurately reflect the predicted changes from the osmotic potential of the bathing medium. The advantages of this new method over the pressure probe are considerable, however, in that we can move rapidly from cell to cell, taking measurements every 20 s. In addition, the nondestructive nature of the method means that we can return to the same cell repeatedly for periodic pressure measurements. The limitations of the method lie in the fact that it is suitable only for superficial cells that are directly accessible to the probe and to cells that are relatively thin walled and not heavily decorated with surface features. It is also not suitable for measuring pressures in flaccid cells.

  7. Investigation of needleless electrospun PAN nanofiber mats

    NASA Astrophysics Data System (ADS)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  8. Clinical Evaluation of Youth with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS): Recommendations from the 2013 PANS Consensus Conference

    PubMed Central

    Frankovich, Jennifer; Cooperstock, Michael; Cunningham, Madeleine W.; Latimer, M. Elizabeth; Murphy, Tanya K.; Pasternack, Mark; Thienemann, Margo; Williams, Kyle; Walter, Jolan; Swedo, Susan E.

    2015-01-01

    Abstract On May 23 and 24, 2013, the First PANS Consensus Conference was convened at Stanford University, calling together a geographically diverse group of clinicians and researchers from complementary fields of pediatrics: General and developmental pediatrics, infectious diseases, immunology, rheumatology, neurology, and child psychiatry. Participants were academicians with clinical and research interests in pediatric autoimmune neuropsychiatric disorder associated with streptococcus (PANDAS) in youth, and the larger category of pediatric acute-onset neuropsychiatric syndrome (PANS). The goals were to clarify the diagnostic boundaries of PANS, to develop systematic strategies for evaluation of suspected PANS cases, and to set forth the most urgently needed studies in this field. Presented here is a consensus statement proposing recommendations for the diagnostic evaluation of youth presenting with PANS. PMID:25325534

  9. Scaled-Up Fabrication of Thin-Walled ZK60 Tubing using Shear Assisted Processing and Extrusion (ShAPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Scott A.; Joshi, Vineet V.; Overman, Nicole R.

    Shear Assisted Processing and Extrusion (ShAPE) has been scaled-up and applied to direct extrusion of thin-walled magnesium tubing. Using ShAPE, billets of ZK60A-T5 were directly extruded into round tubes having an outer diameter of 50.8 mm and wall thickness of 1.52 mm. The severe shearing conditions inherent to ShAPE resulted in microstructural refinement with an average grain size of 3.8μm measured at the midpoint of the tube wall. Tensile testing per ATSM E-8 on specimens oriented parallel to the extrusion direction gave an ultimate tensile strength of 254.4 MPa and elongation of 20.1%. Specimens tested perpendicular to the extrusion directionmore » had an ultimate tensile strength of 297.2 MPa and elongation of 25.0%. Due to material flow effects resulting from the simultaneous linear and rotational shear intrinsic to ShAPE, ram force and electrical power consumption during extrusion were just 40 kN and 11.5 kW respectively. This represents a significant reduction in ram force and power consumption compared to conventional extrusion. As such, there is potential for ShAPE to offer a scalable, lower cost extrusion option with potentially improved bulk mechanical properties.« less

  10. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  11. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Effect of load eccentricity on the buckling of thin-walled laminated C-columns

    NASA Astrophysics Data System (ADS)

    Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert

    2018-01-01

    The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.

  13. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?

    PubMed

    Hoffman, P F

    2016-11-01

    Geochemical, paleomagnetic, and geochronological data increasingly support the Snowball Earth hypothesis for Cryogenian glaciations. Yet, the fossil record reveals no clear-cut evolutionary bottleneck. Climate models and the modern cryobiosphere offer insights on this paradox. Recent modeling implies that Snowball continents never lacked ice-free areas. Wind-blown dust from these areas plus volcanic ash were trapped by snow on ice sheets and sea ice. At a Snowball onset, sea ice was too thin to flow and ablative ice was too cold for dust retention. After a few millenia, sea ice reached 100 s of meters in thickness and began to flow as a 'sea glacier' toward an equatorial ablation zone. At first, dust advected to the ablative surface was recycled by winds, but as the surface warmed with rising CO 2 , dust aka cryoconite began to accumulate. As a sea glacier has no terminus, cryoconite saturated the surface. It absorbed solar radiation, supported cyanobacterial growth, and sank to an equilibrium depth forming holes and decameter-scale pans of meltwater. As meltwater production rose, drainages developed, connecting pans to moulins, where meltwater was flushed into the subglacial ocean. Flushing cleansed the surface, creating a stabilizing feedback. If the dust flux rose, cryoconite was removed; if the dust flux waned, cryoconite accumulated. In addition to cyanobacteria, modern cryoconite holes are inhabited by green algae, fungi, protists, and certain metazoans. On Snowball Earth, cryoconite pans provided stable interconnected habitats for eukaryotes tolerant of fresh to brackish cold water on an ablation surface 60 million km 2 in area. Flushing and burial of organic matter was a potential source of atmospheric oxygen. Dominance of green algae among Ediacaran eukaryotic primary producers is a possible legacy of Cryogenian cryoconite pans, but a schizohaline ocean-supraglacial freshwater and subglacial brine-may have exerted selective stress on early metazoans, or

  14. Menu driven heat treatment control of thin walled bodies

    DOEpatents

    Kothmann, Richard E.; Booth, Jr., Russell R.; Grimm, Noel P.; Batenburg, Abram; Thomas, Vaughn M.

    1992-01-01

    A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.

  15. Active stabilization of thin-wall structures under compressive loading

    NASA Astrophysics Data System (ADS)

    Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey

    2003-08-01

    The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.

  16. Pan-Eurasian experiment (PEEX) establishing a process towards high level Pan-Eurasian atmosphere-ecosystem observation networks

    NASA Astrophysics Data System (ADS)

    Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or

  17. Viability of thin wall tube forming of ATF FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, Stuart Andrew; Aydogan, Eda; Anderoglu, Osman

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys frommore » ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.« less

  18. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-11-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of ``cut-and-try`` methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  19. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-01-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of cut-and-try'' methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  20. Vibration and Stability of Pretwisted Spinning Thin-Walled Composite Beams Featuring BENDING-BENDING Elastic Coupling

    NASA Astrophysics Data System (ADS)

    SONG, O.; JEONG, N.-H.; LIBRESCU, L.

    2000-10-01

    A number of issues related to the modelling, vibration and stability of anisotropic pretwisted beams rotating at constant angular speed about the longitudinal body-axis fixed in the inertial space are investigated. The analysis is carried out in the framework of a refined theory of thin-walled anisotropic composite beams featuring bending-bending elastic coupling, and encompassing a number of non-classical features such as transverse-shear, anisotropy and pretwist. Special attention is paid to the effect of the spinning speed, pretwist angle, axial compressive load and symmetry/non-symmetry of the beam cross-section on natural frequencies and instability of the structural system. Numerical illustrations highlighting their implication on vibration and stability are displayed and pertinent conclusions are outlined.

  1. Panning artifacts in digital pathology images

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  2. Prevalence of Regional Myocardial Thinning and Relationship With Myocardial Scarring in Patients With Coronary Artery Disease

    PubMed Central

    Shah, Dipan J.; Kim, Han W.; James, Olga; Parker, Michele; Wu, Edwin; Bonow, Robert O.; Judd, Robert M.; Kim, Raymond J.

    2014-01-01

    Importance Regional left ventricular (LV) wall thinning is believed to represent chronic transmural myocardial infarction and scar tissue. However, recent case reports using delayed-enhancement cardiovascular magnetic resonance (CMR) imaging raise the possibility that thinning may occur with little or no scarring. Objective To evaluate patients with regional myocardial wall thinning and to determine scar burden and potential for functional improvement. Design, Setting, and Patients Investigator-initiated, prospective, 3-center study conducted from August 2000 through January 2008 in 3 parts to determine (1) in patients with known coronary artery disease (CAD) undergoing CMR viability assessment, the prevalence of regional wall thinning (end-diastolic wall thickness ≤5.5 mm), (2) in patients with thinning, the presence and extent of scar burden, and (3) in patients with thinning undergoing coronary revascularization, any changes in myocardial morphology and contractility. Main Outcomes and Measures Scar burden in thinned regions assessed using delayed-enhancement CMR and changes in myocardial morphology and function assessed using cine-CMR after revascularization. Results Of 1055 consecutive patients with CAD screened, 201 (19% [95% CI, 17% to 21%]) had regional wall thinning. Wall thinning spanned a mean of 34% (95% CI, 32% to 37% [SD, 15%]) of LV surface area. Within these regions, the extent of scarring was 72% (95% CI, 69% to 76% [SD, 25%]); however, 18% (95% CI, 13% to 24%) of thinned regions had limited scar burden (≤50% of total extent). Among patients with thinning undergoing revascularization and follow-up cine-CMR (n=42), scar extent within the thinned region was inversely related to regional (r=−0.72, P<.001) and global (r=−0.53, P<.001) contractile improvement. End-diastolic wall thickness in thinned regions with limited scar burden increased from 4.4 mm (95% CI, 4.1 to 4.7) to 7.5 mm (95% CI, 6.9 to 8.1) after revascularization (P<.001

  3. Thin chest wall is an independent risk factor for the development of pneumothorax after chest tube removal.

    PubMed

    Anand, Rahul J; Whelan, James F; Ferrada, Paula; Duane, Therese M; Malhotra, Ajai K; Aboutanos, Michel B; Ivatury, Rao R

    2012-04-01

    The factors contributing to the development of pneumothorax after removal of chest tube thoracostomy are not fully understood. We hypothesized that development of post pull pneumothorax (PPP) after chest tube removal would be significantly lower in those patients with thicker chest walls, due to the "protective" layer of adipose tissue. All patients on our trauma service who underwent chest tube thoracostomy from July 2010 to February 2011 were retrospectively reviewed. Patient age, mechanism of trauma, and chest Abbreviated Injury Scale score were analyzed. Thoracic CTs were reviewed to ascertain chest wall thickness (CW). Thickness was measured at the level of the nipple at the midaxillary line, as perpendicular distance between skin and pleural cavity. Chest X-ray reports from immediately prior and after chest tube removal were reviewed for interval development of PPP. Data are presented as average ± standard deviation. Ninety-one chest tubes were inserted into 81 patients. Patients who died before chest tube removal (n = 11), or those without thoracic CT scans (n = 13) were excluded. PPP occurred in 29.9 per cent of chest tube removals (20/67). When PPP was encountered, repeat chest tube was necessary in 20 per cent of cases (4/20). After univariate analysis, younger age, penetrating mechanism, and thin chest wall were found to be significant risk factors for development of PPP. Chest Abbreviated Injury Scale score was similar in both groups. Logistic regression showed only chest wall thickness to be an independent risk factor for development of PPP.

  4. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets.

    PubMed

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-31

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V 2 O 5 ) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V 2 O 5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V 2 O 5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V 2 O 5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V 2 O 5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V 2 O 5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V 2 O 5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  5. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    NASA Astrophysics Data System (ADS)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  6. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    PubMed Central

    Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes. PMID:28139765

  7. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  8. Problems And Their Solutions When Thin-Walled Turned Parts Of High Precision With Quasi-Optical Surfaces Are Manufactured On A CNC Automatic Lathe Under Workshop Conditions

    NASA Astrophysics Data System (ADS)

    Jaeger, Valentin E.

    1989-04-01

    The geometrical accuracy and surface roughness of diamond-turned workpieces is influenced by several parameters: the properties of the machine tool, the cutting process and the environmental conditions. A thin-walled electrode made from an aluminium alloy (wall thickness: 1 mm, length: 169 mm, outer diameter: 126 mm) and intended for an electrostatic measuring instrument, serves as an example to show how quasi-optical surfaces with a surface roughness Rα < 10 nm and deviations from roundness of <= 5 μm can be achieved when some of these influence quantities are optimized. The cylindrical part of the electrode was turned by means of a rounded mirror-finish diamond tool, the width of the cutting edge being 2 mm, the rake angle -6° and the clearance angle 2°. Compliance with the tolerances of geometrical accuracy was particularly difficult. As age-hardened wrought aluminium alloys cannot be stress-relieved by annealing, or only insufficiently, the geometrical accuracy - in particular the roundness - of thin-walled, rotationally symmetric bodies decisively depends on the state of stress of the workpiece material, on the clamping fixture and on the balanced condition of this clamping fixture.

  9. Impact Deformation of Thin-Walled Circular Tube Filled with Aluminum Foam in Lateral Compression

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Hori, Masahiro

    In this study, the impact deformation of thin-walled circular tubes filled with aluminum foam in lateral compression was investigated using a special load cell for long time measurement and a high-speed video camera to check the displacement of specimens. It was found that the absorbed energy up to the deformation of 60% of the specimen diameter obtained from impact tests is greater than that obtained in static tests, because of strain rate dependency of aluminum foam. The loaddisplacement curve of circular tubes with aluminum foam just inserted was consistent with the sum of the curves individually obtained. In both dynamic and static tests, however, the load of the tube with the foam inserted and glued by adhesive resin became larger than the sum of the individual loads, because of the interaction between circular tubes and aluminum foam cores.

  10. Makgadikgadi Salt Pan, Botswana, Africa

    NASA Image and Video Library

    1992-01-19

    STS054-151-015 (13-19 Jan 1993) --- The Makgadikgadi Salt Pan is one of the largest features in Botswana visible from space. Any water that spills out of the Okavango Swamplands flows down to the Makgadikgadi where it evaporates. An ancient beach line can be seen as a smooth line around the west (left) side of the Pan. Orapa diamond mine can be detected due south of the pan as a small rectangle. The large geological feature known as the Great Dike of Zimbabwe can be seen far right. This large panorama shows clouds in southern Angola, Zambia and Zimbabwe in the distance.

  11. Defect Characterization in a Thin Walled Composite RP-1 Tank: A Case Study

    NASA Technical Reports Server (NTRS)

    Langsing, Matthew D.; Walker, James L., II; Russell, Samual S.

    2000-01-01

    A full scale thin walled composite tank, designed and fabricated for the storage of pressurized RP- I rocket fuel, was fully inspected with digital infrared thermography (IR) during assembly and prior to proof testing. The tank featured a "pill capsule" design with the equatorial bondline being overwrapped on both the inner and outer surfaces. A composite skirt was bonded to the aft dome of the tank to serve as a structural support when the tank was stood on end in service. Numerous anomalies were detected and mapped prior to proof testing, some along bondlines and some scattered throughout the acreage. After the tank was intentionally burst, coupons were cut from the regions including thermographic anomalies. These coupons were again inspected thermographically to document the growth of any indications due to proof testing. Ultrasonic inspections (UT) were also performed on the coupons for comparison to thermography. Several coupons were dissected and micrographed. Relationships between IR and UT indications and the physical nature of the dissected material are presented.

  12. Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

    NASA Astrophysics Data System (ADS)

    Alawdin, Piotr; Liepa, Liudas

    2017-06-01

    Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

  13. Axial Crushing Behaviors of Thin-Walled Corrugated and Circular Tubes - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Reyaz-Ur-Rahim, Mohd.; Bharti, P. K.; Umer, Afaque

    2017-10-01

    With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.

  14. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  15. Comparative Biomechanical Behavior and Healing Profile of a Novel Thinned Wall Ultrahigh Molecular Weight Amorphous Poly-l-Lactic Acid Sirolimus-Eluting Bioresorbable Coronary Scaffold.

    PubMed

    Cheng, Yanping; Gasior, Pawel; Xia, Jing-Gang; Ramzipoor, Kamal; Lee, Chang; Estrada, Edward A; Dokko, Daniell; McGregor, Jenn C; Conditt, Gerard B; McAndrew, Thomas; Kaluza, Greg L; Granada, Juan F

    2017-07-01

    Mechanical strength of bioresorbable scaffolds (BRS) is highly dependent on strut dimensions and polymer features. To date, the successful development of thin-walled BRS has been challenging. We compared the biomechanical behavior and vascular healing profile of a novel thin-walled (115 µm) sirolimus-eluting ultrahigh molecular weight amorphous poly-l-lactic acid-based BRS (APTITUDE, Amaranth Medical [AMA]) to Absorb (bioresorbable vascular scaffold [BVS]) using different experimental models. In vitro biomechanical testing showed no fractures in the AMA-BRS when overexpanded 1.3 mm above nominal dilatation values (≈48%) and lower number of fractures on accelerated cycle testing over time (at 21 K cycles=20.0 [19.5-20.5] in BVS versus 4.0 [3.0-4.3] in AMA-BRS). In the healing response study, 35 AMA-BRS and 23 BVS were implanted in 58 coronary arteries of 23 swine and followed-up to 180 days. Scaffold strut healing was evaluated in vivo using weekly optical coherence tomography analysis. At 14 days, the AMA-BRS demonstrated a higher percentage of embedded struts (71.0% [47.6, 89.1] compared with BVS 40.3% [20.5, 63.2]; P =0.01). At 21 days, uncovered struts were still present in the BVS group (3.8% [2.1, 10.2]). Histopathology revealed lower area stenosis (AMA-BRS, 21.0±6.1% versus BVS 31.0±4.5%; P =0.002) in the AMA-BRS at 28 days. Neointimal thickness and inflammatory scores were comparable between both devices at 180 days. A new generation thinned wall BRS displayed a more favorable biomechanical behavior and strut healing profile compared with BVS in normal porcine coronary arteries. This novel BRS concept has the potential to improve the clinical outcomes of current generation BRS. © 2017 American Heart Association, Inc.

  16. Pan masala advertisements are surrogate for tobacco products.

    PubMed

    Sushma, C; Sharang, C

    2005-01-01

    Pan masala is a comparatively recent habit in India and is marketed with and without tobacco. Advertisements of tobacco products have been banned in India since 1st May 2004. The advertisements of plain pan masala, which continue in Indian media, have been suspected to be surrogate for tobacco products bearing the same name. The study was carried out to assess whether these advertisements were for the intended product, or for tobacco products with same brand name. The programme of a popular television Hindi news channel was watched for a 24-h period. Programmes on the same channel and its English counterpart were watched on different days to assess whether the advertisements were repeated. The total duration of telecast of a popular brand of plain pan masala (Pan Parag) was multiplied by the rate charged by the channel to provide the cost of advertisement of this product. The total sale value of the company was multiplied by the proportion of usage of plain pan masala out of gutka plus pan masala habit as observed from a different study, to provide the annual sale value of plain pan masala product under reference. The annual sale value of plain Pan Parag was estimated to be Rs. 67.1 million. The annual cost of the advertisement of the same product on two television channels was estimated at Rs. 244.6 million. The advertisements of plain pan masala seen on Indian television are a surrogate for the tobacco products bearing the same name.

  17. Pan Progress

    NASA Image and Video Library

    2007-01-18

    Pan is seen in this color view as it sweeps through the Encke Gap with its attendant ringlets. As the lemon-shaped little moon orbits Saturn, it always keeps its long axis pointed along a line toward the planet

  18. Field enhancement of electronic conductance at ferroelectric domain walls

    DOE PAGES

    Vasudevan, Rama K.; Cao, Ye; Laanait, Nouamane; ...

    2017-11-06

    Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO 3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of themore » atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.« less

  19. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes

    NASA Astrophysics Data System (ADS)

    Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos

    2017-04-01

    This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.

  20. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  1. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  2. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  3. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  4. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  5. Overview of ATLAS PanDA Workload Management

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  6. Overview of ATLAS PanDA Workload Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno T.; De K.; Wenaus T.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in additionmore » to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.« less

  7. The ExoMars PanCam Instrument

    NASA Astrophysics Data System (ADS)

    Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David

    2010-05-01

    The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource

  8. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    NASA Astrophysics Data System (ADS)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical

  9. Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii.

    PubMed

    Vogel, Erin R; van Woerden, Janneke T; Lucas, Peter W; Utami Atmoko, Sri S; van Schaik, Carel P; Dominy, Nathaniel J

    2008-07-01

    The divergent molar characteristics of Pan troglodytes and Pongo pygmaeus provide an instructive paradigm for examining the adaptive form-function relationship between molar enamel thickness and food hardness. Although both species exhibit a categorical preference for ripe fruit over other food objects, the thick enamel and crenulated occlusal surface of Pongo molar teeth predict a diet that is more resistant to deformation (hard) and fracture (tough) than the diet of Pan. We confirm these predictions with behavioral observations of Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii in the wild and describe the mechanical properties of foods utilized during periods when preferred foods are scarce. Such fallback foods may have exerted a selective pressure on tooth evolution, particularly molar enamel thinness, which is interpreted as a functional adaptation to seasonal folivory and a derived character trait within the hominoid clade. The thick enamel and crenulated occlusal surface of Pongo molars is interpreted as a functional adaptation to the routine consumption of relatively tough and hard foods. We discuss the implications of these interpretations for inferring the diet of hominin species, which possessed varying degrees of thick molar enamel. These data, which are among the first reported for hominoid primates, fill an important empirical void for evaluating the mechanical plausibility of putative hominin food objects.

  10. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230...

  11. Student-Centered Designs of Pan-African Literature Courses

    ERIC Educational Resources Information Center

    M'Baye, Babacar

    2010-01-01

    A student-centered teaching methodology is an essential ingredient of a successful Pan-African literary course. In this article, the author defines Pan-Africanism and how to go about designing a Pan-African literature course. The author combines reading assignments with journals, film presentations, and lectures in a productive learning…

  12. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  13. Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures

    NASA Astrophysics Data System (ADS)

    Zhang, S. Q.; Li, H. N.; Schmidt, R.; Müller, P. C.

    2014-02-01

    Thin-walled piezoelectric integrated smart structures are easily excited to vibrate by unknown disturbances. In order to design and simulate a control strategy, firstly, an electro-mechanically coupled dynamic finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Linear piezoelectric constitutive equations and the assumption of constant electric field through the thickness are considered. Based on the dynamic FE model, a disturbance rejection (DR) control with proportional-integral (PI) observer using step functions as the fictitious model of disturbances is developed for vibration suppression of smart structures. In order to achieve a better dynamic behavior of the fictitious model of disturbances, the PI observer is extended to generalized proportional-integral (GPI) observer, in which sine or polynomial functions can be used to represent disturbances resulting in better dynamics. Therefore the disturbances can be estimated either by PI or GPI observer, and then the estimated signals are fed back to the controller. The DR control is validated by various kinds of unknown disturbances, and compared with linear-quadratic regulator (LQR) control. The results illustrate that the vibrations are better suppressed by the proposed DR control.

  14. Secondary aspiration of aerosol particles into thin-walled nozzles facing the wind

    NASA Astrophysics Data System (ADS)

    Lipatov, G. N.; Grinshpun, S. A.; Semenyuk, T. I.; Sutugin, A. G.

    Problems of sampling aerosols from the turbulent atmosphere have been studied experimentally. The research was carried out with such particle sizes, type of samplers and sampling conditions that relate to those encountered in practical occupational hygiene and environmental monitoring. Distortion of the aerosol initial concentration was measured in a wind tunnel by a comparison method. Such distortions were caused by the external aspiration from a turbulent down flow using a vertical thin-walled cylindrical sampler. In addition, inertial errors themselves were determined by the limiting trajectory method. The difference between the results obtained with the help of the above methods showed the presence of secondary aspiration after the particles rebound from the outer nozzle surface for anisokinetical sampling. This fact was established by means of a set of special experiments with nozzles of various properties of the outer surface. Values of the rebound coefficient for Lycopodium particles aspirated into copper samplers over a range of diameters of 0.5-1 cm and anisokinetical coefficients (velocity ratio) of 1-40 were obtained. The conditions under which the efficiency of secondary aspiration is small were also defined.

  15. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  16. Proof test criteria for thin-walled 2219 aluminum pressure vessels. Volume 1: Program summary and data analysis

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1976-01-01

    This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.

  17. The Pan-STARRS1 Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.

    2014-01-01

    Pan-STARRS1 is approaching the completion of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The Pan-STARRS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with more than 12 visits in five bands: g,r,i,z and y or over ~60 epochs per 0.25 arcsec resolution element on the sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

  18. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Rutledge, Veronica J.

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuirmore » linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.« less

  19. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  20. Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly.

    PubMed

    Lao, Zhao-Xin; Hu, Yan-Lei; Pan, Deng; Wang, Ren-Yan; Zhang, Chen-Chu; Ni, Jin-Cheng; Xu, Bing; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-06-01

    Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Method to Determine the Stress-Strain Response of As-Formed Thin-Walled Tubular Structures Using a Flaring Apparatus

    NASA Astrophysics Data System (ADS)

    Jurendic, S.; Anderson, D.

    2017-09-01

    Finite element simulations are used extensively to refine the forming steps of draw and wall iron (DWI) aluminum bottles; therefore, accurate material data is required Unfortunately, the material properties of the base sheet cannot presently be used for simulation of the later forming stages due to preceding significant deformation (ironing) and thermal treatments. Measuring the stress-strain response using traditional methods (e.g. tensile test) becomes increasingly difficult at later stages of the bottle forming process due to a significant diameter reduction of the bottle neck from successive die-necking stages. Moreover, failure during forming tends to occur in the final deformation stages when the bottle opening is rolled over, creating a brim roll, at which point brim roll splits may occur. Knowledge of the stress-strain response prior to the roll over may lead to improved product design, reduced waste, and an optimized product. Therefore, this work details a flaring apparatus and data analysis method to determine the stress-strain response in the die-necked region of thin-walled aluminum bottles fabricated from AA3104 sheet metal.

  2. Area-to-point regression kriging for pan-sharpening

    NASA Astrophysics Data System (ADS)

    Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.

    2016-04-01

    Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.

  3. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  4. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip.

    PubMed

    Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2014-04-21

    A novel microfluidic pH-sensing chip was developed based on pH-sensitive single-walled carbon nanotubes (SWCNTs). In this study, the SWCNT thin film acted both as an electrode and a pH-sensitive membrane. The potentiometric pH response was observed by electronic structure changes in the semiconducting SWCNTs in response to the pH level. In a microfluidic chip consisting of a SWCNT pH-sensing working electrode and an Ag/AgCl reference electrode, the calibration plot exhibited promising pH-sensing performance with an ideal Nernstian response of 59.71 mV pH(-1) between pH 3 and 11 (standard deviation of the sensitivity is 1.5 mV pH(-1), R(2) = 0.985). Moreover, the SWCNT electrode in the microfluidic device showed no significant variation at any pH value in the range of the flow rate between 0.1 and 15 μl min(-1). The selectivity coefficients of the SWCNT electrode revealed good selectivity against common interfering ions.

  5. The shear-lag effect of thin-walled box girder under vertical earthquake excitation

    NASA Astrophysics Data System (ADS)

    Zhai, Zhipeng; Li, Yaozhuang; Guo, Wei

    2017-03-01

    The variation method based on the energy variation principle is proved to be accurate and valid for analyzing the shear lag effect of box girder under static and dynamic load. Meanwhile, dynamic problems gradually become the key factors in engineering practice. Therefore, a method for calculating the shear lag effect in thin-walled box girder under vertical seismic excitation is proposed by applying Hamilton Principle in this paper. The Timoshenko shear deformation is taken into account. And a new definition of shear lag ratio for box girder is given. What's more, some conclusions are drawn by analysis of numerical example. The results show that small amplitude of earthquake ground motion can generate high stress and obvious shear lag, especially in the region of resonance. And the influence of rotary inertia cannot be ignored for analyzing the shear lag effect. With the increase of span to width ratio, shear lag effect becomes smaller and smaller. These research conclusions will be useful for the engineering practice and enrich the theoretical studies of box girders.

  6. Morphology and anisotropy of thin conductive inkjet printed lines of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Torres-Canas, Fernando; Blanc, Christophe; Mašlík, Jan; Tahir, Said; Izard, Nicolas; Karasahin, Senguel; Castellani, Mauro; Dammasch, Matthias; Zamora-Ledezma, Camilo; Anglaret, Eric

    2017-03-01

    We show that the properties of thin conductive inkjet printed lines of single-walled carbon nanotubes (SWCNT) can be greatly tuned, using only a few deposition parameters. The morphology, anisotropy and electrical resistivity of single-stroke printed lines are studied as a function of ink concentration and drop density. An original method based on coupled profilometry-Raman measurements is developed to determine the height, mass, orientational order and density profiles of SWCNT across the printed lines with a micrometric lateral resolution. Height profiles can be tuned from ‘rail tracks’ (twin parallel lines) to layers of homogeneous thickness by controlling nanotube concentration and drop density. In all samples, the nanotubes are strongly oriented parallel to the line axis at the edges of the lines, and the orientational order decreases continuously towards the center of the lines. The resistivity of ‘rail tracks’ is significantly larger than that of homogeneous deposits, likely because of large amounts of electrical dead-ends.

  7. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    PubMed

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross

  8. Bi-cubic interpolation for shift-free pan-sharpening

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Baronti, Stefano; Selva, Massimo; Alparone, Luciano

    2013-12-01

    Most of pan-sharpening techniques require the re-sampling of the multi-spectral (MS) image for matching the size of the panchromatic (Pan) image, before the geometric details of Pan are injected into the MS image. This operation is usually performed in a separable fashion by means of symmetric digital low-pass filtering kernels with odd lengths that utilize piecewise local polynomials, typically implementing linear or cubic interpolation functions. Conversely, constant, i.e. nearest-neighbour, and quadratic kernels, implementing zero and two degree polynomials, respectively, introduce shifts in the magnified images, that are sub-pixel in the case of interpolation by an even factor, as it is the most usual case. However, in standard satellite systems, the point spread functions (PSF) of the MS and Pan instruments are centered in the middle of each pixel. Hence, commercial MS and Pan data products, whose scale ratio is an even number, are relatively shifted by an odd number of half pixels. Filters of even lengths may be exploited to compensate the half-pixel shifts between the MS and Pan sampling grids. In this paper, it is shown that separable polynomial interpolations of odd degrees are feasible with linear-phase kernels of even lengths. The major benefit is that bi-cubic interpolation, which is known to represent the best trade-off between performances and computational complexity, can be applied to commercial MS + Pan datasets, without the need of performing a further half-pixel registration after interpolation, to align the expanded MS with the Pan image.

  9. Handedness in captive bonobos (Pan paniscus).

    PubMed

    Harrison, Rebecca M; Nystrom, Pia

    2008-01-01

    Species level right-handedness is often considered to be unique to humans. Handedness is held to be interrelated to our language ability and has been used as a means of tracing the evolution of language. Here we examine handedness in 3 captive groups of bonobos (Pan paniscus) comprising 22 individuals. We found no evidence for species level handedness. Conclusions that can be drawn from these findings are: (1) species level handedness evolved after the divergence of the Pan and Homo lineages; (2) inconsistent preferences may represent precursors to human handedness, and (3) Pan may have language abilities but these cannot be measured using handedness. Copyright 2008 S. Karger AG, Basel.

  10. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  11. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.

    PubMed

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011

  12. Testing of stiffening ribs formed by incremental forming in thin-walled aircraft structures made of 2024-T3 ALCLAD aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kubit, Andrzej; Wydrzynski, Dawid; Bucior, Magdalena; Krasowski, Bogdan

    2018-05-01

    This paper presents the results of experimental tests on the fabrication of longitudinal stiffening ribs in 2024-T3 ALCLAD aluminum alloy sheet, which is widely used in the aircraft structures. The problem presented in this paper concerns the concept of rib-stiffening of the structure of aircraft skin. The ribs are intended to stiffen integral thin-walled structure. Different shapes and different parameters of the forming process were studied. The rib-stiffened samples of various depths of the ribs were tested experimentally in the buckling test.

  13. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers shall be equipped with an automatic condenser water level control, barometric leg, or so constructed so... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type condensers...

  14. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to performmore » this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.« less

  15. Pulse wave velocity as a diagnostic index: The effect of wall thickness

    NASA Astrophysics Data System (ADS)

    Hodis, Simona

    2018-06-01

    Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.

  16. Local and global gravitational aspects of domain wall space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-09-15

    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less

  17. Pan Air Geometry Management System (PAGMS): A data-base management system for PAN AIR geometry data

    NASA Technical Reports Server (NTRS)

    Hall, J. F.

    1981-01-01

    A data-base management system called PAGMS was developed to facilitate the data transfer in applications computer programs that create, modify, plot or otherwise manipulate PAN AIR type geometry data in preparation for input to the PAN AIR system of computer programs. PAGMS is composed of a series of FORTRAN callable subroutines which can be accessed directly from applications programs. Currently only a NOS version of PAGMS has been developed.

  18. Pan and Waves

    NASA Image and Video Library

    2013-07-08

    The shepherd moon Pan orbits Saturn in the Encke gap while the A ring surrounding the gap displays wave features created by interactions between the ring particles and Saturnian moons in this image from NASA Cassini spacecraft.

  19. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology

    NASA Astrophysics Data System (ADS)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum

    2017-10-01

    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  20. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jon T.; Wang, Gerry; Luo, Alan

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some

  1. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  2. Development of Thin-Walled Magnesium Alloy Extrusions for Improved Crash Performance Based Upon Texture Control

    NASA Astrophysics Data System (ADS)

    Williams, Bruce W.; Agnew, Sean R.; Klein, Robert W.; McKinley, Jonathan

    Recent investigations suggest that it is possible to achieve dramatic modifications to both strength and ductility of magnesium alloys through a combination of alloying, grain refinement, and texture control. The current work explores the possibility of altering the texture in extruded thin-walled magnesium alloy tubes for improved ductility during axial crush in which energy is absorbed through progressive buckling. The texture evolution was predicted using the viscoplastic self-consistent (VPSC) crystal plasticity model, with strain path input from continuum-based finite element simulations of extrusion. A limited diversity of textures can be induced by altering the strain path through the extrusion die design. In some cases, such as for simple bar extrusion, the textures predicted can be connected with simple shape change. In other cases, a subtle influence of strain path involving shear-reverse-shear is predicted. The most promising textures predicted for a variety of strain paths are selected for subsequent experimental study.

  3. Effective description of domain wall strings

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.

    2018-04-01

    The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.

  4. Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230

    DOE PAGES

    Duan, R.; Jalowicka, Aleksandra; Unocic, Kinga A.; ...

    2016-10-18

    Using alloy 230 as an example, a generalized oxidation lifetime model for chromia-forming Ni-base wrought alloys is proposed, which captures the most important damaging oxidation effects relevant for component design: wall thickness loss, scale spallation, and the occurrence of breakaway oxidation. For deriving input parameters and for verification of the model approach, alloy 230 specimens with different thicknesses were exposed for different times at temperatures in the range 950–1050 °C in static air. The studies focused on thin specimens (0.2–0.5 mm) to obtain data for critical subscale depletion processes resulting in breakaway oxidation within reasonably achievable test times up tomore » 3000 h. The oxidation kinetics and oxidation-induced subscale microstructural changes were determined by combining gravimetric data with results from scanning electron microscopy with energy dispersive X-ray spectroscopy. The modeling of the scale spallation and re-formation was based on the NASA cyclic oxidation spallation program, while a new model was developed to describe accelerated oxidation occurring after longer exposure times in the thinnest specimens. The calculated oxidation data were combined with the reservoir model equation, by means of which the relation between the consumption and the remaining concentration of Cr in the alloy was established as a function of temperature and specimen thickness. Based on this approach, a generalized lifetime diagram is proposed, in which wall thickness loss is plotted as a function of time, initial specimen thickness, and temperature. As a result, the time to reach a critical Cr level at the scale/alloy interface of 10 wt% is also indicated in the diagrams.« less

  5. Predicting oxidation-limited lifetime of thin-walled components of NiCrW alloy 230

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, R.; Jalowicka, Aleksandra; Unocic, Kinga A.

    Using alloy 230 as an example, a generalized oxidation lifetime model for chromia-forming Ni-base wrought alloys is proposed, which captures the most important damaging oxidation effects relevant for component design: wall thickness loss, scale spallation, and the occurrence of breakaway oxidation. For deriving input parameters and for verification of the model approach, alloy 230 specimens with different thicknesses were exposed for different times at temperatures in the range 950–1050 °C in static air. The studies focused on thin specimens (0.2–0.5 mm) to obtain data for critical subscale depletion processes resulting in breakaway oxidation within reasonably achievable test times up tomore » 3000 h. The oxidation kinetics and oxidation-induced subscale microstructural changes were determined by combining gravimetric data with results from scanning electron microscopy with energy dispersive X-ray spectroscopy. The modeling of the scale spallation and re-formation was based on the NASA cyclic oxidation spallation program, while a new model was developed to describe accelerated oxidation occurring after longer exposure times in the thinnest specimens. The calculated oxidation data were combined with the reservoir model equation, by means of which the relation between the consumption and the remaining concentration of Cr in the alloy was established as a function of temperature and specimen thickness. Based on this approach, a generalized lifetime diagram is proposed, in which wall thickness loss is plotted as a function of time, initial specimen thickness, and temperature. As a result, the time to reach a critical Cr level at the scale/alloy interface of 10 wt% is also indicated in the diagrams.« less

  6. Domain switching of fatigued ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-05-01

    We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  7. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  8. 3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  9. Low mass MEMS/NEMS switch for a substitute of CMOS transistor using single-walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Jang, Min-Woo

    Power dissipation is a key factor for mobile devices and other low power applications. Complementary metal oxide semiconductor (CMOS) is the dominant integrated circuit (IC) technology responsible for a large part of this power dissipation. As the minimum feature size of CMOS devices enters into the sub 50 nanometer (nm) regime, power dissipation becomes much worse due to intrinsic physical limits. Many approaches have been studied to reduce power dissipation of deeply scaled CMOS ICs. One possible candidate is the electrostatic electromechanical switch, which could be fabricated with conventional CMOS processing techniques. They have critical advantages compared to CMOS devices such as almost zero standby leakage in the off-state due to the absence of a pn junction and a gate oxide, as well as excellent drive current in the on-state due to a metallic channel. Despite their excellent standby power dissipation, the electrostatic MEMS/NEMS switches have not been considered as a viable replacement for CMOS devices due to their large mechanical delay. Moreover, previous literature reveals that their pull-in voltage and switching speed are strongly proportional to each other. This reduces their potential advantage. However, in this work, we theoretically and experimentally demonstrated that the use of single-walled carbon nanotube (SWNT) with very low mass density and strong mechanical properties could provide a route to move off of the conventional trend with respect to the pull-in voltage / switching speed tradeoff observed in the literature. We fabricated 2-terminal fixed- beam switches with aligned composite SWNT thin films. In this work, layer-by-layer (LbL) self-assembly and dielectrophoresis were selected for aligned-composite SWNT thin film deposition. The dense membranes were successfully patterned to form submicron beams by e-beam lithography and oxygen plasma etching. Fixed-fixed beam switches using these membranes successfully operated with approximately 600

  10. Skeletal development in Pan paniscus with comparisons to Pan troglodytes.

    PubMed

    Bolter, Debra R; Zihlman, Adrienne L

    2012-04-01

    Fusion of skeletal elements provides markers for timing of growth and is one component of a chimpanzee's physical development. Epiphyseal closure defines bone growth and signals a mature skeleton. Most of what we know about timing of development in chimpanzees derives from dental studies on Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a wild range restricted to central Africa. Here, we report on the timing of skeletal fusion for female captive P. paniscus (n = 5) whose known ages range from 0.83 to age 11.68 years. Observations on the skeletons were made after the individuals were dissected and bones cleaned. Comparisons with 10 female captive P. troglodytes confirm a generally uniform pattern in the sequence of skeletal fusion in the two captive species. We also compared the P. paniscus to a sample of three unknown-aged female wild P. paniscus, and 10 female wild P. troglodytes of known age from the Taï National Park, Côte d'Ivoire. The sequence of teeth emergence to bone fusion is generally consistent between the two species, with slight variations in late juvenile and subadult stages. The direct-age comparisons show that skeletal growth in captive P. paniscus is accelerated compared with both captive and wild P. troglodytes populations. The skeletal data combined with dental stages have implications for estimating the life stage of immature skeletal materials of wild P. paniscus and for more broadly comparing the skeletal growth rates among captive and wild chimpanzees (Pan), Homo sapiens, and fossil hominins. Copyright © 2012 Wiley Periodicals, Inc.

  11. Two-probe versus van der Pauw method in studying the piezoresistivity of single-wall carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Yao, Yanbo; Duan, Xiaoshuang; Luo, Jiangjiang; Liu, Tao

    2017-11-01

    The use of the van der Pauw (VDP) method for characterizing and evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors have not been systematically studied. By using single-wall carbon nanotube (SWCNT) thin films as a model system, herein we report a coupled electrical-mechanical experimental study in conjunction with a multiphysics finite element simulation as well as an analytic analysis to compare the two-probe and VDP testing configuration in evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors. The key features regarding the sample aspect ratio dependent piezoresistive sensitivity or gauge factor were identified for the VDP testing configuration. It was found that the VDP test configuration offers consistently higher piezoresistive sensitivity than the two-probe testing method.

  12. Zonal PANS: evaluation of different treatments of the RANS-LES interface

    NASA Astrophysics Data System (ADS)

    Davidson, L.

    2016-03-01

    The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.

  13. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  14. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  15. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically

  16. DETAIL OF TYPICAL WALL CONSTRUCTION IN COOLING ROOMS; TWO LAYERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF TYPICAL WALL CONSTRUCTION IN COOLING ROOMS; TWO LAYERS OF CORK INSULATION ARE ATTACHED TO REINFORCED CONCRETE WALL WITH WOOD SLEEPERS AND ASPHALT MASTIC; THIN, GLAZED TERRA-COTTA TILES PROTECT THE INSULATION INSIDE THE COOLER - Rath Packing Company, Hog Cutting Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  17. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    NASA Astrophysics Data System (ADS)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  18. Theory of Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2004-03-01

    Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be ∝[(j_s/j_s^cr)^2-1]^1/2. In the case of thin wall, driven by a force ∝ ρw j, the critical current density is given by j^cr∝ V_0/ρ_w. In nanocontacts, this is estimated to be ˜ 10^7[A/m^2]. This small critical current would be advantageous for device application. [1] G.Tatara and H.Kohno, cond-mat/0308464

  19. Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) quantify split solid objects.

    PubMed

    Cacchione, Trix; Hrubesch, Christine; Call, Josep

    2013-01-01

    Recent research suggests that gorillas' and orangutans' object representations survive cohesion violations (e.g., a split of a solid object into two halves), but that their processing of quantities may be affected by them. We assessed chimpanzees' (Pan troglodytes) and bonobos' (Pan paniscus) reactions to various fission events in the same series of action tasks modelled after infant studies previously run on gorillas and orangutans (Cacchione and Call in Cognition 116:193-203, 2010b). Results showed that all four non-human great ape species managed to quantify split objects but that their performance varied as a function of the non-cohesiveness produced in the splitting event. Spatial ambiguity and shape invariance had the greatest impact on apes' ability to represent and quantify objects. Further, we observed species differences with gorillas performing lower than other species. Finally, we detected a substantial age effect, with ape infants below 6 years of age being outperformed by both juvenile/adolescent and adult apes.

  20. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  1. The Pan-STARRS1 Small Area Survey 2

    NASA Astrophysics Data System (ADS)

    Metcalfe, N.; Farrow, D. J.; Cole, S.; Draper, P. W.; Norberg, P.; Burgett, W. S.; Chambers, K. C.; Denneau, L.; Flewelling, H.; Kaiser, N.; Kudritzki, R.; Magnier, E. A.; Morgan, J. S.; Price, P. A.; Sweeney, W.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2013-11-01

    The Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) survey is acquiring multi-epoch imaging in five bands (gP1, rP1, iP1, zP1, yP1) over the entire sky north of declination -30° (the 3π survey). In 2011 July a test area of about 70 deg2 was observed to the expected final depth of the main survey. In this, the first of a series of papers targeting the galaxy count and clustering properties of the combined multi-epoch test area data, we present a detailed investigation into the depth of the survey and the reliability of the Pan-STARRS1 analysis software. We show that the Pan-STARRS1 reduction software can recover the properties of fake sources, and show good agreement between the magnitudes measured by Pan-STARRS1 and those from Sloan Digital Sky Survey. We also examine the number of false detections apparent in the Pan-STARRS1 data. Our comparisons show that the test area survey is somewhat deeper than the Sloan Digital Sky Survey in all bands, and, in particular, the z band approaches the depth of the stacked Sloan Stripe 82 data.

  2. Measurement of defect thickness of the wall thinning defect pipes by lock-in infrared thermography technique

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongsuk; Kim, Kyungsu; Jung, Hyunchul; Chang, Hosub

    2010-03-01

    Mostly piping which is using for the nuclear power plants are made up of carbon steel pipes. The wall thinning defects occurs by the effect of the flow accelerated corrosion of fluid that flows in carbon steel pipes. The defects could be found on the welding part and anywhere in the pipes. The infrared thermography technique which is one of the non-destructive testing method has used for detecting the defects of various kinds of materials over the years. There is a limitation for measuring the defect of metals that have a big coefficient of thermal diffusion. However, a technique using lock-in method gets over the difficulty. Consequently, the lock-in infrared thermography technique has been applied to the various industry fields. In this paper, the defect thickness of the straight pipe which has an artificial defect the inside of the pipes was measured by using the lock-in infrared thermography technique and the result could be utilized in detecting defects of carbon steel pipes.

  3. Using TES retrievals to investigate PAN in North American biomass burning plumes

    NASA Astrophysics Data System (ADS)

    Fischer, Emily V.; Zhu, Liye; Payne, Vivienne H.; Worden, John R.; Jiang, Zhe; Kulawik, Susan S.; Brey, Steven; Hecobian, Arsineh; Gombos, Daniel; Cady-Pereira, Karen; Flocke, Frank

    2018-04-01

    Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (˜ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15-32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  4. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    NASA Technical Reports Server (NTRS)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the

  5. Active vibration control of a thin walled beam by neural networks and piezo-actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecce, L.; Sorrentino, A.; Concilio, A.

    1994-12-31

    In turboprop aircraft, vibration of the fuselage frame (typically a thin-walled beam) has been identified as the main cause of interior noise. Passive methods, based essentially on the use of DVA (Dynamic Vibration Absorbers) have been shown to be not entirely satisfactory, due to the significant weight increase. The use of active control systems based on piezoceramic sensors and actuators integrated into the frame seems to be a valid alternative to attenuate interior noise. In this paper, the use of a MIMO feedforward active control system with piezoceramic actuators is proposed, in order to reduce the vertical vibration levels ofmore » a rectified, typical fuselage frame. A numerical FEM model of the rectified frame has been experimentally validated and has been used in order to evaluate the dynamic response of the beam, both with regard to piezoceramic actuators and to a point force, representing the primary disturbance. A neural network (NN) controller has been used to simultaneously compute amplitudes and phases of the control force for the 6 piezo actuators, so as to minimize the accelerometric responses acquired in 30 points of the beam (6 at each of 5 different transversal sections).« less

  6. The Pan-STARRS1 Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth; Pan-STARRS Team

    2018-01-01

    The Pan-STARRS1 Surveys are complete and the first data release, DR1, is available from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute. The data include a database of measured attributes of 3 billion objects, stacked images, and metadata of the 3pi Steradian Survey. The DR1 contains all stationary objects with mean and stack photometry registered on the GAIA astrometric frame. DR2 is in preparation and will be released this winter with all the individual epoch images and time domain photometry and forced photometry on the individual epoch images. The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of the Pan-STARRS1 Surveys and data releases will be presented together with a brief description of the data collected since the end of the PS1 Science Consortium surveys, and the plans for the upcoming survey with PS1 and PS2 begining in February 2018.

  7. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    PubMed

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  9. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  10. Comparing maternal styles in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes).

    PubMed

    De Lathouwers, Mieke; Van Elsacker, Linda

    2004-12-01

    Studies on Cercopithecine primate maternal styles, using factor analysis on a set of maternal behaviors, commonly render two factors that describe separate dimensions of maternal behavior: protectiveness and rejection. The aims of this study were to 1) investigate whether this method for determining maternal styles in Cercopithecine species can be applied to bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), 2) determine whether they follow the same pattern, and 3) assess whether species differences in maternal style are apparent. We performed a factor analysis on nine maternal behaviors using data on eight mother-infant pairs of each species. This resulted in three factors: protectiveness, distance, and refusal. Protectiveness is positively correlated with time spent in ventral contact, making contact, approaching, and restraining. Distance is positively related with breaking contact and leaving. Refusal is positively correlated with rejecting and nipple-rejecting. The pattern of protectiveness corresponds with the pattern found in Cercopithecine species, suggesting a high consistency of this dimension across species and higher taxa. The retention of the other two factors indicates that in the Pan species, breaking contact and leaving represent another dimension, apart from rejecting and nipple-rejecting, which usually fall under one dimension in Cercopithecine species. An interspecific comparison of the factor scores for each dimension of maternal behavior reveals that, on average, bonobos and chimpanzees score equally on protectiveness. Scores on distance increase positively with infant age in chimpanzees, and negatively in bonobos, and on average bonobos have higher scores on refusal. These interspecies differences in maternal style are discussed in the light of interspecies differences in infant development, infant vulnerability to aggression, interbirth intervals, and female sociality. Copyright 2004 Wiley-Liss, Inc.

  11. Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Ren, Yuanlin; Liu, Xiaohui; Huo, Tongguo; Qin, Yiwen

    2018-01-01

    This paper aims to develop a method to impart polyacrylonitrile (PAN) fabric durable flame retadancy. PAN fabric was modified with hydroxylamine hydrochloride (HA) to prepare amidoxime PAN fabric (A-PAN) followed by phosphorylation with phosphoric acid (PA) to obtain flame retardant PAN fabric (P-A-PAN). Thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), microscale combustion calorimetry (MCC) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) were used to analyze the thermal degradation process and flame retardant mechanisms. The structure of the fabrics was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The surface morphology of fabrics was observed by scanning electron microscope (SEM). Moreover, the flame retardancy of fabrics before and after washing was evaluated by Limiting oxygen index (LOI) and horizontal burning test. The results showed that the P-A-PAN possessed an excellent thermal stability with the highest LOI value of 34.1% and the highest char residue of 55.67% at 800 °C. Most importantly, the P-A-PAN possessed a wonderful flame retardant durability with a little decrease of LOI after 20 washing cycles. When they were ignited, the P-A-PAN fabrics before and after washing were both nonflammable due to the char residue formation of modified fabric.

  12. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall.

    PubMed

    Hu, Hongping; Hu, Yuantai; Chen, Chuanyao; Wang, Ji

    2008-10-01

    A system to wirelessly convey electric energy through a thin metal wall is proposed in the paper, where 2 piezoelectric transducers are used to realize energy transformation between electric and mechanical, and a rechargeable battery is employed to store the transmitted energy. To integrate them as a whole, an interface of a modulating circuit is applied between the transducer system and the storage battery. In addition, a synchronized switch harvesting on inductor in parallel with the transducer system is introduced to artificially extend the closed interval of the modulating circuit. The process of transmitting energy is computed, and the performance of the transducer system is optimized in detail for a prescribed external electric source. The results obtained are useful for understanding and designing wireless energy supply systems.

  13. The Pan-STARRS1 Survey Data Release

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.; Pan-STARRS Team

    2017-01-01

    The first Pan-STARRS1 Science Mission is complete and an initial Data Release 1, or DR1, including a database of measured attributes, stacked images, and metadata of the 3PI Survey, will be available from the STScI MAST archive. This release will contain all stationary objects with mean and stack photometry registered on the GAIA astrometric frame.The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of both DR1 and the second data release DR2, to follow in the spring of 2017, will be presented. DR2 will add all time domain data and individual warped images. We will also report on the status of the Pan-STARRS2 Observatory and ongoing science with Pan-STARRS. The science from the PS1 surveys has included results in many t fields of astronomy from Near Earth Objects to cosmology.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grants No. NNX08AR22G, NNX12AR65G, NNX14AM74G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National Science Foundation under Grant No. AST

  14. INFLUENCE OF PEROXYACETYL NITRATE (PAN) ON WATER STRESS IN BEAN PLANTS

    EPA Science Inventory

    Bean plants (Phaseolus vulgaris) were exposed to 395 micrograms/cu m (0.08 ppm) peroxyacetyl nitrate (PAN) for 0.5 hr and subjected to drought stress following exposure. PAN influenced the plant water potential of PAN-sensitive 'Provider' resulting in visible wilting and reduced ...

  15. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen

    2016-02-01

    We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors

  16. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    NASA Astrophysics Data System (ADS)

    Sun, S.; Moravek, A.; von der Heyden, L.; Held, A.; Sörgel, M.; Kesselmeier, J.

    2015-11-01

    We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light and humidity conditions. Compared with a single cuvette system, the twin-cuvette system is insensitive for disturbing background effects such as wall deposition. In combination with a climate chamber we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS) we are able to regulate the relative humidity inside both cuvettes between 40 to 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1) such a temperature regulated humidification system as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32-105 ppb and PAN mixing ratios between 100-350 ppt a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors. Using this

  17. Nanosphere lithography applied to magnetic thin films

    NASA Astrophysics Data System (ADS)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  18. A Fast Response Ammonia Sensor Based on Coaxial PPy-PAN Nanofiber Yarn.

    PubMed

    Liu, Penghong; Wu, Shaohua; Zhang, Yue; Zhang, Hongnan; Qin, Xiaohong

    2016-06-23

    Highly orientated polypyrrole (PPy)-coated polyacrylonitrile (PAN) (PPy-PAN) nanofiber yarn was prepared with an electrospinning technique and in-situ chemical polymerization. The morphology and chemical structure of PPy-PAN nanofiber yarn was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR), which indicated that the PPy as the shell layer was homogeneously and uniformly polymerized on the surface of PAN nanofiber. The effects of different concentration of doping acid on the responses of PPy-PAN nanofiber yarn sensor were investigated. The electrical responses of the gas sensor based on the PPy-PAN nanofiber yarn to ammonia were investigated at room temperature. The nanoyarn sensor composed of uniaxially aligned PPy-PAN nanofibers with a one-dimensional structure exhibited a transient response, and the response time was less than 1 s. The excellent sensing properties mentioned above give rise to good potential application prospects in the field of ammonia sensor.

  19. A Portable Burn Pan for the Disposal of Excess Propellants

    DTIC Science & Technology

    2016-06-01

    of Vegetation in Vacinity of Burn Pan Caused by Radiant Heat ............... 32 Figure 12. Wet Propellant (120 kg) and Dry Propellant (460 kg) Burn...35 Figure 14. Graph of Component Temperatures During an HUTS Burn Pan Test ........................ 37 Figure 15. IR Camera Thermal...detector HUTS Howitzer Unit Training System burn pan IR Infrared JBER Joint Base Elmendorf Richardson (AK) Kg Kilogram m meter mg/kg milligram

  20. Controlling effective aspect ratio and packing of clay with pH for improved gas barrier in nanobrick wall thin films.

    PubMed

    Hagen, David A; Saucier, Lauren; Grunlan, Jaime C

    2014-12-24

    Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.

  1. Sampling bee communities using pan traps: alternative methods increase sample size

    USDA-ARS?s Scientific Manuscript database

    Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...

  2. Effects of an Inhomogenous Electric Field on an Evaporating Thin Film in a Microchannel

    NASA Astrophysics Data System (ADS)

    Liu, Xiuliang; Hu, Chen; Li, Huafeng; Yu, Fei; Kong, Xiaming

    2018-03-01

    In this paper, heat transfer enhancement in an evaporating thin film along the wall of a microchannel under an imposed inhomogenous electrostatic field is analyzed. The mathematical model, based on the augmented Young-Laplace equation with the inhomogenous electrostatic field taken into consideration, is developed. The 2D inhomogenous electric field with the curved liquid-vapor interface is solved by the lattice Boltzmann method. Numerical solutions for the thin film characteristics are obtained for both constant wall temperature and uniform wall heat flux boundary conditions. The numerical results show that the liquid film becomes thinner and the heat transfer coefficient increases under an imposed electric field. Both of octane and water are chosen as the working mediums, and similar result about the enhancement of heat transfer on evaporating thin film by imposing electric field is obtained. It is found that applying an electric field on the evaporating thin film can enhance evaporative heat transfer in a microchannel.

  3. Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction

    NASA Astrophysics Data System (ADS)

    Paruch, Patrycja

    2013-03-01

    Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.

  4. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Shi, Yongzheng; Yang, Dongzhi; Li, Yuan; Qu, Jin; Yu, Zhong-Zhen

    2017-12-01

    Although TiO2-based photocatalysts have exhibited a great potential for degradation of organic pollutants, it is still necessary to simultaneously enhance their visible-light-driven photocatalytic efficiency and physical recyclability. Herein, highly efficient, visible-light-driven photocatalytically active, and recyclable nanofibrous membranes with thin TiO2/Ag heterojunction layer are prepared using electrospun polyacrylonitrile (PAN) nanofibrous membrane as the substrate. By regulating the concentration and hydrolysis process of Ti precursors, TiO2 nanoparticles steadily grow on the PAN nanofibers with high-specific surface area to form a continuous mesoporous shell with the thickness of 20 nm for efficient degradation of organic pollutants. Furthermore, to form a stable heterojunction structure, Ag nanoparticles are deposited on the TiO2 surface by using dopamine as a binder and reductant. The presence of Ag nanoparticles leads to an obvious red-shift from 380 nm to 490 nm, which improves the utilization efficiency of visible light, and reduces the electron/hole recombination rate simultaneously. The resulting PAN@TiO2/Ag membranes hold enhanced photocatalytic activity for methylene blue degradation within 1 h under visible light irradiation, and satisfactory recyclability, which endow them with a great potential for adsorption and photocatalytic applications.

  5. Angular circulation speed of tablets in a vibratory tablet coating pan.

    PubMed

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.

  6. Analysis of the electromagnetic scattering from an inlet geometry with lossy walls

    NASA Technical Reports Server (NTRS)

    Myung, N. H.; Pathak, P. H.; Chunang, C. D.

    1985-01-01

    One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.

  7. The PanCam Instrument for the ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Jaumann, R.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C. R.; Cross, R. E.; Grindrod, P.; Bridges, J. C.; Balme, M.; Gupta, S.; Crawford, I. A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J. L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G. R.; PanCam Team

    2017-07-01

    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.

  8. Experience with ATLAS MySQL PanDA database service

    NASA Astrophysics Data System (ADS)

    Smirnov, Y.; Wlodek, T.; De, K.; Hover, J.; Ozturk, N.; Smith, J.; Wenaus, T.; Yu, D.

    2010-04-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  9. Pan-sharpening via compressed superresolution reconstruction and multidictionary learning

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Fang; Li, Lingling; Jiao, Licheng; Hao, Hongxia; Shang, Ronghua; Li, Yangyang

    2018-01-01

    In recent compressed sensing (CS)-based pan-sharpening algorithms, pan-sharpening performance is affected by two key problems. One is that there are always errors between the high-resolution panchromatic (HRP) image and the linear weighted high-resolution multispectral (HRM) image, resulting in spatial and spectral information lost. The other is that the dictionary construction process depends on the nontruth training samples. These problems have limited applications to CS-based pan-sharpening algorithm. To solve these two problems, we propose a pan-sharpening algorithm via compressed superresolution reconstruction and multidictionary learning. Through a two-stage implementation, compressed superresolution reconstruction model reduces the error effectively between the HRP and the linear weighted HRM images. Meanwhile, the multidictionary with ridgelet and curvelet is learned for both the two stages in the superresolution reconstruction process. Since ridgelet and curvelet can better capture the structure and directional characteristics, a better reconstruction result can be obtained. Experiments are done on the QuickBird and IKONOS satellites images. The results indicate that the proposed algorithm is competitive compared with the recent CS-based pan-sharpening methods and other well-known methods.

  10. Resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.

    2002-01-01

    Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.

  11. Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.

    2015-04-01

    In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less

  12. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    PubMed

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  13. Spontaneous triadic engagement in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes).

    PubMed

    MacLean, Evan; Hare, Brian

    2013-08-01

    Humans are believed to have evolved a unique motivation to participate in joint activities that first develops during infancy and supports the development of shared intentionality. We conducted five experiments with bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) (Total n = 119) to assess their motivation to spontaneously participate in joint activities with a conspecific or a human. We found that even the youngest subjects preferred to interact together with a human and a toy rather than engaging in an identical game alone. In addition, we found that subjects could spontaneously interact with a human in a turn-taking game involving passing a ball back and forth and used behaviors to elicit additional interaction when the game was disrupted. However, when paired with a conspecific, subjects preferred to interact with an object individually rather than together. Our results indicate that nonhuman apes are motivated to engage in triadic activities if they occur spontaneously with humans and require a minimum amount of coordination. These findings leave open the question of whether these activities are coordinated through shared intentions.

  14. The effect of ethanol vapour exposure on atrial and ventricular walls of chick embryos.

    PubMed

    Kamran, Kiran; Khan, Muhammad Yunus; Minhas, Liaqat Ali

    2016-10-01

    To study the effects of ethanol vapour exposure on atrial and ventricular walls of heart in chick embryo. The study design was experimental, conducted at Islamabad Centre of College of Physicians and Surgeons, Pakistan. One hundred and eighty chicken eggs were divided into two groups, experimental and control, of 90 eggs each. Each group was subdivided into three subgroups of 30 eggs each based on the day of sacrifice. Experimental group was exposed to ethanol vapours and then compared with age matched controls. The thickness of atrial and ventricular walls along with lengths of valvular cusps increased in hearts of day 7 and day 10 chick embryos in experimental group. There was thinning of walls and decreased length of valvular cusps in hearts of experimental chicks on hatching as compared to age matched controls. Ethanol vapour exposure during development causes cardiac and septal wall thickening during initial days of development followed by cardiac and septal wall thinning which is a classical picture of alcohol induced cardiomyopathies.

  15. PanGEA: identification of allele specific gene expression using the 454 technology.

    PubMed

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-05-14

    Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: http://www.kofler.or.at/bioinformatics/PanGEA

  16. Rechargeable thin-film electrochemical generator

    DOEpatents

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  17. PAN and O3 enhancement at Taehwa Research Forest in Korea

    NASA Astrophysics Data System (ADS)

    Gil, J.; Lee, M.; Rhee, H.; Lee, Y.; Park, H.; Kim, S.

    2017-12-01

    PAN (Peroxyacetyl Nitrate) is one of the most important secondary pollutant produced by the reaction of NOx (= NO + NO2) and oxygenated VOCs (Volatile Organic Compounds). It is considered more reliable indicator of photochemical pollution than O3 in urban area. To observe the evolution of biogenic emission being mixed with urban pollutants, measurement was conducted at TRF (Taehwa Research Forest) near SMA (Seoul Metropolitan Area) in Korea during 2012, and 2013. PAN with reactive gases (O3, NOx, CO, SO2) were measured at six heights (4.1, 9.5, 15, 20, 31, 39 m) of a 41m tower along with BVOCs (Biogenic Volatile Organic Compounds). PAN was measured using a fast GC-LCD (Gas Chromatography with Luminol-based Chemiluminescence Detection). For PAN and O3, the 5%ile, 50%ile, and 95%ile were 0.12 ppbv, 0.46 ppbv, and 2.09 ppbv, and 18.4 ppbv, 44.7 ppbv, and 66.6 ppbv respectively. PAN was visibly higher during warm seasons (0.69 ppbv) than cold seasons (0.35 ppbv) and their monthly mean concentrations were the highest in June. The PAN maxima (7.78 ppbv) was observed in August 2013 with the elevation of O3 and NOx. It is noteworthy that there were enhancement of PAN and O3 around 6 PM, along with isoprene emission and a sudden increase of NO2 near the time for enhancement. A F0AM (Framework for 0-D Atmospheric Modeling) was used to identify the contribution of BVOCs and NOx to PAN and O3 enhancement.

  18. Emergence of Huge Negative Spin-Transfer Torque in Atomically Thin Co layers

    NASA Astrophysics Data System (ADS)

    Je, Soong-Geun; Yoo, Sang-Cheol; Kim, Joo-Sung; Park, Yong-Keun; Park, Min-Ho; Moon, Joon; Min, Byoung-Chul; Choe, Sug-Bong

    2017-04-01

    Current-induced domain wall motion has drawn great attention in recent decades as the key operational principle of emerging magnetic memory devices. As the major driving force of the motion, the spin-orbit torque on chiral domain walls has been proposed and is currently extensively studied. However, we demonstrate here that there exists another driving force, which is larger than the spin-orbit torque in atomically thin Co films. Moreover, the direction of the present force is found to be the opposite of the prediction of the standard spin-transfer torque, resulting in the domain wall motion along the current direction. The symmetry of the force and its peculiar dependence on the domain wall structure suggest that the present force is, most likely, attributed to considerable enhancement of a negative nonadiabatic spin-transfer torque in ultranarrow domain walls. Careful measurements of the giant magnetoresistance manifest a negative spin polarization in the atomically thin Co films which might be responsible for the negative spin-transfer torque.

  19. The future of PanDA in ATLAS distributed computing

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  20. Evolution of the ATLAS PanDA workload management system for exascale computational science

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Klimentov, A.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.; Yu, D.; Atlas Collaboration

    2014-06-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.

  1. From evaporating pans to transpiring plants (John Dalton Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Roderick, Michael

    2013-04-01

    The name of the original inventor of irrigated agriculture is lost to antiquity. Nevertheless, one can perhaps imagine an inquisitive desert inhabitant noting the greener vegetation along a watercourse and putting two and two together. Once water was being supplied and food was being produced it would be natural to ask a further question: how much water can we put on? No doubt much experience was gained down through the ages, but again, one can readily imagine someone inverting a rain gauge, filling it with water and measuring how fast the water evaporated. The inverted rain gauge measures the demand for water by the atmosphere. We call it the evaporative demand. I do not know if this is what actually happened but it sure makes an interesting start to a talk. Evaporation pans are basically inverted rain gauges. The rain gauge and evaporation pan measure the supply and demand respectively and these instruments are the workhorses of agricultural meteorology. Rain gauges are well known. Evaporation pans are lesser known but are in widespread use and are a key part of several national standardized meteorological networks. Many more pans are used for things like scheduling irrigation on farms or estimating evaporation from lakes. Analysis of the long records now available from standardized networks has revealed an interesting phenomenon, i.e., pan evaporation has increased in some places and decreased in other but when averaged over large numbers of pans there has been a steady decline. These independent reports from, for example, the US, Russia, China, India, Thailand, are replicated in the southern hemisphere in, for example, Australia, New Zealand and South Africa. One often hears the statement that because the earth is expected to warm with increasing greenhouse gas emissions then it follows that water will evaporate faster. The pan evaporation observations show that this widely held expectation is wrong. When expectations disagree with observations, it is the

  2. Spray-coated single walled carbon nanotubes as source and drain electrodes in SnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ryu, Jae Hyeon; Baek, Geun-Woo; Kim, Seung Yeob; Kwon, Hyuck-In; Jin, Sung Hun

    2018-07-01

    In this letter, spray-coated single walled carbon nanotubes (SWNTs) as one of alternative electrodes in SnO thin-film transistors are demonstrated for emerging electronic applications. Herein, the device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. Moreover, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (∼1.49 kΩ cm), field effect mobility (∼0.69 cm2 V‑1 s‑1), sub-threshold slope (∼0.4 V dec‑1), and current on–off ratio (I on/I off ∼ 3.5 × 103). Systematic temperature dependency measurements elucidate that SnO channel transports with an activation energy within several tens of meV, together with decent contact resistance as compared to that of conventional Ni electrodes.

  3. Finite Element Creep Damage Analyses and Life Prediction of P91 Pipe Containing Local Wall Thinning Defect

    NASA Astrophysics Data System (ADS)

    Xue, Jilin; Zhou, Changyu

    2016-03-01

    Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.

  4. The saliva microbiome of Pan and Homo

    PubMed Central

    2013-01-01

    Background It is increasingly recognized that the bacteria that live in and on the human body (the microbiome) can play an important role in health and disease. The composition of the microbiome is potentially influenced by both internal factors (such as phylogeny and host physiology) and external factors (such as diet and local environment), and interspecific comparisons can aid in understanding the importance of these factors. Results To gain insights into the relative importance of these factors on saliva microbiome diversity, we here analyze the saliva microbiomes of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) from two sanctuaries in Africa, and from human workers at each sanctuary. The saliva microbiomes of the two Pan species are more similar to one another, and the saliva microbiomes of the two human groups are more similar to one another, than are the saliva microbiomes of human workers and apes from the same sanctuary. We also looked for the existence of a core microbiome and find no evidence for a taxon-based core saliva microbiome for Homo or Pan. In addition, we studied the saliva microbiome from apes from the Leipzig Zoo, and found an extraordinary diversity in the zoo ape saliva microbiomes that is not found in the saliva microbiomes of the sanctuary animals. Conclusions The greater similarity of the saliva microbiomes of the two Pan species to one another, and of the two human groups to one another, are in accordance with both the phylogenetic relationships of the hosts as well as with host physiology. Moreover, the results from the zoo animals suggest that novel environments can have a large impact on the microbiome, and that microbiome analyses based on captive animals should be viewed with caution as they may not reflect the microbiome of animals in the wild. PMID:24025115

  5. The ATLAS PanDA Monitoring System and its Evolution

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  6. The PanCam Instrument for the ExoMars Rover

    PubMed Central

    Coates, A.J.; Jaumann, R.; Griffiths, A.D.; Leff, C.E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C.R.; Cross, R.E.; Grindrod, P.; Bridges, J.C.; Balme, M.; Gupta, S.; Crawford, I.A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J.L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G.R.

    2017-01-01

    Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.

  7. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  8. The Pan-STARRS search for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard J.; Weryk, Robert; Chambers, Kenneth

    2018-01-01

    The Pan-STARRS1 telescope on Haleakala, Hawaii has become the leading discovery telescope for Near-Earth Objects (NEOs), and is now responsible for discovering almost half of all new NEOs, more than half of all larger NEOs, and more than half of all new comets. The survey routinely reaches depths of V=22 or fainter (in dark sky conditions) over an area of approximately 1,000 square degrees per night. The survey strategy will be described. The survey will soon be augmented by the addition of the Pan-STARRS2 telescope, which has similar optics and an improved camera, and which will roughly double the survey power. A sample of the important recent solar system discoveries made by the Pan-STARRS survey will be summarized.

  9. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  10. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  11. 15. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: North side of sorghum pan and boiling range flue, with furnace-end in background. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace end (in background) to the smokestack end (in foreground). After the hot cane juice moved through the separate compartments until it reached the final compartment (now missing two sides) where it was drawn out from the copper lip in the corner. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  12. The ATLAS PanDA Pilot in Operation

    NASA Astrophysics Data System (ADS)

    Nilsson, P.; Caballero, J.; De, K.; Maeno, T.; Stradling, A.; Wenaus, T.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis system (PanDA) [1-2] was designed to meet ATLAS [3] requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot [4] system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec [5-6] based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG [7], EGI [8] and Nordugrid [9-10] infrastructures used by ATLAS, and describe plans for its evolution.

  13. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  14. Kinematic measurement from panned cinematography.

    PubMed

    Gervais, P; Bedingfield, E W; Wronko, C; Kollias, I; Marchiori, G; Kuntz, J; Way, N; Kuiper, D

    1989-06-01

    Traditional 2-D cinematography has used a stationary camera with its optical axis perpendicular to the plane of motion. This method has constrained the size of the object plane or has introduced potential errors from a small subject image size with large object field widths. The purpose of this study was to assess a panning technique that could overcome the inherent limitations of small object field widths, small object image sizes and limited movement samples. The proposed technique used a series of reference targets in the object field that provided the necessary scales and origin translations. A 102 m object field was panned. Comparisons between criterion distances and film measured distances for field widths of 46 m and 22 m resulted in absolute mean differences that were comparable to that of the traditional method.

  15. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    PubMed

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Disordered eating and food restrictions in children with PANDAS/PANS.

    PubMed

    Toufexis, Megan D; Hommer, Rebecca; Gerardi, Diana M; Grant, Paul; Rothschild, Leah; D'Souza, Precilla; Williams, Kyle; Leckman, James; Swedo, Susan E; Murphy, Tanya K

    2015-02-01

    Sudden onset clinically significant eating restrictions are a defining feature of the clinical presentation of some of the cases of pediatric acute-onset neuropsychiatric syndrome (PANS). Restrictions in food intake are typically fueled by contamination fears; fears of choking, vomiting, or swallowing; and/or sensory issues, such as texture, taste, or olfactory concerns. However, body image distortions may also be present. We investigate the clinical presentation of PANS disordered eating and compare it with that of other eating disorders. We describe 29 patients who met diagnostic criteria for PANS. Most also exhibited evidence that the symptoms might be sequelae of infections with Group A streptococcal bacteria (the pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections [PANDAS] subgroup of PANS). The clinical presentations are remarkable for a male predominance (2:1 M:F), young age of the affected children (mean=9 years; range 5-12 years), acuity of symptom onset, and comorbid neuropsychiatric symptoms. The food refusal associated with PANS is compared with symptoms listed for the new Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V) diagnosis of avoidant/restrictive food intake disorder (ARFID). Treatment implications are discussed, as well as directions for further research.

  17. Solution pans and linear sand bedforms on the bare-rock limestone shelf of the Campeche Bank, Yucatán Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Goff, John A.; Gulick, Sean P. S.; Cruz, Ligia Perez; Stewart, Heather A.; Davis, Marcy; Duncan, Dan; Saustrup, Steffen; Sanford, Jason; Fucugauchi, Jaime Urrutia

    2016-04-01

    A high-resolution, near-surface geophysical survey was conducted in 2013 on the Campeche Bank, a carbonate platform offshore of Yucatán, Mexico, to provide a hazard assessment for future scientific drilling into the Chicxulub impact crater. It also provided an opportunity to obtain detailed information on the seafloor morphology and shallow stratigraphy of this understudied region. The seafloor exhibited two morphologies: (1) small-scale (<2 m) bare-rock karstic features, and (2) thin (<1 m) linear sand accumulations overlying the bedrock. Solution pans, circular to oblong depressions featured flat bottoms and steep sides, were the dominant karstic features; they are known to form subaerially by the pooling of rainwater and dissolution of carbonate. Observed pans were 10-50 cm deep and generally 1-8 m wide, but occasionally reach 15 m, significantly larger than any solution pan observed on land (maximum 6 m). These features likely grew over the course of many 10's of thousands of years in an arid environment while subaerially exposed during lowered sea levels. Surface sands are organized into linear bedforms oriented NE-SW, 10's to 100's meters wide, and kilometers long. These features are identified as sand ribbons (longitudinal bedforms), and contained asymmetric secondary transverse bedforms that indicate NE-directed flow. This orientation is incompatible with the prevalent westward current direction; we hypothesize that these features are storm-generated.

  18. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film.

    PubMed

    Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G

    2018-01-31

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  19. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    NASA Astrophysics Data System (ADS)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  20. Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustovitov, V. D.; National Research Nuclear University “MEPhI,” Kashirskoe sh. 31, Moscow 115409; Yanovskiy, V. V.

    The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasingmore » the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.« less

  1. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  2. Smart Polyacrylonitrile (PAN) Nanofibers with Thermal Energy Storage and Retrieval Functionality

    NASA Astrophysics Data System (ADS)

    Cherry, De'Andre James

    Phase change materials (PCMs) are generally substances with a high heat of fusion in the process of solid to liquid phase change. The nature of PCMs make them efficient materials to store and retrieve large amounts of thermal energy. Presently, high efficiency thermal energy storage/retrieval in applications where flexibility and space saving are required, such as smart textiles, still remains as a challenge. In this study, lauric acid (LA) and myristic acid (MA) were combined to prepare a specific binary fatty acid eutectic (LA-MA) with a melting point near the operating body temperature of a human being and then encapsulated in polyacrylonitrile (PAN) nanofibers through the electrospinning technique. Functionalized PCM-enhanced PAN nanofibers containing LA-MA at 30%, 50%, 70% and 100% of the weight of the PAN were successfully synthesized. The morphological structures and thermal energy storage capacity of the PCM-enhanced PAN nanofibers were characterized by electron microscopy (EM) and differential scanning calorimetry (DSC). The novel PCM-enhanced PAN nanofibers maintained their cylindrical fiber morphology after multiple heating-cooling cycles and retained their latent heat storage functionality. Thus, it is envisioned that the prepared PCM-enhanced PAN nanofibers will find use in applications such as smart textiles where temperature regulation functionality is required.

  3. The influence of triggers geometry upon the stiffness of cylindrical thin walled tubes

    NASA Astrophysics Data System (ADS)

    Soica, Adrian; Radu, Gheorghe N.

    2014-06-01

    Today's automobile manufacturers are increasingly using lightweight materials to reduce weight; these include plastics, composites, aluminium, magnesium alloys, and also new types of high strength steels. Many of these materials have limited strength or ductility, therefore in many cases the rupture being serious consequences during crashes, underscore Picketta et al. in their studies. Automotive structures must deform plastically in a short period of time, a few milliseconds, to absorb the crash energy in a controllable manner. It must be light and enable economically mass-production [1]. FE models rapidly gained acceptance among engineers. Many other factors facilitated the development of vehicle models by shell finite elements since most of the geometry of the structural surfaces was already on computer graphic files. Kee Poong Kim and Hoon Huh emphasize that the crashworthiness of each vehicle part needs to be evaluated at the initial stage of design for good performance of an assembled vehicle. As the dynamic behaviour of structural members is different from the static one, the crashworthiness of the vehicle structures has to be assessed by impact analysis. The paper analyzes the influence of trigger geometry upon the compression of thin-walled cylindrical tubes. Simulations performed on a simple model showed the dependence between triggers area and deformation times as well as the maximum deformations obtained for various speeds at which the simulations ware carried out. Likewise, the geometry of trigger leads to different results.

  4. PanGEA: Identification of allele specific gene expression using the 454 technology

    PubMed Central

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-01-01

    Background Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. Results We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology Conclusion To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: PMID:19442283

  5. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    PubMed

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  6. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  9. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  10. Mutagenicity of pan residues and gravy from fried meat.

    PubMed

    Overvik, E; Nilsson, L; Fredholm, L; Levin, O; Nord, C E; Gustafsson, J A

    1987-02-01

    Lean pork meat was fried with or without the addition of frying-fat at 200 or 250 degrees C. The pan residues were collected by washing the hot pan with boiling water. When producing thickened gravy the water was substituted by a mixture of water and flour, milk and flour or cream and flour. The basic extracts were tested for mutagenicity in Ames' Salmonella test on strain TA98 with the addition of S9 mix. High amounts of mutagenicity were found in all samples. The amounts of mutagenicity in the pan residues were at a comparable level of the amounts found in the meat crusts. Thickening of the gravy caused only small changes in the mutagenicity.

  11. The Pan Zhichang Incident

    ERIC Educational Resources Information Center

    Yuchen, Zhu

    2007-01-01

    This article examines why Pan Zhichang, a well-known professor and Ph.D. candidate supervisor at Nanjing University, has repeatedly been accused of plagiarism. It may not be difficult to check whether he has committed plagiarism, but seeking the deeper social and systemic reasons for a person's repeated "negligence" is indeed a…

  12. Drop impact on thin liquid films using TIRM

    NASA Astrophysics Data System (ADS)

    Pack, Min; Ying Sun Team

    2015-11-01

    Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.

  13. Brief communication: dental development timing in captive Pan paniscus with comparisons to Pan troglodytes.

    PubMed

    Bolter, Debra R; Zihlman, Adrienne L

    2011-08-01

    Dental eruption provides markers of growth and is one component of a chimpanzee's physical development. Dental markers help characterize transitions between life stages, e.g., infant to juvenile. Most of what we know about the timing of development in chimpanzees derives from Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a restricted wild range in central Africa. Here we report on the dental eruption timing for female captive P. paniscus (n = 5) from the Milwaukee and San Diego Zoos whose ages are known and range from birth to age 8.54 years. Some observations were recorded in zoo records on the gingiva during life; others were made at death on the gingiva and on the skeleton. At birth, P. paniscus infants have no teeth emerged. By 0.83 years, all but the deciduous second molars (dm(2) ) (when both upper and lower dentitions are referenced collectively, no super or subscript notation is used) and canines (dc) are emerged. For permanent teeth, results show a sequence polymorphism for an early P4 eruption, not previously described for P. paniscus. Comparisons between P. paniscus and P. troglodytes document absolute timing differences of emergence in upper second incisors (I(2) ), and upper and lower canines (C) and third molars (M3). The genus Pan encompasses variability in growth not previously recognized. These preliminary data suggest that physical growth in captive P. paniscus may be accelerated, a general pattern found in captive P. troglodytes. Copyright © 2011 Wiley-Liss, Inc.

  14. PanDA for COMPASS at JINR

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. Sh.

    2016-09-01

    PanDA (Production and Distributed Analysis System) is a workload management system, widely used for data processing at experiments on Large Hadron Collider and others. COMPASS is a high-energy physics experiment at the Super Proton Synchrotron. Data processing for COMPASS runs locally at CERN, on lxbatch, the data itself stored in CASTOR. In 2014 an idea to start running COMPASS production through PanDA arose. Such transformation in experiment's data processing will allow COMPASS community to use not only CERN resources, but also Grid resources worldwide. During the spring and summer of 2015 installation, validation and migration work is being performed at JINR. Details and results of this process are presented in this paper.

  15. Modification of thin-film polyamide membrane with multi-walled carbon nanotubes by interfacial polymerization

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; Al-Sheetan, Kh. M.; Shaik, Mohammed Rafi; Al-Suhybani, M. S.

    2017-12-01

    Polyamide thin-film composite (TFC) was fabricated on polysulfone (PS-20) base by interfacial polymerization of aqueous m-phenylenediamine (MPD) solution and 1,3,5-benzenetricarbonyl trichloride (TMC) in hexane organic solution. Multi-wall carbon nanotubes (MWCNT) were carboxylated by heating MWCNT powder in a mixture of HNO3 and H2SO4 (1:3 v/v) at 70 °C under constant sonication for different periods. Polyamide nanocomposites were prepared by incorporating MWCNT and the carboxylated MWCNT (MWCNT-COOH) at different concentrations (0.001-0.009 wt%). The developed composites were analyzed by Fourier transform infrared spectroscopy-attenuated total reflection, scanning electron microscopy, transmission electron microscopy, contact angle measurement, determination of salt rejection and water permeate flux capabilities. The surface morphological studies displayed that the amalgamation of MWCNT considerably changed the surface properties of modified membranes. The surface hydrophilicity was increased as observed in the enhancement in water flux and pure water permeance, due to the presence of hydrophilic nanotubes. Salt rejection was obtained between 94 and 99% and varied water flux values for TFC-reference membrane, pristine-MWCNT in MPD, pristine-MWCNT in TMC and MWCNT-COOH in MPD were 20.5, 38, 40 and 43 L/m2h. The water flux and salt rejection performances revealed that the MWCNT-COOH membrane was superior membrane as compared to the other prepared membranes.

  16. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  17. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  18. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  19. Photodegradation inhibitors for polyacrylonitrile/Ag (PAN/Ag) films. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergides, C.A.; Chughtai, A.R.; Smith, D.M.

    1985-09-01

    Three types of UV stabilizers have been investigated for the photostabilization of PAN/Ag films. First, the effect of UV-absorber stabilizers, like the hydrohybenzophenone derivatives (UVINUL SERIES, BASF) absorbing UV radiation in the same region as PAN, was studied. Such additives generally had little effect, while in some cases, photodegradation of PAN was enhanced because of photosensitization. Second, the effect of quencher stabilizers like nickel chelate complexes (Irgastab 2002, CIBA-GEIGY) on the photodegradation of PAN/Ag films was examined. They resulted in marked decreases in the photodegradation of the polymer. Thirdly, antioxidant stabilizers, such as 2,6-di-tert-butyl-4-methylphenol derivatives (Irganox 1010, CIBA-GEIGY), were studiedmore » and also found to have a significant inhibiting effect on the photodegradation of PAN. Increasing the concentration of an effective stabilizer was observed to further decrease the photodegradation. The stabilizer concentration was kept generally low, and a combination of 1% wt antioxidant (Irganox 1010) and 0.5% wt quencher (Irgastab 2002) proved to be optimum. Irganox 1010 and Irgastab 2002 in separate preliminary experiments (in the absence of the polymer) were found to be stable to ultraviolet radiation of air mass one (WG 305).« less

  20. Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: role of photochemical and meteorological processes.

    PubMed

    Zhang, Hualong; Xu, Xiaobin; Lin, Weili; Wang, Ying

    2014-01-01

    Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NO(x), etc., made at an urban site (CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 x 10(-9) mol/mol (0.23 x 10(-9) -3.51 x 10(-9) mol/mol) and was well correlated with that of NO2 but not O3, indicating that the variations of the winter concentrations of PAN and 03 in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3 ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3 ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3 decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl (PA) radical was estimated to be in the range of 0.0014 x 10(-12) -0.0042 x 10(-12) mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.

  1. Computational pan-genomics: status, promises and challenges.

    PubMed

    2018-01-01

    Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains. © The Author 2016. Published by Oxford University Press.

  2. Monoclonal antibodies to the equine CD2 T lymphocyte marker, to a pan-granulocyte/monocyte marker and to a unique pan-B lymphocyte marker.

    PubMed

    Tumas, D B; Brassfield, A L; Travenor, A S; Hines, M T; Davis, W C; McGuire, T C

    1994-12-01

    Murine monoclonal antibodies, HB88A, B29A and DH59B separately identify the CD2 T lymphocyte molecule, a unique pan-B lymphocyte surface marker and a pan-granulocyte/monocyte surface molecule, respectively, in the horse. Specificity was shown by two-color immunofluorescent flow cytometry and immunofluorescent microscopy. MAb HB88A reacted with a 52 kDa pan-T lymphocyte molecule present on 75% +/- 7 of peripheral blood lymphocytes (PBL) (n = 15 horses). It also reacted with lymphocytes restricted to T lymphocyte dependent areas of lymph node and spleen. Specificity of mAb HB88A to CD2 was demonstrated by its reactivity to COS7 cells which expressed a transfected 1.5 kb equine lymphocyte c-DNA clone having 77.5% overall sequence homology with human CD2 c-DNA. MAb B29A reacted with a pan-B lymphocyte specific cell surface complex, 143, 72, 50, 40, 27 and 14.5 kDa, present on 19% +/- 7 of PBL (n = 15 horses). This complex has not been described in the horse or other species. MAb DH59B reacted with a 96 kDa pan-granulocyte/monocyte specific surface protein and identified macrophages and Kupffer cells in equine tissue sections. Together these mAbs can be used to identify and quantitate the major constituents of equine leukocytes.

  3. The rollup of a vortex layer near a wall

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Orlandi, Paolo

    1993-01-01

    The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.

  4. The Pan-STARRS PS1 Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Magnier, E.

    The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.

  5. Regulatory logic of pan-neuronal gene expression in C. elegans

    PubMed Central

    Stefanakis, Nikolaos; Carrera, Ines; Hobert, Oliver

    2015-01-01

    While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C.elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs. PMID:26291158

  6. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  7. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  8. TUBEWALL: a passive solar thermo-siphoning, field-fabricated, water storage wall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, F.; Hemker, P.

    1980-01-01

    The basic component of TUBEWALL is a water-filled thin-wall cylindrical tube with an insulating foam vertical partition insert that divides the inside of the tube into a thin collector water compartment (solar side) and a larger storage water compartment (room side). The two compartments are connected at the top and bottom by means of circulation holes in the foam partition. When the sun strikes the solar side of the tube, the thin layer of collector water is heated, thermosiphons through the top opening in the partition into the larger storage compartment on the room side, and is replaced with coolmore » water drawn from the bottom of the storage through the bottom hole in the partition. Night back-siphonage is prevented by a thin flap valve over the top circulation hole. The tubes may by used between wall studs having a low-cost fiberglass/tedlar double glazing. The tubes can be covered on the room side with drywall and heat transferred to the living space by indirect radiation, and either natural air convection through top and bottom vent slots or by fan. Alternatively, the tubes can be left exposed for direct radiation.« less

  9. Rib fracture after stereotactic radiotherapy on follow-up thin-section computed tomography in 177 primary lung cancer patients

    PubMed Central

    2011-01-01

    Background Chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer has recently been reported. However, its detailed imaging findings are not clarified. So this study aimed to fully characterize the findings on computed tomography (CT), appearance time and frequency of chest wall injury after stereotactic radiotherapy (SRT) for primary lung cancer Materials and methods A total of 177 patients who had undergone SRT were prospectively evaluated for periodical follow-up thin-section CT with special attention to chest wall injury. The time at which CT findings of chest wall injury appeared was assessed. Related clinical symptoms were also evaluated. Results Rib fracture was identified on follow-up CT in 41 patients (23.2%). Rib fractures appeared at a mean of 21.2 months after the completion of SRT (range, 4 -58 months). Chest wall edema, thinning of the cortex and osteosclerosis were findings frequently associated with, and tending to precede rib fractures. No patients with rib fracture showed tumors > 16 mm from the adjacent chest wall. Chest wall pain was seen in 18 of 177 patients (10.2%), of whom 14 patients developed rib fracture. No patients complained of Grade 3 or more symptoms. Conclusion Rib fracture is frequently seen after SRT for lung cancer on CT, and is often associated with chest wall edema, thinning of the cortex and osteosclerosis. However, related chest wall pain is less frequent and is generally mild if present. PMID:21995807

  10. BRDF of Salt Pan Regolith Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.

  11. Effect of injection parameters on mechanical and physical properties of super ultra-thin wall propylene packaging by Taguchi method

    NASA Astrophysics Data System (ADS)

    Ginghtong, Thatchanok; Nakpathomkun, Natthapon; Pechyen, Chiravoot

    2018-06-01

    The parameters of the plastic injection molding process have been investigated for the manufacture of a 64 oz. ultra-thin polypropylene bucket. The 3 main parameters, such as injection speed, melting temperature, holding pressure, were investigated to study their effect on the physical appearance and compressive strength. The orthogonal array of Taguchi's L9 (33) was used to carry out the experimental plan. The physical properties were measured and the compressive strength was determined using linear regression analysis. The differential scanning calorimeter (DSC) was used to analyze the crystalline structure of the product. The optimization results show that the proposed approach can help engineers identify optimal process parameters and achieve competitive advantages of energy consumption and product quality. In addition, the injection molding of the product includes 24 mm of shot stroke, 1.47 mm position transfer, 268 rpm screw speed, injection speed 100 mm/s, 172 ton clamping force, 800 kgf holding pressure, 0.9 s holding time and 1.4 s cooling time, make the products in the shape and proportion of the product satisfactory. The parameters of influence are injection speed 71.07%, melting temperature 23.31% and holding pressure 5.62%, respectively. The compressive strength of the product was able to withstand a pressure of up to 839 N before the product became plastic. The low melting temperature was caused by the superior crystalline structure of the super-ultra-thin wall product which leads to a lower compressive strength.

  12. Measurements of peroxyacetyl nitrate (PAN) and NO2 at the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yeon, J.; Song, D.; Lee, J. S.; Rhee, T. S.; Park, K.; Lee, G.

    2014-12-01

    We measured peroxyacetyl nitrate (PAN) and NO2 in remote marine boundary area during the SHIPPO (Shipborne Pole to Pole Observation). The measurements were made on the R/V Araon from Christ church, New Zealand to Gwangyang, South Korea along the western Pacific Ocean from March 30th to April 25th, 2014. Both PAN and NO2 were analyzed every 2 minute by a fast chromatograph with luminol-based chemiluminescence detection. In order to improve their detection limits, random noise from PMT has been successfully reduced by ensembled chromatograms with every 30 samples. Additionally, we replaced Nylon membrane surface with reflective aluminum surface and applied the new Luminol solution, which enhanced the signals significantly with detection limits of 6 pptv and 40 ppbv for PAN and NO2, respectively. Average concentrations of PAN and NO2 were 8 pptv for PAN and 80 pptv for NO2 during the experiment. The back trajectory analysis showed that the directly influenced air masses from anthropogenic activities were rare except the latitudes higher than 20°N. Relatively good correlations between PAN and NO2 were consistently observed, while PAN and O3 were not clearly correlated except in the air masses recently originated from land masses.

  13. Contributions of burner, pan, meat and salt to PM emission during grilling.

    PubMed

    Amouei Torkmahalleh, Mehdi; Ospanova, Saltanat; Baibatyrova, Aknur; Nurbay, Shynggys; Zhanakhmet, Gulaina; Shah, Dhawal

    2018-07-01

    Grilling ground beef meat was conducted in two locations at Nazarbayev University, Kazakhstan. The experiments were designed such that only particles from beef meat were isolated. A similar experimental protocol was applied at both locations. The average particle number and mass emission rates for grilling pure meat itself (excluding particles from pan and burner) were found to be 9.4 × 10 12 (SD = 7.2 × 10 12 particle min -1 and 7.6 × 10 (SD = 6.3 × 10) mg.min -1 , respectively. The PM emissions (number and mass) from the burner were found to be negligible compared to the pan and meat emissions. Ultrafine particle (UFP) concentrations from the heated pan itself were comparable to those of grilled meat. However, the particle mass concentrations from the pan itself were negligible. Approximately an hour of continuous heating resulted in zero emissions from the pan. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis.

    PubMed

    Shi, Wanliang; Chen, Jiazhen; Feng, Jie; Cui, Peng; Zhang, Shuo; Weng, Xinhua; Zhang, Wenhong; Zhang, Ying

    2014-08-01

    Pyrazinamide (PZA) is a frontline anti-tuberculosis drug that plays a crucial role in the treatment of both drug-susceptible and multidrug-resistant tuberculosis (MDR-TB). PZA is a prodrug that is converted to its active form, pyrazinoic acid (POA), by a nicotinamidase/pyrazinamidase encoded by the pncA gene, the mutation of which is the major cause of PZA resistance. Although RpsA (ribosomal protein S1, involved in trans-translation) has recently been shown to be a target of POA/PZA, whole-genome sequencing has identified mutations in the panD gene encoding aspartate decarboxylase in PZA-resistant strains lacking pncA and rpsA mutations. To gain more insight into a possible new target of PZA, we isolated 30 POA-resistant mutants lacking mutations in pncA and rpsA from M. tuberculosis in vitro, and whole-genome sequencing of 3 mutants identified various mutations in the panD gene. Additionally, sequencing analysis revealed that the remaining 27 POA-resistant mutants all harbored panD mutations affecting the C-terminus of the PanD protein, with PanD M117I being the most frequent mutation (24/30, 80%). Conditional overexpression of panD from M. tuberculosis, M. smegmatis or E. coli, or of M. tuberculosis mutant PanD M117I, all conferred resistance to POA and PZA in M. tuberculosis. β-alanine and pantothenate, which are downstream products of PanD, were found to antagonize the antituberculosis activity of POA. In addition, the activity of the M. tuberculosis PanD enzyme was inhibited by POA at therapeutically relevant concentrations in a concentration-dependent manner but was not inhibited by the prodrug PZA or the control compound nicotinamide. These findings suggest that PanD represents a new target of PZA/POA. These results have implications for a better understanding of this peculiar persister drug and for the design of new drugs targeting M. tuberculosis persisters for improved treatment.

  15. PD2P: PanDA Dynamic Data Placement for ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno, T.; De, K.; Panitkin, S.

    2012-12-13

    The PanDA (Production and Distributed Analysis) system plays a key role in the ATLAS distributed computing infrastructure. PanDA is the ATLAS workload management system for processing all Monte-Carlo (MC) simulation and data reprocessing jobs in addition to user and group analysis jobs. The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. We will describe the design of the new system, its performance during the past year of data taking, dramatic improvements it has brought about in the efficient use of storage and processing resources, and plans for the future.

  16. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  17. Kepler K2 Campaign 14 search for supernovae using Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Smith, K. W.; Rest, A.; Garnavich, P. M.; Tucker, B. E.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Zenteno, A.; Chambers, K. C.; Huber, M. E.; Flewelling, H.; Magnier, E. A.; Schultz, A.; Lowe, T.; Tonry, J.; Waters, C.; Wright, D. E.; Young, D. R.

    2017-06-01

    12 transients have been discovered as part of the Kepler K2 Campaign 14 search using the Pan-STARRS telescope augmenting the Pan-STARRS Search for Transients (PSST) http://star.pst.qub.ac.uk/ps1threepi/.

  18. Initiation of a pan-genomic research project for Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Differences in genomic structure and nucleotide polymorphism among strains form the genetic basis for adaptability of a bacterial species. This can be described by a bacterial pan-genome, which is defined as the full complement of genes in all strains of a species. The pan-genome is composed of a "c...

  19. A proposal for epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.

  20. Cross-tie walls and magnetic singularities on the surface of permalloy films (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kueny, A.; Koymen, A. R.

    1997-04-01

    An understanding of the surface magnetic microstructure of thin polycrystalline permalloy films is important for the development of improved magnetoresistive sensors. Scanning electron microscopy with polarization analysis (SEMPA) was used to image the surface magnetic domain structure of permalloy films in ultrahigh vacuum. The SEMPA system uses a compact Mott electron spin polarimeter with a Th foil (operating at 25 keV) that has been attached to the back of a hemispherical energy analyzer. Two orthogonal in-plane components of the electron spin polarization were measured to obtain magnetic domain images with excellent contrast. 350 Å Ni83Fe17 films, deposited by Honeywell-Micro Switch using dc magnetron sputtering, were studied. The samples were demagnetized along the easy axis by an ac magnetic field with decreasing amplitude. Using SEMPA, zigzag domain walls separating two large approximately head-on domains were observed. Cross-tie walls were observed with a periodic vortex structure along the straight edges of the zigzag domain walls. The cross-tie walls occur at the points where the magnetization is reversed by 180° across the straight edges of the wall. At high magnification, the elliptical and hyperbolic singularities at the cross-tie walls were clearly observed. In addition, the Néel part and the Bloch part of the cross-tie were distinguished This is a detailed study of cross-tie walls on sputter deposited thin permalloy films using SEMPA and our results are in good agreement with theoretical calculations.

  1. An investigation of electrochemomechanical actuation of conductive Polyacrylonitrile (PAN) nanofiber composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.; Walter, Wayne W.

    2014-03-01

    A polymer-based nanofiber composite actuator designed for contractile actuation was fabricated by electrospinning, stimulated by electrolysis, and characterized by electrochemical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural kinetics and mechanics of muscle needed to provide breakthroughs in the bio-medical and robotic fields. In this study, activated Polyacrylonitrile (PAN) fibers have demonstrated biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN has also been shown to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers (~500 nm) especially show faster response to changes in environmental pH and improved mechanical properties compared to larger diameter fibers. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Voltage driven transient effects of localized pH were examined to address pHdefined actuation thresholds of PAN fibers. Electrochemical contraction rates of the PAN/Graphite composite actuator demonstrated up to 25%/min. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Further improvements, however, to contraction rates and Young's moduli were found essential to capture the function and performance of skeletal muscles appropriately.

  2. A modification of Murray's law for shear-thinning rheology.

    PubMed

    McGah, Patrick M; Capobianchi, Massimo

    2015-05-01

    This study reformulates Murray's well-known principle of minimum work as applied to the cardiovascular system to include the effects of the shear-thinning rheology of blood. The viscous behavior is described using the extended modified power law (EMPL), which is a time-independent, but shear-thinning rheological constitutive equation. The resulting minimization problem is solved numerically for typical parameter ranges. The non-Newtonian analysis still predicts the classical cubic diameter dependence of the volume flow rate and the cubic branching law. The current analysis also predicts a constant wall shear stress throughout the vascular tree, albeit with a numerical value about 15-25% higher than the Newtonian analysis. Thus, experimentally observed deviations from the cubic branching law or the predicted constant wall shear stress in the vasculature cannot likely be attributed to blood's shear-thinning behavior. Further differences between the predictions of the non-Newtonian and the Newtonian analyses are highlighted, and the limitations of the Newtonian analysis are discussed. Finally, the range and limits of applicability of the current results as applied to the human arterial tree are also discussed.

  3. Influence of peroxyacetyl nitrate (PAN) on odd nitrogen in the troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Herman, J. R.; Maier, E. J. R.; Mcquillan, C. J.

    1983-01-01

    Nonmethane hydrocarbon breakdown in the atmosphere produces aldehydes of which a fraction are transferred into peroxyacetyl nitrates (PAN) in the presence of NO and NO2. Since ethane is destroyed photochemically primarily above 1 km, PAN can be introduced into the upper troposphere and lower stratosphere without the need to be transported from the boundary layer where most hydrocarbons are destroyed and where PAN may be lost due to thermal decomposition and heterogeneous loss. Mixing ratios of ethane in the lower troposphere increase by a factor of 4-8 from equatorial to northern mid-latitudes. This difference is directly translatable into a PAN latitude gradient. At mid-latitudes the concentration of PAN below 20 km is 0.1 ppb comparable to and in some instances larger than predicted HO2NO2 mixing ratios. Like HO2NO2 and HNO3, PAN serves as a reservoir for odd nitrogen.

  4. Dispersive Stiffness of Dzyaloshinskii Domain Walls

    NASA Astrophysics Data System (ADS)

    Pellegren, J. P.; Lau, D.; Sokalski, V.

    2017-07-01

    It is well documented that subjecting perpendicular magnetic films that exhibit the interfacial Dzyaloshinskii-Moriya interaction to an in-plane magnetic field results in a domain wall (DW) energy σ , which is highly anisotropic with respect to the orientation of the DW in the film plane Θ . We demonstrate that this anisotropy has a profound impact on the elastic response of the DW as characterized by the surface stiffness σ ˜ (Θ )=σ (Θ )+σ''(Θ ) and evaluate its dependence on the length scale of deformation. The influence of stiffness on DW mobility in the creep regime is assessed, with analytic and numerical calculations showing trends in σ ˜ that better represent experimental measurements of domain wall velocity in magnetic thin films compared to σ alone. Our treatment provides experimental support for theoretical models of the mobility of anisotropic elastic manifolds and makes progress toward a more complete understanding of magnetic domain wall creep.

  5. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  6. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  7. Evaluation of the tablets' surface flow velocities in pan coaters.

    PubMed

    Dreu, Rok; Toschkoff, Gregor; Funke, Adrian; Altmeyer, Andreas; Knop, Klaus; Khinast, Johannes; Kleinebudde, Peter

    2016-09-01

    The tablet pan coating process involves various types of transverse tablet bed motions, ranging from rolling to cascading. To preserve satisfactory results in terms of coating quality after scale-up, understanding the dynamics of pan coating process should be achieved. The aim of this study was to establish a methodology of estimating translational surface velocities of the tablets in a pan coater and to assess their dependence on the drum's filling degree, the pan speed, the presence of baffles and the selected tablet properties in a dry bed system and during coating while varying the drum's filling degree and the pan speed. Experiments were conducted on the laboratory scale and on the pilot scale in side-vented pan coaters. Surface movement of biconvex two-layer tablets was assessed before, during and after the process of active coating. In order to determine the tablets' surface flow velocities, a high-speed video of the tablet surface flow was recorded via a borescope inserted into the coating drum and analysed via a cross-correlation algorithm. The obtained tablet velocity data were arranged in a linear fashion as a function of the coating drum's radius and frequency. Velocity data obtained during coating were close to those of dry tablets after coating. The filling degree had little influence on the tablet velocity profile in a coating drum with baffles but clearly affected it in a coating drum without baffles. In most but not all cases, tablets with a lower static angle of repose had tablet velocity profiles with lower slopes than tablets with higher inter-tablet friction. This particular tablet velocity response can be explained by case specific values of tablet bed's dynamic angle of repose. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The minimal flow unit in near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Jimeez, Javier; Moin, Parviz

    1991-01-01

    Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.

  9. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  10. Peperomia leaf cell wall interface between the multiple hypodermis and crystal-containing photosynthetic layer displays unusual pit fields

    PubMed Central

    Horner, Harry T.

    2012-01-01

    Background and Aims Leaves of succulent Peperomia obtusifolia (Piperaceae), and its related species, contain a large multilayered hypodermis (epidermis) subtended by a very small single-layered photosynthetic palisade parenchyma, the latter containing spherical aggregates of crystals called druses. Each druse is in a central vacuole surrounded by chloroplasts. All hypodermal cell walls are thin, except for thick lowermost periclinal walls associated with the upper periclinal walls of the subtending palisade cells. These thick walls display ‘quilted’ impressions (mounds) formed by many subtending palisade cells. Conspicuous depressions occur in most mounds, and each depression contains what appear to be many plasmodesmata. These depressions are opposite similar regions in adjacent thin palisade periclinal walls, and they can be considered special pit fields that represent thin translucent regions (‘windows’ or ‘skylights’). Druses in the vacuoles of palisade cells occur below these pit field regions and are surrounded by conspicuous cytoplasmic chloroplasts with massive grana oriented perpendicular to the crystals, probably providing for an efficient photosynthetic system under low-intensity light. Methods Leaf clearings and fractures, light microscopy and crossed polarizers, general and histochemical staining, and transmission and scanning electron microscopy were used to examine these structures. Key Results Druses in the vacuoles of palisade cells occur below the thin pit field regions in the wall interface, suggesting an interesting physical relationship that could provide a pathway for light waves, filtered through the multiple hypodermis. The light waves pass into the palisade cells and are collected and dispersed by the druses to surrounding chloroplasts with large grana. Conclusions These results imply an intriguing possible efficient photosynthetic adaptation for species growing in low-light environments, and provide an opportunity for future

  11. Peperomia leaf cell wall interface between the multiple hypodermis and crystal-containing photosynthetic layer displays unusual pit fields.

    PubMed

    Horner, Harry T

    2012-06-01

    Leaves of succulent Peperomia obtusifolia (Piperaceae), and its related species, contain a large multilayered hypodermis (epidermis) subtended by a very small single-layered photosynthetic palisade parenchyma, the latter containing spherical aggregates of crystals called druses. Each druse is in a central vacuole surrounded by chloroplasts. All hypodermal cell walls are thin, except for thick lowermost periclinal walls associated with the upper periclinal walls of the subtending palisade cells. These thick walls display 'quilted' impressions (mounds) formed by many subtending palisade cells. Conspicuous depressions occur in most mounds, and each depression contains what appear to be many plasmodesmata. These depressions are opposite similar regions in adjacent thin palisade periclinal walls, and they can be considered special pit fields that represent thin translucent regions ('windows' or 'skylights'). Druses in the vacuoles of palisade cells occur below these pit field regions and are surrounded by conspicuous cytoplasmic chloroplasts with massive grana oriented perpendicular to the crystals, probably providing for an efficient photosynthetic system under low-intensity light. Leaf clearings and fractures, light microscopy and crossed polarizers, general and histochemical staining, and transmission and scanning electron microscopy were used to examine these structures. Druses in the vacuoles of palisade cells occur below the thin pit field regions in the wall interface, suggesting an interesting physical relationship that could provide a pathway for light waves, filtered through the multiple hypodermis. The light waves pass into the palisade cells and are collected and dispersed by the druses to surrounding chloroplasts with large grana. These results imply an intriguing possible efficient photosynthetic adaptation for species growing in low-light environments, and provide an opportunity for future research on how evolution through environmental adaptation aids

  12. Stone tool production and utilization by bonobo-chimpanzees (Pan paniscus).

    PubMed

    Roffman, Itai; Savage-Rumbaugh, Sue; Rubert-Pugh, Elizabeth; Ronen, Avraham; Nevo, Eviatar

    2012-09-04

    Using direct percussion, language-competent bonobo-chimpanzees Kanzi and Pan-Banisha produced a significantly wider variety of flint tool types than hitherto reported, and used them task-specifically to break wooden logs or to dig underground for food retrieval. For log breaking, small flakes were rotated drill-like or used as scrapers, whereas thick cortical flakes were used as axes or wedges, leaving consistent wear patterns along the glued slits, the weakest areas of the log. For digging underground, a variety of modified stone tools, as well as unmodified flint nodules, were used as shovels. Such tool production and utilization competencies reported here in Pan indicate that present-day Pan exhibits Homo-like technological competencies.

  13. Shearing of nanoscopic bridges in two-component thin liquid layers between chemically patterned walls.

    PubMed

    Hemming, C J; Patey, G N

    2004-10-01

    Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. (c) 2004 American Institute of Physics

  14. Satellite-derived pan-Arctic melt onset dataset, 2000-2009

    NASA Astrophysics Data System (ADS)

    Wang, L.; Derksen, C.; Howell, S.; Wolken, G. J.; Sharp, M. J.; Markus, T.

    2009-12-01

    The SeaWinds Scatterometer on QuikSCAT (QS) has been in orbit for over a decade since its launch in June 1999. Due to its high sensitivity to the appearance of liquid water in snow and day/night all weather capability, QS data have been successfully used to detect melt onset and melt duration for various elements of the cryosphere. These melt datasets are especially useful in the polar regions where the application of imagery from optical sensors is hindered by polar nights and frequent cloud cover. In this study, we generate a pan-Arctic, pan-cryosphere melt onset dataset by combining estimates from previously published algorithms optimized for individual cryospheric elements and applied to QS and Special Sensor Microwave Imager (SSM/I) data for the northern high latitude land surface, ice caps, large lakes, and sea ice. Comparisons of melt onset along the boundaries between different components of the cryosphere show that in general the integrated dataset provides consistent and spatially coherent melt onset estimates across the pan-Arctic. We present the climatology and the anomaly patterns in melt onset during 2000-2009, and identify synoptic-scale linkages between atmospheric conditions and the observed patterns. We also investigate the possible trends in melt onset in the pan-Arctic during the 10-year period.

  15. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Cancer.gov

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  16. A Portable Burn Pan for the Disposal of Excess Propellants

    DTIC Science & Technology

    2016-11-01

    pan caused by radiant heat .............................. 39 11 Wet propellant (12-0 kg burn) and dry propellant (460 kg) burn residues...43 13 Graph of component temperatures during an ATU burn pan test ......................................... 45 14 IR Camera thermal...than anticipated. Dr. Packer also fully embraced the concept, requesting background reports and papers as well as test reports from all the

  17. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

    PubMed

    Kuchin, Igor V; Starov, Victor M

    2016-05-31

    A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

  18. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  19. Motion of a Spherical Domain Wall and the Large-Scale Structure Formation

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Tomita, K.

    1991-11-01

    The evolution of a wall-like structure in the universe is investigated by assuming a simplified model of a domain wall. The domain wall is approximated as a thin spherical shell with domain wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic manner, and its motion in an expanding universe is numerically studied in the general-relativistic treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic age, in order that the walls avoid the collapse to the present time and play an important role in the structure formation of the universe. It is shown that, in spite of the above interaction, the strong restriction is imposed on the surface density of the domain walls and the allowed values are too small to have any influences on the background model.

  20. Evaluation of chemopreventive effects of betel leaf on the genotoxicity of pan masala.

    PubMed

    Trivedi, A H; Patel, R K; Rawal, U M; Adhvaryu, S G; Balar, D B

    1994-01-01

    The antigenotoxic effect of the aqueous extract of betel leaf (BL-ext.) against the pan masala was tested with the help of cytogenetic endpoints like chromosome aberration (CA) and sister chromatid exchange (SCE) utilizing Chinese hamster ovary (CHO) cells. Compared to the cultures treated with aqueous extract of pan masala alone, a reduction in CA and SCE frequencies in CHO cells was observed following a combined treatment with pan masala (with or without tobacco) extract and BL-ext. The protective effect of BL-ext. against the genomic damage caused by pan masala was statistically significant only after treating the cells for a longer period.

  1. Real-Time Penetrating Particle Analyzer (PAN)

    NASA Astrophysics Data System (ADS)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  2. Developing Pantetheinase-Resistant Pantothenamide Antibacterials: Structural Modification Impacts on PanK Interaction and Mode of Action.

    PubMed

    Barnard, Leanne; Mostert, Konrad J; van Otterlo, Willem A L; Strauss, Erick

    2018-05-11

    Pantothenamides (PanAms) are analogues of pantothenate, the biosynthetic precursor of coenzyme A (CoA), and show potent antimicrobial activity against several bacteria and the malaria parasite in vitro. However, pantetheinase enzymes that normally degrade pantetheine in human serum also act on the PanAms, thereby reducing their potency. In this study, we designed analogues of the known antibacterial PanAm N-heptylpantothenamide (N7-Pan) to be resistant to pantetheinase by using three complementary structural modification strategies. We show that, while two of these are effective in imparting resistance, the introduced modifications have an impact on the analogues' interaction with pantothenate kinase (PanK, the first CoA biosynthetic enzyme), which acts as a metabolic activator and/or target of the PanAms. This, in turn, directly affects their mode of action. Importantly, we discover that the phosphorylated version of N7-Pan shows pantetheinase resistance and antistaphylococcal activity, providing a lead for future studies in the ongoing search of PanAm analogues that show in vivo efficacy.

  3. Complete Status Report Documenting Weld Development for Thin Wall Tubing of ODS Ferritic Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzer, David T.; Edmondson, Philip D.; Gussev, Maxim N.

    Beginning in 2015, research in the FCRD program began the development of FSW for joining thin sections of 14YWT in the form of thin (0.5 mm) plate and ultimately thin wall tubing. In the previous fiscal year, a ~1 mm thick plate, or sheet, of 14YWT was produced by hot rolling with no edge cracking. The initial FSW experiment was performed on the 1 mm thick plate and involved a bead-on-plate weld in which the spinning pin tool is plunged into the plate surface, but does not penetrate the thickness of the plate, and then travels the length of themore » plate. The FSW run successfully produced a bead-on-plate stir zone on the 1 mm thick plate of 14YWT, but no characterization studies of the stir zone were performed by the end of FY15. Therefore, the results presented in this report cover the microstructural analysis of the bead-on-plate stir zone and the initial research task on obtaining tensile properties of the stir zone using the digital image correlation (DIC) approach during testing of miniature tensile specimens to assess the quality of the FSW parameters used in the initial experiment. The results of the microstructural characterization study using optical, scanning electron and scanning transmission electron microscopies showed the grain structure in the SZ to have isotropic and irregular shape but very similar size compared to the highly elongated grains oriented horizontally with the plane of the plate that were observed in the unaffected zone of 14YWT. Several cracks oriented horizontally were observed mostly on the retreating side of the SZ in both the SZ and TMAZ. These cracks may have formed due to insufficient pressure being exerted on the top surface of the plate by the shoulder and pin tool during the FSW run. High resolution STEM-EDS analysis showed the presence of the Y-Ti-O particles in the SZ, but that some particles exhibited coarsening. Overall, the FSW parameters used to produce the bead-on-plate SZ in the 0.1 cm thick plate of 14YWT were

  4. Elastic Critical Axial Force for the Torsional-Flexural Buckling of Thin-Walled Metal Members: An Approximate Method

    NASA Astrophysics Data System (ADS)

    Kováč, Michal

    2015-03-01

    Thin-walled centrically compressed members with non-symmetrical or mono-symmetrical cross-sections can buckle in a torsional-flexural buckling mode. Vlasov developed a system of governing differential equations of the stability of such member cases. Solving these coupled equations in an analytic way is only possible in simple cases. Therefore, Goľdenvejzer introduced an approximate method for the solution of this system to calculate the critical axial force of torsional-flexural buckling. Moreover, this can also be used in cases of members with various boundary conditions in bending and torsion. This approximate method for the calculation of critical force has been adopted into norms. Nowadays, we can also solve governing differential equations by numerical methods, such as the finite element method (FEM). Therefore, in this paper, the results of the approximate method and the FEM were compared to each other, while considering the FEM as a reference method. This comparison shows any discrepancies of the approximate method. Attention was also paid to when and why discrepancies occur. The approximate method can be used in practice by considering some simplifications, which ensure safe results.

  5. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties.

    PubMed

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-09-19

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.

  6. "A Constant Transit of Finding": Fantasy as Realisation in "Pan's Labyrinth"

    ERIC Educational Resources Information Center

    Clark, Roger; McDonald, Keith

    2010-01-01

    This article considers Guillermo Del Toro's "Pan's Labyrinth" as a text which utilises key codes and conventions of children's literature as a means of encountering the trauma of Fascism. The article begins by placing "Pan's Labyrinth" at a contextual crossroads involving fairy tale and a Spanish cinematic tradition and…

  7. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    PubMed

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  8. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    NASA Astrophysics Data System (ADS)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  9. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  10. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors.

    PubMed

    Wang, Ning; Wu, Chuxin; Li, Jiaxin; Dong, Guofa; Guan, Lunhui

    2011-11-01

    A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.

  11. PanDA Pilot Submission using Condor-G: Experience and Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao X.; Hover John; Wlodek Tomasz

    2011-01-01

    PanDA (Production and Distributed Analysis) is the workload management system of the ATLAS experiment, used to run managed production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA 'AutoPilot' scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison.more » In this paper, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resulting from this collaboration, including isolation of site-based issues by running a separate Gridmanager for each remote site, introduction of the 'Nonessential' job attribute to allow Condor to optimize its behavior for the specific character of pilot jobs, better understanding and handling of the Gridmonitor process, as well as better scheduling in the PanDA pilot scheduler component. We will also cover the monitoring of the health of the system.« less

  12. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe).

    PubMed

    Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia

    2017-01-01

    Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.

  13. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe)

    PubMed Central

    Boros, Emil; Katalin, V.-Balogh; Vörös, Lajos; Horváth, Zsófia

    2017-01-01

    Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L–1, max: 16 g L–1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L–1), and total phosphorus concentration was also extremely high (median: 2 mg L–1, max: 32 mg L–1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem. PMID:28572691

  14. Dynamic depinning phase transition in magnetic thin film with anisotropy

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Zheng, B.; Jin, M. H.; Wang, L.; Zhou, N. J.

    2018-02-01

    The dynamic pinning effects induced by quenched disorder are significant in manipulating the domain-wall motion in nano-magnetic materials. Through numerical simulations of the nonstationary domain-wall dynamics with the Landau-Lifshitz-Gilbert equation, we confidently detect a dynamic depinning phase transition in a magnetic thin film with anisotropy, which is of second order. The transition field, static and dynamic exponents are accurately determined, based on the dynamic scaling behavior far from stationary.

  15. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    PubMed

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data

  16. New, Virtually Wall-less Cannulas Designed for Augmented Venous Drainage in Minimally Invasive Cardiac Surgery.

    PubMed

    von Segesser, Ludwig Karl; Berdajs, Denis; Abdel-Sayed, Saad; Tozzi, Piergiorgio; Ferrari, Enrico; Maisano, Francesco

    2016-01-01

    Inadequate venous drainage during minimally invasive cardiac surgery becomes most evident when the blood trapped in the pulmonary circulation floods the surgical field. The present study was designed to assess the in vivo performance of new, thinner, virtually wall-less, venous cannulas designed for augmented venous drainage in comparison to traditional thin-wall cannulas. Remote cannulation was realized in 5 bovine experiments (74.0 ± 2.4 kg) with percutaneous venous access over the wire, serial dilation up to 18 F and insertion of either traditional 19 F thin wall, wire-wound cannulas, or through the same access channel, new, thinner, virtually wall-less, braided cannulas designed for augmented venous drainage. A standard minimal extracorporeal circuit set with a centrifugal pump and a hollow fiber membrane oxygenator, but no in-line reservoir was used. One hundred fifty pairs of pump-flow and required pump inlet pressure values were recorded with calibrated pressure transducers and a flowmeter calibrated by a volumetric tank and timer at increasing pump speed from 1500 RPM to 3500 RPM (500-RPM increments). Pump flow accounted for 1.73 ± 0.85 l/min for wall-less versus 1.17 ± 0.45 l/min for thin wall at 1500 RPM, 3.91 ± 0.86 versus 3.23 ± 0.66 at 2500 RPM, 5.82 ± 1.05 versus 4.96 ± 0.81 at 3500 RPM. Pump inlet pressure accounted for 9.6 ± 9.7 mm Hg versus 4.2 ± 18.8 mm Hg for 1500 RPM, -42.4 ± 26.7 versus -123 ± 51.1 at 2500 RPM, and -126.7 ± 55.3 versus -313 ± 116.7 for 3500 RPM. At the well-accepted pump inlet pressure of -80 mm Hg, the new, thinner, virtually wall-less, braided cannulas provide unmatched venous drainage in vivo. Early clinical analyses have confirmed these findings.

  17. Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules

    NASA Astrophysics Data System (ADS)

    Jang, Ji-Soo; Kim, Sang-Joon; Choi, Seon-Jin; Kim, Nam-Hoon; Hakim, Meggie; Rothschild, Avner; Kim, Il-Doo

    2015-10-01

    Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer.Bio-inspired Pt (~2 nm) and Au (~2.7 nm) catalysts encapsulated by a protein shell, i.e., Pt-apoferritin (Pt@AF) and Au-apoferriten (Au@AF), were synthesized via the hollow protein nanocage (apoferritin) templating route and directly functionalized on the interior and exterior walls

  18. Multivalent small molecule pan-RAS inhibitors

    PubMed Central

    Welsch, Matthew E.; Kaplan, Anna; Chambers, Jennifer M.; Stokes, Michael E.; Bos, Pieter H.; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A.; Huang, Christine S.; Tran, Timothy H.; Akkiraju, Hemanth; Brown, Lewis M.; Nandakumar, Renu; Cremers, Serge; Yang, Wan S.; Tong, Liang; Olive, Kenneth P.; Ferrando, Adolfo; Stockwell, Brent R.

    2017-01-01

    SUMMARY Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, have potential use as chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers, and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. PMID:28235199

  19. Technical research aspect of the Pan-Pacific Information Network using satellite

    NASA Astrophysics Data System (ADS)

    Iida, Takashi; Morikawa, Hisashi; Noguchi, Shoichi

    The Pan-Pacific Information Network would provide an important new mechanism for education, research, health service, emergency communication, and cultural exchange. The paper discusses the technical research items related to the Pan-Pacific Information Network, reviews small earth-station systems, and considers the system configuration pointed to the network in the Asia/Pacific region.

  20. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE PAGES

    An, Ke; Yuan, Lang; Dial, Laura; ...

    2017-09-11

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  1. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ke; Yuan, Lang; Dial, Laura

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  2. Moderate temperature-dependent surface and volume resistivity and low-frequency dielectric constant measurements of pure and multi-walled carbon nanotube (MWCNT) doped polyvinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael

    2017-08-01

    Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.

  3. Targeting the HER family with Pan-HER effectively overcomes resistance to cetuximab

    PubMed Central

    Iida, Mari; Bahrar, Harsh; Brand, Toni M; Pearson, Hannah E; Coan, John P; Orbuch, Rachel A; Flanigan, Bailey G; Swick, Adam D; Prabakaran, Prashanth; Lantto, Johan; Horak, Ivan D.; Kragh, Michael; Salgia, Ravi; Kimple, Randy J; Wheeler, Deric L

    2016-01-01

    Cetuximab, an antibody against the Epidermal Growth Factor Receptor (EGFR) has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2 and HER3. Here, we examined Pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, Pan-HER treatment decreased all three receptors’ protein levels and down-stream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether Pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with Pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared to mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with Pan-HER exhibited significant growth delay compared to vehicle/cetuximab controls. These results suggest that targeting HER family receptors simultaneously with Pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. PMID:27422810

  4. Comparing infant and juvenile behavior in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes): a preliminary study.

    PubMed

    De Lathouwers, Mieke; Van Elsacker, Linda

    2006-10-01

    The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the "continuity versus discontinuity" discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother-infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.

  5. Characteristics of PAN (Peroxyacetyl Nitrate) in Outflow Plumes Over the Yellow Sea During KORUS-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Seo, J.; Inae, K.; Lee, M.; Shin, B.; Ryoo, S.; Jung, J.; Kim, S. W.

    2017-12-01

    Peroxyacetyl nitrate (PAN) is a secondary atmospheric pollutant which is generated by photochemical reaction of VOCs (Volatile Organic Compounds) and NOx (NO+NO2). While PAN has been known as an indicator of photochemical smog in urban areas, it serves as a robust tracer for long-range transport in remote regions. Research vessel Gisang 1 explored the Yellow Sea during May and June 2016, measuring reactive gases including PAN, O3, and NOx. The research area covers the region between 31° 38°N and 124° 127°E. PAN was measured using GC-LCD (Gas Chromatography Luminol Chemiluminescence Detection) every 2 minutes. The average mixing ratio of PAN was the highest (1.1 ppbv) in the second shift (May 17-30) and lower in the first (0.92 ppbv) and third (0.48 ppbv) shift. The PAN concentrations higher than the 95th percentile (2.19 ppbv) were observed on May 21 and 22 in air mass passing through Seoul Metropolitan Areas. In contrast, on May 4 and 29, both PAN and O3 were high under influence of Chinese outflows. On May 6 when dust storm passed through the Yellow Sea, both PAN and O3 concentrations were at their minimum levels. It is noteworthy that PAN concentration was higher with low O3 level near the west coast of Korean peninsula, which was likely to be the influence of ship emissions.

  6. PanFP: pangenome-based functional profiles for microbial communities.

    PubMed

    Jun, Se-Ran; Robeson, Michael S; Hauser, Loren J; Schadt, Christopher W; Gorin, Andrey A

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique

  7. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  8. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    PubMed

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  10. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  11. Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.

    PubMed

    Arroyo-Begovich, A; Cárabez-Trejo, A

    1982-04-01

    Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.

  12. High levels of Y-chromosome nucleotide diversity in the genus Pan

    PubMed Central

    Stone, Anne C.; Griffiths, Robert C.; Zegura, Stephen L.; Hammer, Michael F.

    2002-01-01

    Although some mitochondrial, X chromosome, and autosomal sequence diversity data are available for our closest relatives, Pan troglodytes and Pan paniscus, data from the nonrecombining portion of the Y chromosome (NRY) are more limited. We examined ≈3 kb of NRY DNA from 101 chimpanzees, seven bonobos, and 42 humans to investigate: (i) relative levels of intraspecific diversity; (ii) the degree of paternal lineage sorting among species and subspecies of the genus Pan; and (iii) the date of the chimpanzee/bonobo divergence. We identified 10 informative sequence-tagged sites associated with 23 polymorphisms on the NRY from the genus Pan. Nucleotide diversity was significantly higher on the NRY of chimpanzees and bonobos than on the human NRY. Similar to mtDNA, but unlike X-linked and autosomal loci, lineages defined by mutations on the NRY were not shared among subspecies of P. troglodytes. Comparisons with mtDNA ND2 sequences from some of the same individuals revealed a larger female versus male effective population size for chimpanzees. The NRY-based divergence time between chimpanzees and bonobos was estimated at ≈1.8 million years ago. In contrast to human populations who appear to have had a low effective size and a recent origin with subsequent population growth, some taxa within the genus Pan may be characterized by large populations of relatively constant size, more ancient origins, and high levels of subdivision. PMID:11756656

  13. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  14. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Tadakimi; Bzik, David J.; Ma, Yan Fen

    2013-12-26

    Toxoplasma gondii infects up to one third of the world’s population. A key to the success of T.gondii is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in a fragile brain cyst phenotype revealed bymore » a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that reinforces the cyst wall structure and confers essential sturdiness to the T. gondii tissue cyst.« less

  15. A method for installing zero-tension pan and wick lysimeters in soil

    USDA-ARS?s Scientific Manuscript database

    Zero-tension pan lysimeters and passive capillary fiberglass wick lysimeters are useful in determining water quality and volumetric aspects of subsurface water flow. Installation of pan and wick lysimeters beneath undisturbed soil may be complicated by the tendency for the soil to cave-in as the lys...

  16. Morphology Evolution of Polymer Blends under Intense Shear During High Speed Thin-Wall Injection Molding.

    PubMed

    Zhou, Yi; Yu, Feilong; Deng, Hua; Huang, Yajiang; Li, Guangxian; Fu, Qiang

    2017-06-29

    The morphology evolution under shear during different processing is indeed an important issue regarding the phase morphology control as well as final physical properties of immiscible polymer blends. High-speed thin wall injection molding (HSTWIM) has recently been demonstrated as an effective method to prepare alternating multilayered structure. To understand the formation mechanism better and explore possible phase morphology for different blends under HSTWIM, the relationship between the morphology evolution of polymer blends based on polypropylene (PP) under HSTWIM and some intrinsic properties of polymer blends, including viscosity ratio, interfacial tension, and melt elasticity, is systematically investigated in this study. Blends based on PP containing polyethylene (PE), ethylene vinyl alcohol copolymer (EVOH), and polylactic acid (PLA) are used as examples. Compatibilizer has also been added into respective blends to alter their interfacial interaction. It is demonstrated that dispersed phase can be deformed into a layered-like structure if interfacial tension, viscosity ratio, and melt elasticity are relatively small. While some of these values are relatively large, these dispersed droplets are not easily deformed under HSTWIM, forming ellipsoidal or fiber-like structure. The addition of a moderate amount of compatibilizer into these blends is shown to be able to reduce interfacial tension and the size of dispersed phase, thus, allowing more deformation on the dispersed phase. Such a study could provide some guidelines on phase morphology control of immiscible polymer blends under shear during various processing methods.

  17. Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate- lead titanate thin films

    DOE PAGES

    Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...

    2017-04-11

    Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less

  18. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  19. Method and apparatus for constructing an underground barrier wall structure

    DOEpatents

    Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.

    2002-01-01

    A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

  20. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boegelein, Thomas, E-mail: t.boegelein@liv.ac.uk; Louvis, Eleftherios; Dawson, Karl

    2016-02-15

    Oxide dispersion strengthened (ODS) alloys exhibit superior mechanical and physical properties due to the presence of nanoscopic Y(Al, Ti) oxide precipitates, but their manufacturing process is complex. The present study is aimed at further investigation of the application of an alternative, Additive Manufacturing (AM) technique, Selective Laser Melting (SLM), to the production of consolidated ODS alloy components. Mechanically alloyed PM2000 (ODS-FeCrAl) powders have been consolidated and a fine dispersion of Y-containing precipitates were observed in an as built thin-walled component, but these particles were typically poly-crystalline and contained a variety of elements including O, Al, Ti, Cr and Fe. Applicationmore » of post-build heat treatments resulted in the modification of particle structures and compositions; in the annealed condition most precipitates were transformed to single crystal yttrium aluminium oxides. During the annealing treatment, precipitate distributions homogenised and localised variations in number density were diminished. The resulting volume fractions of those precipitates were 25–40% lower than have been reported in conventionally processed PM2000, which was attributed to Y-rich slag-like surface features and inclusions formed during SLM. - Highlights: • A wall structure was grown from ODS steel powder using selective laser melting. • A fine dispersion of nano-precipitates was apparent in as-build material. • Precipitates were multi-phased containing several elements, e.g. O, Ti, Al, Fe, Cr, Y. • Post-build annealing changed those into typically single-crystalline Y–Al–O. • The anneal also reduced and stabilised the volume fraction of precipitates to ~ 0.006.« less

  1. PAN-811 prevents chemotherapy-induced cognitive impairment and preserves neurogenesis in the hippocampus of adult rats

    PubMed Central

    Winocur, Gordon; Wojtowicz, J. Martin; Shevtsova, Olga; Fuller, Steven; Ghanbari, Hossein A.

    2018-01-01

    Chemotherapy-induced cognitive impairment (CICI) occurs in a substantial proportion of treated cancer patients, with no drug currently available for its therapy. This study investigated whether PAN-811, a ribonucleotide reductase inhibitor, can reduce cognitive impairment and related suppression of neurogenesis following chemotherapy in an animal model. Young adult rats in Chemo and Chemo+PAN-811 groups received 3 intraperitoneal (i.p.) injections of methotrexate (MTX) and 5-fluorouracil (5-FU), and those in Saline and Saline+PAN-811 groups received equal volumes of physiological saline at 10-day intervals. PAN-811 in saline was delivered through i.p. injection, 10 min following each saline (Saline+PAN-811 group) or MTX/5-FU (Chemo+PAN-811 group) treatment, while equal volumes of saline were delivered to Saline and Chemo groups. Over Days 31–66, rats were administered tests of spatial memory, nonmatching-to-sample rule learning, and discrimination learning, which are sensitive to dysfunction in hippocampus, frontal lobe and striatum, respectively. On Day 97, neurogenesis was immnunohistochemically evaluated by counting doublecortin-positive (DCX+) cells in the dentate gyrus (DG). The results demonstrated that the Chemo group was impaired on the three cognitive tasks, but co-administration of PAN-811 significantly reduced all MTX/5-FU-induced cognitive impairments. In addition, MTX/5-FU reduced DCX+ cells to 67% of that in Saline control rats, an effect that was completely blocked by PAN-811 co-administration. Overall, we present the first evidence that PAN-811 protects cognitive functions and preserves neurogenesis from deleterious effects of MTX/5-FU. The current findings provide a basis for rapid clinical translation to determine the effect of PAN-811 on CICI in human. PMID:29370277

  2. Structure, thermal and luminescence properties of Eu/Tb(BA)3phen/PAN fibers fabricated by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Xie, Guangbo; Zhang, Jingjing; Zhang, Sen; Li, Tingju

    2018-04-01

    Novel high luminescence fibers often exhibit potential applications in the fields of color displays and sensor systems. In this study, Eu(BA)3phen and Tb(BA)3phen powders was successfully synthesized by solvothermal reactions, firstly. Then, three kinds of novel flexible Eu(BA)3phen/PAN, Tb(BA)3phen/PAN and Eu/Tb(BA)3phen/PAN (BA = benzoic acid, phen = phenanthroline, PAN = Polyacrylonitrile) fibers had been successfully prepared by electrospinning technology. The characterizations of the final products have been investigated in detail. It was found that the diameter of the as-prepared fibers were almost uniform with the fabricated complexes doping into PAN successfully. Thermogravimetric analysis indicates that the thermal stability of the pure PAN fiber could be improved by the incorporation of the complex, although only 1 wt % was added. Furthermore, in Eu/Tb(BA)3phen complex, the fluorescence intensity of Eu3+ ions was remarkably increased by adding Tb3+ ions. This is primarily due to an energy transfer from the 5D4 level of Tb (III) to the 5D0 level of Eu (III) ions, where Tb3+ acted as sensitizer. The corresponding luminescent fibers displayed the same regularity as the complexes. Moreover, with the increasing of the incorporation of complexes into PAN, the fluorescence intensities were significantly enhanced and reached its maximum value at 2.5 wt % for Eu(BA)3phen/PAN fibers and 2.0 wt% for Tb(BA)3phen/PAN fibers. The further intensity decreased with the increasing content of the complexes because of typical emission concentration quenching.

  3. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary?

    Treesearch

    Michael T. Hobbins; Jorge A. Ramirez; Thomas C. Brown

    2004-01-01

    Pan evaporation (ETpan) has decreased at 64% of pans in the conterminous U.S. over the past half-century. Comparing trends in ETpan and water budget-derived actual evapotranspiration (ET*a), we observe the so-called ‘‘Pan Evaporation Paradox,’’ which we confirm is no more than a...

  4. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties

    PubMed Central

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-01-01

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube. PMID:28788213

  5. Numerical modeling of the exterior-to-interior transmission of impulsive sound through three-dimensional, thin-walled elastic structures

    NASA Astrophysics Data System (ADS)

    Remillieux, Marcel C.; Pasareanu, Stephanie M.; Svensson, U. Peter

    2013-12-01

    Exterior propagation of impulsive sound and its transmission through three-dimensional, thin-walled elastic structures, into enclosed cavities, are investigated numerically in the framework of linear dynamics. A model was developed in the time domain by combining two numerical tools: (i) exterior sound propagation and induced structural loading are computed using the image-source method for the reflected field (specular reflections) combined with an extension of the Biot-Tolstoy-Medwin method for the diffracted field, (ii) the fully coupled vibro-acoustic response of the interior fluid-structure system is computed using a truncated modal-decomposition approach. In the model for exterior sound propagation, it is assumed that all surfaces are acoustically rigid. Since coupling between the structure and the exterior fluid is not enforced, the model is applicable to the case of a light exterior fluid and arbitrary interior fluid(s). The structural modes are computed with the finite-element method using shell elements. Acoustic modes are computed analytically assuming acoustically rigid boundaries and rectangular geometries of the enclosed cavities. This model is verified against finite-element solutions for the cases of rectangular structures containing one and two cavities, respectively.

  6. Pulsed photonic fabrication of nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  7. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films

    DOE PAGES

    MacLeod, Bradley A.; Stanton, Noah J.; Gould, Isaac E.; ...

    2017-09-08

    Lightweight, robust, and flexible single-walled carbon nanotube (SWCNT) materials can be processed inexpensively using solution-based techniques, similar to other organic semiconductors. In contrast to many semiconducting polymers, semiconducting SWCNTs (s-SWCNTs) represent unique one-dimensional organic semiconductors with chemical and physical properties that facilitate equivalent transport of electrons and holes. These factors have driven increasing attention to employing s-SWCNTs for electronic and energy harvesting applications, including thermoelectric (TE) generators. Here we demonstrate a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies that enable unprecedented n-type and p-type TE power factors, in the range of 700 μW m –1 Kmore » –2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs. We also demonstrate that the thermal conductivity appears to decrease with decreasing s-SWCNT diameter, leading to a peak material zT ≈ 0.12 for s-SWCNTs with diameters in the range of 1.0 nm. Here, our results indicate that the TE performance of s-SWCNT-only material systems is approaching that of traditional inorganic semiconductors, paving the way for these materials to be used as the primary components for efficient, all-organic TE generators.« less

  8. Laminar boundary layer near the rotating end wall of a confined vortex

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. J.; Levy, E. K.

    1982-06-01

    The results of an experimental and theoretical investigation of the fluid mechanics in a confined vortex are discussed with particular emphasis on behavior away from the axis of symmetry and near the end walls. The vortex is generated in a rotating cylindrical chamber with an exit opening in one end. Both end walls rotate. For the range of flow rates and swirl ratios (S between 1 and 5) of interest here, the flow field far from the end walls behaves as inviscid and irrotational; and the end wall boundary layers are thin and laminar. Measurements and calculations of tangential and radial velocity in the end wall region show the development of a secondary flow resulting in a strong velocity 'overshoot' in the radial component. Results illustrating the nature of the velocity variations on the end walls are presented; and it is shown that the mass flow rate through the end wall boundary layers, while only a small fraction of the total flow, increases with increasing swirl and with decreasing total flow rate through the chamber.

  9. Development of pan-Arctic database for river chemistry

    USGS Publications Warehouse

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  10. Volumetric and Lateralized Differences in Selected Brain Regions of Chimpanzees (Pan troglodytes) and Bonobos (Pan paniscus)

    PubMed Central

    Hopkins, William D.; Lyn, Heidi; Cantalupo, Claudio

    2009-01-01

    The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills. PMID:19760676

  11. Volumetric and lateralized differences in selected brain regions of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus).

    PubMed

    Hopkins, William D; Lyn, Heidi; Cantalupo, Claudio

    2009-12-01

    The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills.

  12. 3 CFR 8495 - Proclamation 8495 of April 9, 2010. Pan American Day and Pan American Week, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... United States of America A Proclamation More than 200 years of history and significant current events... Americas. The year 2010 marks the 80th anniversary of the first Pan American Day Proclamation; the..., and Chile. These milestones remind us of our shared histories of independence and interdependence, and...

  13. Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China.

    PubMed

    Li, Meng; Chu, Ronghao; Shen, Shuanghe; Islam, Abu Reza Md Towfiqul

    2018-06-01

    Pan evaporation (E pan ), which we examine in this study to better understand atmospheric evaporation demand, represents a pivotal indicator of the terrestrial ecosystem and hydrological cycle, particularly in the Huai River Basin (HRB) in eastern China, where high potential risks of drought and flooding are commonly observed. In this study, we examine the spatiotemporal trend patterns of climatic factors and E pan by using the Mann-Kendall test and the Theil-Sen estimator based on a daily meteorological dataset from 89 weather stations during 1965-2013 in the HRB. Furthermore, the PenPan model is employed to estimate E pan at a monthly time scale, and a differential equation method is applied to quantify contributions from four meteorological variables to E pan trends. The results show that E pan significantly decreased (P<0.001) at an average rate of -8.119mm·a -2 at annual time scale in the whole HRB, with approximately 90% of stations occupied. Meanwhile, the generally higher E pan values were detected in the northern HRB. The values of the aerodynamic components in the PenPan model were much greater than those of the radiative components, which were responsible for the variations in the E pan trend. The significantly decreasing wind speed (u 2 ) was the most dominant factor that controlled the decreasing E pan trend at each time scale, followed by the notable decreasing net radiation (R n ) at the annual time scale also in growing season and summer. However, the second dominant factor shifted to the mean temperature (T a ) during the spring and winter and the vapor pressure deficit (vpd) during the autumn. These phenomena demonstrated a positive link between the significance of climate variables and their control over the E pan trend. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Imitation in Neonatal Chimpanzees ("Pan Troglodytes")

    ERIC Educational Resources Information Center

    Myowa-Yamakoshi, Masako; Tomonaga, Masaki; Tanaka, Masayuki; Matsuzawa, Tetsuro

    2004-01-01

    This paper provides evidence for imitative abilities in neonatal chimpanzees ("Pan troglodytes"), our closest relatives. Two chimpanzees were reared from birth by their biological mothers. At less than 7 days of age the chimpanzees could discriminate between, and imitate, human facial gestures (tongue protrusion and mouth opening). By the time…

  15. ATLAS WORLD-cloud and networking in PanDA

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, F.; De, K.; Di Girolamo, A.; Maeno, T.; Walker, R.; ATLAS Collaboration

    2017-10-01

    The ATLAS computing model was originally designed as static clouds (usually national or geographical groupings of sites) around the Tier 1 centres, which confined tasks and most of the data traffic. Since those early days, the sites’ network bandwidth has increased at 0(1000) and the difference in functionalities between Tier 1s and Tier 2s has reduced. After years of manual, intermediate solutions, we have now ramped up to full usage of World-cloud, the latest step in the PanDA Workload Management System to increase resource utilization on the ATLAS Grid, for all workflows (MC production, data (re)processing, etc.). We have based the development on two new site concepts. Nuclei sites are the Tier 1s and large Tier 2s, where tasks will be assigned and the output aggregated, and satellites are the sites that will execute the jobs and send the output to their nucleus. PanDA dynamically pairs nuclei and satellite sites for each task based on the input data availability, capability matching, site load and network connectivity. This contribution will introduce the conceptual changes for World-cloud, the development necessary in PanDA, an insight into the network model and the first half-year of operational experience.

  16. Room temperature ammonia vapor sensing properties of transparent single walled carbon nanotube thin film

    NASA Astrophysics Data System (ADS)

    Shobin, L. R.; Manivannan, S.

    2014-10-01

    Carbon nanotube (CNT) networks are identified as potential substitute and surpass the conventional indium doped tin oxide (ITO) in transparent conducting electrodes, thin-film transistors, solar cells, and chemical sensors. Among them, CNT based gas sensors gained more interest because of its need in environmental monitoring, industrial control, and detection of gases in warfare or for averting security threats. The unique properties of CNT networks such as high surface area, low density, high thermal conductivity and chemical sensitivity making them as a potential candidate for gas sensing applications. Commercial unsorted single walled carbon nanotubes (SWCNT) were purified by thermal oxidation and acid treatment processes and dispersed in organic solvent N-methyl pyrolidone using sonication process in the absence of polymer or surfactant. Optically transparent SWCNT networks are realized on glass substrate by coating the dispersed SWCNT with the help of dynamic spray coating process at 200ºC. The SWCNT random network was characterized by scanning electron microscopy and UV-vis-NIR spectroscopy. Gas sensing property of transparent film towards ammonia vapor is studied at room temperature by measuring the resistance change with respect to the concentration in the range 0-1000 ppm. The sensor response is increased logarithmically in the concentration range 0 to 1000 ppm with the detection limit 0.007 ppm. The random networks are able to detect ammonia vapor selectively because of the high electron donating nature of ammonia molecule to the SWCNT. The sensor is reversible and selective to ammonia vapor with response time 70 seconds and recovery time 423 seconds for 62.5 ppm with 90% optical transparency at 550 nm.

  17. PAN AIR modeling studies. [higher order panel method for aircraft design

    NASA Technical Reports Server (NTRS)

    Towne, M. C.; Strande, S. M.; Erickson, L. L.; Kroo, I. M.; Enomoto, F. Y.; Carmichael, R. L.; Mcpherson, K. F.

    1983-01-01

    PAN AIR is a computer program that predicts subsonic or supersonic linear potential flow about arbitrary configurations. The code's versatility and generality afford numerous possibilities for modeling flow problems. Although this generality provides great flexibility, it also means that studies are required to establish the dos and don'ts of modeling. The purpose of this paper is to describe and evaluate a variety of methods for modeling flows with PAN AIR. The areas discussed are effects of panel density, internal flow modeling, forebody modeling in subsonic flow, propeller slipstream modeling, effect of wake length, wing-tail-wake interaction, effect of trailing-edge paneling on the Kutta condition, well- and ill-posed boundary-value problems, and induced-drag calculations. These nine topics address problems that are of practical interest to the users of PAN AIR.

  18. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    NASA Astrophysics Data System (ADS)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  19. A Portable Burn Pan for the Disposal of Excess Propellants

    DTIC Science & Technology

    2015-11-01

    project objective for the total mass of the HTU burn pan of less than 120 kg. The bonnet was made more durable while eliminating hazardous sharp edges...remaining in the pan will need to be considered hazardous . The sponsoring facility representatives, Mr. Steve Thurmond and Ms. Ellen Clark, agreed to...Don’t need the door on the bonnet any more – remove from next iteration − Beef up the mounting of the legs on the base After-action Tasks (CRREL

  20. Comparison of two thin-film microextractions for the analysis of estrogens in aqueous tea extract and environmental water samples by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Cai, Pei-Shan; Li, Dan; Chen, Jing; Xiong, Chao-Mei; Ruan, Jin-Lan

    2015-04-15

    Two thin-film microextractions (TFME), octadecylsilane (ODS)-polyacrylonitrile (PAN)-TFME and polar enhanced phase (PEP)-PAN-TFME have been proposed for the analysis of bisphenol-A, diethylstilbestrol and 17β-estradiol in aqueous tea extract and environmental water samples followed by high performance liquid chromatography-ultraviolet detection. Both thin-films were prepared by spraying. The influencing factors including pH, extraction time, desorption solvent, desorption volume, desorption time, ion strength and reusability were investigated. Under the optimal conditions, the two TFME methods are similar in terms of the analytical performance evaluated by standard addition method. The limits of detection for three estrogens in environmental water and aqueous tea extract matrix ranged from 1.3 to 1.6 and 2.8 to 7.1 ng mL(-1) by the two TFME methods, respectively. Both approaches were applied for the analysis of analytes in real aqueous tea extract and environmental water samples, presenting satisfactory recoveries ranged from 87.3% to 109.4% for the spiked samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    NASA Astrophysics Data System (ADS)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  2. Pan American World Airways flight training: A new direction. Flight operations resource management

    NASA Technical Reports Server (NTRS)

    Butler, Roy

    1987-01-01

    The Pan Am Flight Training Department shares the experiences it is having in its attempt to integrate cockpit resource management philosophies into its training programs. A slide-tape presentation on Pan Am's new direction in flight training is presented and briefly discussed.

  3. Share your sweets: Chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) willingness to share highly attractive, monopolizable food sources.

    PubMed

    Byrnit, Jill T; Høgh-Olesen, Henrik; Makransky, Guido

    2015-08-01

    All over the world, humans (Homo sapiens) display resource-sharing behavior, and common patterns of sharing seem to exist across cultures. Humans are not the only primates to share, and observations from the wild have long documented food sharing behavior in our closest phylogenetic relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, few controlled studies have been made in which groups of Pan are introduced to food items that may be shared or monopolized by a first food possessor, and very few studies have examined what happens to these sharing patterns if the food in question is a highly attractive, monopolizable food source. The one study to date to include food quality as the independent variable used different types of food as high- and low-value items, making differences in food divisibility and size potentially confounding factors. It was the aim of the present study to examine the sharing behavior of groups of captive chimpanzees and bonobos when introducing the same type of food (branches) manipulated to be of 2 different degrees of desirability (with or without syrup). Results showed that the large majority of food transfers in both species came about as sharing in which group members were allowed to cofeed or remove food from the stock of the food possessor, and the introduction of high-value food resulted in more sharing, not less. Food sharing behavior differed between species in that chimpanzees displayed significantly more begging behavior than bonobos. Bonobos, instead, engaged in sexual invitations, which the chimpanzees never did. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  4. Integration of PanDA workload management system with Titan supercomputer at OLCF

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  5. Bioenergy and biodiversity: Key lessons from the Pan American region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the Unitedmore » States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.« less

  6. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  7. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  8. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  9. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  10. Microfabricated alkali vapor cell with anti-relaxation wall coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straessle, R.; Pétremand, Y.; Briand, D.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less

  11. Phase equilibria in polymer blend thin films: A Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Souche, M.; Clarke, N.

    2009-12-01

    We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.

  12. Pan Am gets big savings at no cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanz, D.

    Pan American World Airways' contract with an energy management control systems distributor enabled the company's terminal and maintenance facilities at JFK airport in New York to shift from housekeeping to major savings without additional cost. Energy savings from a pneumatic control system were split almost equally between Pan Am and Thomas S. Brown Associates (TSBA) Inc., and further savings are expected from a planned computer-controlled system. A full-time energy manager, able to give top priority to energy-consumption problems, was considered crucial to the program's success. Early efforts in light-level reduction and equipment scheduling required extensive persuasion and policing, but successfulmore » energy savings allowed the manager to progress to the more-extensive plants with TSBA.« less

  13. An Investigation of Electrochemomechanical Actuation of Conductive Polyacrylonitrile (PAN) Nanofiber Composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.

    A polymer-based nanofiber composite actuator designed for linear actuation was fabricated by electrospinning, actuated by electrolysis, and characterized by electrical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural motion and function of muscle desperately needed to provide breakthroughs in the bio-medical and robotic fields. Previous research has shown activated Polyacrylonitrile (PAN) fibers having biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN is also known to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers especially show faster response to changes in environmental pH and improved mechanical properties over larger diameter fibers. Conductive additives were introduced to the electrospinning solution and activated in an attempt to create composite PAN nanofiber gel actuators with improved conductivity and eliminate the need of stiff electrodes. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Introducing conductive additives did not show a significant increase in conductivity and created unusable samples, requiring alternative electrode materials. Electrochemical contraction rates up to 25%/ min were achieved. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Improvements to contraction rates and young's moduli are necessary to capture the function and performance of skeletal muscles properly.

  14. Seasonal variation in pans in relation to limno-chemistry, size, hydroperiod, and river connectivity in a semi-arid subtropical region

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda

    2017-02-01

    Seasonal pans are hydrologically dynamic, with significant changes in water volume and depth in response to high evaporation, infiltration rates and inundation events. Intra-seasonal and inter-seasonal changes in endorheic and floodplain pans in relation to limnology, size, hydroperiod, and river connectivity were studied over two rainfall seasons across 36 pans at the Save Valley Conservancy. In the study region, floodplain pans were identified as pans that had connectivity with the Save River, while the endorheic pans (large and small) were hydrologically isolated basins. Seasonal trends for physico-chemical variables were initial low and gradual increased for both rainfall seasons. Significant inter-seasonal differences for several physico-chemical variables were observed. No significant differences in physico-chemical variables were observed between large and small endorheic pans, with the except for vegetation cover, which was higher in large pans. Floodplain pans differed from the endorheic systems in pH, conductivity, nutrients and suspended solids. Connectivity was found to be insignificant, as connections between these systems were probably too infrequent. Seasonal pans were uniquely distinguished by their morphometric, physico-chemical and hydrological characteristics. Inevitably, they are vulnerable to climate change with the extent of their resilience currently unknown.

  15. The Pan-STARRS data server and integrated data query tool

    NASA Astrophysics Data System (ADS)

    Guo, Jhen-Kuei; Chen, Wen-Ping; Lin, Chien-Cheng; Chen, Ying-Tung; Lin, Hsing-Wen

    2013-06-01

    The Pan-STARRS project is operated by an international consortium. Located in Haleakala, Hawaii, the Pan-STARRS telescope system patrols the entire visible sky several times a month, with an aim to identify and characterize varying celestial objects of phenomena or in brightness (supernovae, novae, variable stars, etc) or in position (comets, asteroids, near-earth objects, X-planet etc.) PS1 science mission has started officially from May, 2010 and expects to end in the end of 2013. As of early 2012, every patch of sky observable from Hawaii has been observed in at least 5 bands (g', r', i', z', y') for 5 to 40 epochs. We have set up a data depository at NCU to serve the users in Taiwan. The massive amounts of Pan-STARRS data are downloaded via Internet from the Institute for Astronomy, University of Hawaii whenever new observations are obtained and processed. So far we have stored a total of 200 TB worth of data. In addition to star/galaxy catalogs, a postage stamp server provides access to FITS images. The Pan-STARRS Published Science Products Subsystem (PSPS) has recently passed its operational readiness, that provides users to query individual PS1 measurements. Here we present the data query tool to interface with the PS1 catalogs and postage stamp images, together with other complementary databases such as 2MASS and other data at IRSA (NASA/IPAC Infrared Science Archive).

  16. Laparoscopic excision of an epidermoid cyst arising from the deep abdominal wall.

    PubMed

    Ishikawa, Hajime; Nakai, Takuya; Ueda, Kazuki; Haji, Seiji; Takeyama, Yoshifumi; Ohyanagi, Harumasa

    2009-10-01

    Epidermoid cysts are the most common type of cutaneous cyst. However, their occurrence in the deep abdominal wall has not yet been reported. Here, we present the case of a 60-year-old woman who developed an epidermoid cyst in the deep abdominal wall, which was resected laparoscopically. The patient presented with right upper quadrant abdominal pain on admission to our hospital. Computed tomography revealed cholecystolithiasis and an incidentally identified well-defined hypoattenuating mass (62 x 47 x 65 mm) in the deep abdominal wall on the left side of the navel. We performed laparoscopic complete resection of the abdominal wall tumor followed by cholecystectomy. The excised specimen was a cyst covered with a smooth thin membrane and contained sludge. Histopathologic examination revealed an epidermoid cyst. This is a very rare case with no previous reports on a similar type of epidermoid cyst.

  17. Pan-STARRS Data Release 1

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2017-01-01

    We present an overview of the first and second Pan-STARRS data release (DR1 and DR2), and how to use the Published Science Products Subsystem (PSPS) and the Pan-STARRS Science Interface (PSI) to access the images and the catalogs. The data will be available from the STScI MAST archive. The PSPS is an SQLServer database that can be queried via script or web interface. This database has relative photometry and astrometry and object associations, making it easy to do searches across the entire sky as well as tools to generate lightcurves of individual objects as a function of time. Both releases of data use the 3pi survey, which has 5 filters (g,r,i,z,y), roughly 60 epochs (12 per filter) and covers 3/4 of the sky and everything north of -30 degrees declination. The first release of data (DR1) will contain stack images, mean attribute catalogs and static sky catalogs based off of the stacks. The second release of data (DR2) will contain the time domain data. For the images, this will include single exposures that have been detrended and warped. For the catalogs, this will include catalogs of all exposures as well as forced photometry.

  18. Introduction of a pan-scan protocol for blunt trauma activations: what are the consequences?

    PubMed

    James, Melissa K; Schubl, Sebastian D; Francois, Michael P; Doughlin, Geoffrey K; Lee, Shi-Wen

    2017-01-01

    The aim of this study is to determine if the introduction of a pan-scan protocol during the initial assessment for blunt trauma activations would affect missed injuries, incidental findings, treatment times, radiation exposure, and cost. A 6-month prospective study was performed on patients with blunt trauma at a level 1 trauma center. During the last 3 months of the study, a pan-scan protocol was introduced to the trauma assessment. Categorical data were analyzed by Fisher exact test and continuous data were analyzed by Mann-Whitney nonparametric test. There were a total of 220 patients in the pre-pan-scan period and 206 patients during the pan-scan period. There was no significant difference in injury severity or mortality between the groups. Introduction of the pan-scan protocol substantially reduced the incidence of missed injuries from 3.2% to 0.5%, the length of stay in the emergency department by 68.2 minutes (95% confidence interval [CI], -134.4 to -2.1), and the mean time to the first operating room visit by 1465 minutes (95% CI, -2519 to -411). In contrast, fixed computed tomographic scan cost increased by $48.1 (95% CI, 32-64.1) per patient; however, total radiology cost per patient decreased by $50 (95% CI, -271.1 to 171.4). In addition, the rate of incidental findings increased by 14.4% and the average radiation exposure per patient was 8.2 mSv (95% CI, 5.0-11.3) greater during the pan-scan period. Although there are advantages to whole-body computed tomography, elucidation of the appropriate blunt trauma patient population is warranted when implementing a pan-scan protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    PubMed

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  20. Complex oxide ferroelectrics: Electrostatic doping by domain walls

    DOE PAGES

    Maksymovych, Petro

    2015-06-19

    Electrically conducting interfaces can form, rather unexpectedly, by breaking the translational symmetry of electrically insulating complex oxides. For example, a nanometre-thick heteroepitaxial interface between electronically insulating LaAlO 3 and SrTiO 3 supports a 2D electron gas1 with high mobility of >1,000 cm 2 V -1 s -1 (ref. 2). Such interfaces can exhibit magnetism, superconductivity and phase transitions that may form the functional basis of future electronic devices2. A peculiar conducting interface can be created within a polar ferroelectric oxide by breaking the translational symmetry of the ferroelectric order parameter and creating a so-called ferroelectric domain wall (Fig. 1a,b). Ifmore » the direction of atomic displacements changes at the wall in such a way as to create a discontinuity in the polarization component normal to the wall (Fig. 1a), the domain wall becomes electrostatically charged. It may then attract compensating mobile charges of opposite sign produced by dopant ionization, photoexcitation or other effects, thereby locally, electrostatically doping the host ferroelectric film. In contrast to conductive interfaces between epitaxially grown oxides, domain walls can be reversibly created, positioned and shaped by electric fields, enabling reconfigurable circuitry within the same volume of the material. Now, writing in Nature Nanotechnology, Arnaud Crassous and colleagues at EPFL and University of Geneva demonstrate control and stability of charged conducting domain walls in ferroelectric thin films of BiFeO 3 down to the nanoscale.« less

  1. Application of streptavidin mass spectrometric immunoassay tips for immunoaffinity based antibody phage display panning.

    PubMed

    Chin, Chai Fung; Ler, Lian Wee; Choong, Yee Siew; Ong, Eugene Boon Beng; Ismail, Asma; Tye, Gee Jun; Lim, Theam Soon

    2016-01-01

    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. What do PANs Tell us about VOC-NOx Photochemistry in the Urban/Rural Interface?

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Flocke, F. M.; Zheng, W.; Bertman, S.; Marchewka, M.; Williams, E.; Lerner, B.; Kuster, W.; Goldan, P.; Gilman, J.; Sommariva, R.; Trainer, M.; Fehsenfeld, F.

    2006-12-01

    Peroxycarboxylic Nitric Anhydrides (PANs) are co-products of the VOC-NOx photochemistry that is responsible for O3 and secondary organic aerosol (SOA) formation in the troposphere. The relative abundance of the various PAN type compounds can provide important diagnostic information as to the contribution of different VOC sources to these processes. Anthropogenic, biogenic and petrochemical VOC sources have shown distinct profiles of PAN, PPN, MPAN, PiBN, and APAN, which can be analyzed using simple numerical models and compared to the results of detailed chemical mechanisms. One result of these studies is that the PAN compounds can be used to better define the contribution of isoprene to O3 production in the urban/rural interface. Another result is that high relative concentrations of APAN are characteristic of high petrochemical source impact. In addition, changes in the relative abundance of PPN and PAN can indicate the aging of a continental photochemical plume. This paper will present selected results from five field experiments and modeling studies from the Nashville 1999 Southern Oxidant Study up through the TexAQS 2006 study, in and around Houston, TX.

  3. Does early care affect joint attention in great apes (Pan troglodytes, Pan paniscus, Pongo abelii, Pongo pygmaeus, Gorilla gorilla)?

    PubMed

    Pitman, Caisie A; Shumaker, Robert W

    2009-08-01

    The ability to share attention with another is the foundation on which other theory of mind skills are formed. The quality of care received during infancy has been correlated with increased joint attention in humans. The purpose of this study was to assess the effects of care style (responsive or basic) and caregiver type (ape or human) during the first 6 months on joint attention in 4 great ape species (Pan troglodytes, Gorilla gorilla, Pongo spp., and Pan pansicus). Great apes engaged in joint attention with conspecifics and humans regardless of the style of early care they experienced from either a great ape mother or human caregiver. This finding suggests that joint attention is a robust ability in great apes that is resilient against at least some differences in early care. Future studies using additional measures of early care quality are recommended. Copyright 2009 APA, all rights reserved.

  4. Emerging technology for transonic wind-tunnel-wall interference assessment and corrections

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.

    1988-01-01

    Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.

  5. Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm

    NASA Astrophysics Data System (ADS)

    Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.

    2018-06-01

    A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.

  6. Publishing datasets with eSciDoc and panMetaDocs

    NASA Astrophysics Data System (ADS)

    Ulbricht, D.; Klump, J.; Bertelmann, R.

    2012-04-01

    Currently serveral research institutions worldwide undertake considerable efforts to have their scientific datasets published and to syndicate them to data portals as extensively described objects identified by a persistent identifier. This is done to foster the reuse of data, to make scientific work more transparent, and to create a citable entity that can be referenced unambigously in written publications. GFZ Potsdam established a publishing workflow for file based research datasets. Key software components are an eSciDoc infrastructure [1] and multiple instances of the data curation tool panMetaDocs [2]. The eSciDoc repository holds data objects and their associated metadata in container objects, called eSciDoc items. A key metadata element in this context is the publication status of the referenced data set. PanMetaDocs, which is based on PanMetaWorks [3], is a PHP based web application that allows to describe data with any XML-based metadata schema. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and make use of contextual information in a project setting. Access rights can be applied to set visibility of datasets to other project members and allow collaboration on and notifying about datasets (RSS) and interaction with the internal messaging system, that was inherited from panMetaWorks. When a dataset is to be published, panMetaDocs allows to change the publication status of the eSciDoc item from status "private" to "submitted" and prepare the dataset for verification by an external reviewer. After quality checks, the item publication status can be changed to "published". This makes the data and metadata available through the internet worldwide. PanMetaDocs is developed as an eSciDoc application. It is an easy to use graphical user interface to eSciDoc items, their data and metadata. It is also an application supporting a DOI publication agent during the process of

  7. Method and apparatus for detecting irregularities on or in the wall of a vessel

    DOEpatents

    Bowling, Michael Keith

    2000-09-12

    A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.

  8. Turbulence modeling: Near-wall turbulence and effects of rotation on turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1990-01-01

    Many Reynolds averaged Navier-Stokes solvers use closure models in conjunction with 'the law of the wall', rather than deal with a thin, viscous sublayer near the wall. This work is motivated by the need for better models to compute near wall turbulent flow. The authors use direct numerical simulation of fully developed channel flow and one of three dimensional turbulent boundary layer flow to develop new models. These direct numerical simulations provide detailed data that experimentalists have not been able to measure directly. Another objective of the work is to examine analytically the effects of rotation on turbulence, using Rapid Distortion Theory (RDT). This work was motivated by the observation that the pressure strain models in all current second order closure models are unable to predict the effects of rotation on turbulence.

  9. Campylobacter in chicken livers and their destruction by pan frying.

    PubMed

    Whyte, R; Hudson, J A; Graham, C

    2006-12-01

    To enumerate Campylobacter spp. on the external surface and internal portions of chicken livers, and to assess the cooking required to inactivate naturally present cells. Of 30 livers tested all yielded Campylobacter spp. on their surfaces and 90% were found to contain the organism in internal tissue. Four (13%) livers contained >10(4) MPN campylobacters, and an additional seven (23%) contained >10(3) MPN campylobacters per liver. The internal temperature of pan-fried livers under the conditions used reached a maximum of 70-80 degrees C, and maintaining this temperature for 2-3 min was necessary to inactivate naturally occurring Campylobacter spp. All isolates identified were either C. jejuni or C. coli. Chicken livers represent a potential source of human campylobacteriosis as they contained >10(4) MPN per liver in 13% of the samples tested. Pan-frying can produce an acceptable product that is safe to eat. SIGNIFICANCE AND IMPACT OF THIS STUDY: The data provided can be used in exposure assessments of Campylobacter in poultry products in terms of both quantitative data and assessing pan-frying and its ability to destroy campylobacters.

  10. Inkjet printing of aligned single-walled carbon-nanotube thin films

    NASA Astrophysics Data System (ADS)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  11. Data indicating temperature response of Ti-6Al-4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping.

    PubMed

    Marshall, Garrett J; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    An OPTOMEC Laser Engineered Net Shaping (LENS(™)) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti-6Al-4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.

  12. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping

    PubMed Central

    Marshall, Garrett J.; Thompson, Scott M.; Shamsaei, Nima

    2016-01-01

    An OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR) camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD) process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV) file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials. PMID:27054180

  13. Geometric morphometric analysis of mandibular shape diversity in Pan.

    PubMed

    Robinson, Chris

    2012-07-01

    The aim of this research is to determine whether geometric morphometric (GM) techniques can provide insights into how the shape of the mandibular corpus differs between bonobos and chimpanzees and to explore the potential implications of those results for our understanding of hominin evolution. We focused on this region of the mandible because of the relative frequency with which it has been recovered in the hominin fossil record. In addition, no previous study had explored in-depth three-dimensional (3D) mandibular corpus shape differences between adults of the two Pan species using geometric morphometrics. GM methods enable researchers to quantitatively analyze and visualize 3D shape changes in skeletal elements and provide an important compliment to traditional two-dimensional analyses. Eighteen mandibular landmarks were collected using a Microscribe 3DX portable digitizer. Specimen configurations were superimposed using Generalized Procrustes analysis and the projections of the fitted coordinates to tangent space were analyzed using multivariate statistics. The size-adjusted corpus shapes of Pan paniscus and Pan troglodytes could be assigned to species with approximately 93% accuracy and the Procrustes distance between the two species was significant. Analyses of the residuals from a multivariate linear regression of the data on centroid size suggested that much of the shape difference between the species is size-related. Chimpanzee subspecies and a small sample of Australopithecus specimens could be correctly identified to taxon, at best, only 75% of the time, although the Procrustes distances between these taxa were significant. The shape of the mandibular symphysis was identified as especially useful in differentiating Pan species from one another. This suggests that this region of the mandible has the potential to be informative for taxonomic analyses of fossil hominoids, including hominins. The results also have implications for phylogenetic hypotheses of

  14. Evolution of the ATLAS PanDA Production and Distributed Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno, T.; De, K.; Wenaus, T.

    2012-12-13

    Evolution of the ATLAS PanDA Production and Distributed Analysis System T Maeno1,5, K De2, T Wenaus1, P Nilsson2, R Walker3, A Stradling2, V Fine1, M Potekhin1, S Panitkin1 and G Compostella4 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 396, Part 3 Article PDF References Citations Metrics 101 Total downloads Cited by 8 articles Turn on MathJax Share this article Article information Abstract The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDAmore » has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.« less

  15. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    DOEpatents

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  16. Manipulation of Magnetic Textures in Thin Films and Devices

    NASA Astrophysics Data System (ADS)

    Tolley, Robert Douglas

    Control and manipulation of magnetic textures is promising for the development of next-generation data storage, memory and processing technologies. Towards this goal, domain wall manipulation in two materials systems are presented here and thoroughly evaluated. Domain walls in ferrimagnetic Cobalt-Terbium alloys and multilayers are created, moved and stabilized via thermal gradients and a static magnetic field and exploit the unique properties of the system across the magnetic compensation point. The response of the systems to thermal gradients is observed via Kerr microscopy and used to determine the positioning of domain walls within patterned devices. Magnetic skyrmions are discovered in thin-film multilayered stacks using an Pt/Co/Os/Pt heterostructures where the thin Osmium layer is used to break interfacial symmetry and enhance the Dzyaloshinskii-Moriya interaction. The resulting skyrmions are manipulated using temperature, magnetic field, and electric current, and special attention is paid to their motion and nucleation behavior. Skyrmions are observed to be formed by low applied currents from nucleation sites and by collapse of stripe textures. Patterned wires allow for the observation of skyrmion nucleation behavior in free space, as well as defect sites, and real-time Kerr microscopy imaging is presented of skyrmion and stripe dynamics. These systems are evaluated from a perspective of their growth, patterning, measurement, and the novel behavior of the magnetic textures.

  17. Comparison of PAN and Black Carbon Levels in Mexico City: 1997 and 2003

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2004-12-01

    Peroxyacetyl nitrate (PAN) is a secondary oxidant formed by the oxidation of hydrocarbons in the presence of nitrogen dioxide. PAN is a good indicator compound for hydrocarbon reactivity that leads to ozone formation. Black carbon (BC) is formed by incomplete combustion processes such as diesel soot formation and is a good indicator of primary carbonaceous aerosols in urban areas. We used a fast-response luminol method to measure PAN and BC during the Mexico City Metropolitan Area 2003/Mexico City Megacity 2003 field study in April 2003. We compare these results with our previous PAN measurements in Mexico City during February 1997, made with a gas chromatograph-electron capture detector system. The decreased PAN levels observed in 2003 are consistent with the application of emissions controls on spark ignition gasoline-fueled vehicles, leading to lower levels of the nitrogen oxides and reactive volatile hydrocarbons needed to form PAN. Black carbon data for Mexico City in 2003, taken with a seven-channel aethalometer, are compared with data from 1997, estimated from thermal analyses as elemental carbon (EC). The comparison indicates little change in the levels of BC/EC over the six-year period. This observation is consistent with the application of minimal controls to diesel engines, the likely major source of BC in the Mexico City megacity complex during this period. The authors wish to thank the researchers at Centro Nacional de Investigación en Calidad Ambiental (CENICA), Mexico City. This work was supported by the U.S. Department of Energy, Atmospheric Science Program. We also wish to acknowledge Drs. Mario and Luisa Molina for their help in organizing and directing the Mexico City Metropolitan Area 2003 field study, during which these data were collected.

  18. Patterns of muscular strain in the embryonic heart wall.

    PubMed

    Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P

    2009-06-01

    The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.

  19. SOPanG: online text searching over a pan-genome.

    PubMed

    Cislak, Aleksander; Grabowski, Szymon; Holub, Jan

    2018-06-22

    The many thousands of high-quality genomes available nowadays imply a shift from single genome to pan-genomic analyses. A basic algorithmic building brick for such a scenario is online search over a collection of similar texts, a problem with surprisingly few solutions presented so far. We present SOPanG, a simple tool for exact pattern matching over an elastic-degenerate string, a recently proposed simplified model for the pan-genome. Thanks to bit-parallelism, it achieves pattern matching speeds above 400MB/s, more than an order of magnitude higher than of other software. SOPanG is available for free from: https://github.com/MrAlexSee/sopang. Supplementary data are available at Bioinformatics online.

  20. A new two-Dimensional Physical Basis for the Complementary Relation Between Terrestrial and pan Evaporation

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Salvucci, G. D.

    2008-12-01

    Archived global measurements of water loss from evaporation pans constitute an important indirect measure of evaporative flux. Historical data from evaporation pans shows a decreasing trend over the last half century, but the relationship between pan evaporation and moisture-limited terrestrial evaporation is complex, leading to ambiguities in the interpretation of this data. Under energy-limited conditions, pan evaporation (Epan) and moisture-limited terrestrial evaporation (E) increase or decrease together, while in moisture- limited conditions these fluxes form a complementary relation in which increases in one rate accompany decreases in the other. This has lead to debate about the meaning of the observed trends in the context of changing climate. Here a two-dimensional numerical model of a wet pan in a drying landscape is used to demonstrate that, over a wide range of realistic atmospheric and surface conditions, the influence that changes in E have on Epan (1) are complementary and linear, (2) do not depend upon surface wind speed, and (3) are strikingly asymmetrical, in that a unit decrease in E causes approximately a five-fold increase in Epan, as found in a recent analysis of daily evaporation from US grasslands (Kahler and Brutsaert, 2006). Previous attempts to explain the CR have been based on one dimensional diffusion and energy balance arguments, leading to analytic solutions based on Penman-type bulk difference equations. But without acknowledging the spatially complex multidimensional humidity and temperature field around the pan, and specifically how these fields change as the contrast between the wet pan and the drying land surface increases, such integrated bulk difference equations are a priori incomplete (they ignore important divergence terms), and thus these explanations must be considered physically incomplete. Results of the present study improve the theoretical foundation of the CR, thus increasing the reliability with which it can be

  1. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  2. Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and panchromatic (PAN) images.

    PubMed

    Jung, Hyung-Sup; Park, Sung-Whan

    2014-12-18

    Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN) and thermal infrared (TIR) images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.

  3. Theoretical evaluation of a V/STOL fighter model utilizing the PAN AIR code

    NASA Technical Reports Server (NTRS)

    Howell, G. A.; Bhateley, I. C.

    1982-01-01

    The PAN AIR computer code was investigated as a tool for predicting closely coupled aerodynamic and propulsive flowfields of arbitrary configurations. The NASA/Ames V/STOL fighter model, a configuration of complex geometry, was analyzed with the PAN AIR code. A successful solution for this configuration was obtained when the nozzle exit was treated as an impermeable surface and no wakes were included around the nozzle exit. When separated flow was simulated from the end of the nacelle, requiring the use of wake networks emanating from the nozzle exit, a number of problems were encountered. A circular body nacelle model was used to investigate various techniques for simulating the exhaust plume in PAN AIR. Several approaches were tested and eliminated because they could not correctly simulate the interference effects. Only one plume modeling technique gave good results. A PAN AIR computation that used a plume shape and inflow velocities obtained from the Navier-Stokes solution for the plume produced results for the effects of power that compared well with experimental data.

  4. Sensor Package Pan and Tilt Unit on Atlantis during STS-132

    NASA Image and Video Library

    2010-05-15

    S132-E-005110 (15 May 2010) --- While preparing for the routine inspection of Atlantis’ thermal protection system on Flight Day 2, the STS-132 crew discovered a cable was being pinched and preventing the sensor package pan and tilt unit from moving properly. There are alternate sensor packages that do not require the pan and tilt function; and personnel in the Johnson Space Center’s Mission Control Center are evaluating those procedures. Photo credit: NASA or National Aeronautics and Space Administration

  5. 75 FR 13085 - Pan-Pacific Education and Communications Experiments by Satellite (PEACESAT): Closing Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    .... 100305127-0127-01] Pan-Pacific Education and Communications Experiments by Satellite (PEACESAT): Closing..., Public Law No. 111-117, the U.S. Department of Commerce announces the solicitation of applications for a grant for the Pan-Pacific Education and Communications Experiments by Satellite (PEACESAT) Program...

  6. Measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) at selected urban, rural and remote sites

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, Louis J.

    1989-01-01

    PAN and PPN were measured in a series of eight field studies performed at urban, rural and remote locations in the contiguous U.S. during 1983-1985. Seven of the eight studies were performed in the winter/spring period, a period of sparsely available data. Nearly 2000 air samples were analyzed during these studies. Mean PAN and PPN levels in the range of 45-1600 ppt (max. 7.9 ppb) and 5-230 ppt (max. 0.9 ppb), respectively, were measured. Despite a great deal of observed variability, PAN and PPN showed virtually identical behavior at all sites and in all seasons, supporting the view that these nitrogenous compounds are produced and destroyed by very similar mechanisms. On the average PPN concentrations were about 8 percent (range 3-14 percent) of PAN values. It is inferred that PPN/PAN ratio is highest in urban areas and declines as polluted air masses are transported over long distances.

  7. Partially-Averaged Navier-Stokes (PANS) approach for study of fluid flow and heat transfer characteristics in Czochralski melt

    NASA Astrophysics Data System (ADS)

    Verma, Sudeep; Dewan, Anupam

    2018-01-01

    The Partially-Averaged Navier-Stokes (PANS) approach has been applied for the first time to model turbulent flow and heat transfer in an ideal Czochralski set up with the realistic boundary conditions. This method provides variable level of resolution ranging from the Reynolds-Averaged Navier-Stokes (RANS) modelling to Direct Numerical Simulation (DNS) based on the filter control parameter. For the present case, a low-Re PANS model has been developed for Czochralski melt flow, which includes the effect of coriolis, centrifugal, buoyant and surface tension induced forces. The aim of the present study is to assess improvement in results on switching to PANS modelling from unsteady RANS (URANS) approach on the same computational mesh. The PANS computed results were found to be in good agreement with the reported experimental, DNS and Large Eddy Simulation (LES) data. A clear improvement in computational accuracy is observed in switching from the URANS approach to the PANS methodology. The computed results further improved with a reduction in the PANS filter width. Further the capability of the PANS model to capture key characteristics of the Czochralski crystal growth is also highlighted. It was observed that the PANS model was able to resolve the three-dimensional turbulent nature of the melt, characteristic flow structures arising due to flow instabilities and generation of thermal plumes and vortices in the Czochralski melt.

  8. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  9. Correcting and coating thin walled X-ray Optics via a combination of controlled film deposition and magnetic smart materials

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville

    The project goal is to demonstrate that thin walled (<400 micron thick) X-ray optics can be controllably shaped to produce high quality (~1" or better) X-ray optics at an affordable price. Since the desired surface area for the next generation X-ray telescope is >10x that of Chandra, the >10x requirement is then for >200 m^2 of surface area with a surface finish of better than 0.5 nm. Therefore, replication of some sort is called for. Because no replication technology has been shown to achieve ≤1" angular resolution, post fabrication figure corrections are likely going to be necessary. Some have proposed to do this in orbit and others prelaunch including us. Our prelaunch approach is to apply in-plane stresses to the thin walled mirror shells via a magnetic field. The field will be held in by some magnetically hard material such as NiCo. By use of a so called magnetic smart material (MSM) such as Terfenol-D, we already shown that strong enough stresses can be generated. Preliminary work has also shown that the magnetic field can be held in well enough to apply the figure correcting stresses pre-launch. What we call "set-it and forget-it." However, what is unique about our approach is that at the cost of complexity and some areal coverage, our concept will also accommodate in-orbit adjustments. Furthermore, to the best of our knowledge ours is one of two known stress modification processes that are bi-axial. Our plan is first to validate set-it and forget-it first on cantilevers and then to expand this to working on 5 cm x 5 cm pieces. We will work both with NiCo and glass or Si coated with Terfenol-D. Except for the NiCo, substrates we will also coat the samples with NiCo in order to have a film that will hold in the magnetic field. As part of the coating process, we will control the stress of the film by varying the voltage bias while coating. The bias stress control can be used to apply films with minimal stress such as Terfenol-D and X-ray reflecting coatings

  10. Injector-Wall Interactions in Gas-Centered Swirl Coaxial Injectors

    DTIC Science & Technology

    2011-10-05

    and cavitating venturis, respectively. The nozzles, venturis and associated pressure transducers have been calibrated so that the error in mass...from movement of titanium dioxide on thin oil films, a measure of shear at the wall. The important finding, then, is that using the single-phase...Journal 24(12):1964-(1986). 6. Bernal, L.P., and Madnia, K., in Proceedings of the Seventeenth Symposium on Naval Hydrodynamics , National Academies

  11. Efficiency of malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems

    Treesearch

    Joshua W. Campbell; J.L. Hanula

    2007-01-01

    Pan and Malaise traps have been used widely to sample insect abundance and diversity, but no studies have compared their performance for sampling pollinators in forested ecosystems. Malaise trap design and color of pan traps are important parameters that influence insect pollinator catches. We compared pan trap (blue, yellow, white, and red) and Malaise trap catches...

  12. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  13. Phase equilibria in polymer-blend thin films

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel; Souche, Mireille

    2010-03-01

    To describe equilibrium concentration profiles in thin films of polymer mixtures, we propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We first focus on the case of 50:50 polymer blends confined between anti-symmetric walls. The different phases of the system and the transitions between them, including finite size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films. The addition of a further degree of freedom in the system, namely a solvent, may result in a chaotic behavior of the system, characterized by the existence of solutions with exponential sensitivity to initial conditions. Such solutions and there subsequent contribution to the out-of-equilibrium dynamics of the system are well described in Hamiltonian formalism. A fully consistent treatment of the Flory-Huggins-de Gennes theory of thin film polymer blend solutions, in the spirit of the Hamiltonian approach will be presented. 1. M. Souche and N. Clarke, J. Chem. Phys., submitted.

  14. Elastohydrodynamics of a free cylinder near a soft wall

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.; Salez, Thomas

    2015-11-01

    We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall. We use scaling arguments to establish different regimes of settling, sliding, rolling and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding, and spinning motions of a cylinder. Numerical integration of the resulting equations confirms our scaling relations and further yields a range of behaviours such as spontaneously oscillations when sliding, lift via a Magnus-like effect, a spin-induced reversal effect, and an unusual sedimentation singularity. Our description also allows us to address a sedimentation-sliding transition that can lead to the particle coasting over very long distances, similar to certain geophysical phenomena.

  15. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando; Caballero Bejar, Jose; De, Kaushik; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Petrosyan, Artem; Wenaus, Torre

    2016-02-01

    After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  16. Rapid Eye Movement Sleep Abnormalities in Children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS)

    PubMed Central

    Gaughan, Thomas; Buckley, Ashura; Hommer, Rebecca; Grant, Paul; Williams, Kyle; Leckman, James F.; Swedo, Susan E.

    2016-01-01

    Study Objectives: Polysomnographic investigation of sleep architecture in children presenting with pediatric acute-onset neuropsychiatric syndrome (PANS). Methods: Fifteen consecutive subjects meeting criteria for PANS (mean age = 7.2 y; range 3–10 y) underwent single-night full polysomnography (PSG) read by a pediatric neurologist. Results: Thirteen of 15 subjects (87%) had abnormalities detected with PSG. Twelve of 15 had evidence of rapid eye movement (REM) sleep motor disinhibition, as characterized by excessive movement, laughing, hand stereotypies, moaning, or the continuation of periodic limb movements during sleep (PLMS) into REM sleep. Conclusions: This study shows various forms of REM sleep motor disinhibition present in a population of children with PANS. Citation: Gaughan T, Buckley A, Hommer R, Grant P; Williams K, Leckman JF, Swedo SE. Rapid eye movement sleep abnormalities in children with pediatric acute-onset neuropsychiatric syndrome (PANS). J Clin Sleep Med 2016;12(7):1027–1032. PMID:27166296

  17. Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries

    PubMed Central

    Noppe, Wim; Plieva, Fatima; Galaev, Igor Yu; Pottel, Hans; Deckmyn, Hans; Mattiasson, Bo

    2009-01-01

    Background Phage Display technology is a well established technique for high throughput screening of affinity ligands. Here we describe a new compact chromato-panning procedure for selection of suitable binders from a phage peptide display library. Results Both phages and E. coli cells pass non-hindered through the interconnected pores of macroporous gel, so called cryogel. After coupling a ligand to a monolithic cryogel column, the phage library was applied on the column and non-bound phages were washed out. The selection of strong phage-binders was achieved already after the first panning cycle due to the efficient separation of phage-binders from phage-non-binders in chromatographic mode rather than in batch mode as in traditional biopanning procedures. E. coli cells were applied on the column for infection with the specifically bound phages. Conclusion Chromato-panning allows combining several steps of the panning procedure resulting in 4–8 fold decrease of total time needed for phage selection. PMID:19292898

  18. Demographic History of the Genus Pan Inferred from Whole Mitochondrial Genome Reconstructions

    PubMed Central

    Tucci, Serena; de Manuel, Marc; Ghirotto, Silvia; Benazzo, Andrea; Prado-Martinez, Javier; Lorente-Galdos, Belen; Nam, Kiwoong; Dabad, Marc; Hernandez-Rodriguez, Jessica; Comas, David; Navarro, Arcadi; Schierup, Mikkel H.; Andres, Aida M.; Barbujani, Guido; Hvilsom, Christina; Marques-Bonet, Tomas

    2016-01-01

    The genus Pan is the closest genus to our own and it includes two species, Pan paniscus (bonobos) and Pan troglodytes (chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes (mitogenomes) from whole genome shotgun (WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago (Mya) [0.81–1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [0.41–0.78] with further internal separations at 0.32 Mya [0.22–0.43] and 0.16 Mya [0.17–0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics. PMID:27345955

  19. Development of Advanced Conformal Ablative TPS Fabricated from Rayon- and PAN-Based Carbon Felts

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Stackpoole, Margaret; White, Susan; Boghozian, Tane

    2016-01-01

    The conformal ablative TPS first developed under NASA's Hypersonics Project in the early 2000's demonstrated very low through the thickness conductivity compared to state-ofthe- art PICA. However, in initial arcjet testing of Conformal-1, surface recession rates were 2x higher than PICA. Because commercial carbon felts are currently available as very thin substrates, this was a concern if conformal TPS were to be considered for a mission that required thicker material. Discussed in this paper are the results of the development of an Advanced Conformal TPS derived from thicker, higher density carbon felt. Two substrate systems were evaluated, the first material was a needled rayon-based carbon felt and the other a needled PAN-based carbon felt. Both substrates were impregnated with phenolic resin following the PICA/CPICA process to add a low density phenolic matrix to the system prior to aerothermal screening at the LaRC HyMETS facility and larger scale testing in the NASA ARC Interaction Heating Facility (IHF) at heating fluxes ranging from 250-1700 W/cm2.

  20. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO2 and the influence of the molecular weight.

    PubMed

    Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng

    2003-11-15

    In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.